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Executive Summary 
 

We describe a preliminary MSE for Atlantic Bluefin Tuna (ABT) that can be used to evaluate 
management procedures over a wide range of ecological, data collection and management 
hypotheses. The MSE design makes use of Object-Oriented Programming (OOP) to improve 
development efficiency and organisation.  
 
A set of operating models were defined that encompass credible sub-population scenarios for 
the eastern Atlantic stock and the core uncertainties regarding ABT population dynamics.  A 
series of management procedures (MPs) were tested and incorporated in the MSE framework 
that include simple stock assessments and rules used in the management of southern bluefin 
tuna.  
 
A set of 55 thousand simulations were identified that covered the core uncertainties in addition 
to alternative data quality levels and quota overages. In this report we present the main results 
of the preliminary ABT MSE and introduce Bayesian Belief Networks as a tool in making ABT MSE 
outputs accessible to a wider group of stakeholders. MP performance was evaluated with 
respect to metrics that have been previously identified for ABT.  
 
Our early results indicate that alternative stock-structure hypotheses may determine 
management performance as strongly as conventional sources of uncertainty such as population 
growth rate, recruitment and natural mortality rate. The effect of increasing sub-population 
structure was often counter-intuitive which underlines the important role of simulation 
evaluation of MPs. Simple delay-difference assessments appeared to outperform the other MPs 
under most circumstances.  
 
In this report we provide a detailed description of the preliminary operating model structure. We 
discuss the preliminary ABT MSE results, the limitations of the current MSE design and highlight 
areas for future development. We also report on progress with respect to project deliverables.  
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1 Introduction 
 
The Atlantic-Wide Research Programme on Bluefin Tuna (GBYP) aims to develop a new scientific management 
framework by improving data collection, knowledge of key biological and ecological processes, assessment models 
and management. A critical component of the GBYP is the construction of a robust advice framework consistent 
with the precautionary approach (GBYP 2014).  
 
Management Strategy Evaluation (MSE) offers a solution that is increasingly applied in the management of fisheries 
(Cochrane et al. 1998, Butterworth and Punt 1999). Figure 1 provides an illustration of a possible MSE for Atlantic 
bluefin tuna. MSE differs from stock assessment in that detailed fishery data are used to condition an Operating 
Model (OM); a simulation model that represents plausible hypotheses about fishery and population dynamics. 
These simulations are then used to tune and evaluate procedures for updating management recommendations 
that are typically simpler than a conventional stock assessment. These rules are referred to as Management 
Procedures (MP) and generally operate on recent information regarding trends in abundance and catch data. 
Instead of using stock assessment as the primary source of management advice, the MSE approach makes routine 
management decisions using MPs while the operating model is updated to accommodate new data.  
 
 

 
Figure 1. A possible MSE for Atlantic bluefin tuna.  

 
 
MSE can add stability to the management  decision process by first identifying realistic management objectives 
through stakeholder participation followed by a thorough evaluation of trade-offs achievable under alternative 
harvest strategies when accounting for different sources  of uncertainty (e.g. Rockmann et  al. 2012).  MSE can also 
be used to guide the scientific process by identifying where the reduction of scientific uncertainty will improve 
performance in achieving management objectives and so help to ensure that expenditure is prioritised to provide 
the best research, monitoring and enforcement (Fromentin et al. 2014). While a stock assessment assumptions 
may vary over time due to the expert judgement of scientists (Hilborn, 2003) that can have impacts on 
management recommendations, the MSE paradigm is intended to instil greater constancy. Additionally since the 
MSE approach is simulation based it should detect overly complex assessment approaches (management 
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procedures) that can lead to biased management recommendations. This is important as there is increasing 
evidence that simple MPs can perform as least as well as conventional stock assessments (Geromont and 
Butterworth 2014b) 
 
In recognition of the potential benefits of MSE for Atlantic bluefin tuna management, the 2013 meeting of the 
Bluefin Stock Assessment Methods working group (Gloucester, MA; SCRS 2013) recommended Management 
Strategy Evaluation (MSE) as an approach to building a robust advice framework. Constructing a fully-featured MSE 
can be broken down into prerequisites and tasks. Two important prerequisites include agreement on performance 
measures (e.g. long-term stability in yield, probability of underfished status subject to underfishing, Leach et al. 
2014, Levontin et al. 2014) and identification of axes of uncertainty for the operating model (e.g. spatial structure, 
temporally varying growth, Kell et al. 2012, Kell 2014, Fromentin et al. 2014). The most important tasks include the 
acquisition and processing of data to inform the operating models, the programming of the operating models and 
the identification and implementation of a range of candidate management procedures (i.e. Carruthers et al. 
2014b).  
 
Atlantic bluefin tuna (Thunnus thynnus) is an ideal candidate for MSE because a range of data are available to 
support various stock mixing and sub-stock structure hypotheses that are likely to determine the success of 
candidate management procedures. For example Arrizabalaga et al. (2014) identify 5 distinct stock hypotheses that 
include multiple sub-populations for the Eastern stock. Additionally, MSE may be particularly useful in progressing 
Atlantic bluefin tuna science by quantifying value of information: the performance of a management procedure 
may be characterized in terms of the uncertainty in inputs leading to the identification of the most critical 
information gaps (e.g. stock mixing, number of genetically distinct stocks, temporal shifts in maturity or growth).   
 
In this report we describe the development and testing of a preliminary MSE framework for Atlantic bluefin tuna 
(Section 2). We describe a preliminary set of simulation scenarios in order to demonstrate the functionality of the 
MSE framework (Section 3). The central results of these preliminary simulations are presented in Section 4 and 
include a summary of the main sensitivities, MP performance trade-offs and value-of-information analysis. In 
Section 5 a demonstration Bayesian belief network (a type of inference diagram) is presented that allows for rapid 
summarization and dynamic investigation of the MSE results by a wide range of stakeholders. The implications of 
the preliminary results are discussed in the context of wider management considerations in Section 6 which also 
includes a summary of possible future MSE developments and research priorities. We summarize progress with 
respect to core project deliverables in Section 7.  

2 Designing of an MSE framework for Atlantic bluefin tuna  

2.1 Object – Oriented programming (OOP) 
 
In order to maximise flexibility and minimize development time we adopt an object-oriented programming (OOP) 
approach. OOP involves the definition of objects that are data structures with a variety of attributes for the 
organization of data and functions. For example a stock object may have attributes for the name of the species, 
catch data and natural mortality rate. In this case we have defined an object class ‘stock’ with three attributes. The 
advantage of the OOP approach is that standard functions, referred to as methods, may be developed that will 
operate on any given instance of an object of a particular class. For example a stock assessment method applied to 
any given stock object.  
 
OOP is particularly appropriate for MSE development because of the hierarchical, multiple scenario nature of MSE. 
For example MSE may require a standardized data input to an empirically fitted operating model (an object class), 
an empirical operating mode (a method), graphical representation of the fitted operating model (a method), 
observation error scenarios (an object class), a range of implementation error models (a function class), the range 
of candidate management procedures (methods), etc.  
 

2.2 The structure of the preliminary ABT MSE 
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The preliminary ABT MSE includes several object classes, methods and function classes that are listed in Table 1. 
The relationship between the object classes and function classes is illustrated in Figure 2.  
 
The operating model may be defined by either a user-specified definition object (OMd) or an empirically fitted 
assessment model or a combination of both. The rationale for the ‘OMd to OM’ approach was to create a rapid 
means of investigating alternative stock hypotheses and MP performance without having to fit a detailed 
assessment model to data which was beyond the scope of this preliminary MSE. The OMd is pseudo-empirical in 
the sense that it includes population parameter inputs, stock size and depletion estimated by recent stock 
assessments (SCRS 2012). Additionally the ‘OMd to OM’ step allows for the development of a fully featured MSE 
framework ahead of the more intensive process of empirical OM testing and conditioning.  
 
 

 
Figure 2. The MSE design.  

