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Abstract

In this work we review and compare the methods currently existing for estimating the
age composition of a fish population, using a random sample stratified by length class,
in which the age of each individual is determined, e.g. by otolith reading. The methods
were implemented as an R package and compared based on the bias and variance of
the estimators of the proportion of each age in the population, mean length-at-age and
standard deviation of length-at-age. A simulated data set with known parameters was
created, from which 1000 random samples, stratified by length class, were taken by a
bootstrap procedure. Every method was applied to each bootstrap sample, and the devi-
ation from the real value to each bootstrap estimate was calculated and used to compare
the accuracy and precision of each parameter across methods. The advantages and dis-
advantages of each method are discussed, while the main results point out a method
based on the Expectation-Maximisation algorithm as being the most flexible, precise
and accurate.

Keywords: Age-length keys, bootstrap methodology, EM algorithm, maximum
likelihood estimators.

Introduction

Many of the methods currently applied for fish stock assessment, such as cohort analy-
sis and statistical catch-at-age models, use catch in numbers-at-age and catch-per-unit-
effort (CPUE) in numbers-at-age as input data. Therefore, the estimation of the relative
abundance of each age class in the data has a great influence on the final result of the
stock assessments performed with those methods.

The most obvious method to estimate the empirical distribution of fish into age-
classes would be to determine the ages of individuals from a simple random sample,
and assume the proportion of each age-class in the sample to be representative of the
whole population (population here is used in the statistical sense, not the biological
one, and can refer to e.g. the fish caught by a given fleet at a given time). Although this
method has some good asymptotic statistical properties (Kimura, 1977) it is not widely
used due to practical reasons. Usually the bulk of the catches in a given fishery belong to
just a few age-classes, making it difficult to cover all age-classes with a simple random
sample of feasible size. Therefore, unless large samples are taken, this method may
give biased results for the age-classes less frequent in the catches. Moreover, does not
provide estimates for parameters such as mean length-at-age, which may be important
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indicators regarding the population dynamics of the stock.
Given that length measurements are much easier to obtain than to determine the

age of a fish, good estimates of length distributions are usually available from routine
sampling. Thus, age distributions are usually estimated from length distributions using
one of the following approaches:

• Length frequency analysis, which takes a length frequency distribution as a mix-
ture ofGaussian distributions of length-at-age (e.g. Hasselblad, 1966; Bhattacharya,
1967; Schnute and Fournier, 1980; Macdonald, 1987; Fournier et al., 1990) The
results from these methods are not very reliable (Hilborn and Walters, 1992),
therefore their estimates must be taken with precaution.

• Fitting of a growth model to attribute ages to fish from given length-classes. This
is also known as a deterministic age-length key (Hilborn and Walters, 1992) and
is mainly used when there are insufficient age data to make a classic age-length
key (Bartoo and Parker, 1983). Strong criticisms have been made to this proce-
dure. The growth model most frequently used (von Bertalanffy, 1938) is based
on unrealistic assumptions (Ricker, 1975) and some of its parameters have un-
clear biological meaning (Knight, 1968; Roff, 1980). Even models for individual
growth made on sounder assumptions than von Bertalanffy's (e.g. Schnute, 1981)
will produce biased estimates when applied to a population Mulligan and Lea-
man (1992). Stochastic models which account for individual variability in growth
have been developed (Fabens, 1965; Sainsbury, 1980; Kirkwood and Somers,
1984; Hampton, 1991; Xiao, 1996), but Wang and Thomas (1995) showed that
estimates produced by those models are far from satisfactory.

• Calculation of an age-length key (Friðriksson, 1934) also known as a distribution
matrix (Hilborn and Walters, 1992), to distribute the number of individuals in a
given length-class through age-classes. Each cell of the age-length key (ALK)
gives the proportion of fish belonging to an age-class j, given it belongs to a
length-class i: Pr (j | i). This is the most used method to estimate an age distri-
bution from a length distribution, when age data are available.

