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Executive Summary 
 

The modifiable multi-stock model (M3) was developed as an operating model for characterizing credible 

hypotheses for Atlantic Bluefin Tuna (ABT) population and fishery dynamics. The M3 model may be fitted to 

a wide range of data including fishery catch and effort data, stock of origin data, catch size compositions, 

electronic tagging data and fishery independent surveys.  

 

In this report I describe the structure and estimation framework of the M3 model and the various ways in 

which the available data may be used to inform the model. I also identify a range of possible hypotheses 

(alternative scenarios) for ABT relating to population dynamics, fishery dynamics and the interpretation of 

the various data. 

 

A simulation evaluation was undertaken to demonstrate proof of concept (reliability of the M3 model 

structure and assumptions). These simulations indicate that the model can be expected to provide unbiased 

estimates of variables of management interest such as stock depletion, current stock size and spatial 

distribution. The strengths and weaknesses of the new operating model are discussed relative to previous 

mixing models.  

 

In addition to model development this report summarizes the metadata that are available for fitting 

operating models for ABT. A metadata table is presented that categorizes data and describes their current 

availability to the GBYP MSE process. 

 

In light of simulation testing, model development and the metadata summary, I highlight data collection 

priorities and also identify a possible strategy for proceeding with operating model development in the 

absence of complete data.  

 

In order to meet contract deliverables it is necessary to obtain stock of origin data at the resolution of 

subyear and area. The second most important data priority is the provision of standardized indices for the 

Japanese and US longline fleets at the resolution of subyear and area.  

 

Finally, I report on progress with respect to project deliverables and discuss wider possible benefits of the 

modelling work such as providing an alternative stock assessment that accounts for stock mixing.  
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1 Introduction 
 

The Atlantic-Wide Research Programme on Bluefin Tuna (GBYP) aims to develop a new scientific management 

framework by improving data collection, knowledge of key biological and ecological processes, assessment models 

and management. A critical component of the GBYP is the construction of a robust advice framework consistent with 

the precautionary approach (GBYP 2014). A Management Strategy Evaluation (MSE, Cochrane 1998, Butterworth 

1999, Kell et al. 2014, Punt et al. 2014) approach has been proposed to address this goal (Anon. 2014b). MSE 

establishes operating models that represent credible hypotheses for population and fishery dynamics which are used 

to quantify the efficacy of various management procedures. These management procedures may encompass a wide 

range of complexity from conventional stock assessments linked to harvest control rules (Hilborn 2003) through to 

simple empirical management procedures that calculate catch limits directly from resource monitoring data indices 

(Geromont and Butterworth 2014a;b, Kell et al. 2014). 

 

MSE applications generally develop operating models from stock assessments that are fitted to data in order to 

ensure that model assumptions and estimated parameters are empirically credible (Punt et al. 2014, e.g. CCSBT 

2011). In the case of Atlantic bluefin tuna, such a model requires enough complexity to capture the core uncertainties 

regarding Atlantic bluefin tuna dynamics (Fromentin et al. 2014, Leach et al. 2014). These include stock structure (Kell 

et al. 2012), stock mixing, migration (Fromentin and Lopuszanski 2014) and biases in observed data (e.g. annual catch 

data). Since operating models for Atlantic bluefin tuna must be able to represent hypotheses regarding spatio-

temporal distribution and stock mixing (Kell et al. 2011, Arrizabalaga et al. 2014, Fromentin and Lopuszanski 2014) a 

suitable operating model must include spatial and seasonal structure.  

 

In this report I document a novel spatial, multi-stock, statistical catch-at-length assessment model, referred to as the 

modifiable multi-stock model or M3 (v1.03)(referred to as ‘the operating model’ herein). These equations were also 

presented to the SCRS during the September 2015 bluefin tuna species group meeting (Carruthers et al. 2015a). The 

most notable multi-stock model previously applied to Atlantic bluefin tuna was MAST (Taylor et al. 2011). In the 

development of M3 I aimed to address a number of central weaknesses of MAST and produce a credible, robust and 

faster assessment model that can be applied to rapidly evaluate alternative hypotheses for Atlantic bluefin tuna.  

 

The M3 model is able to accommodate the wide range of data that have been collected for Atlantic bluefin tuna 

including catch rate indices (Abid et al. 2015, Hanke et al. 2015, Kimoto et al. 2015a, Lauretta and Brown 2015, 

Santiago et al. 2015, and Walter 2015), aerial surveys (Bonhommeau et al. 2010), length composition data, larval 

surveys (Ingram et al. 2015), electronic tagging data (Block et al. 2005) and stock of origin data (Rooker et al. 2014). 

These data for Atlantic bluefin vary widely in their information content, may be interpreted in various ways (e.g. 

exploitation rate, growth, movement) and often provide contrasting information about fleet and population 

dynamics. For example, size composition data and catch rate indices may provide different inferences regarding stock 

depletion. A range of operating models may be developed based on the types of data used to fit the model and the 

way in which the model interprets these data.  

 

A precursor to discussions about how data should be used by operating models is a metadata summary that outlines 

the types of data that have been collected for Atlantic bluefin tuna. In this report I summarize these data and 

describe their potential role in the development of operating models. We also describe an interim solution to 

operating model development in which a preliminary operating model is established rapidly from data that are freely 

available, after which the model may be refined as additional data become available. 

 

The results of a simple simulation evaluation of the M3 model are also presented that demonstrates proof of model 

concept. These simulations serve as a basis for discussing possible model improvements and features.  
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2 Definition of spatial and seasonal structure 
 

The 2015 bluefin tuna data preparatory meeting identified eight large marine areas for disaggregation of bluefin tuna 

data that may be used to model spatial dynamics (Figure 1a, Anon 2015a). Subsequently concerns have been 

expressed about the appropriateness of these spatial definitions for calculating standardized CPUE indices for the 

Japanese longline fleet (Kimoto et al. 2015b) and alternative spatial definitions have been proposed Figure 1b. A 

possible solution is including further spatial detail to encompass both of these spatial options (Figure1c).  

 

Four subyear temporal definitions that may approximate the spatial distribution of bluefin tuna within model years 

have also been identified:  

 

(subyear 1) 1st January – 15th March,  

(subyear 2) 16th March – 15th May,  

(subyear 3) 16th May – 15th July, 

(subyear 4) 16th July – 31st December.  

 

Concern has been raised however that size composition data may not be available at a temporal resolution finer than 

month (M. Lauretta personal communication). Regardless of the exact definition of spatial areas and subyear time 

steps, in the remainder of this document we refer to these as ‘area’ and ‘subyear’.  

 

 
 

 
 

(a) Spatial definitions of the 2015 ICCAT bluefin tuna data preparatory meeting (Anon. 2015), (b) Figure 1. 

those proposed by Kimoto et al. (2015b) and (c) a spatial arrangement that can accommodate both spatial 

arrangements.  

3 Structure and estimation framework of M3 operating model  

3.1 Background 

 

The most advanced multi-stock model previously applied to Atlantic bluefin tuna was MAST (Taylor et al. 2011). This 

model had a number of potential deficiencies which I aimed to address in the development of the M3 model.  

 

MAST was fitted to age-composition data which is not advisable given that ages were derived directly from length 

data and there are numerous well established problems in the conversion of length to age (Allioud et al. 2014, 

Hilborn and Walters 1992, Kell and Kell 2011). To bypass these problems M3 is a statistical catch-at-length model that 

(a)                                                                   (b)                                                                  (c)  
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is fitted directly to length observations. The M3 model also requires relative abundance information by subyear and 

area. This places much higher demand on data-processing prior to model fitting but leads to large benefits in the 

estimation of spatial structure: if the model is fitted to indices disaggregated by time and space, only compatible 

movement dynamics may be estimated. In contrast, the MAST model could predict seasonal movements that were 

compatible with electronic tagging data but led to very little biomass in times/places where substantial catch rates 

were observed.  

 

A principle limitation of the MAST approach is that it took a long time to run. This was related to two issues: (1) a 

large number of estimated parameters for exploitation rates and (2) the use of conventional tagging data to estimate 

exploitation rates.  The first problem is resolved in the M3 model by using catch rate indices by time and area (only 

one catchability parameter is estimated per fleet). The second problem may be circumvented by avoiding calculation 

of conventional tag recapture probabilities that are in any case confounded by unknown and variable tag-reporting 

rates and tag shedding rates.  

 

The M3 model is based on conventional age-structured accounting (e.g. Quinn and Deriso 1999, Chapter 8) which is 

common to stock assessment models such as Stock Synthesis 3 (Methot and Wetzel 2013), CASAL (Bull et al. 2012), 

Multifan-CL (Fournier et al. 1998) and iSCAM (Martell 2015). Similar to these assessment packages, M3 is developed 

using ADMB (Fournier et al. 2012) for its rapid and robust non-linear estimation performance for problems with 

relatively large numbers of parameters (i.e. more than 100 parameters). The more challenging aspects of developing 

a multi-stock spatial model relate to the modelling of movement and initializing the model.  

3.2 Estimated parameters 

 

The majority of parameters estimated by the model relate to movement probabilities and annual recruitment 

deviations (Table 1). The number of estimated parameters can be reduced substantially by limiting estimation to only 

those movements that have been recorded or are considered credible. For example, given a quarterly time step (e.g. 