 
 
 

Table 1. The object classes, methods and function classes of the preliminary ABT MSE 

 Object classes 

OMd (Operating Model definition)  User specified inputs can completely define an operating model 
OM (Operating Model) A specified OM inc. all sampled parameters and calculated reference points 
Obs (Observation error model) User-specified levels of imprecision and bias for the inputs to MPs  
MSE (Management Strategy Evaluation) Summary of MSE simulations including results 
  
Methods (core) 

new(OM) Create new instance of an operating model 
new(MSE) Create a new instance of an MSE 
  
Methods (ancillary) 

plot(OMd) Plot the area definitions of the OMd object 
plot(OM) Plot the spatial distribution implied by the movement of the OM object 
summary(MSE) Summarize the results / performance of the MSE 
  
Function classes 

Imp (Implementation error model) functions that control mismatch between fleet dynamics and 
management recommendations 

MP Management procedures (e.g. simple algorithms or assessments paired with harvest control 
rules) 
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The OMd object class is a concise summary of ranges of inputs for various parameters (for a full description of all 
the attributes of the OMd object and other objects see Appendix 9.1). For example one attribute is the vector of 
mean natural mortality rate by age and a possible range in natural mortality rate. Because the OMd object contains 
a random seed attribute, this very small file (typically less than 35KB in size) may be easily passed among users 
from which ultimately the same MSE results can be obtained.  
 
The OM object class is a full description of all operating model variables and reference points (e.g. sampled natural 
mortality rate, sampled fishing mortality rate trajectory over time). These are values for parameters and variables 
(e.g natural mortality rate current fishing mortality rate) as opposed to ranges as in the OMd object. The 
construction of the OM object is computationally intensive and includes the calculation of MSY reference points 
and optimization for fleet specific catchability coefficients that match user-specified stock depletion. By separating 
this computation from the rest of the closed-loop simulation, new forward projections may be carried out without 
having to recalculate reference points. Since the central attributes of the OM object have a dimension for 
simulation number, any input can be replaced by the outputs of an empirically fitted operating model. For example 
these could be posterior samples of natural mortality rate, stock recruitment compensation, numbers at age or a 
grid of assumptions for robustness trials (e.g.  the MSE of Southern Bluefin Tuna, CCSBT 2011). OM objects may 
also be saved, exchanged among users and used as reference cases for future MSE work. 
 
The Obs object class contains the parameters of the observation model. These control the quality of data generated 
by the operating model that is used by the management procedures (for example bias in estimates of natural 
mortality rate, precision and bias in historical catches). Since the performance of various MPs may be strongly 
affected by the quality of their respective data inputs, the observation model is often amongst the most important 
factors contributing to the performance ranking of MPs.  
 
The Imp function class controls how well management recommendations are followed and can simulate a range of 
phenomena from overages to effort reductions at low catch rates. Implementation models could include maximum 
fishing mortality rates, declines in fishing effort with expected catch rates (response to declining profits), persistent 
quota overages or missed quota.  
 
The MP function class are management procedures that are the focus of the MSE simulation testing. These 
represent the complete process from data to management recommendation that may include simple algorithms 
based on trajectories in catch rates to complex data filtering methods linked to detailed stock assessment models 
with harvest control rules.  
 
The MSE object class stores all the outputs of the MSE closed-loop simulations and has attributes for variables such 
as population numbers, movement, mortality rate, fishing selectivity, exploitation rate and catches.  This object is 
generally large (>50Mb) and is the focus of a range of methods for summarizing MSE results.  
 

2.3 Operating model population dynamics 
 
The operating model is structured by age, space, sub-year and population (the equations of the population 
dynamics model are included in Appendix 9.2.1). The operating model includes movement by population, age and 
sub-year allowing for multiple sub-population hypotheses, seasonal movement, ontogenetic movement and 
aggregation by mature fish in spawning locations. Natural mortality rate, growth, maturity and recruitment are also 
specific to population and may be time varying. This allows for the evaluation of key hypotheses for ABT including 
changes in recruitment strength and natural mortality rate over time (Levontin et al. 2014).  
 



8 
 

Table 2. The variables of the population dynamics model. ‘Structured by simulation’ 
indicates that the MSE was designed to operate on multiple scenarios for a particular 
variable. Population refers to an individual breeding population that could be a sub-
population of the eastern stock spawning in the Mediterranean for example.  

Variable Structured by: 

Natural mortality rate  Simulation, population, age, year 
Movement Simulation, population, age, sub-year 
Maturity Simulation, population, age, year 
Recruitment anomalies Simulation, population, year 
Growth rate Simulation, population, year 
Recruitment compensation Simulation, population 
Stock size (unfished recruitment) Simulation, population 
Depletion (biomass relative to unfished) Simulation, population 

 

2.4 Operating model fleet dynamics 
 
The operating model can account for the exploitation of multiple fleets with time varying effort (see Appendix 9.2 
for equations). Fleets were modelled that had temporally constant fishing efficiency, spatial targeting and age-
selectivity.  This preliminary fleet dynamics model either allows the fleet to maintain its current spatial distribution 
or alternatively to dynamically alter its spatial distribution relative to vulnerable biomass.  
 

Table 3. The variables of the fleet dynamics model. ‘Structured 
by simulation’ indicates that the MSE was designed to operate 
on multiple scenarios for a particular variable. 

Variable Structured by: 

Effort Simulation, fleet, year, sub-year 
Spatial targeting Simulation, fleet 
Fishing efficiency Simulation, fleet 
Age selectivity Simulation, fleet, age 

 

2.5 Software 
 
The MSE framework is implemented in the statistical environment R (R core team, 2014) which is freely available, 
provides OOP through S4 classes, includes a wide range of presentation tools and provides support for cluster 
computing.  

3 Scenarios for a preliminary MSE for Eastern Atlantic bluefin tuna 

3.1 Overview 
 
Papers summarising the central uncertainties in stock assessments Fromentin et al. (2014) and the core 
uncertainties for MSE robustness trials (Levontin et al. 2014) have focused on population structure, natural 
mortality rate, population growth and recruitment. For the purposes of this MSE we use these as principal 
ecological/biological factors over which to evaluate the performance of MPs (Table 4). Following Levontin et al. 
(2014) and Carruthers et al. (2014) we also add scenarios for implementation error (catch under-reporting), 
observation models that control data quality and stock depletion (spawning stock biomass relative to unfished). 
Based on the analysis of Carruthers et al. (2014b) we identify eight MPs and evaluate their performance over each 
combination of factor levels.  
 



9 
 

Table 4. The factors and levels of the factorial MSE design. BC refers to the parameterization of 
the recent ‘Base Case’ stock assessment (SCRS 2012). In combination, these factors represent a 
total of 192 sets of assumptions.  

Stock structure  Natural  
mortality  
rate 

Recruitment  
Compen- 
sation 

Recruitment 
 trajectory 

Implement- 
ation  
bias 

Data  
quality 

Depletion 

SH1 (Two pop.  
no contingents) 

Low  
(80% BC) 

Low  
(0.28-0.52) 

Flat 
(0% y-1) 

Accurate  
(100% quota) 

Good Low 
(2.5-
17.5%) 

SH2 (Two pop.  
with contingents) 

High  
(125% BC) 

High 
(0.44-0.81) 

Declining 
(-0.5% y-1) 

Overage  
(120% quota) 

Bad High 
(5%-40%) 

SH3 (Meta- 
population) 

      

 
 

3.2 Ecological/biological factors 
 
We identify three levels of the factor stock structure that provide alternative sub-population hypotheses for the 
Eastern Atlantic stock (Arrizabalaga et al. 2014, Figures 3-5), two levels of the natural mortality rate factor that are 
4/5 and 5/4 the base case stock assessment natural mortality rate at age (SCRS 2012), two levels of recruitment 
compensation (population growth) that specify different ranges for steepness of the Beverton-Holt stock-
recruitment curve (based on the inferred S-R curves of recent assessments, SCRS 2012) and two levels of temporal 
trajectory in recruitment that include either a flat trend or a declining trend (1/2 % y-1).  
 
A core finding of previous MSE research (e.g. Carruthers et al. 2014a) is that starting level of stock depletion can 
have a large impact on the relative performance of MPs. Therefore two levels of stock depletion are also 
considered that represent the upper and lower ranges estimated from recent stock assessments (SCRS 2012). 
 
 
 
 

Figure 3.  The two population model 
with no sub-populations (Arrizabalaga 
et al. 2014, SH1) 
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Figure 4.  The two population model 
with contingents (Arrizabalaga et al. 
2014, SH2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  The metapopulation model 
(Arrizabalaga et al. 2014, SH3). A model with 
three separate Mediterranean sub-
populations.  
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3.3 Implementation and observation models 
 
The preliminary MSE includes two levels of implementation bias (accurate and 20% quota overages) to evaluate the 
relative importance of potential overages.  
 