The classic ALK

The classic ALK (Friðriksson, 1934) is a matrix (Q) with elements given by

qij = aij ÷
∑
j

aij (1)
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where aij is the number of individuals with known age j in length-class i. The estimated
number of individuals in a given length and age-class is

nij = qij × fi (2)

where fi is the number of fish in length-class i. From each column of this N matrix,
the calculation of the proportion of each age-class (pj), of mean length-at-age (lj) and
of the standard-deviation (SD) of length-at-age (σj) is straightforward. A classic ALK
can be calculated from anAmatrix and a fi vector using function classic_ALK in the
ALKr package.

In the ideal case of application, a sample is taken from a given population, and
the length of the fish in that sample is measured. Then, a subsample is taken from that
sample (either by simple random sampling, or by random sampling stratified by length-
class), and the ages of all fish in that subsample are determined, e.g. by analysing the
otoliths or other rigid structures. Then, the ALK obtained from the subsample is used
to estimate the age-frequencies of the fish in the initial sample. However, in fisheries
research it is current practice to use ALKs obtained from a given population to length-
frequency samples of other populations. For example, such a case would be to use an
ALKmade from a sample representing the catch of a given fleet in a given year, and use
it with a length-frequency sample taken in another year. The two populations (the fish
that were caught by that fleet in those two years) may have different characteristics, and
in this case the use of the classic ALK relies on the basic assumption thatPr (j | i)must
be the same in the catch of both years (Kimura, 1977; Westrheim and Ricker, 1978).

Several factors, such as different survival rates or recruitments in the two popula-
tions may cause this assumption to fail. For example, if the recruitment in the year of
the length-frequency sampling was higher than in the year when the ALK was built,
it is expected that the proportion of recruits in some length classes will be different in
the ALK and in the length-frequency sample. In that case, the estimates will be biased
positively or negatively depending on the relative difference between the two recruit-
ments (Westrheim and Ricker, 1978). This assumption of the classic ALK must be
checked particularly when the sampling for the ALK was made at a given time or place
and one wishes to use it for estimating age distributions from length-frequency samples
collected at a different time or place. When this assumption is not met the estimates
produced by the ALK reflect the age structure of the sample used to construct it, in-
dependently of the real age structure underlying the length-frequency samples (Clark,
1981). Given that some of the factors contributing to this possible bias can be very vari-
able across years (e.g. recruitment), in many cases it is usual to calculate a new ALK
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every year.
The fact that the Pr (j | i) in a given ALK is different from those in the length-

frequency data, does not imply that the inverse probabilities of being in a certain length-
class, given being in a certain age-class (Pr (i | j)) are also different. Taking the exam-
ple of a variable recruitment, a higher number of individuals at recruitment age in the
ALK sample than in the length-frequency sample will cause differences in the propor-
tion of each age in the length-classes corresponding to recruits. However, the proportion
of each length-class at recruitment age may remain similar in both samples. This means
that by using the inverse probabilities Pr (i | j) instead of Pr (j | i) one can, in cer-
tain cases, loosen the basic assumption of the classic ALK. This is done using methods
based of inverse ALKs.

Method based on the classic ALK

Amethod based on the classic ALK was described by Martin and Cook (1990) with the
objective of improving the estimates of the mean length-at-age and SD of length-at-age,
in relation to those obtained using the classic ALK. In this method the parameters of
interest are calculated by minimising the function

L = 2×
∑
i

(
fi × log

fi

f̂i

)
+ 2×

∑
i

∑
j

(
aij × log

aij
âij

)

where f̂i is given by
f̂i =

∑
i

fi ×
∑
j

Pr(i, j)

and âij is given by

âij = Pr(i, j)×
∑
j

aij ÷
∑
j

Pr(i, j).

P r(i, j), the proportion of fish in length class i and age class j, is calculated as

Pr(i, j) = pj ×
(
Φ

(
li + 0.5− lj

σj

)
− Φ

(
li − 0.5− lj

σj

))
where li is the length of fish in length class i and Φ is the reduced Normal cumulative
distribution function.

However, Murta (1998) has shown that this method performs poorly, with a high
sensitivity to the initial values chosen for the optimization of the objective function.
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These performance problems were later confirmed by one of the authors of the method
(Martin, personal communication). Therefore, this method was excluded from the com-
parative review and from the software package described in this paper.