Jan-Mar, April-Jun etc.) and the spatial definitions of the 2015 data preparatory meeting (Anon. 2015, Figure 1), an 

evaluation of conventional tagging for Atlantic bluefin tuna data reveals that less than 80 parameters of the 224 

possible are required to characterize all of the possible movements recorded by these tagging data.  

 

 

The parameters estimated by the model. The example is for a possible bluefin tuna operating model Table 1. 

of 8 areas (Figure 1), 4 subyears, 5 fleets, 65 years and 25 age classes.  

Parameter Number of parameters  Example Symbol 

Unfished recruitment ns 2 R0 

Length a modal selectivity nf  5 smode 

Precision of selectivity nf 5 sprec 

Dome-shape of selectivity nf 5 sdome 

Recruitment deviations (ny + na – 1) ∙ ns 178 r 

Fleet catchability nf 5 q 

Movement  Up to: (nr-1) ∙ (nr) ∙ nm 224 ψ 

Steepness (recruitment compensation) ns 2 h 

Natural mortality rate modifier ns 2 ����  

 Total 428  

     

3.3 Transition equations 
 

The standard age-structured equations are complicated somewhat by the subyear temporal structure in which ageing 

and recruitment occur in a particular subyear. In this version of the model, spawning occurs for all stocks in a subyear 
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ms, after subyear 1 (this is also likely to be the case in any final model fitted to bluefin tuna data since spawning in 

the Mediterranean and Gulf of Mexico is thought to occur after a period of movement early in the year). 

 

Numbers of individuals N, for stock s, in a model year y, in the first subyear m=1, age class a, and area r are calculated 

from individuals that have moved ����, in the previous year, final subyear nm, of the same age class subject to combined 

natural and fishing mortality rate Z: 

 

 ��,
,��,�,� = �����,
�,��,�,� ∙ 	 ����,���,��,�,�  1)

 

where total mortality rate is calculated from annual natural mortality rate M, divided by the fraction of the year 

represented by the subyear tm, and fishing mortality rate F, summed over all fleets f.  

 

 ��,
,�,�,� = ��,� � ∑ "
,�,�,�,��  2)

 

Fishing mortality rate at age is derived from fishing mortality rate by length class FL and the conditional probability of 

fish being in length class l, given age a (an inverse age-length key, LAK).: 

 

 "
,�,�,�,� = ∑ "#
,�,$,�,�$ ∙ #%&�,
,�,$ 3)

 

The fishing mortality rate at length is calculated from an index of fishing mortality rate I, an estimated catchability 

coefficient q and a length selectivity ogive s, by fleet: 

 

 "#
,�,$,�,� = '� ∙ (
,� ∙ )�,$ 4)

 

Selectivity is calculated by the Thompson (1994) ogive and an estimate of mean length L of an age class l: 

     

 )�,$ = ��*+�, ∙ -��*+�,�*+�, .�*+�, ∙ ��/�,0∙�*+�,∙1��+*,�234 ∙ 56�/�,0∙7��+*,�839 5)

 

In the spawning subyear ms, aging and recruitment occur: 

 

 ��,
,��,�,� = �����,
,���,��,� ∙ 	����,�,����,���,�  6)

 

Recruitment is currently assumed to occur in user-specified spawning area for each stock rs. Recruitment is assumed 

to follow a Beverton-Holt function of spawning stock biomass SSB in the defined spawning areas rs relative to 

unfished spawning stock biomass SSB0 and is subject to annual recruitment deviations R, for each stock.  

 

 ��,
,��,,�� = :�,
 ∙ ;.=∙>;�∙?�∙@@A�,�;.B∙@@A;�,�∙1�?�451?��;.B4∙@@A�,� 7)

 

where h is the steepness parameter (fraction of unfished recruitment at 1/5 unfished spawning stock biomass) and 

spawning stock biomass is calculated from moved stock numbers in the subyear prior to spawning subyear ms, in 

spawning area rs, weight of individuals at age w, and the fraction of individuals mature at age mat:  

 

 CCD�,
 = ∑ ∑ �����,
,���,�,�� ∙ 	����,�,����,�,���� ∙ E�,� ∙ FGH�,� 8)

 

where weight is calculated from length at age l:  

 

 E�,� = I� ∙ J�,�K�  9)
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and fraction mature at age is assumed to be a logistic function of age with parameters for the age at 50% maturity γ, 

and slope ϑ: 

 

 FGH�,� = 1 71 + �1N���4 O�⁄ 9⁄  10)

 

Stock numbers for subyears that are not the first subyear of the year and are not the spawning subyear are 

calculated: 

 

 ��,
,�,�,� = �����,
,��,�,� ∙ 	����,�,���,�,�  11)

 

In each subyear, after mortality and recruitment, fish are moved according to a Markov transition matrix mov that 

represents the probability of a fish moving from area k to area r at the end of the subyear m: 

 

 �����,
,�,�,� = ∑ ��,
,�,�,Q ∙ FRS�,�,Q,�Q  12)

 

The movement matrix is calculated from a log-space matrix lnmov and a logit model to ensure each row k, sums to 1: 

 

 FRS�,�,Q,� = �$��TU�,�,V,� ∑ �$��TU�,�,V,��⁄  13)

 

Movements from an area k to an area r that are considered not to be credible (e.g. from the Eastern Mediterranean 

to the Gulf of Mexico) are assigned a large negative number (essentially zero movement). For each area k, from which 

individuals can move, the first possible value is assigned a value of zero; subsequent possible movements are 

assigned an estimated parameter ψ (since rows must sum to 1 there is one less degree of freedom): 

 

 JWFRS�,�,Q,� = X−1Z100\�,�,Q,�						
WR	FRS�F�WH	]^RF	_	HR	^]`^)H	aR))`bJ�	FRS�F�WH	]^RF	_	HR	^RHℎ�^	aR))`bJ�	FRS�F�WH)	]^RF	_	HR	^ 14)

 

This movement formulation limits estimation to only those movements that are possible given the data (e.g. 

consistent with observed tagging data).  

3.4 Initializing the model  
 

Compared with spatially aggregated models, initialization is more complex for spatial models, particularly those that 

may need to accommodate movement by age and include regional spawning and recruitment. The solution used here 

is to iterate the transition equations above (Equations 1, 6, 7, 11, 12) given zero fishing mortality until the spatial 

distribution of stock numbers converges for each of the subyears.  

 

Prior to this iterative process an initial guess at the spatial and age structure of stock numbers �d is made using the 

estimated movement matrix and natural mortality rate at age M:  

 

 �d�,�,�,� = :0� ∙ e�∑ ��,��� ∙ ∑ �� ∙ FRS�,�,Q,�Q  15)

 

It typically takes between 50 and 100 iteration years of unfished conditions for stock numbers to converge to within 

1/10 of a percent of the previous iteration. To ensure stability of the estimation, a fixed number of iterations is 

defined by the user.   

3.5 Predicting data  
 

For each fleet f, total predicted catches in weight fg, are calculated from the Baranov equation: 
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 fg
,�,�,� = ∑ ∑ E�,� ∙ ��,
,�,�,�� ∙ 11 − ����,�,�,�,�4 ∙ hi�,�,�,�,j��,�,�,�,�k�  16)

 

Similarly predicted catches in numbers at age CAA, is given by: 

 

 f%%l�,
,�,�,�,� = ��,
,�,�,� ∙ 11 − ����,�,�,�,�4 ∙ hi�,�,�,�,j��,�,�,�,�k 17)

 

This can be converted to a prediction of total catches in numbers by length class CAL using a stock specific inverse 

age-length key, LAK:  

 

 f%#m 
,�,$,�,� = ∑ ∑ f%%l�,
,�,�,�,� ∙ #%&�,
,�,$��  18)

 

The model predicts spawning stock biomass indices ())bl, that are standardized to have a mean of 1 for each stock 

over the total number of years ny: 

 

 ())bl�,
 = W
 ∙ CCD�,
 ∑ CCD�,

⁄  19)

 

The model predicts vulnerable biomass indices (g, by fleet that are standardized to have a mean of 1 for each fleet: 

 

 (g
,�,�,� = W
 ∙ W� ∙ W� ∙ n
,�,�,� ∑ ∑ ∑ n
,�,�,���
⁄  20)

 

Where vulnerable biomass V is calculated: 

 

 n
,�,�,� = ∑ 7)�,$ ∙ ∑ ∑ 7��,
,�,�,�,� ∙ %#&�,
,�,$ ∙ E�,�9�� 9$  21)

 

The model predicts stock of origin composition of catches Cool, from predicted catch numbers at age: 

 

 Cool�,
,�,�,� = ∑ f%%l�,
,�,�,�,�� ∑ ∑ f%%l�,
,�,�,�,���p  22)

 

3.6 Likelihood functions, priors and the global objective function 

 

The likelihood functions for the various data types are summarized in Table 2. 