Management procedures can make use of a wide range of fishery data that are likely to be subject to observation 
error and potential biases. For example extended survivorship analysis (XSA, Shepherd 1992) requires input values 
for natural mortality rate, catch-at-age data and a relative abundance index, whereas slope MPs (e.g.  ‘Islope1’, 
Geromont and Butterworth 2014b) makes use of just recent CPUE and aggregated annual catch data. It follows that 
the quality of these data will affect the relative performance of the respective MPs. It follows that it is important to 
recreate credible bias and imprecision in data. In this preliminary MSE we include two observation error models 
that simulate relatively bad and relatively good quality data (Table 5). 
 
Data were simulated from observation models that could include both bias (e.g. observations of historical catches 
that are 10% over those actually taken) and imprecision (e.g. observation error or ‘noise’ in annual estimates of 
catch)(Table 5).  
 
 

Table 5. The two observation models used to generate two levels of relative 
data quality ‘good’ and ‘bad’.  

 
 
 

3.4 Management procedures 
 
Based on the results of Carruthers et al. (2014b) we selected a shortlist of 8 management procedures to investigate 
in this preliminary MSE (Table 6). These include the index slope MP applied to Southern Bluefin Tuna (SBT2, CCSBT 
2012, Kell et al. 2014), the index slope and average catch MPs (Islope1 and LstepCC4) of Geromont and Butterworth 
(2014a), the adaptive FMSY MP (Fadapt) that is a hybrid of Maunder’s (2014) surplus production seeking MP 
(SPslope), and fishing at a fixed fishing mortality rate (UMSY).  
 
We also include a delay-difference stock assessment DD, fitted to historical catch and CPUE data. A second version 
of the delay-difference model includes the 40-10 harvest control rule (DD4010). Under the 40-10 rule the stock is 
not fished when stock size is below 10% unfished biomass and fished at FMSY above 40% of unfished biomass. 
Between 10% and 40% unfished levels exploitation rate follows a linear increase from 0 to 100% FMSY. 
 

Data quality Good Bad
Catch observation error log-normal CV σ C 0.1 - 0.3 0.2 -0.5
Catch bias log-normal CV ϒ C 0.2 0.4
Number of Catch-at-age observations per year n CAA 2000-5000 1000-2000
Length observation error lognormal CV σ L 0.025 - 0.05 0.05 - 0.1

Hyperstablity / hyperdepletion  in index ϐ 3/4 - 5/4 2/3 - 3/2
Abundance index observation error σ I 0.1 - 0.3 0.2 - 0.5
Bias in M ϒM 0.2 0.4
Bias in FMSY ϒ FMSY 0.1 0.2
Current biomass observation error  log-normal CV σ B 0.1 - 0.3 0.2 - 0.5
Current biomass bias log-normal CV ϒ B 0.5 1
Bias in target CPUE (BMSY) ϒ CPUE 0.3 0.4

Bias in target catch (MSY) ϒMSY 0.2 0.4
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Table 6. The equations of the 8 candidate management procedures. Q is a quota recommendation, C is a 
total annual catch observation, B is an absolute annual biomass estimate, I is an annual relative abundance 
index or catch rate (CPUE) observation, R is an estimate of recruitment strength, y* refers to the first year 
in which the MP was implemented, MSY, FMSY and UMSY are catches, instantaneous exploitation rate and 
harvest rate at Maximum Sustainable Yield subject to imperfect information.   

MP Name Quota calculation 

SBT2 

CCSBT 2011 

𝑄𝑦 =
1

2
𝐶𝑦−1 + 𝛿𝑀𝑆𝑌   ,      𝛿 = {Δ

7/4 Δ < 1
Δ1/4 Δ > 1

    ,     Δ = 𝑅𝑎𝑣𝑒/𝑅ℎ𝑖𝑠𝑡  

𝑅𝑦
𝑎𝑣𝑒 =

1

5
∑ 𝑅𝑡
𝑦
𝑡=𝑦−4     ,       𝑅𝑦

ℎ𝑖𝑠𝑡 =
1

10
∑ 𝑅𝑡
𝑦
𝑡=𝑦−9  

Islope1 

Geromont and Butterworth 

2014a 

𝑄̅𝑦∗ = 5∑ 𝐶𝑡
𝑦∗
𝑡=𝑦∗−4      

 𝑄𝑦+1 = 𝑄𝑦(1 + 0.4𝑠𝑦) 

where s is the gradient of log CPUE over the last 5 years 

LstepCC4 

Geromont and Butterworth 

2014a 

𝑄𝑦+1 = 𝑄𝑦 ±
1

20
𝐶̅ 𝑦+1   ,    𝑄𝑦∗ = 0.7𝐶𝑦̅∗    ,    𝐶𝑦̅+1 = 1/5∑ 𝐶𝑡

𝑦
𝑡=𝑦−4  

Fadapt 

Carruthers et al. 2014 

𝑄𝑦 = 𝐹̅𝑦𝐵̅𝑦     ,    𝐹𝑦
𝑡𝑟𝑦

= 𝐹𝐿 + 𝑙𝑜𝑔𝑖𝑡−1(𝑊𝑦 − 𝐺𝑦)(𝐹
𝑈 − 𝐹𝐿) 

  𝑊𝑦 =

{
 

 𝑙𝑜𝑔𝑖𝑡 (
𝐹𝑦
𝑎𝑣𝑒−𝐹𝐿

𝐹𝑈−𝐹𝐿
) 𝐹𝐿 < 𝐹𝑦

𝑎𝑣𝑒 < 𝐹𝑈

−2 𝐹𝑦
𝑎𝑣𝑒 < 𝐹𝐿

2 𝐹𝑈 < 𝐹𝑦
𝑎𝑣𝑒

 

G is the slope in S, with biomass over the last 7 years,  𝐹𝐿 =
𝐹𝑀𝑆𝑌

2
       𝐹𝑈 = 2𝐹𝑀𝑆𝑌 

SPslope 

Carruthers et al. 2014 

𝑄𝑦 =

{
 
 

 
 [−0.5(𝐵𝑦−4 − 𝐵̅𝑦)/𝐵𝑦−4]𝐶𝑦

𝑎𝑣𝑒 Δ𝐵 < 9/10

9

10
𝑆𝑦−1 Δ𝐵 > 11/10

𝐶𝑦−1 9/10 < Δ𝐵 < 11/10

 

Δ𝐵 = 𝐵̅𝑦/𝐵𝑦−4     ,     𝑆𝑦 = 𝐵𝑦 − 𝐵𝑦−1 + 𝐶𝑦−1     ,    𝐶𝑦
𝑎𝑣𝑒 = 1/4∑ 𝐶𝑡

𝑦
𝑡=𝑦−3  

UMSY 

NPFMC 2012 
𝑄𝑦 = 𝑈𝑀𝑆𝑌 ∙ 𝐵𝑦 

DD 

Carruthers et al. 2014 
Delay-difference stock assessment fitted to annual catch and catch rate data 

DD4010 

Carruthers et al. 2014 
As DD with a 40-10 harvest control rule superimposed 

 
 

3.5 Performance diagnostics 
 
Following Leach et al. (2014) we evaluate performance according to three metrics: (1) probability of maintaining 
the stock in the green Kobe quadrant (F/FMSY <1, B/BMSY>1), (2) magnitude of maximum continuing catch and 
(3) Stability of yield. In the absence of a defensible effort dynamics model and economic model it was not possible 
to include the fourth and fifth performance metrics of Leach et al. (2014) that were stability of effort and 
maintaining high employment.  
 
Probability of ending in the Green Kobe (PGK) and average annual variability in yield (AAVY) are easily calculated 
and represent metrics 1 and 3, respectively (Table 7). Maximum continuing catch is more of a challenge because it 
is important to maintain meaning across simulations that may obtain very different absolute yields due to 
circumstance other than MP selection (e.g. a depleted stock with low future recruitment versus a less depleted 
stock with strong future recruitment). In order to maintain comparability among simulations, depletion scenarios, 
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natural mortality scenarios and stock hypotheses we calculate a relative yield metric, which is the average catch 
obtained by an MP relative to fishing at UMSY given the same simulated conditions. The yield metric was calculated 
given 0%, 5% and 10% discount rates (Y, Y5 and Y10). 
 