The inverse ALK

Age data collection is time and money consuming, so several methods have been de-
veloped which may be applied with less restrictions than the classic ALK. All these
methods are based on inverse ALKs, in which each cell gives the proportion of fish in
a length-class, given it belongs to a certain age-class: Pr (i | j). All methods based on
inverse ALKs are used under the assumption that Pr (i | j) is the same in the sample
used to obtain the inverse ALK and in the sample used to obtain the length-frequency
distribution to which the ALK will be applied. With such methods it is possible to re-
duce the amount of new age data needed, using age data collected at a different time or
place than the length-distribution sample. However, changes in the selectivity pattern
of the gears used to obtain the different samples, or differences in growth rate between
the populations from where the samples came would also invalidate the use of methods
based on inverse ALKs, given that in those situations the probabilities Pr (i | j) are not
the same in the inverse ALK and in the length-frequency samples.

The inverse ALK (Clark, 1981; Bartoo and Parker, 1983; Hilborn and Walters,
1992) corresponds to a matrixQ

′
that is calculated from aN1 matrix (see expression 2)

as
q
′

ij = n̂ij1 ÷
∑
i

n̂ij1, (3)

where aij1 and fi1 are the age and length data collected at time or place 1. This inverse
ALK is then combined with the length distribution data fi2, from time or place 2, from
which age data is not available, in order to estimate a matrix N2. The elements of N2

are given by
nij2 = Inv(q

′

ij)
t × fi2

where Inv(q
′

ij)
t is element of the transposed generalized inverse matrix of Q

′
, ob-

tained by the method of singular value decomposition (Hilborn and Walters, 1992;
Leon, 1994). The parameters of interest (pj2, lj2 and σj2) are then calculated from
N2. This is the most basic way of applying an inverse ALK, which may be prone to
numerical problems, especially in the calculation of the generalized inverse matrix. An
ALK calculated by this method can be obtained from a matrix A and two vectors fi1
and fi2 by calling function inverse_ALK in package ALKr.
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Methods based on the inverse ALK

Given that the simple application of an inverse ALK by calculating its generalized in-
verse matrix is prone to numerical instability, several iterative methods have been de-
scribed, which allow the use of an inverse ALK in a way that is numerically more
robust. The first of those methods, and probably still the most popular one in fisheries
research, was described by Kimura and Chikuni (1987). In this approach, an inverse
ALK is initially obtained as in expression 3 and initial values are given to pj2. A classic
ALK is then calculated:

qij2 = q
′

ij × pj2 ÷
∑
j

(
q
′

ij × pj2

)
and N2 is estimated as

nij2 = fi2 × qij2.

From this matrix, new pj2 are obtained and the process is repeated iteratively until
convergence is achieved. Kimura and Chikuni's method can be used to calculate an
ALK by calling function kimura_chikuni in the ALKr package.

In a paper published later in the same year, Hoenig and Heisey (1987) describe a
similar method, but with some refinements, and show that both Kimura and Chikuni's
method and their own are similar applications of the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). The EM algorithm is a family of methods sharing the
same basic principles. Having an incomplete data set, a model to provide the expected
values for the missing observations, and a way to calculate the maximum-likelihood
estimates of the parameters of that model, a method based on the EM algorithm, such
as the one by Kimura and Chikuni (1987), may include the following 4 steps (Schafer,
1997):

1. give initial values to the parameters;

2. complete the data set by calculating the expected values for themissing data using
the model with the initial values for the parameters (E step);

3. using the complete data set, calculate the maximum-likelihood estimates of the
parameters (M step);

4. with the new parameters' estimates, start a new iteration by recalculating the ex-
pected values of the missing data.

In their method, instead of using an inverse ALK that is kept fixed during the iter-
ative process as Kimura and Chikuni (1987) did, Hoenig and Heisey (1987) calculate
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the inverse ALK with all available data and make the inverse ALK (Q
′
) to be updated,

together with the pj2 estimates, until convergence is achieved. Thus, the method has
the following steps:

1. give initial values to N2 as

nij2 = fi2 ×
nij1∑
j nij1

;

2. calculate the inverse ALK using all available information:

q
′

ij =
nij1 + nij2∑
i(nij1 + nij2)

;

3. calculate pj2 =
∑

i nij2 ÷
∑

i

∑
j nij2;

4. update N2 as:

nij2 = fi2 ×
q
′

ij

∑
i nij2∑

j

(
q
′
ij

∑
i nij2

) ;
5. repeat steps 2 to 4 until convergence is achieved.