 

. Summary of the likelihood function for various data Table 2

Type of data Disaggregation Likelihood function 

Total catches (weight)  year, subyear, area, fleet Log-normal 

Index of vulnerable biomass (e.g. a CPUE index) year, subyear, area, fleet Log-normal 

Index of spawning stock biomass (e.g. a larval 

survey) 

year, stock Log-normal 

Length composition year, subyear, area Multinomial 

PSAT tag (known stock of origin) stock, year, subyear, area Multinomial 

PSAT tag (unknown stock of origin) year, subyear, area Multinomial 

Stock of origin Year, subyear, area Multinomial 

   
 

 

A log-normal likelihood function was assumed for total catches by fleet. The log-likelihood was calculated:   
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 oDq� = ∑ ∑ ∑ ∑ $Tr1s0�t0u45-vwx	7yg�,�,�,j9�vwx7y�,�,�,j9.zB∙s0�t0uz���
  23)

 

Similarly the log-likelihood component for indices of vulnerable biomass and spawning stock biomass were 

calculated:  

 

 oDq{ = ∑ ∑ ∑ ∑ $Tr1s|�*,}45-$Tr7~g�,�,�,j9�$Tr7~�,�,�,j9.zB∙s|�*,}z���
  24)

 

 oDq@@A = ∑ ∑ $Tr1s���45-$Tr7~���l�,�9�$Tr7~����,�9.zB∙s���z
�  25)

 

The length composition data are assumed to be distributed multinomially. In traditional stock assessment settings 

catch composition data may often dominate the likelihood function due to the large number of observations. This is 

exacerbated by a failure to account for non-independence in size composition samples. There are two possible 

solutions: (1) manually specify the effective sample size (ESS) of length-composition samples or (2) use a multinomial 

likelihood function that includes the conditional maximum likelihood estimate of the ESS (perhaps even a freely 

estimated ESS, S. Martell personal communication). In this version of the code, ESS is user-specified.  

 

The log-likelihood component for length composition data is calculated: 

 

 oDqy�2 =	−∑ ∑ ∑ ∑ ∑ f%#
,�,$,�,� ∙ JR�7â
,�,$,�,�9/ZCC���$�
  26)

 

Where the model predicted fraction of catch numbers in each length class p, is calculated: 

 

 â
,�,$,�,� = f%#m 
,�,$,�,� ∑ f%#m 
,�,$,�,�$p  27)

 

Similarly the log-likelihood component for PSAT tagging data of known stock of origin (SOO), released in year y, 

subyear m, area r and recaptured in year y2, subyear m2, and area k is calculated: 

 

 oDq�@�� =	−∑ ∑ ∑ ∑ ∑ ∑ ∑ �C%��,
,�,
B,�B,Q ∙ JR�7���,
,�,
B,�B,�,Q9Q��B
B�
�  28)

 

where recapture probabilities θ, are calculated by repeatedly multiplying a distribution vector d, by the movement 

probability matrix mov. For example for a tag released on a fish of stock 1 in year 2, subyear 3, and area 4, the 

probability of detecting the tag in year 3, subyear 2 for the various areas is calculated: 

 

 ����,
�B,���,
B��,�B�B,���,:�� = -7� ∙ FRS�,���9 ∙ FRS�,���.FRS�,�� 29)

 

where 

 

 �Q = �01		_ ≠ ^_ = ^ 30)

 

The log-likelihood component for PSAT tagging data of unknown stock of origin PSATu, is currently weighted 

according to the compound probability that a fish is of a particular stock given the track history for that tag. For 

example for a tag t, tracked in series of years yi, subyears mi, and regions ri, the weight w, of that tag for a specific 

stock is calculated: 

 

 E ,� = ∏ �7∑ ��|,�|,�|,�|,�|� 9 7∑ ∑ ��|,�|,�|,�|,�|�� 9p �|∏ ��7∑ ��|,�|,�|,�|,�|� 9 7∑ ∑ ��|,�|,�|,�|,�|�� 9p �|  31)
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This is simply the product of fractions of that stock in those time-area strata divided by the product of the fractions of 

other stocks in those time-area strata. An alternative approach would be to compare the relative probabilities of the 

observed movements among the stocks although it is unclear whether this circularity (PSAT data are a primary source 

of information regarding movement) could lead to estimation problems.  

 

The weighted likelihood function is similar to that of the stocks of known origin but includes the appropriate 

weighting term for each tag 

 

 oDq�@��� =	−∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ �C%�� ,�,
,�,
B,�B,Q ∙ JR�7���,
,�,
B,�B,�,Q9 ∙ E ,�Q��B
B�
�  32)

 

The log-likelihood component for stock of origin data SOO was also calculated assuming a multinomial distribution:  

 

 oDq�@��� =	−∑ ∑ ∑ ∑ ∑ Coo�,
,�,�,� ∙ JR�7Cool�,
,�,�,�9���
�  33)

 

In addition to these likelihood functions for observed data, priors may be placed on the steepness parameter h, of 

the stock recruitment relationship and a factor Mfac, multiplied by the user specified natural mortality rate-at-age 

schedule Minit.  

 

 ��,� = �`W`H�,� ∙ �]G�� 34)

 

The factor applied to the natural mortality rate-at-age schedule is assumed to be lognormally distributed according to 

user specified mean and standard deviation parameters.  

 

 oDq� = ∑ $Tr1s��451���������4zB∙s��z�  35)

 

Steepness is parameterized by a logit model constrained between 0.2 and 1: 

 

 ℎ� = 0.2 + 0.8 ∙ �?d� 71 + �?d�9p  36)

 

In the logit
-1

 space, a normal prior is adopted for this transformed steepness ℎ�, parameter that includes user specified 

mean  ℎm , and standard deviation ¡ℎm , parameters. The corresponding log-likelihood component is: 

 

 oDq? = ∑ $Tr1s?�457?d���?�9zB∙s?�z�  37)

 

The global objective function OBJT, to be minimized is the summation of the weighted , likelihood components: 

 

 oDq� = ¢� ∙ oDq� + ¢{ ∙ oDq{ + ¢@@A ∙ oDq@@A + ¢y�2 ∙ oDqy�2 + 38) ¢�@�� ∙ oDq�@�� + ¢�@��� ∙ oDq�@��� +¢� ∙ oDq� + ¢? ∙ oDq? 

 

4 Data to inform operating models 
 

A coarse description of Metadata to support bluefin tuna operating model development is presented in Table 3.  

4.1 CPUE indices 
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The operating model for Atlantic bluefin tuna is intended to be fitted to standardized catch rate data at the resolution 

of area and subyear. Providing relative abundance data at this resolution anchors the estimation of movement to 

only those scenarios that maintain a credible spatial distribution of vulnerable biomass. Models that include only 

annual indices have no such constraint and can predict movement and spatial distribution from tagging data that are 

not credible given fishery catch rate data (for example an absence of fish where observed seasonal catch rates are 

substantial).  

 

It follows that when fitting spatial models, the value of relative abundance indices at the same resolution as 

estimated movements can be very high. Previous simulation evaluations have shown that reliable estimation of 

spatial distribution can be obtained from only spatial catch rate data and characterizing this reliably is a primary 

concern for the estimation of variables of management interest such as stock depletion and MSY reference points 

(Carruthers et al. 2011b). The same spatial catch rate data can also provide additional information about age- or size-

specific movement if fleets have varying size selectivities. Since these indices constrain movement estimation to 

observed spatial distributions, the information content of electronic tagging can be used to explore additional 

characteristics of movement such as temporal variability or different movement of juvenile and mature fish. Since 

commercial catch rate data are generally reported at a sufficient temporal and spatial resolution to produce these 

indices at the scale of area and subyear, a relatively large quantity of information about spatial distribution is 

provided to the operating model with no additional data collection requirements. 

 

This relatively strict data requirement also ensures that the model does not require the estimation of a very large 

number of fishing mortality rate parameters (e.g. up to 12,480 free F parameters estimated for an eight area model, 

with four subyears, 65 historical years of exploitation and 6 fleets). By including an index of fishing mortality rate (aka 

‘partial F’), just one catchability parameter q is estimated per fleet: F=qI (e.g. 6 q parameters as opposed to 12,480 F 

parameters, Figure 2) 

 

 

 

 
Rather than predicting each catch observation Figure 2. 

based on an individual estimated fishing mortality rate, 

catches may be divided by the relative abundance index to 

provide an index of fishing mortality rate and thus a single 

catchability parameter is required for each fleet over all 

areas, subyears and years.   

 

 

The Japanese longline and US longline are important standardized indices for fitting operating models due to their 

relatively wide spatial and temporal coverage in mixing areas of the North Atlantic.  A proposed US-Canadian 

combined longline index may provide additional continuity over a wider spatial range that covers the range of the 

population in the West Atlantic Ocean (Lauretta et al. 2015, SCRS-2015-171). In the Mediterranean, Moroccan, 

Portuguese, Spanish and Italian trap catch rate data may be used to provide indices for eastern and western areas. 

While these indices are a priority for operating model development, the calculation and testing of standardizing catch 
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rates can be time intensive. We propose an interim solution in which freely available data, requested and organized 

by ICCAT, are used in preliminary operating models which are later updated with standardized indices. The most 

relevant data in this regard are the nominal (non-standardized) Task II catch and effort data, much of which is 

available at the temporal resolution of day and spatial resolution of 5x5 degree ocean square (ICCAT 2015b) 

consistent with the defined areas. These data do not include covariates that can be used to account for shifts in 

fishing practices that are typically included in catch rate standardization. Effects of spatial expansion and contraction 

may still be accounted for (e.g. Ahrens and Walters 2005; Carruthers et al. 2011a).  