 

Table 7. Performance metrics of this simulation evaluation and their derivation.  

Performance metric  Derivation per simulation 

Yield  0% discount rate Y 𝑌 =
1

𝑛𝑦
∑ 𝐶𝑦/

1

𝑛𝑦
∑ 𝐶𝑦

𝐹𝑀𝑆𝑌
𝑛𝑦

𝑦=1

𝑛𝑦

𝑦=1
 

Yield 5% discount rate Y5 𝑌5 =
1

𝑛𝑦
∑ (19/20)𝑦𝐶𝑦

𝑛𝑦

𝑖=1
/
1

𝑛𝑦
∑ (19/20)𝑦𝐶𝑦

𝐹𝑀𝑆𝑌
𝑛𝑦

𝑦=1
 

Yield 10% discount rate Y10 𝑌10 =
1

𝑛𝑦
∑ (9/10)𝑦𝐶𝑦

𝑛𝑦

𝑦=1
/
1

𝑛𝑦
∑ (9/10)𝑦𝐶𝑦

𝐹𝑀𝑆𝑌
𝑛𝑦

𝑦=1
 

Average annual 

variability in yield 
AAVY 𝐴𝐴𝑉𝑌 =

1

𝑛𝑦 − 1
∑ |𝐶𝑦 − 𝐶𝑦−1|

𝑛𝑦

𝑦=2

1

𝑛𝑦
∑ 𝐶𝑦

𝑛𝑦

𝑦=1
⁄  

Probability of Green 

Kobe 
PGK 𝑃𝐺𝐾 =

{
 

 0
𝐵𝑛𝑦

𝐵𝑀𝑆𝑌
< 1 𝑜𝑟 

𝐹𝑛𝑦

𝐹𝑀𝑆𝑌
> 1

1
𝐵𝑛𝑦

𝐵𝑀𝑆𝑌
> 1 𝑎𝑛𝑑 

𝐹𝑛𝑦

𝐹𝑀𝑆𝑌
< 1 

 

where ny is the number of projected years and C are the true simulated catches of an MP ni is the 

number of simulations, Bny is the biomass in the final year of the simulations, and BMSY is the true 

simulated biomass at maximum sustainable yield.  

 
 

3.6 Configuration of preliminary analysis 
 

The preliminary MSE was used to undertake 55,296 simulations composed of 32 replicate simulations for 9 MPs 
(including the perfect information UMSY MP used to calculate yield) over each combination of the stock 
hypotheses, observation models, implementation models, initial stock depletion, recruitment compensation, 
recruitment trajectory and natural mortality rate (192 combinations). Using parallel processing, a single quad-core 
Intel i7 finished the closed loop simulations in around 20 hours. 
 

4 Results of preliminary MSE 

4.1 Drivers of performance: the role of MPs, operating model assumptions, observation and 
implementation models.  

 
Across all simulations, MP selection had the strongest impact on performance with respect to Y, AAVY and PGK 
(Figures 6 and 7). Of the operating model variables, recruitment compensation (steepness, h), natural mortality 
rate and stock depletion were the principal drivers of performance differences among methods. The influence of 
these factors was more pronounced when focusing on one of the better performing MPs such as the delay-
difference model (DD, Figure 7). Alternative stock hypotheses generally had little effect on yield but impacted AAVY 
and PGK in the delay-difference simulations (Figure 7). Simulating 20% overages in quota appeared to have little 
impact on the performance metrics.  
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Figure 6. The distribution of performance metrics for all simulations 
separated marginally by the various simulation factors.  

 
 
Recruitment trajectory had an unexpected impact on the PGK scores for the delay-difference MP (Figure 7). In 
simulations where recruitment strength was simulated to decline 0.5 % per year the delay difference model was 
more likely to rebuild the stock leading to higher PGK scores. This is likely due to the estimation of a more depleted 
stock that can withstand lower fishing rates. Catch recommendations were therefore downward biased to a greater 
extent than the decline in future productivity due to the downward trend in future recruitment.  
 
The higher resilience (higher PGK scores) of the metapopulation model (SH3) was less surprising when considering 
the fishing dynamics that were simulated. Since fishing is directed to areas of higher vulnerable biomass and the 
spatial distribution of the sub-populations are distinct (Figure 5), the fleet moves opportunistically and provides a 
refuge from fishing for sub-populations as they become increasingly depleted.  
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Figure 7. The distribution of performance metrics for delay-difference 
simulations given good quality data separated marginally by the other 
simulation factors.  

 
 

4.2 Performance trade-offs 
 
It was possible for MPs to obtain mean yield scores (given a 5% discount rate) that were well above fishing at FMSY 
levels (perfect information) but this appears to come at the cost of lower PGK scores. There was not a clear trade-
off in performance metrics among the MPs and some methods (e.g. DD) outperformed others in all three metrics.  
 
The delay-difference MP appeared to offer the best balance of performance in terms of Y5, PGK and AAVY (Figure 
8), however the Y5 metric was much lower compared to other MPs where natural mortality rate and recruitment 
compensation was high. The delay-difference model performance with respect to Y5 appears to be more sensitive 
to stock hypotheses than the other MPs (Figure 8).  
 
The LstepCC4 MP performed well in terms of Y5 but less well with respect to PGK and AAVY. SPslope could provide 
high yields with modest PGK scores and low AAVY. A surprising result was the relatively poor performance of the 
fixed fishing rate strategy UMSY, which in other simulation evaluations has ranked highly (Carruthers et al. 
2014a/b).  
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Figure 8. The performance of the candidate MPs given different subdivisions of the 
simulations. 
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4.3 Sensitivity analysis / value of information 
 
Multiple regression analysis (Tables 8a and 8b) confirms the performance picture presented in Figures 6-8. The lack 
of significance of the recruitment compensation factor implies covariance with other simulated parameters and 
requires further investigation. A surprising inclusion in the significant explanatory variables is implementation error 
which has a relatively minor effect on yield but was found to be significant for all MPs combined (Table 6a) and the 
delay-difference MP in isolation (Table 6b) 
 
 

Table 8a. Effect of simulation conditions on yield (5% discount rate) across all MPs. 
The results of a linear model fitted to expected yield. ‘Estimate’ refers to the 
average difference in yield relative to the UMSY perfect information MP (ie in units 
of yield of the UMSY MP). Components marked with asterisks had p-values less 
than 5%. The intercept represents the effect of all level 1 factors combined. 

 
 

Table 8b. As Table 8a but for the delay-difference MP only. 

 

5 Bayesian belief networks 
 
The factorial nature of the preliminary MSE analysis is well suited to presentation in a Bayesian Belief Network. 
BBNs are inference diagrams that represent the connectivity of factors. They can be adapted to include multiple 
utility functions. Perhaps their biggest potential benefit is that they allow a wider audience to gain an intuition of 
MSE behaviour by dynamically adjusting assumptions and viewing impacts on utility in real-time.  
 
To demonstrate the possible benefits of this approach we constructed a BBN in the software GeNIe (2014) (Figure 
8) which is freely available and provides a range of tools for calculating utility, illustrating sensitivities and 
determining value-of-information.  
 
This trial BBN includes ‘nodes’ for management procedures, observation and implementation error and the 
conditions of the operating model. The user can alter ‘evidence’ in the BBN to change the weighting of assumptions 
to investigate the impact on performance metrics and additive utility functions (similar to Levontin et al 2014).  

Component Estimate Std. Error t value Pr(>|t|)

Intercept 1.73 0.05 38.27 2.54E-316

SH2 2 pop with contingents -0.10 0.04 -2.80 5.18E-03 *

SH3 meta population -0.31 0.04 -8.35 7.09E-17 *

Depletion (more depleted) 0.25 0.03 8.20 2.52E-16 *

Natural mortality rate (low M) -0.39 0.03 -12.94 3.18E-38 *

Recruitment compensation (low h) 0.02 0.03 0.66 5.07E-01

Recruitment trajectory (flat) -0.05 0.03 -1.65 9.80E-02

Observation model (good data) 0.03 0.03 0.94 3.45E-01

Implementation error model (20% overage)-0.18 0.03 -5.88 4.15E-09 *

Component Estimate Std. Error t value Pr(>|t|)

Intercept 3.01 0.16 18.48 3.00E-74 *

SH2 2 pop with contingents -0.26 0.13 -1.97 4.87E-02 *

SH3 meta population -0.84 0.13 -6.29 3.32E-10 *

Depletion (more depleted) 0.79 0.11 7.27 4.15E-13 *

Natural mortality rate (low M) -1.00 0.11 -9.24 3.19E-20 *

Recruitment compensation (low h) -0.47 0.11 -4.36 1.34E-05 *

Recruitment trajectory (flat) -0.09 0.11 -0.86 3.87E-01

Observation model (good data) 0.08 0.11 0.73 4.63E-01

Implementation error model (20% overage)-0.54 0.11 -5.00 6.00E-07 *



 

Figure 8. A screenshot of the Genie Bayesian Belief Network summarizing the findings of the preliminary MSE.  



