Improving Age Composition Estimates: Evaluating a Bayesian-like Method for Estimating Ages from Spines with Vascularized Cores

Lynn Waterhouse, Guelson da Silva, Lisa Ailloud, and John Hoenig

Methods for Aging Fish

- Tagging
- Otoliths
- Jaw, other bones
- Opercular series
- Scales
- Fin spines

Methods for Aging Fish

- Tagging
- Otoliths

Scales

Fin spines

- Jaw, other bones
- Opercular series

Lethal, high extractive cost

 Non-lethal, quick sample, doesn't affect market value

Problem with Using Fin Spines/Rays:

Many fish have vascularization in the core

MarlinSkipjackYellowfinCatfishBrown troutWhite suckers

Zone of vascularization expands with growth, obliterating earliest growth rings

Guelson da Silva

Dealing with Spines Featuring Central Vascularization

- 1. Naïve model (assume observed rings = true age)
- 2. Impute with representative samples from each size (Holden and Meadows 1962 & Seed 1968)
- 3. Simple ratio method (Andrade et al. 2004)
- 4. Multiple regression (Andrade et al. 2004)
- 5. K-means cluster analysis (Die and Drew 2008)

Dealing with Spines Featuring Central Vascularization

1. Naïve model (assume observed rings = true age)

- 2. Impute with representative samples from each size (Holden and Meadows 1962 & Seed 1968)
- 3. Simple ratio method (Andrade et al. 2004)
- 4. Multiple regression (Andrade et al. 2004)
- 5. K-means cluster analysis (Die and Drew 2008)

6. Bayesian-like imputation

Methods we compare today

Bayesian-like Ring Imputation for Age Numbers (BRIAN)

Goal: estimate number missing rings to get total age

age = rings_{inner} + rings_{outer}

 $rings_{inner} = \begin{cases} 0 \text{ no obliteration in young fish} \\ Not Available in old fish \end{cases}$

Bayesian-like Ring Imputation for Age Numbers (BRIAN)

Assume spine width follows von Bertalanffy* curve

rings_{inner}~ Poisson(μ_v) μ_v = mean number of rings in vascularized region for fish of spine width v

Calculate μ_v by solving von Bertalanffy eqn for age given vascularized width v

Data required for Bayesian method (BRIAN Model)

- 1.Count of observed rings (C_i)
- 2.NA when some rings may be missing (X_i) 0 if no missing rings
- 3. Spine width (D_i)
- 4. Vascularized region width (D_{1i})

 t_0 , K, D_∞ von Bertalanffy parameters for spine growth Bayesian-like Ring Imputation for Age Numbers (BRIAN)

Why Bayesian-like instead of Bayesian?

Priors not purely hierarchical

•Methods used in data science where interest is in prediction

Model Evaluation & Comparison

- 1. Naïve model
- 2. Bayesian Ring Imputation for Age Numbers (BRIAN)
 - Using:
- Simulated datasets
- Yellowfin tuna data

Simulated Data – 1000 fish

•Ages 1 to 10

- Uniform age distribution
- Spine width based on age (von Bertalanffy model)
 - Add random error (sd=0.1)

Vascularized region proportional to spine radius

 Random error added in logit space on proportion of spine vascularized (sd=sqrt(0.003))

Calculate location of each ring

- Scale by ratio spine width to expected width
- Notion small fish are always small, big fish are always big

Simulated Data – part 2

Calculate # of missing rings

• Determine if rings are missing

- If you believe you have 1 year olds in data, use smallest 1st ring diameter
- Otherwise assume all fish are censored (have missing rings)

$rings_{inner} = \begin{cases} 0 \text{ no obliteration in young fish} \\ Not Available in old fish \end{cases}$