 

For a number of reasons (e.g. changes in spatial distribution, gear changes, species targeting), catch rate indices may 

not be linearly related to true changes in vulnerable biomass and may decline faster (hyperdepletion) or slower 

(hyperstability) than vulnerable biomass. Scenarios that incorporate hyperstability and hyperdepletion may be 

important for fitting operating models to historical relative abundance indices and also proposing observation models 

for MSE.  

4.2 Larval indices 
 

Recent papers have suggested that indices derived from larval surveys may be closely correlated with stock 

assessment predictions of spawning stock biomass (SCRS/2015/035). Larval surveys have been carried out in the Gulf 

of Mexico (1977-2013) and more recently the western Mediterranean (2001-2005, 2012-2013). It is possible that the 

operating model could be fitted to these indices under the assumption they are representative of trends in spawning 

stock biomass in spawning areas. If used in this way, these indices can be expected to strongly influence model 

predictions of trends in spawning stock biomass (since their interpretation is not contingent on estimates of 

selectivity and movement). Adding indices of spawning stock biomass may also indirectly inform age-based 

movement, maturity and selectivity of fishing in spawning areas.  

4.3 Catches 
 

The operating model predicts exploitation rate at the scale of subyear and area. It follows that catches are required at 

this scale and a fleet must be assigned to all catches (this may be an umbrella ‘other’ fleet of general size selectivity). 

In order to meet custom subyear definitions above it may be necessary to manually raise Task II catches for subyears 

and areas to sum to total reported landings.  

 

Catch data are generally the only source of scale in stock assessments: if catches are reported in kilograms the 

estimates of MSY, catch recommendations and the estimate of current biomass will be a number 1000 times larger 

than the same catches reported in metric tonnes. It follows that consistent bias in catches across a time series (for 

example consistent 25% underreporting of  catches) has no effect on estimates of stock depletion and fishing 

mortality rate and therefore is ignorable when specifying operating models (for which scale is not important unless a 

specific catch recommendation is to be considered). However temporal patterns in bias in catches can be significant 

(for example significant reductions in illegal, unreported and unregulated fishing of the eastern stock after 2008, 

ICCAT 2014b) and may provide contrasting view of historical stock trends and exploitation rate (e.g. Carruthers et al. 

2015c). It follows that scenarios for catch underreporting (and related quantities such as dead discarding) could be 

used as alternative hypotheses that may be represented by operating models.  

 

In terms of MSE results and selection of management procedures, a potentially more important issue is the level of 

bias in future observations of catches that is simulated in the management strategy evaluation. Carruthers et al. 

(2015d) found bias in catches to be amongst the most influential of observation processes determining the 

performance of management procedures. In their study, catch observation bias was often much stronger 

determinant of MP performance than current stock depletion or historical trend in exploitation rate (estimated by 

the fitted operating models potentially arising from historical biases in catches). It is therefore important to carefully 

consider plausible scenarios for biases in reported catches in the future.  
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4.4 Catch compositions 
 

Currently the operating model is intended to be fitted to length sample data provided to ICCAT (Task II size). The 

majority of these data are reported at a sufficiently fine spatial and temporal resolution to be aggregated to the 

subyear and area definitions of the operating model. These data are the primary source of information regarding the 

size-selectivity of fishing. The representativeness of these data, their spatial-temporal coverage and the contribution 

to exploitation of the associated fleets is likely to determine how fleets are defined in the operating model.  

 

A fleet in the operating model represents a distinct size selectivity of substantial exploitation rate. The purpose of 

including fleet heterogeneity in the operating model is to accurately characterize patterns in the exploitation of size 

classes in order to best estimate quantities of interest such as stock status and fishing mortality rate at maximum 

sustainable yield. Each fleet in the operating model must have paired observations of catch and an index of fishing 

mortality rate I (catch divided by a standardized index of abundance) by area and subyear. Each fleet must also have 

some size composition data. The catches of fleets that do not have both composition data and a standardized index 

of fishing mortality rate must be aggregated with catches of a fleet of similar size selectivity (that does have both 

composition data and an index of fishing mortality rate).  

 

Due to the computational overhead, it is not possible to model the large number of flag and gear combinations 

recorded by ICCAT which have caught bluefin tuna historically. However it is relatively straightforward to aggregate 

fleets of similar size selectivity for model fitting and then predict expected individual catch rates post-hoc. This allows 

for parsimonious operating models (avoid including many fleets) while retaining predictive capacity for catch rates of 

individual fleets which may be a critical component of stakeholder utility.  

 

A persistent issue in the fitting of integrated stock assessment models is the correct weighting of various sources of 

data (Candy 2008, Francis 2011, Maunder and Punt 2013). This is particularly applicable to size composition data that 

can often dominate the global objective function due to the number of observations and likelihood functions that are 

typically assumed for these data (e.g. a multinomial observation model). By fitting to length-composition data we 

bypass many of the issues associated with deriving age of fish from length data but do not avoid problems associated 

with overweighting composition data due to incorrectly accounting for non-independence among observations. For 

example bluefin tuna are observed to school in size mono-specific groups and hence multiple observations of length 

from a fishing set may in fact represent a single independent length observation. It may be the case that operating 

model results are sensitive to specification of this ‘effective sample size’. It follows that various scenarios for fleet 

aggregation and effective sample size may be considered as alternative hypotheses to be represented by operating 

models in future MSEs.  

4.5 Conventional tagging data 
 

Conventional tagging data provide valuable information about the range of movements that are possible for Atlantic 

bluefin tuna and provide a basis for formulating alternative hypotheses about movement. Conventional tagging data 

have been used in previous bluefin tuna assessment models to estimate fishing mortality rates (and hence 

abundance) by quarter and area (MAST, Taylor et al. 2011). These approaches have assumed a prior for reporting 

rate that is constant over time, space and among fleets. There is however evidence that reporting rates vary in time, 

space and among fleets by factors as great as 500 (Carruthers et al. 2011, Carruthers and McAllister 2010, Hillary et 

al. 2008). Similarly large disparities between predicted catches and tag recapture probabilities can be expected if 

these variable reporting rates are not accounted for.  

 

A fleet specific prior for reporting rate may be prescribed (e.g. Carruthers and McAllister 2010). The principal problem 

with this approach is that these reporting rate estimates are generally sensitive to alternative assumptions and can 

be as much as 1/3 or 3 times base-case estimates. While the difference between a reporting rate prior mean of 

1/1000 or 3/1000 may not seem large, in relative terms this is highly uncertain and consistent with predictions of 

catches and abundance that differ by a factor of 3.  
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It is possible to estimate reporting rates by fleet inside the operating model but since these are confounded with 

recapture probability these data may only weakly inform abundance. This would not be a serious problem if the 

computational overhead associated with conventional tagging data was small. However it can be as large as 10 times 

the total number of other calculations slowing estimation speed by a similar margin (more so if reporting rates are 

estimated). An operating model of 4 subyears, 65 historical years, 8 areas and 6 fleets requires the calculation of 

approximately ~14M recapture probabilities in addition to the likelihood calculation for recaptured tags.  

 

Many tags have been recaptured by observer programs for which it may be assumed that reporting rates are 100%. 

In order to retain information regarding recapture probability (and hence abundance) it is possible to fit to only 

observer tag recapture data and provide post-hoc estimates of reporting rates (also observed versus predicted 

recaptures) for the various commercial fleets.   

 

The preliminary version of the operating model is designed to use conventional tagging data to identify the range of 

possible bluefin tuna movements and also provide information about possible shifts in growth rate of bluefin tuna. 

The latter is a novel use of conventional tagging data in the context of integrated stock assessment. It has been 

hypothesized that as exploitation rates increase there should be a shift in the size composition of the modelled 

population due to the attrition of faster growing individuals (Walters and Martell 2004). Traditional length-based 

assessments (e.g. MULTIFAN-CL, Fournier et al. 1998) have not accounted for this phenomenon and instead, renew 

the distribution of growth types in each cohort as it ages, irrespective of the level of exploitation. In constrast, a 

cohort may start with a normal distribution of maximum length among individuals which becomes strongly positively 

skewed as larger fish are preferentially removed from a cohort (perhaps at high exploitation rates, older fish would 

belong to the very lower tail of the unfished distribution of maximum length). Simulation studies indicate that 

estimates of fishing mortality rates from models that do not account for this phenomenon could be strongly 

positively biased (as much as 3 times that of true fishing mortality rate, C. Walters and A. Hordyk, personal 

communication).  

 

The operating models under development include a dynamic inverse age-length key that accounts for attrition of 

faster/larger growth type groups in order to investigate this potentially important source of model mis-specification 

(SCRS/2015/179). Conventional tagging data could provide a valuable empirical validation of shifts in growth rate 

predicted by the model since each observation of a release and recapture provides an estimate of the growth 

parameters (e.g. Walters and Essington 2010). Given it may strongly impact estimates of stock status and 

productivity, growth type attrition may be considered an important alternative hypothesis to be captured in Atlantic 

bluefin tuna operating models.  

4.6 Surgically implanted archival tags 
 

Surgically implanted archival tags (SI tags, e.g. Walli et al. 2009, LPRC 2015) provide detailed tag track information 

and have been included in previous spatial population models to predict both movement and exploitation rates 

(Taylor et al. 2011). While reporting rates of archival tags are generally much higher than conventional tags (due to 

larger rewards for reporting archival tags), uncertainty over reporting rates and post-release mortality rate still 

complicates their use in the estimation of exploitation rate. SI tags could be used (1) to estimate exploitation rate and 

abundance with some assumption about reporting rate, (2) to estimate only recapture probabilities of tags reported 

by fleets of known reporting rate (e.g. observer fleets), (3) to estimate only movement assuming that releases and 

recaptures are independent of fishing (similarly to PSAT tags).  