This method is included in the ALKr package as function hoenig_heisey.
The method by Hoenig and Heisey (1987) was later extended to include any number

of data sets with and without age data, in order to improve the quality of the estimates
of the parameters of interest (Hoenig et al., 1993, 1994, 2002). Suppose we have some
catch data sets with age data and others without age data (denoted respectively by k

and z), for instance from different years or places. So aijk is an element of a matrix
with the number of sampled fish by length-class (i) and age-class (j), from year k. This
matrix can be obtained by simple random sampling or length-stratified sampling from
the catches of year k. fik and fiz are elements of vectors with the number of fish caught
by length-class, and pjk and pjz are the proportions (to be estimated) of the catches in
each age class j in year (or place) k and z, respectively. The first step of the algorithm
is to calculate a classic ALK for each of the data sets with catch data

qijk = aijk ÷
∑
j

aijk,

and the corresponding number of fish caught in year k, by length and age-class:

nijk = qijk × fik.
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Then, an inverse ALK is calculated using the data from all years with age data,

q
′

ij =
∑
k

nijk ÷
∑
k

∑
i

nijk,

and initial values are given to the proportion of catches at age for the years (z) without
age data (pjz). With these, is then possible to give initial values for each matrixNz , for
the years (z) without age data:

nijz = q
′

ij × pjz ×
∑
i

fiz.

Maximum-likelihood estimates (M step of the EM algorithm) for pjk and pjz are then
obtained as {

pjk =
∑

i njk ÷
∑

i

∑
j nijk

pjz =
∑

i njz ÷
∑

i

∑
j nijz

(4)

and an updated inverse ALK can then be calculated using all data sets,

q
′

ij =

∑
k nijk +

∑
z nijz∑

k

∑
i nijk +

∑
z

∑
i nijz

. (5)

The number of fish caught by length and age class in each year can be updated as
nijk = qijk ×

∑
j aijk +

(fik−
∑

j
aijk)×q

′
ij pjk∑

j
(q′ij×pjk)

nijz =
fiz×q

′
ij×pjz∑

j
(q′ij×pjz)

(6)

and the iterative process continues by repeating expressions 4 to 6 until convergence
occurs. In the ALKr package, this method is implemented by function hoenig.

Gascuel (1994) described another extension to the Kimura and Chikuni (1987)
method, combining it with a model for the distribution of lengths at each age-class.
For the description of this method, Gascuel (1994) had in mind fish species for which
the age structure of the populations were traditionally estimated using length-frequency
analysis (e.g. albacore from the East-Atlantic). In this method, the distribution of length
at each age-class (the inverse ALK) is assumed to follow a Normal distribution

q
′

ij =
1

σj

√
2π

× exp

(
− (li − lj)

2

2σ2
j

)
,

where the SD of length at age, σj , is given by a linear model as a function of three
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parameters, α, β, and γ:

σj = α+ β × lj + γ ×∆lj ,

where∆lj is the difference between the mean lengths at age-class j and age-class j−1.
For each combination of values of these three parameters, the inverse ALK is applied
to the length frequency data using an iterative procedure similar to the one described
by Kimura and Chikuni (1987):

1. initial values are given to the pj2;

2. an iterative process is initiated by calculating an estimate for fi2:

f̂i2 =
∑
j

(
pj2 × q

′

ij

)
×
∑
i

fi2;

3. new estimates for pj2 are then obtained, to be used in the next iteration:

pnextj2 =
∑
i

(
ppreviousj2 × q

′

ij ×
fi2

f̂i2

)
;

4. steps 2 and 3 alternate until convergence is reached.

The parameters of interest can then be calculated from the matrix Nij2,

nij2 = pfinalj2 × q
′

ij ×
∑
i

fi2,

where pfinalj2 is the pj2 from the last iteration. The best estimates for the parameters α,
β, and γ are then obtained with an optimization process that minimizes the differences
between fi2 and f̂i2. The function gascuel included in the ALKr package implements
this method, using Nelder and Mead (1965) ``simplex'' method for the optimization
procedure.