6 Discussion 

6.1 Preliminary MSE results 
 
Fromentin et al. (2014) identify population structure, natural mortality rate, population growth and recruitment as 
the primary sources of uncertainty for ABT. Our early results confirm that alternative stock hypotheses (population 
structure) may determine the likelihood of meeting management objectives (e.g. probability of green Kobe, PGK) as 
strongly as alternative hypotheses for natural mortality rate, population growth (recruitment compensation rate) 
and recruitment (trajectory in recruitment). 
 
Our simulations indicate that sub-population structure can lead to unpredictable results. The metapopulation 
hypothesis (SH3) was more likely to recover to be underfished and subject to underfishing (higher PGK) than 
simulations with smaller number of sub-populations. This may be a product of simulating overly simplistic spatial 
population distribution and spatial fishing dynamics. Nonetheless this result underscores the important role of 
simulation evaluation in revealing the behavior of complex systems. A similar example was the higher PGK scores of 
the delay-difference MP for declining recruitment trajectory. The bias in estimated parameters of the DD MP over 
the 50 year historical simulation was strong enough to counter the future loss in productivity from declining 
recruitment. Without undertaking closed-loop MSE simulation it is not possible to reveal these often counter-
intuitive dynamical properties.  
 
In this analysis we consider MSY reference points and depletion by stock and essentially aggregate all eastern sub-
populations when calculating these reference points and related performance metrics. The risk of extinction to 
subpopulations (relevant only to the meta-population model SH3) is not used in the evaluation of performance and 
when monitored is likely to reveal added risks to smaller less productive stocks (Kell et al. 2012). An important 
future step in MSE development is characterizing stakeholder utility with respect to the depletion of one or more 
sub-populations. Given  
  
Simple stock assessment models such as the delay-difference MP appear to offer the best overall performance. 
However it should be noted that in future applications many of the other candidate MPs will be tuned to a training 
set of operating model simulations and may offer substantially improved performance. Simple MPs such as SPslope 
have provided mixed performance in other simulation studies (Carruthers et al. 2014b). However SPslope appeared 
to perform much better given the particular performance metrics and spatial dynamics simulated here. This finding 
suggests that caution should be taken in the wider interpretation of simulation studies particularly if there are large 
discrepancies in operating model assumptions or defined objectives.   
 
The relative lack of sensitivity to data quality may be a product of observation models that were too similar and did 
not span a credible range of bias and imprecision in data inputs to MPs. Consultation with experts and more 
comprehensive simulation of data-gathering protocols is likely to improve the credibility of future observation 
models. These should include models for aerial survey, catch-composition, microsatellite, genetics and pop-off 
satellite archival tagging data.  
 
In general, performance was not sensitive to 20% overages in quotas, including yield metrics. This indicates that 
unless it is substantially larger, implementation bias may be a less critical determinant of management 
performance than the choice of MP. It should be noted that historical overages and catch under-reporting may 
have been substantially higher (Fromentin 2009) 
 

6.2 Future MSE development 
 
Amongst the most important future steps in MSE development is the definition of management goals and 
performance measures to quantify the extent to which those goals have been achieved (Fromentin et al. 2014, e.g. 
Kell et al. 2013). Interactive tools such as Bayesian belief networks offer stakeholders the opportunity to focus on 
their core objectives and construct meaningful utility functions. It may be necessary to construct economic models 
to represent the full range of performance metrics that have been identified for ABT such as employment and 
inter-annual variability in fishing effort (Leech et al. 2014). A related task is the construction of credible models for 
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fleet dynamics as these are required to model the response in fishing mortality rate to the spatial distribution of 
the population and the level of stock depletion. The preliminary effort dynamics and implementation error models 
presented here are overly simplistic and likely to strongly determine the relative performance of the various MPs. 
In future analyses it may be necessary to allow for time varying age selectivity and changes in fishing efficiency. 
 
The identification of hypotheses that may impact performance was discussed by Fromentin et al. (2014) and our 
preliminary MSE was designed specifically to accommodate such hypotheses. The next stage is the development 
and testing of a spatial operating model that may be fitted to the data that are available for ABT. This is technically 
the most demanding of the tasks required for implementing a full MSE for ABT. A particular challenge is informing 
statistical models that include multiple sub-stocks. This may require allocating data to sub-stocks based on time, 
location and other covariates. The processing of up-to-date electronic tagging data and survey data are also 
priorities for the conditioning of an empirical operating model, although data that are already available in the 
conditioning of previous spatial models may be sufficient to bracket a range of credible movement scenarios (e.g. 
Taylor et al. 2011) 
 
Given the body of MSE work that has been carried out for other fish stocks including Southern Bluefin Tuna, there 
are already a wide range of candidate MPs available. Many of these are easily incorporated in future analyses as 
they were tested in the peer-reviewed paper that was drafted in parallel to this document (Carruthers et al. 
2014b). Since Virtual Population Analysis (VPA) is an assessment that has traditionally been applied to ABT it would 
have been desirable to test a related MP. In this preliminary MSE a VPA assessment using Fisheries Library in R was 
investigated. While the MP would operate in over 95% of simulated situations the procedure led to errors in a small 
fraction of cases. Future testing and development of this MP is necessary to ensure it is sufficiently robust to a 
range of simulated conditions (for example a stock that has crashed and catches have remained low for several 
years).  
 
Other MPs that should be considered are statistical catch-at-age models (e.g. Stock Synthesis, Methot and Wetzel 
2013) and statistical catch-at-length models (e.g. MULTIFAN-CL, Fournier et al. 2012) that are commonly used to 
assess other tuna resources. As in the case of the VPA assessment the core challenge is making the more complex 
MPs robust to a wide range of simulated conditions, that can violate fundamental assumptions of the approaches 
(e.g. stationary stock productivity, growth, fully mixed stock dynamics).  
 
Many MPs are designed to be tuned to a training set of simulations. This is followed by robustness trials in which 
frailties in the candidate MPs are revealed with respect to the core uncertainties. The current MSE framework can 
be easily adapted to include robustness trials by tuning MPs to the empirical operating model (informed by a 
spatial assessment model for example) and then using the MSE framework to investigate alternative scenarios for 
the primary sources of uncertainty. Once an empirical operating model has been defined, the preliminary MSE 
framework can also be used to conduct retrospective tests of performance in which MPs are evaluated given the 
historical estimates of population dynamics (e.g. Geromont and Butterworth 2014b). 
 
The demonstration Bayesian Belief Network illustrates how new software developments may be used to help a 
wider range of stakeholders understand and interact with the complex results of an MSE analysis. Future work 
should investigate other decision theoretic approaches such as dynamic inference diagrams and continuous BBNs 
such as Hugin Expert. Following feedback from the core modelling steering group it would be beneficial to build the 
ABT-MSE framework into an R package along with supporting documentation and walkthroughs to maximize the 
opportunity for stakeholder participation and feedback.  

7 Progress relative to deliverables 

 
Develop well documented, object-oriented C++ source code for the operating model consistent with the 

recommendations of the Modelling Coordinator, ICCAT population dynamics specialist and the Core Modelling 

Steering Group; as part of this development, the successful bidder shall participate in two documents co-authored 

with others: 
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7.1 Design document (D1)  
 

A design document that details an object orientated (OO) design with code based on C++ and/or S4 classes for i) a 
multi-population OM that can be conditioned on a variety of data sets and hypotheses and ii) an Observation Error 
Model (OEM) that can be used to evaluate different data collection regimes e.g. aerial survey, tagging programs, 
catch and catch per unit effort (CPUE) and size to age conversions. 
 