4.7 Pop-off Satellite Archival Tags (PSATs) 
 

The primary source of information regarding movements from model areas to model areas among subyears comes 

from PSAT tags (Block et al. 2005, Lutcavage et al. 2012, Cermeno et al. 2015). The operating model includes these 
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data formatted into separate subyear segments (i.e. has the fields ‘year-from’, ‘area-from’, ‘area-to’, ‘subyear-from’, 

‘age-from’).  

 

The majority of PSAT tags do not have a definite stock of origin (SOO) (they were not tagged in a spawning area or 

ocean area specific to a single stock). In such cases it is not clear how to weight these data such that information 

about movement can be correctly attributed to stock. Determining SOO (or SOO weights) may be undertaken prior to 

model fitting based on other SOO data. Alternatively this calculation can occur inside the model using the relative 

likelihood of SOO based on either (1) the model predicted composition of stocks in the areas of a tag track (as in 

MAST, Taylor et al. 2011) or (2) the predicted likelihood of tag track movements given estimated movement 

parameters of stocks. Both methods that occur inside the model can be expected to be unreliable since they are likely 

to lead to estimated movements that best divide the tags of unknown SOO (i.e. they can be expected to 

underestimate stock mixing simply due to the likelihood weighting). This potential source of bias should be simulation 

tested. The way in which SOO is assigned to PSAT tags may impact estimates of spatial distribution and movement 

and hence management reference points, and could be considered as alternative scenarios for operating models.  

  

It may be possible to estimate spatial distribution of bluefin tuna in the absence of PSAT data using simplified spatial 

models that do not attempt to characterize the full range of movement among areas (e.g. the gravity models of 

Carruthers et al. (2011) and MAST Taylor et al. (2011)). However PSAT data contain vital information for evaluating 

alternative movement hypotheses such as age-based movement and temporally variable movement and their 

collection is a priority for operating model development.  

4.8 Otolith microchemistry 
 

It is generally not possible to estimate stock size and mixing using a multi-stock model without external data 

regarding stock of origin: without these data the magnitudes of the various stocks are confounded. Previous multi-

stock models such as MAST have used otolith microchemistry data as the primary source of information regarding 

stock of origin (e.g. Rooker et al. 2008, Rooker et al. 2014). The challenge is processing microchemistry data at the 

resolution of subyear and area. While these data have been gathered in all of the areas of the operating model, they 

have not been processed at this resolution and only exist from 2005 onwards (i.e. Rooker et al. 2008) 

 

Given that ICCAT data are already freely available that can be used to characterize trends in abundance, catch 

compositions and spatial distribution, data that provide information about stock of origin are arguably the most 

important for fitting a preliminary bluefin tuna operating model (after which other data sources can be refined).  

4.9 Otolith shape analysis 
 

Otolith shape analysis is an alternative approach for characterizing stock mixing which is both cheaper than micro-

chemical analysis and also non-destructive. The method has been compared with traditional micro-chemical analysis 

and shows promise, achieving similar accuracy (SCRS/P/2015/004). Further detail on the approach is summarized in 

the report of the 2015 data preparatory meeting (ICCAT 2015a). Similar to other data that provide information 

regarding stock of origin, these data are particularly valuable in the early stage of operating model development.  

4.10 Single nucleotide polymorphism (SNP) 
 

SNP data provide another basis for assigning individuals to stock of origin and have been collected for both mixing 

areas in the Atlantic and spawning areas in the Gulf of Mexico and Mediterranean. The most recent SNP analyses 

(e.g. SCRS/2015/048) have made use of a larger number of genetic markers and have demonstrated an ability to 

accurately determine sub-stock structure such as spawning area (e.g. Gulf of Mexico, Balearic Sea, Strait of Sicily and 

Levantine Sea). It follows that SNP data could provide the necessary empirical basis for formalizing hypotheses that 

have been proposed for sub stock structure (e.g. Kell et al. 2011, Fromentin and Lopuszanski 2014), particularly for 

the Eastern stock that is thought to have spawning areas in western, central and eastern Mediterranean. 



17 

 

 

An ongoing challenge for operating model development is generating model datasets that can inform a model with 

more than one Mediterranean sub-stock. In principle this is possible if SNP data can be used to quantify fractions of 

individuals in each sub-stock in sub-areas of the Mediterranean and there are sufficient electronic tags (that can be 

assigned to each Mediterranean sub-stock) to estimate movement. Such data would still have to be provided at the 

resolution of subyear and area after which they may be too sparse to be considered a reliable characterization of sub-

stock structure.  

4.11 Other genetics data 
 

Coupled with electronic tagging data, older genetic studies based on microsatellites (Carlsson et al. 2007) and 

mitochondrial DNA (Boustany et al. 2008) provided early confirmation of the broad east-west stock structure. It is not 

clear whether these data could be processed at the level of subyear and area in order to inform operating models. 

However this may be worth pursuing since these data broaden the temporal range of data on SOO.  

 

Another potential for obtaining abundance information is close-kin analysis to estimate the spawning stock 

abundance (Bravington et al 2013), This provides the potential for genetic mark recapture experiments to estimate 

absolute abundance, mortality rates or migration, addressing directly some of the key uncertainties in BFT 

assessments. In particular the close-kin analysis could provide a fishery-independent estimate of spawning stock 

numbers, particularly for Western Atlantic Bluefin. 

4.12 Fishery independent surveys 
 

In addition to the fishery-independent larval surveys discussed above, aerial surveys have been suggested as 

potential source of index information. Aerial surveys (Bonhommeau et al. 2010) have been conducted in the 

Mediterranean since 2010 and may represent the longest running index of spawning biomass for the eastern stock. 

Similarly to larval indices, the aerial survey may strongly influence operating model estimates of recent trends in 

spawning biomass. Since the aerial surveys in the Mediterranean have covered areas that encapsulate eastern sub-

stock structure, these data may also be used to inform alternative sub-stock structure hypotheses.  

 

Similar aerial surveys have been proposed for the Western stock in addition to a western hydro acoustic survey and a 

hydro acoustic curtain in the Strait of Gibraltar. While such proposals may not necessarily support operating model 

development, these data may support management procedures in the future. It follows that it is important to 

characterize metadata for these types of future data collection programs.  

4.13 Growth and aging 
 

The operating model is fitted to catch-at-length data and predicts fishing mortality rate by length class for each fleet. 

The operating model therefore requires an inverse age-length key (probability of an individual being in a length class 

given it is of an age class) to convert estimates of fishing mortality rate at length to fishing mortality rate at age. The 

operating model either (1) applies a static, user-specified inverse age-length key or (2) attempts to generate a 

dynamic inverse age-length key from model predicted fishing mortality rate and user-specified variability in individual 

growths. In either case, growth must be characterized in order to develop these keys and also predict the weight of 

individuals of a given age class. Since the inverse age-length keys are a requirement of the operating model and are 

not yet available, their derivation is priority for developing a preliminary operating model. Accounting for attrition of 

growth types could be an important axis of uncertainty for alternative operating models.  

4.14 Maturity 
 

There have been numerous studies focused on bluefin tuna reproductive biology with which to characterize maturity 

at age and fecundity in general (e.g. Corriero et al. 2005, Medina et al. 2007, Diaz 2010, Aranda et al. 2013, Knapp et 
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al. 2014). However participants of the recent data-preparatory meeting (ICCAT 2015) concluded that the body of 

work on bluefin tuna reproduction should be reconsidered prior to the next assessment. It may be possible to identify 

a various hypotheses for bluefin tuna maturity and fecundity that are represented by operating models. Participants 

of the same meeting (ICCAT 2015) also reiterated an ongoing concern that the age-at-maturity estimated from fish on 

the spawning grounds may not be representative of reproductive contribution at age of the wider population. Again 

this source of uncertainty may be formalized in operating models.  

 

 

Simplified summary of data to inform operating models for Atlantic bluefin tuna. Spatial range either Table 3. 

refers to the areas of Figure 1 or stock (Es = eastern stock, Ws = western stock). 

