

Methods for estimating fish tracks using AOTTP electronic tags.

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

www.azti.es

Igor Arregui, Nicolas Goñi

2000

www.iccat.int

Ligth geolocation uncertainty increases due to:

Sun declination

- latitudinally > longitudinally
- when approaching to equinoxes.

Light at surface estimation

- Depth (during dusk and dawn)
- Water transparence $\downarrow \downarrow$

High uncertainty in light-geolocations:

Technical limitations

Depends on tag type and manufacturer; Lotek > Wildlife Computers (Schaefer et al 2006)

Major source is external to the tags.

<u>Environmental</u> conditions: cloud cover, wind strength, sea state... find analyzing <u>moored</u> tags (Welch et al. 1999; Musyl et al. 2001)

<u>Alive</u> animals:

Two equal tags on a single individual \rightarrow different results (Wilson et al. 2007).

light estimation at surface:

<u>Deep diving</u> \rightarrow wrong light at surface curve \rightarrow computed as a twilight \rightarrow outlier Is the case of BET (Lam et al. 2014)

<u>upwelling</u> areas \rightarrow light attenuation $\uparrow \uparrow \rightarrow$ surface estimates limited in deep.

Uncertainty in light-geolocations

Example # 1

(no recovery position)

28/12/2020

Track estimation overcoming light-geolocations uncertainty relies on:

- The model and fitting parameters.
 - Sun declination error
 - Fish movement dynamic
 - maximum speed
 - diffusion coefficient + advection
- Fit data from the fish with external fields; Environmental variable's with gradients
 - SST = sea surface temperature
 - PDT = Profiles of depth and temperature
- Constrains: Land. Bathymetry.

Most probable track estimation methods

Tag type / manufacturer	Track estimation method Hidden Marcov Model	Number of tracks	Environmental fields	remarks
miniPAT WC	Global Position Estimator 3 GPE3	83	SST	Black box usual recently
LAT-810 Lotek	(Braun et al., 2018) HMMoc	18	SST PDT	Open source, manipulable Review fitting process

Fish movement dynamic = maximum fish speed (user-defined) Constrain = Bathymetry

The results are equivalent.

Both methods and are based in the same previous methods (Patterson et al. 2009; Pedersen et al. 2011; Michelot et al. 2016)

ICCAT / AOTTP / CISEF CONSORCIUM

28/12/2020

Geolocation errors will expand its uncertainty to the entire track, leading worse estimates with higher variance (Nielsen 2004).

Overcome uncertainty estimating most probable track.

SST fields small gradients→ accuracy ↓ (Lam et al. 2010) equatorial area Western African upwelling.

Recovery position is not available (internal archival). \rightarrow accuracy \downarrow

constrained daily likelihood ↓ precise track

PDT

Consistent & More precise

Recomendations.

Reviewing each step involved in track estimation process:

- Rejection of non-informative light-geolocations.
- Compare result's uncertainty using PDT SST fields.
- Compare track with raw geolocations for consistency
- Try with different model fitting parameters to obtain robust results.

PDT (modeled) might not be realistic or too constraining \rightarrow incongruent fitting probability \uparrow