Procedure for the comparison of methods

Given the availability of the different methods described above, based on classic and
inverse ALKs, some of them are expected to perform better than others. Therefore, we
use simulated data to compare those methods in terms of precision and accuracy. A
total of 6 methods based on ALKs are compared:
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• the classic ALK (Friðriksson, 1934);

• the inverse ALK (Clark, 1981; Bartoo and Parker, 1983; Hilborn and Walters,
1992);

• an iterative application of the inverse age-length key with the EM algorithm
(Kimura and Chikuni, 1987);

• a refinement of Kimura and Chikuni (1987) method proposed by Hoenig and
Heisey (1987);

• using prior and current information to estimate age composition with the EM
algorithm (Hoenig et al., 1993, 1994, 2002);

• applying inverse ALKs as described by Gascuel (1994).

The first method was applied to data sets that were simulated as if both the length
frequency data and the age data were obtained from the same population, which is in
accordance with the classic ALK assumption. The other five methods were applied to
data sets simulated as if there were length frequency and age data from one popula-
tion, and just length frequency data from another population with a slightly different
demographic structure, to which we wish to apply an inverse ALK.

Data simulation

The generation of the input data used for all methods is described in detail by Murta
(1998). The simulated data sets correspond to two Trachurus trachurus (Horse mack-
erel) populations sampled in 1992 and 1993 during bottom-trawl research surveys off
the Portuguese coast. In this context we use the term population in its statistical mean-
ing, not in the biological one. The length distributions were taken from the survey's data
base, and the distribution of those individuals through age classes was done as follows:

1. Mean-lengths-at-age were defined based on the existing data for the species, and
were assumed to remain constant in time (therefore, the fish caught in 1992 and
1993 had the same growth rate).

2. Standard deviations (SD) of length-at-age for age 0 was defined as σ0 = 2 and
for age 15+ as σ15+ = 4. The SD for the other age classes were defined as

σj = σ0 +
(σ15+ − σ0)× (lj − l0)

l15+ − l0
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where lj is the mean length at age j.

3. The proportion of each age-class in each population were calculated by applying
the classic age-length keys made in each year to the length distributions of the
corresponding year.

4. An inverse age-length key, giving the probability on an individual belonging to
length-class l given it belongs to age-class j (Pr(i | j)), which is common to both
populations, was calculated assuming a Normal distribution of lengths at age:

Pr(i | j) = Φ

(
li+0.5,j − lj

σj

)
− Φ

(
li−0.5,j − lj

σj

)
,

where Φ is the cumulative distribution function of the Normal distribution.

5. Finally, the probability of an individual being in age-class j and length-class i in
data set d was given by Pr(i, j)d = Pr(i | j)·j,d .

The simulated data are included in the ALKr package as data set hom, in which
items N1992 and N1993 are matrices containing the number of individuals of a given
age (columns) in each length class (rows) collected in 1992 and 1993. Items F1992 and
F1993 are the row sums of N1992 and N1993, that is, they contain the number of fish
in each length class.