 
 
 

TC CMG ICCAT ALL

1.1.  ICCAT task II CPUE 1950-2014 ∞ All Y Carlos Palma (ICCAT) Y Y Y Y Y Yes

1976-2013 ∞ Y Y N N N N Not yet

1990-2013 ∞ Y Y N N N N Not yet

1992-2014 ∞ W Y Y N N N N Not yet

1992-2004 ∞ GOM Y Y N N N N Not yet

2005-2014 ∞ GOM Y Y N N N N Not yet

1.4. USA HL standardized spatial 1980-2014 ∞ W Y Y N N N N Not yet

1.5. USA RR standardized spatial 1992-2014 ∞ W Y

1.6. USA-CAN LL standardized spatial 1992-2014 ∞ W, C Y Y N N N N Not yet

1.7. USA-CAN HL standardized spatial 1993-2014 ∞ W, C Y Y N N N N Not yet

1.8. CAN LL standardized ∞ W, GSL Y Y N N N N Not yet

1981-2014 ∞ GSL Y Y N N N N Not yet

1988-2014 ∞ W Y Y N N N N Not yet

1.10. TWN LL standardized 1960-2004 2004 W, NE,  E Y Julia Huang (NTOU) N N N N Not yet

1.11. MOR TRAP standardized 1981-2014 ∞ WM Y N. Abid N N N N Not yet

1.12. POR TRAP standardized W, WM Y N N N N Not yet

1.13. ESP TRAP standardized W, WM Y Jose Miguel de la Serna N N N N Not yet

1.14 ITA TRAP standardised CM Y Pierantonio Addis Y N N N Not yet

2. Larval indices (SSB, movement)

2.1. USA 1977-2013 ∞ GOM Y Walter Ingram (NOAA) Y N N N N Not yet

2.2 ESP 01-'05  '12-'13 2018 W Med Y Franciso Alemany (IEO) Y N N N N Not yet

3. Catches (stock size, harvest rate)

3.1. ICCAT task I non-spatial N Y Y Y Y Y Yes

3.2. ICCAT task II All Y Y Y Y Y Y Yes

3.3 GBYP 1512-1950 E, M Y Carlos Palma (ICCAT) Y Y Y Y Y Not yet

4. Catch composition (selectivity, depletion)

4.1. ICCAT catch-at-size 1950-2015 ∞ All Y Carlos Palma (ICCAT) Y Y Y Y Y Yes

4.2. Stereo video caging 2014 ended WM, EM Y Mauricio Ortiz (ICCAT) N N N N Not yet

4.3. Canadian fisheries N Alex Hanke (DFO)

4.4 GBYP Historical catches 1910-1950 = E, M Y Carlos Palma (ICCAT) Y N Y Y Y Not yet

5. Conventional tags (feasible movement, growth, GTG heterogeneity )

5.1. ICCAT 1954-2014 2015 All Y Carlos Palma (ICCAT) Y Y Y Y Y Yes

6. SI archival tags (feasible movement )

6.1. LPRC  (n=4000) 2011-2015 W Y Molly Lutcavage N N N N Not yet

7. PSAT tags (movement )

7.1. LPRC (n=423) 2005-2009 ended W Y Molly Lutcavage N N N N Not yet

7.2. DFO (n=135) 2013-2015 ∞ GSL,W,GOM Y Alex Hanke (DFO) Y N N N N Not yet

7.3. Stanford (n=1783) 1996-2010 ∞ W Y Barbara Block N N N N Not yet

7.4. GBYP (n = 103) 2012-2014 2015 E,MED Y Antonio Di Natale Y Y N N N Not yet

7.5. WWF (n = 100) Y Pablo Cermeno N N N N Not yet

7.6. SEFSC (NOAA) 2011-2013 GOM,W,GSL Y Craig Brown N N N N Not yet

7.7. Acadia (NS) GSL Y Mike Stokesbury N N N N Not yet

7.8. UCA 2011 ended W, C, WM Y Antonio Medina Y Y N N N Not yet

Available to: 
Collab

Matt Lauretta (NOAA)

Used in 

OM?
Contact

Can be by 

season?

Spatial 

range

1. CPUE indices (relative abundance, movement, performance at stakeholder level)

1.9. CAN HL standardized

1950-2015

1.2. Japanese LL standardized spatial

1.3. USA LL standardized spatial

Type of data (Informs ) Year range

Ai Kimoto

Til

E, NE, W, C

Carlos Palma (ICCAT)∞

M. Lauretta (NOAA) /         

A. Hanke (DFO)

Alex Hanke (DFO)
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continued.  Table 3 

 
 

 

 

  

8. Otolith microchemistry (stock of origin )

8.1. UMCES, TAMU 2012-2013 Y David Secor Y N N N N Not yet

8.2. NOAA N N N N Not yet

8.3. EU (AZTI) 2009-2011 ended E Y Igaratza Fraile Y N N N N Not yet

8.4. DFO / UMCES 2011-2013 ∞ W, GSL Y Alex Hanke (DFO) N N N N Not yet

8.5 GBYP 2011-2015 All Y GBYP Y Y Y Not yet

9. Otolith shape analysis (stock of origin )

9.1. GBYP GMIT (n=718) 2013 2015 E, W, C, WM Y Deirdre Brophy N N N N Not yet

10. SNP (population structure, genetic structure )

10.1. Med HCMR Gianpaolo Zmpicinini N N N N Not yet

10.2. GBYP UB 2011-2015 All Gregory Puncher Y N N N N Not yet

10.3. AZTI  (n=130)

Naiara Rodriguez 

Espeleta Y N N N N Not yet

10.4 NOAA/VIMS/CSIRO 2015 GOM/MED N John Walter N N N N Not yet

10.5 GBYP Historical UB 200 BC - 1927 E, M Y Alessia Cariani Y N N N N Not yet

11. Other genetics on population structure (population structure, genetic structure )

11.1. mtDNA Barbara Block N N N N Not yet

11.2. Micro Sat/ mtDNA  (n=320 / 147) 2003 ended GOM, WM Y Carlsson N N N N Not yet

12. Fish. Ind. surveys (relative abundance, movement )

12.1. ICCAT Aerial 2010-2015 M Y Antonio Di Natale Y N N N N Not yet

12.2. USA Aerial 2015- W Y Molly Lutcavage N N N N Not yet

12.3. USA Acoustic 2015- W Y Molly Lutcavage N N N N Not yet

12.4. SOG Hydro acoustic curtain (OTN) W, WM Y Mike Stokesbury N N N N Not yet

13. Growth, aging (age-length keys, length-age keys )

13.1. Age-length keys (NOAA) Y John Walter N N N N Not yet

13.2. Age-length keys (IEO) 2010-2012 ended E, WM Y

Enrique Rodriguez-

Marin N N N N Not yet

13.3. Age-length keys (DFO) 2010-2013 ended GSL, W Y Alex Hanke (DFO) N N N N Not yet

13.4. Derived from tagging 1963-2012 ended Es, W s Y Lisa Allioud N N N N Not yet

13.5 Age-length keys (GBYP) 2011-2015 E, M Y Antonio Di Natale Y N Y Y Not yet

13.5 Ageing calibration (GBYP) 2014 E, M Y Antonio Di Natale Y N Y Y Not yet

14. Maturity (Spawning biomass )

14.1. Western (NOAA) 1975-1981 ended GOM Y Guillermo Diaz (NOAA) N N N N Not yet

14.2 Mediterranean rew M Y GBYP Y N Y Y Not yet

15. Other ecological data (spatial distribution, covariates for CPUE standardization, steepness, natural mortality rate, spawning locations etc. )

15.1. Larval ecology (IEO) ended WM Y

Diego Alvarez 

Berastegui N N N N Not yet

15.2. Habitat model Y Jean-Noel Druon N N N N Not yet

proposed
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5 Possible hypotheses/ data scenarios for ABFT 
 

In this document we discuss various ways in which data can be interpreted by operating models. Along with 

traditional axes of uncertainty (Fromentin et al. 2014), these may be considered for alternative operating model 

hypotheses (Table 4).  

 

Possible hypotheses for alternative operating models.  Table 4. 

Regarding: Hypothesis 1 Hypothesis 2 Hypothesis 3 

Population    

Mediterranean sub stock 

structure 

1 stock mixed 2 sub populations 

east/west 

3 sub populations 

east/central/west 

Recruitment Proportional to mature stock 

biomass in spawning area 

Proportional to population-

wide spawning biomass 

 

Recruitment  High recruitment scenario Low recruitment scenario  

Recruitment High resilience Low resilience  

Recruitment High variability Low variability  

Mixing MLE Low High 

Natural mortality rate High  Low  

Spatial definitions E.g. Figure 1b Figure 1c  

Growth Renewable growth type Growth type groups  

    

Data    

Larval indices OM fitted OM not fitted  

PSAT tags of unknown stock 

of origin 

OM fitted OM not fitted  

Assignment of PSATs of 

unknown stock of origin 

Prior to fitting based on stock 

of origin data 

Inside model according to 

stock distribution 

Inside model according 

to estimated movement 

Conventional tagging OM not fitted OM fitted to observer 

recaptures 

OM fitted to all tags 

Movement Age-independent Juvenile / mature Continuous with age 

Historical catch reporting Unbiased Negatively biased  More negatively biased 

Future catch reporting Unbiased Negatively biased More negatively biased 

Catch-at-length weighting Consistent with apriori 

estimates of effective sample 

size 

More strongly weighted Less strongly weighted 

Reliability of relative 

abundance indices 

Proportional Hyper stable (where 

applicable) 

 

Fishery aggregation By gear type By flag / gear type  

 

6 Simulation evaluation of operating model 

6.1 Design 

 

The demonstration MSE framework previously presented to the GBYP Core Modelling Group (December 2014, Anon. 

2014) was used to simulate data to determine whether the model could estimate quantities of interest such as stock 

depletion, current stock size and spatial distribution reliably. In this preliminary simulation evaluation, 200 datasets 

were simulated with varying stock depletion, exploitation history, gear selectivity, movement and spatial distribution. 

The simulation was kept relatively simple and included only two fleet types, 4 areas, 2 sub-years and 40 historical 

years of exploitation (Figure 3 illustrates the simplified mixing and spatial structure that borrows four areas from the 
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spatial definitions of Anon. 2015, Figure 1). A summary of inputs and parameter ranges for the simulations is included 

in Table 3.  

