Improving Age Composition Estimates:

 Evaluating a Bayesian-like Method for Estimating Ages from Spines withVascularized Cores
Lynn Waterhouse, Guelson da Silva, Lisa Ailloud, and John Hoenig

Methods for Aging Fish

- Tagging
-Otoliths
-Jaw, other bones
-Opercular series
-Scales
-Fin spines

Methods for Aging Fish

-Tagging
-Otoliths
-Jaw, other bones
-Opercular series
-Scales
-Fin spines

Non-lethal, quick sample, doesn't affect market value

Problem with Using Fin Spines/Rays:

Many fish have vascularization in the core

Marlin Skipjack
Yellowfin Catfish
Brown trout White suckers

Zone of vascularization expands with growth, obliterating earliest growth rings

Guelson da Silva

$\sqrt{\prime \prime}$

Dealing with Spines Featuring Central Vascularization

1. Naïve model (assume observed rings = true age)
2. Impute with representative samples from each size (Holden and Meadows 1962 \& Seed 1968)
3. Simple ratio method (Andrade et al. 2004)
4. Multiple regression (Andrade et al. 2004)
5. K-means cluster analysis (Die and Drew 2008)

Dealing with Spines Featuring Central Vascularization

1. Naïve model (assume observed rings = true age)

2. Impute with representative samples from each size (Holden and Meadows 1962 \& Seed 1968)
3. Simple ratio method (Andrade et al. 2004)
4. Multiple regression (Andrade et al. 2004)
5. K-means cluster analysis (Die and Drew 2008)
6. Bayesian-like imputation

Methods we compare today

Bayesian-like Ring Imputation for Age Numbers (BRIAN)

Goal: estimate number missing rings to get total age

$$
\text { age }=\text { rings }_{\text {inner }}+\text { rings }_{\text {outer }}
$$

rings $_{\text {inner }}=\left\{\begin{array}{l}0 \text { no obliteration in young fish } \\ \text { Not Available in old fish }\end{array}\right.$

Bayesian-like Ring Imputation for Age Numbers (BRIAN)

Assume spine width follows von Bertalanffy* curve
rings $_{\text {inner }} \sim$ Poisson $\left(\mu_{v}\right)$
$\mu_{v}=$ mean number of rings in vascularized region for fish of spine width v

Calculate μ_{v} by solving von Bertalanffy eqn for age given vascularized width v

Data required for Bayesian method (BRIAN Model)
1.Count of observed rings $\left(C_{i}\right)$
2.NA when some rings may be missing $\left(X_{i}\right)$ 0 if no missing rings
3. Spine width $\left(D_{i}\right)$
4. Vascularized region width $\left(D_{1 i}\right)$

BRIAN Model

Vascularized Width

Missing

Age from vascularized region

rings
$t_{0}, \mathrm{~K}, D_{\infty}$ von Bertalanffy
parameters for spine growth

Bayesian-like Ring Imputation for Age Numbers (BRIAN)

Why Bayesian-like instead of Bayesian?

-Priors not purely hierarchical
-Methods used in data science where interest is in prediction

Model Evaluation \& Comparison

1. Naïve model
2. Bayesian Ring Imputation for Age Numbers (BRIAN)

Using:

- Simulated datasets
- Yellowfin tuna data

Simulated Data - 1000 fish

- Ages 1 to 10
- Uniform age distribution
- Spine width based on age (von Bertalanffy model)
- Add random error (sd=0.1)
- Vascularized region proportional to spine radius
- Random error added in logit space on proportion of spine vascularized (sd=sqrt(0.003))
-Calculate location of each ring
- Scale by ratio spine width to expected width
- Notion small fish are always small, big fish are always big

Simulated Data - part 2

-Calculate \# of missing rings

- Determine if rings are missing
- If you believe you have 1 year olds in data, use smallest $1^{\text {st }}$ ring diameter
- Otherwise assume all fish are censored (have missing rings)
rings $_{\text {inner }}=\left\{\begin{array}{l}0 \text { no obliteration in young fish } \\ \text { Not Available in old fish }\end{array}\right.$