Preliminary Results Naïve method

Naïve Model Results												
	Naïve Age (Observed Rings)										No.	
True Age		1	2	3	4	5	6	7	8	9	10	Fish True Age
	1	1.00	0	0	0	0	0	0	0	0	0	93
	2	0	1.00	0	0	0	0	0	0	0	0	91
	3	0	1.00	0	0	0	0	0	0	0	0	86
	4	0	0	1.00	0	0	0	0	0	0	0	111
	5	0	0	0	1.00	0	0	0	0	0	0	88
	6	0	0	0	0.08	0.92	0	0	0	0	0	98
	7	0	0	0	0	0.43	0.58	0	0	0	0	120
	8	0	0	0	0	0	0.75	0.25	0	0	0	114
	9	0	0	0	0	0	0	0.92	0.08	0	0	100
	10	0	0	0	0	0	0	0	0.93	0.07	0	99

Preliminary Results BRIAN method

BRIAN Model Results													
	Mode of Posterior Estimated Age									No.			
		1	2	3	4	5	6	7	8	9	10	11	Fish True
True Age													Age
	1	1.00	0	0	0	0	0	0	0	0	0	0	93
	2	0	0.82	0.18	0	0	0	0	0	0	0	0	91
	3	0	0	1.00	0	0	0	0	0	0	0	0	86
	4	0	0	0	1.00	0	0	0	0	0	0	0	111
	5	0	0	0	0	1.00	0	0	0	0	0	0	88
	6	0	0	0	0	0.01	0.89	0.10	0	0	0	0	98
	7	0	0	0	0	0	0.12	0.68	0.20	0	0	0	120
	8	0	0	0	0	0	0	0.11	0.79	0.10	0	0	114
	9	0	0	0	0	0	0	0	0.10	0.87	0.03	0.00	100
	10	0	0	0	0	0	0	0	0	0.09	0.88	0.03	99

Preliminary Results comparison

Naïve model max age 9 BRIAN model max age 11

Naïve model → greater bias older fish, only does well young fish

BRIAN model is unbiased, gets it right >74%

Parameter Estimates from von Bertalanffy Naive vs. BRIAN method

	True Value	BRIAN M	lodel	Naïve Model			
Parameter		Median	95% CI	Median	95% CI		
t_0	-0.1	-0.12	-0.17, -0.08	0.29	0.22, 0.30		
K	0.4	0.39	0.38, 0.40	0.60	0.58, 0.62		
$m{D}_{\infty}$	4	4.0	4.0, 4.1	3.9	3.9, 4.0		

Naïve estimate of K is 50% higher

Total mortality estimate will be 50% higher using Beverton-Holt mean length estimator

$$\hat{Z} = \frac{K(L_{\infty} - \bar{L})}{(\bar{L} - L_c)}$$

Parameter Estimates from von Bertalanffy Naive vs. BRIAN method

Yellowfin Tuna Example

Thunnus albacares Atlantic ocean

NOAA

Dataset from AOTTP and Universidade Federal Rural do Semi-Árido – UFERSA (Brazil)

Yellowfin Tuna Data: Is there evidence vascularization affects apparent growth?

Yellowfin Tuna Example: von Bertalanffy Estimates

	BRIAN M	odel	Naïve Model			
Parameter	Median	95% CI	Median	95% CI		
t_0	-0.65	-0.76, -0.57	-0.09	-0.33, 0.14		
K	0.09	0.06, 0.12	0.09	0.06, 0.15		
$oldsymbol{D}_{\infty}$	13.3	10.5, 18.4	23.4	16.0, 29.6		

Yellowfin Tuna Data: von Bertalanffy growth curve – Naïve model

000

Yellowfin Tuna Data: von Bertalanffy growth curves

BRIAN Model Flexibility

Other growth models can be used instead of von Bertalanffy

With simulated data, model still runs if 100% of your data has missing rings from vascularization

Broader Application

Utilize data in more efficient manner

→Increase sample size by collecting from catch & release anglers and commercial fishermen

→Avoid naïve mistake of underestimating age, overestimating K and Z

Guelson da Silva

Atlantic Tropical Tuna Age & Growth Study

ICCAT Atlantic Ocean Tropical Tuna Tagging Programme

Grace Chiu & ESTDatS @ VIMS

Thank You