The design of the MSE framework, the relationship of objects, the definition of these classes and their related 
methods are all detailed in this report. The code for the MSE framework is available at ABT MSE 2014 including a 
walkthrough of a typical MSE analysis. If necessary a dedicated MSE design document can be produced.  
 

7.2 Summary of alternative Management Procedures (D2) 
 

Summary of alternative management procedures including alternative stock estimation procedures with coding 
requirements and appropriate code, libraries and packages. For example there are a variety of stock assessment 
methods already coded up and these may need modification to be used within a common MSE framework or 
adapted to use GBYP data and BFT stock assessment assumptions. 
 
In collaboration with the Core Modelling Steering Group a simulation evaluation study was carried out on a total 
of 26 candidate management procedures. The approach and results have been summarized in a draft peer-
reviewed paper.  The latest version of the draft paper is available at ABT_MSE 2014 in the subfolder 
‘submissions’.  
 

7.3 MSE demonstrator (D3) 
 
MSE demonstrator for use with stakeholders to illustrate the impact of uncertainty on management objectives and 
collaboration on a manuscript describing these results 
 

A streamlined demonstration of the preliminary ABT MSE is available at ABT_MSE 2014. Users can follow the R 
walkthrough ‘RScripts/Example script.r’ (see Appendix 9.3). Additionally users may install the GeNIe (2014) 
software and load the Bayesian Belief Network ‘Genie/ABT_MSE.xdsl’ to investigate the preliminary MSE results.  
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9 Appendix 

9.1 Object classes and attributes (slots) 
 
Table 9. The attributes of the OMd (Operating Model definition) object class that provides a rapid way of defining a 
range of simulations for the ABT operating model. Attributes highlighted in red are currently not used in the MSE.  

 
  

Slot / attribute Class Dimension Dist. Description

Dimensions
Name character 1 The name of the object e.g. "Base case 10 area"
Date character 1 Date that the object was created
Author character 1 Who made the object
Notes character 1 Any important notes regarding the object 
PrimarySource character 1 A reference to the most important paper or report used to make the object
nsim integer 1 Number of MSE simulations
npop integer 1 Number of discrete populations (sub populations)
nages integer 1 Maximum number of ages
nyears integer 1 Number of historical simulation years (prior to closed loop simulation) 
nsubyears integer 1 Number of subyears (e.g. 4 seasons, 12 months)
nareas integer 1 Number of discrete spatial areas
proyears integer 1 Number of years used in projections (for closed-loop simulation)
Biological model
Magemu numeric npop, nages Mean expected natural mortality rate at age
Mrange numeric npop, 2 U Range of a mulitplier for mean natural mortality rate e.g. c(0.9, 1.1)
Msd numeric npop, 2 U Range in interannual variability in M (lognormal CV) e.g. c(0.05,0.1)
Mgrad numeric npop, 2 U Range of gradient in mean M (% y-1) e.g. c(-0.25, 0.25)

SRrel integer npop Functional form of the stock-recruit relationship (1=Beverton Holt, 2=Ricker)
h numeric npop, 2 U Range of steepness (recruitment compensation) of the stock recruit-relationship
recgrad numeric npop, 2 U Range of gradient in recruitment deviations (% y -1)

Reccv numeric npop, 2 U Range in interannual variability in recruitment deviations (lognormal CV) e.g. c(0.2,0.5)
AC numeric npop, 2 U Auto-correlation in recruitment (fraction of recruitment from previous year) 
Recsubyr integer npop The subyear in which spawning is assumed to take place (e.g 2 = Apr-Jun)
Linf numeric npop, 2 U Range in sampled maxmum length (von B. L-infinity in cm) e.g. c(310, 330)
K numeric npop, 2 U Range in sampled maximum growth rate (von. B K parameter) e.g. c(0.08,0.09)
t0 numeric npop Theoretical age at zero length
Ksd numeric npop, 2 U Range in interannual variability in growth rate K (lognormal CV)
Kgrad numeric npop, 2 U Range of gradient in growth rate K (% y-1)

Linfsd numeric npop, 2 U Range in interannual variability in Linf (lognormal CV)
Linfgrad numeric npop, 2 U Range in gradient in Linf (% y-1)

a numeric npop Weight-length parameter a W=aLb

b numeric npop Weight-length parameter b W=aLb

ageM numeric npop, 2 U Range for age at 50% maturity (inflection point of logistic model)
ageMsd numeric npop, 2 U Range for interannual variability in the inflection point of logistic model (lognormal CV)
ageMgrad numeric npop, 2 U Range of mean gradient in ageM (% y-1)

D numeric npop, 2 U Range of current stock depletion (spawning stock biomass relative to unfished levels)
R0 numeric npop, 2 U Range of unfished recruitment (controls relative magnitude of each simulate population)
Size_area numeric 2, nareas The size each area (habitat size)

mov numeric The movement probability matrix for juvenile fish
Mmov numeric The movement probability matrix for mature fish
movvar numeric npop U Range of variability in the movement matrix among simulations (juvenile fish)
movsd numeric npop, 2 U Range of interannual variability in movement (juvenile fish)
movgrad numeric npop, 2 U Range in trajectory of regional gradients (juvenile fish)
Mmovvar numeric npop U Range of variability in the movement matrix among simulations (mature fish)
Mmovsd numeric npop, 2 U Range of interannual variability in movement (mature fish)
Mmovgrad numeric npop, 2 U Range in trajectory of regional gradients (mature fish)
excl numeric npop, nareas Spatial exclusion matrix for each stock (1= an area it inhabits, 0 = area it does not inhabit)
Fishing model
nfleets integer 1 Number of fleets fishing
age05 numeric nfleets, 2 U Age at 5% vulnerability (ascending limb of the double-normal selectivity curve)
Vmaxage numeric nfleets, 2 U Selectivity of the oldest age class (descending limb of the double-normal selectivity curve)
AFS numeric nfleets, 2 U Age at full selection (joint point of the double-normal selectivity curve)
Fsd numeric nfleets, 2 U Range in the interannual variability in fishing effort
Fgrad numeric nfleets, 2 U Trajectory in effort over the final 50% of historical fishing (% y -1)

Frat numeric 1 Relative proportion of fishing mortality per fleet (e.g. for two stocks 0.5 would be equal)
Spat_targ numeric nfleets, 2 U Range of spatial targetting. distribution of F is proportional to (vulnerable biomass) Spat_targ

Area_names character nareas Names of the areas
Area_defs list nareas Polygon objects defining each area
Other
targpop integer undefined A vector representing populations of interest (MSY calcs, user specified depletion, etc)
seed numeric 1 A random seed to be passed through the MSE to ensure results can be replicated

npop, nages, nyears, 

nsubyears, nareas, 
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Table 10. The attributes of the OM (operating model) object class that stores the simulated values of operating 
model parameters and variables including derived reference points. Attributes highlighted in red are currently not 
used in the MSE  

 
 
 
 
  

Slot / attribute Class Dimension Dist. Description

As OMd

Biological parameters
Mrange numeric nsim, npop A multiplier to mean mortality at age
Msd numeric nsim, npop LN Interannual variability in M (lognormal CV) 
Mgrad numeric nsim, npop Gradient in mean M (% y-1)

h numeric nsim, npop Steepness (recruitment compensation) of the stock recruit-relationship
recgrad numeric nsim, npop Gradient in recruitment deviations (% y-1)

Reccv numeric nsim, npop LN Interannual variability in recruitment deviations (lognormal CV) 
AC numeric nsim, npop Auto-correlation in recruitment (fraction of recruitment from previous year) 
Linf numeric nsim, npop Maxmum length (von B. L-infinity in cm)
K numeric nsim, npop Maximum growth rate (von. B K parameter) 
Ksd numeric nsim, npop LN Interannual variability in growth rate K (lognormal CV)
Kgrad numeric nsim, npop Gradient in growth rate K (% y-1)

Linfsd numeric nsim, npop LN Interannual variability in Linf (lognormal CV)
Linfgrad numeric nsim, npop Gradient in Linf (% y-1)

ageM numeric nsim, npop Age at 50% maturity (inflection point of logistic model)
ageMsd numeric nsim, npop LN Interannual variability in the inflection point of logistic model (lognormal CV)
ageMgrad numeric nsim, npop Gradient in ageM (% y-1)