> library(ALKr)
> data(hom)
> hom$N1992

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 8 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 42 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 173 235 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11 562 836 4 0 0 0 0 0 0 0 0 0 0 0 0 0
12 1424 2380 14 0 0 0 0 0 0 0 0 0 0 0 0 0
13 2828 5422 50 1 0 0 0 0 0 0 0 0 0 0 0 0
14 4394 9887 145 5 1 0 0 0 0 0 0 0 0 0 0 0
15 5344 14433 356 15 2 0 0 0 0 0 0 0 0 0 0 0
16 5089 16865 739 42 7 1 0 0 0 0 0 0 0 0 0 0
17 3793 15776 1293 99 18 2 0 0 0 0 0 0 0 0 0 0
18 2213 11814 1911 203 43 5 1 0 0 0 0 0 0 0 0 0
19 1011 7081 2382 364 89 13 2 1 0 0 0 0 0 0 0 0
20 361 3398 2507 567 161 28 4 2 1 0 0 0 0 0 0 0
21 101 1305 2226 769 258 53 10 4 1 1 1 0 0 0 0 0
22 22 401 1668 908 366 89 19 8 3 2 1 0 0 0 0 0
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23 4 99 1055 934 457 136 33 16 6 3 3 1 0 0 0 0
24 1 19 563 836 505 186 53 27 11 7 6 1 0 0 0 0
25 0 3 254 651 493 227 77 42 19 12 12 3 1 0 0 0
26 0 0 96 442 425 248 102 60 30 20 21 5 2 1 0 0
27 0 0 31 261 323 242 121 77 43 30 35 9 4 1 0 0
28 0 0 8 134 217 212 131 91 56 42 54 14 6 2 1 0
29 0 0 2 60 129 166 128 98 68 55 78 21 10 3 1 0
30 0 0 0 23 67 117 114 96 75 65 103 29 14 4 1 0
31 0 0 0 8 31 73 92 86 77 71 126 37 20 6 2 0
32 0 0 0 2 13 41 67 70 72 72 143 43 25 7 3 1
33 0 0 0 1 5 21 45 52 61 67 151 48 30 9 3 1
34 0 0 0 0 1 9 27 35 48 57 148 49 34 10 4 1
35 0 0 0 0 0 4 15 22 35 45 134 46 35 11 5 1
36 0 0 0 0 0 1 7 12 23 33 113 41 34 11 5 2
37 0 0 0 0 0 0 3 6 14 22 88 34 31 10 5 2
38 0 0 0 0 0 0 1 3 8 13 63 26 26 9 5 2
39 0 0 0 0 0 0 0 1 4 8 42 18 21 7 4 1
40 0 0 0 0 0 0 0 0 2 4 26 12 15 6 3 1
41 0 0 0 0 0 0 0 0 1 2 15 7 10 4 2 1

> hom$F1992

7 8 9 10 11 12 13 14 15 16 17
2 18 95 409 1402 3818 8301 14432 20150 22743 20981

18 19 20 21 22 23 24 25 26 27 28
16190 10943 7029 4729 3487 2747 2215 1794 1452 1177 968

29 30 31 32 33 34 35 36 37 38 39
819 708 629 559 494 423 353 282 215 156 106
40 41
69 42

A total of 1000 length-stratified replicates were drawn from the data simulated using
the 1992 length distribution, with a fixed sample size of 10 individuals per length class.
If there were not enough individuals on a given length class, then all individuals were
sampled. Each of these samples mimics the process of sampling a number of fish from
each length class and determining their age by otolith reading. These 1000 samples are
also a part of the hom data set, as a list named otoliths.

> hom$otoliths[[1]]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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13 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 3 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0
19 1 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0
20 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 2 5 2 1 0 0 0 0 0 0 0 0 0 0 0
22 0 2 5 2 1 0 0 0 0 0 0 0 0 0 0 0
23 0 0 3 3 2 0 2 0 0 0 0 0 0 0 0 0
24 0 0 0 4 3 2 0 1 0 0 0 0 0 0 0 0
25 0 0 2 4 3 1 0 0 0 0 0 0 0 0 0 0
26 0 0 0 3 4 2 0 0 0 1 0 0 0 0 0 0
27 0 0 0 4 4 1 0 0 1 0 0 0 0 0 0 0
28 0 0 0 1 1 5 1 2 0 0 0 0 0 0 0 0
29 0 0 0 1 1 2 0 1 0 2 3 0 0 0 0 0
30 0 0 0 0 1 1 2 1 1 2 1 0 1 0 0 0
31 0 0 0 0 0 0 1 0 4 2 2 1 0 0 0 0
32 0 0 0 0 0 0 1 5 1 1 0 1 1 0 0 0
33 0 0 0 0 0 1 0 1 3 2 2 0 1 0 0 0
34 0 0 0 0 0 0 1 0 3 0 4 2 0 0 0 0
35 0 0 0 0 0 0 0 1 2 1 4 2 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 4 2 2 1 1 0
37 0 0 0 0 0 0 0 0 2 0 4 3 0 1 0 0
38 0 0 0 0 0 0 0 0 1 0 6 0 0 1 2 0
39 0 0 0 0 0 0 0 0 0 1 4 1 4 0 0 0
40 0 0 0 0 0 0 0 0 2 1 3 2 1 1 0 0
41 0 0 0 0 0 0 0 0 0 0 3 1 3 1 1 1

ALK generation

The classic age-length keywas applied to each bootstrap replicate and to the 1992 length
distribution, while each of the other methods was applied using the 1992 length distri-
bution and each bootstrap replicate as the data set with age data, and the 1993 length
distribution as the data set without age data. The proportion of each age in the catch (pj),
mean length at age (lj) and the standard deviation of length at age (σj) were calculated
for each resulting ALK, resulting in a total of 48 parameters per method (3 parameters
× 16 age-classes).