 

 

Simulation model specification Table 5. 

Parameter/variable Symbol Description  Value (range of simulated values) 

Number of stocks ns  2 

Number of fleets nf  2 

Number of areas nr  4 

Number of years ny 
Historical years of 

exploitation 

40 

Number of subyears nm  2 

Spawning subyear ms  2 

Unfished recruitment R0  
Stock 1: 225-450 

Stock 2: 37 - 75 

Natural mortality rate 

at age 
Minit 

User-specified natural 

mortality rate at age 

schedule 

Stock 1: 0.49, 0.24, 0.24, 0.24, 0.24, 

0.2, 0.175, 0.15, 0.125,  0.1, 0.1, 0.1, 

0.1, 0.1, 0.1. Stock 2:  0.1 (all ages) 

Natural mortality rate 

factor 
Mfac 

Multiplier of the Natural 

mortality rate at age 

schedule 

0.75 – 1.5 

Steepness h Recruitment compensation 0.35 – 0.65 

Inter-annual 

recruitment variation 
σR 

Log-normal standard 

deviation of recruitment 

deviations 

0.1 - 0.3 

Recruitment 

autocorrelation 
ΨR  

0.5 – 0.9 

von Bertalanffy 

maximum growth rate 

parameter 

κ  

Stock 1: 0.087- 0.091 

Stock 2: 0.091 - 0.095 

Age at maturity γ 
Age when 50% of 

individuals are mature 

Stock 1: 3.5 - 4.5 

Stock 2: 8.5 - 9.5 

Stock depletion 
SSBny/ 

SSB0 

Spawning stock biomass 

relative to unfished 

Stock 1: 0.035 - 0.2625 

Stock 2: 0.3 - 0.4 

Age at 100 selectivity smode  5 – 8 (all fleets, all stocks) 

Age at 5% selectivity   Ascending limb of sel. curve 2 – 3 (all fleets, all stocks 

Sel. of oldest age   
Fleet 1: 1          (all stocks) 

Fleet 2: 0.5 – 1 (all stocks) 

Slope in recent 

exploitation rates 
  

(-5) – 5 % per year (all fleets, all 

stocks) 
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Spatio-temporal distribution of simulated population dynamics. In order to conduct a simplified test of Figure 3. 

estimation performance, only two subyears and four areas were simulated of the eight identified at the 2015 

bluefin data preparatory meeting (ICCAT 2015, Figure 1).  

 

 

 

 

This simulation evaluation was intended as a proof of model concept and consequently did not simulate biases in 

observed data (e.g. catch reporting, non-independence in length composition data) or evaluate model 

misspecification (e.g. incorrect aggregation of fleets, misspecification of selectivity, incorrect natural mortality rate at 

age, functional form of the stock recruitment relationship). The simulation results presented here are for a former 

version of the M3 (v1.02) model which does not include priors for steepness and natural mortality rate. In this 

simulation test these were assumed to be known perfectly without error.  

 

6.2 Results 

 

Simulation testing reveals that the model provides estimates of stock depletion, stock size and spatial distribution 

that are not strongly biased (Figure 4). For example, biases in estimates of stock depletion were on average within 2% 

of unbiased for both simulated stocks. The range of biases was also relatively low with standard deviations among 

simulations of 5.3% and 8.3% for stocks 1 and 2, respectively.  Estimates of current stock size were somewhat 

negatively biased (around -5% for both stocks) but not strongly so. Among stocks, biases in estimates of current stock 

size were negatively correlated. This is to be expected since an overestimate of the size of stock 1 is likely to be 

paired with an underestimate of stock size 2, as the model aims to generate a similar total vulnerable biomass to that 

simulated. Among the simulations the biases in estimates of current stock size could be larger for stock 2 (a standard 

deviation of 10%) than stock 1 (a standard deviation of 6%) which should be anticipated since stock 2 is estmated to 

be smaller than stock 1 (unfished recruitment was 1/6 that of stock 1). 
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. Bias in estimates of simulation model quantities ((estimated value – simulated value)/simulated value). Figure 4

Current refers to the final year of the simulation (ie most recent). Frac. Spawn. in Spawn. area is the fraction of the 

spawning stock biomass predicted in the spawning area for the final year of the simulation and is included here to 

examine the ability of the model to estimate spatial distribution  reliably. The vertical and horizontal dashed lines 

represent the mean bias for stocks 1 and 2 respectively. 

7 Discussion 

7.1 Limitations 

 

The first version of the M3 model was intended to initiate a dialogue with the GBYP core modelling group and wider 

SCRS regarding priorities for operating model development. In order to get a version of the model working and 

simulation tested, a number of features were omitted. One of the most important was the conventional tagging data 

which are not used to estimate exploitation rates in this preliminary M3 model.   

 

It is relatively simple (although very computationally intensive) to include the model code to predict the dynamics of 

a tagged population of bluefin tuna and predict capture probabilities. However there are concerns that uncertain and 

variable reporting rates serve to contaminate these data which therefore could provide a misleading picture of 

movement and exploitation rate (and hence stock size). The confounding of reporting rate and fishing mortality rate 

estimates is a known problem in the use of conventional tagging data when no information exists to inform reporting 

rate estimates, as is the case for bluefin tuna. Previous spatial, multi-stock models of bluefin tuna such as MAST 

(Taylor et al. 2010) assumed similar reporting rates among fleets. There is however evidence that reporting rates may 

vary widely among fleets, for example between 1/1000 and 1/2 (Carruthers and McAllister 2010). Thus, the model 

may be confronted with observed recapture rates and observed catch rates that differ by a factor of 500 for some 

fleets. The likely result is a poorly defined objective function, model outputs that are sensitive to initial values and a 

failure to satisfy convergence criteria.  

 

While the benefits of adding conventional tagging data are uncertain, the additional computational overhead may be 

greater than 500% for a model such as M3. It may be possible to include conventional tagging data and estimate the 
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fleet-specific reporting rates but the benefit would be weak additional information regarding movements and 

exploitation rates at the cost of a much more computationally intensive model. Despite these potential drawbacks 

and the omission of these data in this first version of the model, conventional tags should still be considered as a 

source of information about exploitation rate and this should be a primary subject of discussion. There are a number 

of other ways in which conventional tagging data can be incorporated into the model such as characterising growth, 

informing estimates of fleet selectivity and vulnerability-at-age, and defining the full range of possible movements. 

Recaptures of conventional tags from observer-based programs provide one potential source of unbiased estimates 

as 100% reporting can be assumed.  For example, the pelagic longline observer programs in the West Atlantic may 

provide unbiased estimates of recapture rates. 

 

Currently the model does not attempt to model movement by age or length. Other approaches have aimed to 

estimate a separate set of movement parameters for juvenile and mature fish (e.g. MAST). This is a priority for model 

development. An alternative to estimating a separate movement model for certain ages or length classes would be to 

model continuous models of regional gravity or mixing rate with age (e.g. Carruthers et al. 2015). This has the benefit 

of adding the same number of parameters but having smooth transitions in movement among age classes rather than 

an abrupt shift to an alternative movement model at a particular life-stage.  

 

Similar to other statistical catch-at-age and catch-at-length models which approximate historical fishing dynamics 

according to a finite number of fleets, the M3 model requires at least one selectivity curve to be either user-specified 

or assigned a ‘flat-topped’ (e.g. logistic) selectivity curve. The aggregation of fleets should also be considered carefully 

to avoid overly complex models with redundant fleets or those that have not contributed substantially to the 

exploitation of one or more of the stocks. Alternative selectivity assumptions, aggregations of fleets or temporal 

definitions of fleets may serve as alternative hypotheses to be taken into account in the operating models of a future 

MSE. Conventional tagging data may provide information on fleet-specific selectivity for some fishing fleets that 

operate in areas where a large number of tags have been released, e.g., the bait boat fisheries in the Bay of Biscay or 

the rod-and-reel fisheries off of North America. 

7.2 Strengths and opportunities 

 

Since all of the catch composition data for bluefin tuna are in the form of length samples, statistical catch-at-age 

models require these sampled lengths to be converted to ages. The problems associated with this practice are well 

established (Allioud et al. 2014, Hilborn and Walters 1992, Kell and Kell 2011). A central strength of the model 

proposed here is that it is fitted to these length samples directly. A statistical catch-at-length approach also provides 

avenues for accounting for varying growth rates among individuals which may be informed by conventional tagging 

data.  

 

Once a range of plausible hypotheses have been identified for bluefin tuna and suitable operating models have been 

developed to represent these, there are potentially a large number of research questions that may also be addressed 

in addition to MSE. For example: to what extent is movement estimation biased by release location of PSAT tags? 

How should data be weighted in a spatial, integrated assessment model? What is a suitable experimental design of a 

genetic tagging program? When assessing populations with complex stock structure and highly migratory dynamics, 

what assessment model complexity is particularly important: space, age, both or neither? If explicit performance 

metrics are available, can suitable harvest control rules be derived? 