D numeric nsim, npop Current stock depletion (spawning stock biomass relative to unfished levels)
R0 numeric nsim, npop Unfished recruitment (controls relative magnitude of each simulate population)

mov numeric The movement probability matrix for juvenile fish
Mmov numeric The movement probability matrix for mature fish
movvar numeric nsim, npop Variability in the movement matrix among simulations (juvenile fish)
movsd numeric nsim, npop Interannual variability in movement (juvenile fish)
movgrad numeric nsim, npop Trajectory of regional gradients (juvenile fish)
Mmovvar numeric nsim, npop Variability in the movement matrix among simulations (mature fish)
Mmovsd numeric nsim, npop Interannual variability in movement (mature fish)
Mmovgrad numeric nsim, npop Trajectory of regional gradients (mature fish)
Fishing model
age05 numeric nsim, nfleets Age at 5% vulnerability (ascending limb of the double-normal selectivity curve)
Vmaxage numeric nsim, nfleets Selectivity of the oldest age class (desc. limb of the double-normal selectivity curve)
AFS numeric nsim, nfleets Age at full selection (joint point of the double-normal selectivity curve)
Fsd numeric nsim, nfleets LN Interannual variability in fishing effort
Fgrad numeric nsim, nfleets Trajectory in effort over the final 50% of historical fishing (% y -1)

Spat_targ numeric nsim, nfleets Spatial targetting. distribution of F is proportional to (vulnerable biomass) Spat_targ

Simulated variables
E numeric nsim, nfleets, nyears Fishing effort 

dFfinal numeric nsim, nfleets The gradient in fishing effort at the last historical year
q numeric nsim, nfleets Numerically optimized catchability (F=qE) to reach user-specified depletion D
sel numeric nsim, nfleets, nages Age selectivity of fishing
mat numeric nsim, fleets, nages, nyears Probability mature at age
Recdevs numeric nsim, npop, nyears The recruitment deviations (anomalies from deterministic recruitment)
M numeric nsim, npop, nages, nyears Natural mortality rate
Linf numeric nsim, npop, nyears Maximum length (von B, L infinity)
K numeric nsim, npop, nyears Maximum growth rate
Idist numeric nsim, npop, nages, nareas Unfished fraction of each population in each area (juvenile fish)
MIdist numeric nsim, npop, nages, nareas Unfished fraction of each population in each area (mature fish)
MSY numeric nsim Maximum sustainable yield 
BMSY numeric nsim Biomass at MSY
VBMSY numeric nsim Vulnerable biomass at MSY
SSBMSY numeric nsim Spawning stock biomass at MSY
UMSY numeric nsim Harvest rate corresponding to MSY
FMSYa numeric nsim Apical fishing mortality at MSY (most vulnerable age class)

Name, Date, Author, Notes, PrimarySource, nsim, npop, nages, nyears, nsubyears, nareas, proyears, SRrel, Recsubyr, t0, a, b, Size_Area, excl, 

Area_names, Area_defs, Frat, Spat_targ, targpop, seed

nsim, npop, nages, nyears, 

nsubyears, nareas, nareas
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Table 11. The attributes of the MSE object class that stores all of the results of the closed-loop simulation.  

 
 
  

Slot / attributeClass Dimension Dist. Description

As OM

Observation model
Cimp numeric nsim LN Imprecision in annual catch observations (lognormal CV)
Cb numeric nsim Persistant bias in catch observations
Cerr numeric nsim, nyears Annual catch error 
Iimp numeric nsim LN Imprecision in annual relative abundance estimates (lognormal CV)
Ibeta numeric nsim Beta parameter controlling hyperstability (Iobs |proportional to| Ibeta) 

Ierr numeric nsim Index error
nCAAobs integer nsim MN The number of annual catch-at-age observations
nCALobs integer nsim MN The number of annual catch-at-length observations
Lcv numeric nsim LN Length observation error (lognormal CV)
Mb numeric nsim Bias in observed M 
Kb numeric nsim Bias in observed growth rate K
Linfb numeric nsim Bias in observed maximum length
LFCb numeric nsim Bias in observed length at first capture 
LFSb numeric nsim Bias in observed length at full selection
FMSYb numeric nsim Bias in observed fishing mortality rate corresponding with MSY
FMSY_Mb numeric nsim Bias in observed ratio of fishing mortality rate to natural mortality rate
BMSY_B0b numeric nsim Bias in observed ratio of biomass at MSY relative to unfished levels
ageMb numeric nsim Bias in observation of age at 50% maturity

Dimp numeric nsim LN Imprecision in observations of stock depletion (B relative to unfished)
Db numeric nsim Bias in observations of current depletion (biomass relative to unfished)
Derr numeric nsim, nyears Depletion error 
Btimp numeric nsim LN Imprecision in observations of current stock biomass (lognormal CV)
Btb numeric nsim Bias in observations of current stock biomass
Bterr numeric nsim, nyears Current biomass error 
Ftimp numeric nsim LN Imprecision in observations of current fishing mortality rate

Ftb numeric nsim Bias in observations of current fishing mortality rate
Fterr numeric nsim, nyears Current fishing mortality rate error
hb numeric nsim Bias in observations of steepness of the stock-recruit relationship
IMSYb numeric nsim Bias in observation of the relative abundance index at BMSY
MSYb numeric nsim Bias in observation of MSY
BMSYb numeric nsim Bias in observation of biomass at MSY
Projection 

nMPs integer 1 Number of management procedures used in 

MPs characte Names of the management procedures

C numeric Simulated annual catches (by weight)
D numeric Simulated stock depletion

B_BMSY numeric nMPs, nsim, nyears Simulated biomass relative to MSY levels
F_FMSY numeric nMPs, nsim, nyears Simulated fishing mortality rate relative to MSY levels
TAC numeric nMPs, nsim, nyears TAC recommendations of the MPs

Name, Date, Author, Notes, PrimarySource, nsim, npop, nages, nyears, nsubyears, nareas, proyears, targpop

nMPs, nsim, nfleets, 
nMPs, nsim, nfleets, 



27 
 

Table 12. The attributes of the Obs (observation model) object class that defines the level of precision and bias in 
observed data that are used by the various MPs.  

 
 

9.2 Operating model equations 

9.2.1 Population dynamics 
 

An age-structured, seasonally structured, multiple population model was used to simulate population and fishery 

dynamics. A range of parameters and variables are allowed to vary among simulations for a given stock (e.g., M, 

gradient in recent fishing effort, targeting). All parameters that vary as random variables across simulations are 

denoted with a tilde (e.g.,~  ). Hence, each parameter or variable denoted with a tilde represents a different 

simulated value specific to each population. This convention alleviates the need for a simulation and population 

subscript for every parameter or variable described below. For example, the symbol ~  represents  pip f  ~~
,

which is the sample of the parameter ~ corresponding with the ith simulation for population p, drawn from a 

distribution function f(), from the population-specific parameters 
p . 

  

The numbers of individuals recruited to the first age group Ny,a=1,r in each year y, subyear s, and area r is calculated 

using a Beverton-Holt stock-recruitment relationship with log-normal recruitment deviations: 
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where sr is the subyear in which recruitment occurs, h is the steepness parameter, R0 is the recruitment given 

unfished conditions, SSBy,r is spawning stock biomass in the previous year and SSB0 is the spawning stock biomass 

under unfished conditions. The process error term P, was randomly sampled from a standard normal distribution that 

has a standard deviation, σproc: 
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Slot / attribute Class Dimension Dist. Description

Name Character 1 Name of the observation model e.g. "imprecise / biased"

Ccv numeric 2 U Range of catch observation error (lognormal CV)

Cbcv numeric 1 LN Lognormal CV from which to sample bias in catch observations

nCAAobs numeric 2 U Range of number of annual catch-at-age observations

nCALobs numeric 2 U Range of number of annual catch-at-length observations

Lcv numeric 2 U Range of length observation error (lognormal CV)

Ibeta numeric 2 UL Range of the beta parameter controlling hyperstability in index observations

Icv numeric 2 U Range of the relative abundance observation error (lognormal CV)

Mbcv numeric 1 LN Lognormal CV from which to sample bias in M observations

Kbcv numeric 1 LN Lognormal CV from which to sample bias in von B. K observations

Linfbcv numeric 1 LN Lognormal CV from which to sample bias in von B. Linf observations

LFCbcv numeric 1 LN Lognormal CV from which to sample bias in length at first capture observations