> attach(hom)
> results <- list(
+ cALK = lapply(otoliths,
+ function(x) summary(classic_ALK(x, F1992))),
+ invALK = lapply(otoliths,
+ function(x) summary(inverse_ALK(x, F1992, F1993))),
+ kc = lapply(otoliths,

13



+ function(x) summary(kimura_chikuni(x, F1992, F1993))),
+ hh = lapply(otoliths,
+ function(x) summary(hoenig_heisey(x, F1992, F1993))),
+ hoenig = lapply(otoliths,
+ function(x) summary(hoenig(list(x), list(F1992),
+ list(F1993))[[1]])),
+ gascuel = lapply(otoliths,
+ function(x) summary(gascuel(x, F1992, F1993,
+ initial_values = c(0.1, 0.07, 0.06)))))
> detach(hom)

The relative performance of each method was assessed by calculating the bias and
variance of the estimates of these parameters. The difference between the estimate of
each parameter and its corresponding value on the original data was calculated for each
sample, and from these values the mean-squared error of the parameter.

> MSE <- list(
+ mean_lj = sapply(results, function(x) apply(sapply(x,
+ function(y) (y$mean_lj - hom$lmed)^2), 1,
+ mean, na.rm = TRUE)),
+ var_lj = sapply(results, function(x) apply(sapply(x,
+ function(y) (y$var_lj - hom$stdv)^2), 1,
+ mean, na.rm = TRUE)),
+ pj = sapply(results[-1], function(x) apply(sapply(x,
+ function(y) (y$pj - hom$pj_1993)^2), 1,
+ mean, na.rm = TRUE)))
> MSE[["pj"]] <- cbind(MSE[["pj"]],
+ cALK = apply(sapply(results[["cALK"]],
+ function(y) (y$pj - hom$pj_1992)^2),
+ 1, mean, na.rm = TRUE))

Age slicing

Age slicing is a commonly used method of estimating age distributions from length
distributions based on a given growth model (see Introduction), often von Bertalanffy's
growth curve. The performance of this approach was also compared with the ALK
models implemented by the ALKr package, namely its estimates of the proportion of
age in the population (pj).

Von Bertalanffy's growth model defines length l as a function of age a, an assymp-
totic maximum length L∞, a growth rateK and a theoretical length at age 0, t0:

l = L∞ × (1− exp(−K × (a− t0)))

.
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As these parameters were unavailable for the horse mackerel population being stud-
ied, the length/age data was used to estimate them by non-linear regression.

> library(reshape)
> mN1992 <- melt(hom$N1992)
> mN1992 <- data.frame(l = rep(mN1992[, 1], mN1992[, 3]),
+ a = rep(mN1992[, 2], mN1992[, 3]))
> vb_params <- nls(l ~ Linf * (1 - exp(-K * (a - t0))),
+ data = mN1992,
+ start = list(Linf = 42, K = 0.18, t0 = -0.5))$m$getPars()
> vb_params

Linf K t0
54.98434344 0.06403416 -4.68226399

Figure 1 shows the resulting growth curve against the length-at-age distributions.

> library(ggplot2)
> vb_curve <- function(a, vb) {
+ vb["Linf"] * (1 - exp(-vb["K"] * (a - vb["t0"])))
+ }
> vb_plot <- ggplot(mN1992) +
+ theme_bw() +
+ geom_violin(aes(x = a, y = l, group = a), adjust = 2.5) +
+ stat_function(fun = vb_curve, args = list(vb = vb_params),
+ colour = "red", geom = "line") +
+ labs(x = "Age (years)", y = "Length (cm)")

Age slicing was then applied to estimate the proportion of each age class in the
population.