Preliminary Results Naïve method

Naïve Model Results

True Age	Naïve Age (Observed Rings)											No. Fish True Age
		1	2	3	4	5	6	7	8	9	10	
	1	1.00	0	0	0	0	0	0	0	0	0	93
	2	0	1.00	0	0	0	0	0	0	0	0	91
	3	0	1.00	0	0	0	0	0	0	0	0	86
	4	0	0	1.00	0	0	0	0	0	0	0	111
	5	0	0	0	1.00	0	0	0	0	0	0	88
	6	0	0	0	0.08	0.92	0	0	0	0	0	98
	7	0	0	0	0	0.43	0.58	0	0	0	0	120
	8	0	0	0	0	0	0.75	0.25	0	0	0	114
	9	0	0	0	0	0	0	0.92	0.08	0	0	100
	10	0	0	0	0	0	0	0	0.93	0.07	0	99

Preliminary Results BRIAN method

BRIAN Model Results

Mode of Posterior Estimated Age

		1	2	3	4	5	6	7	8	9	10	11	Fish True Age
	1	1.00	0	0	0	0	0	0	0	0	0	0	93
	2	0	0.82	0.18	0	0	0	0	0	0	0	0	91
	3	0	0	1.00	0	0	0	0	0	0	0	0	86
True	4	0	0	0	1.00	0	0	0	0	0	0	0	111
Age	5	0	0	0	0	1.00	0	0	0	0	0	0	88
	6	0	0	0	0	0.01	0.89	0.10	0	0	0	0	98
	7	0	0	0	0	0	0.12	0.68	0.20	0	0	0	120
	8	0	0	0	0	0	0	0.11	0.79	0.10	0	0	114
	9	0	0	0	0	0	0	0	0.10	0.87	0.03	0.00	100
	10	0	0	0	0	0	0	0	0	0.09	0.88	0.03	99

Preliminary Results comparison

Naïve model max age 9 BRIAN model max age 11

Naïve model \rightarrow greater bias older fish, only does well young fish

BRIAN model is unbiased, gets it right >74\%

Parameter Estimates from von Bertalanffy Naive vs. BRIAN method

Parameter	True Value	BRIAN Model		Naïve Model	
		Median	95\% CI	Median	95\% CI
\boldsymbol{t}_{0}	-0.1	-0.12	-0.17, -0.08	0.29	0.22, 0.30
K	0.4	0.39	0.38, 0.40	0.60	0.58, 0.62
\boldsymbol{D}_{∞}	4	4.0	4.0, 4.1	3.9	3.9, 4.0

Naïve estimate of K is 50\% higher
\rightarrow Total mortality estimate will be 50\% higher using Beverton-Holt mean length estimator

$$
\hat{Z}=\frac{K\left(L_{\infty}-\bar{L}\right)}{\left(\bar{L}-L_{c}\right)}
$$

Parameter Estimates from von Bertalanffy Naive vs. BRIAN method

Yellowfin Tuna Example

Thunnus albacares
Atlantic ocean

Dataset from AOTTP and Universidade Federal Rural do Semi-Árido - UFERSA (Brazil)

Yellowfin Tuna Data: Is there evidence vascularization affects apparent growth?

7

6 Observed Ring Count

2

- $N=1$

$\mathrm{N}=100$
$\mathrm{N}=43$

Yellowfin Tuna Example: von Bertalanffy Estimates

	BRIAN Model		Naïve Model	
Parameter	Median	95% CI	Median	95% Cl
$\boldsymbol{t}_{\mathbf{0}}$	-0.65	$-0.76,-0.57$	-0.09	$-0.33,0.14$
\boldsymbol{K}	0.09	$0.06,0.12$	0.09	$0.06,0.15$
\boldsymbol{D}_{∞}	13.3	$10.5,18.4$	23.4	$16.0,29.6$

Yellowfin Tuna Data:

 von Bertalanffy growth curve - Naïve model

Yellowfin Tuna Data: von Bertalanffy growth curves

Estimated Age (BRIAN)

BRIAN Model Flexibility

Other growth models can be used instead of von Bertalanffy

With simulated data, model still runs if 100% of your data has missing rings from vascularization

Broader Application

Utilize data in more efficient manner
\rightarrow Increase sample size by collecting from catch \& release anglers and commercial fishermen
\rightarrow Avoid naïve mistake of underestimating age, overestimating K and Z

Atlantic Tropical Tuna Age \& Growth Study

ICCAT Atlantic Ocean Tropical Tuna Tagging Programme

Grace Chiu
\& ESTDatS
@ VIMS

Thank You