LFSbcv numeric 1 LN Lognormal CV from which to sample bias in length at full selections observations

FMSYbcv numeric 1 LN Lognormal CV from which to sample bias in FMSY observations

FMSY_Mbcv numeric 1 LN Lognormal CV from which to sample bias in ration of FMSY to M observations

BMSY_B0bcv numeric 1 LN Lognormal CV from which to sample bias in BMSY relative to unfished observations

ageMbcv numeric 1 LN Lognormal CV from which to sample bias in observations of age at 50% maturity

Dbcv numeric 1 LN Lognormal CV from which to sample bias observations of current depletion

Dcv numeric 2 U Range of observation error in current depletion (lognormal CV)

Btbcv numeric 1 LN Lognormal CV from which to sample observations of current stock biomass

Btcv numeric 2 U Range of observation error in current stock biomass level (lognormal CV)

Ftbcv numeric 1 LN Lognormal CV from which to sample bias in in current fishing mortality rate observations

Ftcv numeric 2 U Range of observation error in current fishing mortality rate (lognormal CV)

hbcv numeric 1 LN Lognormal CV from which to sample bias observed steepness

Recbcv numeric 1 LN Lognormal CV from which to sample bias in observations of recent recruitment strength

IMSYbcv numeric 1 LN Lognormal CV from which to sample bias abundance index at BMSY

MSYbcv numeric 1 LN Lognormal CV from which to sample bias observations of MSY

BMSYbcv numeric 1 LN Lognormal CV from which to sample bias in observations of BMSY
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The spawning stock biomass, SSB, is given by: 
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where ma is the maturity-at-age a and year y, and the maximum age na is specific to each stock. Maturity-at-age is 

assumed to follow a logistic relationship with age and changes over time according to the slope of the transition from 

immature to mature. This is determined by a temporally variable precision parameter, where 50% of individuals are 

mature at mA
~

:  
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Numbers at age are converted to length using the von Bertalanffy growth equation: 
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where La is the length of an individual of age a, the asymptotic length is Lnf, and K is the slope at the theoretical age 

at zero length t0.  

 

Weight at age Wa, is assumed to be related to length by: 

 

6)  


 aa LW   

 

For ages greater than 1, fishing mortality is assumed to occur before natural mortality and the numbers-at-age are 

calculated by the equations: 
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where M  is the rate of natural mortality. No “plus group” is modelled, and instead the maximum age is set to 32 

after which survival is less than 1% under unfished conditions.  

 

Movement is assumed to be constant over time and age of individuals, and to occur instantaneously at the end of 

each subyear. For example, for individuals of age a, moving from area r, to area k for any year y: 
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where ψ is the probability of an individual moving from area r, to area k (Equation 24). 

 

9.2.2 Fishing dynamics 
 

To describe fishing dynamics of the model it is necessary to include the population subscript p, and the fleet 

subscript f.   

 

The vulnerability at age, ωa, was calculated using a double normal curve with age at maximum selectivity ms, an 

ascending limb standard deviation of σ1 and a descending limb standard deviation σ2. These standard deviations were 

determined for each simulation by numerically solving for two user-specified quantities: (1) the minimum age at 5% 

vulnerability 5
~ , and (2) the vulnerability of the oldest age class 32

~ .  
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The ascending limb age selectivity Aa (before normalization to a maximum value of 1) is given by: 
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The descending limb vulnerability Da is given by: 
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For any given fleet f, the vulnerability at age is given by: 
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Catch in numbers is calculated by: 
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where F is the instantaneous fishing mortality rate (Eqn. 15) and T is a variable controlling spatial targeting (Eqn. 

22).  

 

Observed catch is calculated by multiplying simulated catch in numbers-at-age by weight-at-age and adding 

observation error:  
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The error term ε, was drawn from a standard normal distribution whose standard deviation σobs was sampled at 

random in each simulation: 
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Fishing mortality rate F, may increase relative to effort (E) over the historical period according to catchability q 

modified by a percentage increase in fishing efficiency each year q
~

: 
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Total effort was not related to biomass levels and in historical and future projections could remain high even at very 

low biomass levels. The maximum fraction of the population that could be caught in any given year was restricted to 

a maximum of 60% to prevent the simulation of single year stock collapses from TAC recommendations that are 

occasionally very high.  

 

Log-normal variability in effort was added to a general effort trend V: 
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The effort variability term φy was randomly sampled from a standard normal distribution that has a standard 

deviation, σe drawn at random for each simulation: 
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A range of effort variability was sampled. The general trend in effort was determined by a linear model of change in 

effort over time with slope aE, and intercept Eb
~

: 
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This functional form allows effort to increase, decrease or remain flat over time. This effort model was constrained 

by sampling positive Eb
~

 values (effort was increasing at the start of the time series). The final annual change in 

effort E
~

, is specified by the user to control the sampling of increasing, neutral and decreasing final effort 

trajectories:  
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For any simulated effort time series, the slope could then be calculated from the total number of years in the time 

series ny, and the sampled intercept 
Eb

~
:  
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Effort time series with negative values were discarded. All of the stocks had the same underlying variability in 

temporal effort dynamics. 

 

In any given year, spatial fishing effort is assumed to be proportional to the distribution of the vulnerable biomass in 

the previous year, modified by a targeting parameter λ, that controls how strongly fishing effort will be distributed in 

relation to vulnerable biomass: 
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The values for T average 1 in any year y, and subyear s, so they can be used to distribute total effort Ey,s across areas 

in each subyear such that mean F among areas is the same as total annual F. Fishing is distributed evenly regardless 

of the vulnerable biomass in the previous year when the targeting parameter λ is zero. Spatial fishing will be 

distributed in favour of areas of high vulnerable biomass when λ is positive and distributed away from such areas 

when λ is negative. When λ =1 fishing distribution is proportional to vulnerable biomass. Targeting was assumed to 

remain constant over time.  

 

9.2.3 Movement and spatial distribution 
 

The initial biomass in each area is initialized according to an equilibrium assumption regarding age and spatial 

structure: 
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where R0 is unfished recruitment, dp,r is the initial spatial distribution proportion, and the dp,r sum to 1 over r. Note 

that the age structure is assumed to be the same across areas. The initial distribution vector of the stock over areas, 

d=[d1,…,dn], is the stationary distribution satisfying the condition: 
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24)  ppp dd    

 

where d is determined numerically by repeatedly multiplying an initial distribution for d by ψ. The probability ψ of 

moving from area r, to area k, is specific to each stock, age class and sub-year. The numerical process essentially  

 

9.3 An example run of the demonstration MSE 
 
# ======================================================================================== 
# ==== ABT MSE ==== Atlantic Bluefin Tuna Management Strategy Evaluation ========================== 
# ======================================================================================== 
 
# --- Object-Oriented Management Strategy Evaluation using parallel processing  ------------ 
 
# --- Tom Carruthers   UBC 
# --- Laurie Kell      ICCAT         
# --- Campbell Davies  CSIRO   
 
# Version alpha (preliminary) 
# 27th November 2014 
 
# Prerequisites ============================================================================= 
 
rm(list=ls(all=TRUE))                       # Remove all existing objects from environment 
setwd("H:/ABT-MSE/")                   # Set the working directory 
source("Source/MSE_source.r")   # Load the source code 
sfInit(parallel=T,cpus=8)                 # Initiate the cluster 
 
# Define Operating model ==================================================================== 
 
load("Objects/SCRS SH2")               # Load an operating model definition (OMd) object 
OMd@nsim<-as.integer(8)              # For demonstration do a small number of simulations 
plot(OMd)                                          # Plot the spatial definition of areas 
 
# Create an Operating Model ================================================================= 
 
OM<-new('OM',OMd)                      # Initialize a new operating model (OM) object 
plot(OM)                                            # Plot the spatial distribution of mature and immature fish 
 
# Load Observation model =================================================================== 
 
load("Objects/Good_Obs")               # Load the precise and unbiased observation model ('Good') 
 
# Undertake closed-loop simulation =========================================================== 
 
tmse<-new('MSE',OM,Obs,MPs<-c("DD","DD4010","UMSY","UMSY_PI"),interval=3,IE="Umax") 
 
# Summarize results ======================================================================== 
 
plot(tmse)                                   # Plot results 
summary(tmse)                          # Tabulate results 
 