> age_slicing <- function(fi, li = as.numeric(names(fi)), vb,
+ age_limits, timing = 0.5) {
+
+ age <- floor(vb["t0"] - log(1 - pmin(li / vb["Linf"], 1 - 1e-16)) /
+ vb["K"] + timing)
+ age <- pmax(pmin(age, age_limits[2]), age_limits[1])
+ age <- factor(age, levels = age_limits[1]:age_limits[2])
+
+ tapply(fi, age, sum) / sum(fi)
+ }
> pj_age <- age_slicing(hom$F1992,
+ vb = vb_params,
+ age_limits = c(0, 15))
> pj_age

0 1 2 3 4
0.324316213 0.291615812 0.227842360 0.054796348 0.033093899
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Figure 1: Length-at-age distributions for the 1992 horse mackerel population and the
estimated von Bertalanffy's growth curve
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5 6 7 8 9
0.021649093 0.014306009 0.005462294 0.008917079 0.003728233

10 11 12 13 14
0.006115902 0.002354322 0.001880790 0.001433936 0.001040437

15
0.001447275

The squared error of these estimates was then appended to the previous results.

> MSE[["pj"]] <- cbind(MSE[["pj"]], age_slicing = (pj_age - hom$pj_1992)^2)

Results

Figure 2 and tables 1 to 3 show the mean squared error (MSE) for the mean length-at-
age, variance of length-at-age and proportion of age in the population for each of the
ALK methods evaluated, as well as the squared error of the proportion of age in the
population obtained by age slicing.

> mMSE <- melt(MSE)
> names(mMSE) <- c("Age", "Method", "MSE", "Variable")
> mMSE$Method <- factor(mMSE$Method,
+ levels = c("cALK", "invALK", "kc", "hh",
+ "hoenig", "gascuel", "age_slicing"),
+ labels = c("Classic ALK", "Inverse ALK", "K & C", "H & H",
+ "Hoenig et al.","Gascuel", "Age slicing"))
> mMSE$Variable <- factor(mMSE$Variable,
+ levels = c("mean_lj", "var_lj", "pj"),
+ labels = c("Mean length-at-age", "Variance of length-at-age",
+ "Proportion of age"))
> mse_plot <- ggplot(mMSE) +
+ theme_bw() +
+ geom_line(aes(x = Age, y = MSE, colour = Method)) +
+ facet_wrap(~Variable, ncol = 1, scale = "free_y") +
+ scale_y_log10() +
+ scale_colour_manual(values = c("#F92713", "#5A7A83", "#6CA11D", "#BD1C5B",
+ "#A7D8C8", "#E0AA08", "#295A00"))

The results clearly illustrate the problems of the Inverse ALKmethod, which shows
very large MSE of its estimates of mean length-at-age (lj) and variance of length-at-
age (σj), and also has the worst proportion of age in the population (pj) estimates. All
other methods present similar MSE of their lj estimates, although the Hoenig & Heisey
method shows a slightly worse performance on the higher age classes.

With respect to pj estimates, the Classic ALK shows good performance on lower
age classes, but average results on higher classes, where both Kimura & Chikuni and
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Figure 2: Mean squared errors (MSE) of the mean length-at-age, variance of length-at-
age and proportion of age in the population for each method
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Hoenig et al. methods perform best. Gascuel's method shows relatively large MSE on
the upper half of the age range.

Conclusions

The classic ALK (Friðriksson, 1934) is a good method for estimating age distributions
if populations (in the biological sense) are well sampled and if there is some age/length
data already avaliable. It produces maximum likelihood estimates and is a computa-
tionally simple algorithm. However, to apply it to populations for which no age/length
data is known, one must make strong assumptions, that are unlikely to be met.

The inverse ALK method (Clark, 1981; Bartoo and Parker, 1983; Hilborn and Wal-
ters, 1992) performs poorly mostly becaus of its usage of a generalized inverse matrix
whose computation may be problematic, but all methods based on it perform similarly.
However, Hoenig et al.'s method (Hoenig et al., 1993, 1994, 2002) shows good results
on the highest age classes (in which length distributions on the original data have large
overlaps), also yields maximum likelihood estimates and is the only method that can
combine several complementary data sets, either with or without age information.

When compared to the ALK methods, age slicing performed surprisingly well.
However, it must be noted that the analysis was done with simulated data, instead of
real-world samples. Moreover, the input data was generated assuming that the mean
lengths-at-age had normal distributions and relatively low variances, which are both
desirable characteristics for age slicing.
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