 

An advantage of not integrating conventional tagging into the model is that it runs relatively quickly (e.g., in less than 

a few minutes). This may allow a simplified version of the approach to be included within a management procedure 

in future MSE analyses, broadening the range of complexity in management procedures. Rapid model fitting also 

allows for extensive simulation testing which confirms that the model has been programmed correctly and reveals 

potential areas for re-parameterization or simplification. 
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A number of model features are in development to allow for alternative hypotheses for bluefin tuna dynamics. Once 

such extension is an approximation to a Growth-Type Group model (GTG) via calculation of the inverse age-length 

key. A common oversight in fisheries stock assessment models is the inability to account for downward shifts in the 

expected length composition at age which occur as larger, faster growing individuals experience higher exploitation 

rates. Preliminary simulation evaluations using models that simulate many (300+) growth type groups, indicates that 

fishing mortality rate estimates can be highly inaccurate (as much as 200% biased) when this phenomenon is not 

taken into account. The conventional approach (also considered for the MAST model, Taylor et al. 2011) is to model 

discrete groups of individual of varying growth parameters. In Stock Synthesis these are referred to as ‘platoons’ 

(Methot and Wetzel 2013). 

 

The principal problem with these approaches is that it can take many extra growth type groups (300+) or several 

platoons to generate suitably smooth predicted length compositions. This is a major problem for models such as M3 

that are already computationally intensive as each GTG or platoon is an additional dimension, and hence the number 

of calculations is increased by a factor equal to the number of GTGs or platoons. A solution under investigation here 

is an approximation that takes percentiles of the distribution of GTGs and uses linear interpolation to predict the shift 

in the length structure given historical fishing mortality rates. This is a much more tractable approach as it adds no 

additional dimensionality to the transition calculations: additional calculation is limited to the construction of the 

inverse age-at-length key. Furthermore, conventional tagging data may be used as an empirical source of growth data 

for fitting the inverse age-length key. This additional feature would add around 10% more computation time per 

iteration. 

 

The operating model has been subject to simulation testing (SCRS/2015/179) to evaluate estimation performance. 

These simulations can be broadened to establish which data are most critical in determining model predictions of 

stock status and productivity. This type of value of information analysis may provide a more rigorous basis for 

prioritising data gathering to support operating model development.   

 

An added benefit of developing an M3 model as part of this contract is that it may be presented alongside spatially 

aggregated, stock specific assessments and hence offer an alternative viewpoint of stock status and projections. A 

possible objective moving forward would be to present this alternative assessment results in 2016 alongside the 

conventional assessment approaches (assuming that the required data are provided, specifically stock of origin and 

standardized relative abundance indices at the resolution of subyear and area).  

7.3 Future priorities  

 

The M3 model differs from previous multi-stock model such as MAST in that it requires indices of abundance (e.g. 

standardized CPUE indices) for fleets by time-area strata (e.g. for a given ocean area and subyear). The core 

advantage of this is that the movement estimation is constrained to combinations of parameters that are consistent 

with other spatial data. Previous spatial modelling has demonstrated that these data alone are sufficient to estimate 

spatial heterogeneity reliably. This is often more important than estimating specific movement transitions. For 

example to estimate MSY-related reference points reliably, it is more important to know the spatial distribution of 

the stock at a given time of year than to know exactly what fraction of individuals moved to and from the various 

areas (Carruthers et al. 2011b). This means that the development of fleet-specific indices at the resolution of subyear 

and spatial area is a central priority for operating model development.  

 

Arguably more important still is the provision of stock of origin data at the resolution of subyear and spatial areas. 

While non standardized indices may be developed from catch rate data reported to ICCAT (Task II) there is no 

substitute for stock of origin data and without these data, spatial multi-stock operating models cannot be developed.  

 

In this paper, simulation testing was cursory and should be much more thorough for future releases of the model. For 

example future tests should examine various types of model misspecification such as ignoring differences in 

juvenile/mature movement and misspecification of maturity. Problematic observation processes may also be 
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simulated: for example persistent biases in annual catches, spatially biased length sampling and relative abundance 

indices that are non-linearly related to abundance. Model diagnostics in future simulation tests could also include 

other checks such as of the biases in MSY-related reference points.  

In this paper we reference the spatial definitions of the 2015 data preparatory meeting (Anon. 2015, Figure 1). 

Kimoto et al. (2015b) recommend that the ICCAT Bluefin Working Group should carefully examine spatial 

stratifications particularly those of the northeast Atlantic, a region that is currently a main fishing area for Japanese 

longline vessels. Historical abundance indices for the Japanese longline fleet are perhaps the most important data for 

the stock assessment of Atlantic bluefin tuna and are likely to be pivotal in fitting operating models. Figure 1 

originates from the bluefin mixing workshop in 2001 (Anon. 2002) which apart from the separation of the Gulf of 

Mexico and the Mediterranean, was not fully agreed upon by the group. Furthermore the reasoning behind the 

boundaries identified are not fully supported by knowledge accumulated over the last 15 years. It was recommended 

to revise the area stratification with new and updated information collected, in the light of both biological and 

fisheries aspects. 

 

Version 1.03 of the M3 model includes user-specified priors for steepness (recruitment compensation) and the 

natural mortality rate factor Mfac (a multiplier of the user-specified natural mortality rate at age schedule). It is 

important to account for uncertainty in these parameters in operating models since these are among the least well 

known and most influential in the estimation of Atlantic bluefin tuna status and productivity. It follows that moving to 

a Bayesian version of the model using the Metropolis Hastings algorithm of ADMB is a future priority.  

7.4 Strategy for operating model development and data priorities 
 

In settings where MSE has been successful it has been an iterative process (Punt et al. 2014). It is generally 

recognised that stakeholders require prior exposure to MSE concepts in order to identify operating models and 

performance metrics. In recognition of this, it is a priority to develop a working MSE framework based on operating 

models fitted to data in order to advance the GBYP MSE process. A fitted operating model also allows data providers 

to see the benefit of their contributions and allows further refinement of the broader MSE framework.  

 

A possible strategy for operating model development is to fit the model to ICCAT data that are freely available and 

admit more rigorous data to the model as they become available (e.g. standardized indices, PSAT tagging data). Catch 

data, relative abundance indices and length composition data are currently available as are the parameters to 

produce preliminary inverse age-length keys and maturity schedules. It follows that the most significant data gaps for 

developing a preliminary operating model are data regarding stock of origin (e.g. otolith microchemistry, SNP) and 

movement (e.g. PSAT data). If simplified gravity movement models are assumed tagging data are not necessary to 

estimate seasonal spatial distribution. As more detailed PSAT data become available alternative movement models 

can be considered such as age-based movement.  

8 Progress relative to deliverables 
 

8.0    The deliverables include documented, object-oriented SC4 Classes and C++ source code for the 

Operating Model (OM), including the Observation Error Model, (OEM) that can be used by third 

parties to develop and evaluate their own Management Procedures (MPs) consistent with the 

recommendations of the Modelling Coordinator, ICCAT population dynamics specialist and 

Modelling Steering Group. All code shall be available at the https://github.com/iccat-mse and 

https://github.com/generic-mse github repositories. 

 

[90%] Developing the M3 model in ADMB has the relative merit that it is trivial to create more generic C++ libraries 

for use in other modelling frameworks such as template model builder (Kristensen 2015). Once the M3 model has 

been thoroughly simulation tested and fitted to real bluefin tuna data, the model will be uploaded onto the relevant 

websites. In terms of the coding this deliverable is essentially complete.  
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8.1 Based on the review of population hypotheses and stock structure, provide OM classes that can be 

used to conduct sensitivity analyses and then to implement hypotheses in the OM in order to 

evaluate alternative OEMs and MPs. Specific outcome: Provide examples for the review paper on 

population hypotheses and stock assumptions (see SCRS, 2013). 

 

[20%] As identified here a range of alternative operating models may be proposed that interpret data and account for 

recruitment, growth and stock mixing in various ways. This deliverable is contingent on the provision of suitable data 

to inform the operating model and group decisions about which hypotheses to focus on (e.g. at a proposed working 

group meeting in Monterey January 2016). It follows that this will likely be one of the last deliverables to be 

completed prior to the February deadline.  To achieve this deliverable, stock of origin data at the resolution of 

subyear and area must be made available.  

8.2 Develop the Observation Error Model (OEM) that can be used to evaluate different data collection 

regimes e.g. aerial surveys, tagging programmes, catch and catch per unit effort (CPUE) and size to 

age conversions. Specific outcome: Use the OEM to conduct an analysis to show how improving data 

and knowledge can be used to reduce uncertainty and write up as an SCRS paper or peer review 

manuscript.  

 

[100%] This deliverable has already been completed and was a requirement of the simulation testing described in this 

report.  

8.3 Use the OM to evaluate alternative MPs developed and proposed by third parties. This requires to 

have a least one example of an MSE that evaluates a MP proposed by members of SCRS (e.g. Cooke, 

2012). Specific outcome: Participate in manuscript, i.e. an SCRS or peer review paper, that 

documents the example(s).  

 

[50%] Once the M3 has been fitted to data a range of possible MPs may be performance tested including current 

assessment methods and the MPs investigated by Carruthers et al. 2015d. In any case a range of MPs are already 

coded and compatible with the MSE framework.  

8.4 Develop interactive tools in collaboration with other RFMOs for use with stakeholders based on 

Shiny (e.g. http://shiny.iphc.int/sample-apps/shiny/). Specific outcome: Published the interactive 

tool at http://rscloud.iccat.int:3838/bft-mse/ 

 

[0%] The development of shiny tools first requires an operating model fitted to data to represent various hypotheses 

and a closed-loop test of a range of MPs. It follows that this is likely to the last deliverable to be completed.  
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