Methods for estimating fish tracks using AOTTP electronic tags.

Igor Arregui, Nicolas Goñi
Light geolocation uncertainty increases due to:

Sun declination
- latitudinally > longitudinally
- when approaching to equinoxes.

Light at surface estimation
- Depth (during dusk and dawn)
- Water transparence ↓ ↓
High uncertainty in light-geolocations:

Technical limitations
- Depends on tag type and manufacturer;
 - Lotek > Wildlife Computers (Schaefer et al. 2006)

Major source is external to the tags.
- Environmental conditions: cloud cover, wind strength, sea state…
 - find analyzing moored tags (Welch et al. 1999; Musyl et al. 2001)

Alive animals:
- Two equal tags on a single individual → different results (Wilson et al. 2007).

Light estimation at surface:
- Deep diving → wrong light at surface curve → computed as a twilight → outlier
 - Is the case of BET (Lam et al. 2014)
- Upwelling areas → light attenuation ↑↑ → surface estimates limited in deep.
Uncertainty in light-geolocations

Example # 1

BET \rightarrow \text{deep distribution}

Upwelling \rightarrow \text{low transparence}

↓

High uncertainty

↓

Keep out outlier

(no recovery position)
Track estimation overcoming light-geolocations uncertainty relies on:

- The model and fitting parameters.
 - Sun declination error
 - Fish movement dynamic maximum speed diffusion coefficient + advection
- Fit data from the fish with external fields; Environmental variable’s with gradients
 - SST = sea surface temperature
 - PDT = Profiles of depth and temperature
Most probable track estimation methods

<table>
<thead>
<tr>
<th>Tag type / manufacturer</th>
<th>Track estimation method</th>
<th>Number of tracks</th>
<th>Environmental fields</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>miniPAT WC</td>
<td>Global Position Estimator 3 GPE3</td>
<td>83</td>
<td>SST</td>
<td>Black box usual recently</td>
</tr>
<tr>
<td>LAT-810 Lotek</td>
<td>(Braun et al., 2018) HMMoc</td>
<td>18</td>
<td>SST PDT</td>
<td>Open source, manipulable Review fitting process</td>
</tr>
</tbody>
</table>

Fish movement dynamic = maximum fish speed (user-defined)
Constrain = Bathymetry

The results are equivalent.
Both methods and are based in the same previous methods (Patterson et al. 2009; Pedersen et al. 2011; Michelot et al. 2016)
Fish track estimation

Geolocation errors will expand its uncertainty to the entire track, leading worse estimates with higher variance (Nielsen 2004).

Overcome uncertainty estimating most probable track.

SST fields small gradients \rightarrow accuracy ↓ (Lam et al. 2010)
 - equatorial area
 - Western African upwelling.

Recovery position is not available (internal archival). \rightarrow accuracy ↓
Overcoming uncertainty, track estimation.

Example # 2 YFT

SST

Equatorial area ↓
homogeneous fields ↓
Broad daily likelihood ↓
Uncertain track

PDT

constrained daily likelihood ↓
precise track
Fish track estimation

Overcoming uncertainty, track estimation.

Example #3 YFT

SST

2 cyclic migrations in a year
Complex behavior
Inconsistent result
Change default fitting params
Consistent result

PDT
Consistent &
More precise

ICCAT / AOTTP / CISEF CONSORCIUM
Recommendations.

Reviewing each step involved in track estimation process:

- Rejection of non-informative light-geolocations.
- Compare result’s uncertainty using PDT SST fields.
- Compare track with raw geolocations for consistency
- Try with different model fitting parameters to obtain robust results.

PDT (modeled) might not be realistic or too constraining \rightarrow incongruent fitting probability \uparrow