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1  Executive Summary 

− Three non-parametric stochastic imputation approaches that provide a means of imputing Atlantic bluefin 

tuna length frequency data are described and tested by cross-validation.  

 

− The multivariate normal ‘distance’ model that randomly imputes data using a multinomial probability 

function, offered the best predictive capacity by some margin. 

 

− All imputation methods operate most successfully when nearby (in time and space) length observations are 

imputed preferentially.  

 

− The multivariate normal imputation approach described here offers a basis for quantifying uncertainty from 

data processing by means of repeated-imputation inference (running multiple stock assessments from 

multiple imputed data sets).  

 

− By imputing data that are specific to time and region, the approach offers the basis for applying multiple 

growth curves (for cohort slicing for example) where applicable. Additionally, uncertainty from aging may 

be simultaneously incorporated into the same repeated-imputation inference framework.  

 

− A number of patterns in the data provide evidence of possible errors in the Task II dataset for Atlantic 

bluefin tuna, for example, identical length samples replicated in adjacent areas and times.  

   

− While the imputation approach appears to perform reasonably well (assuming the data are reported 

correctly) future improvements could include the incorporation of greater variability among imputations and 

further optimization of code to improve computation time (by extending the code to be compatible with 

parallel processing packages for example).  
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2  Introduction 

 
Catch composition data are commonly used to support stock assessment approaches that predict the age-structure 

of a fish population explicitly. Such modelling may be desirable in cases where strong temporal changes have 

occurred in the strength of cohorts or the vulnerability-at-age of the population. However these data may be 

patchy in many stock assessment scenarios, particularly large-scale pelagic populations exploited by a number of 

different fishing fleets. Atlantic bluefin tuna is one such example in which more detailed records of the ICCAT 

Task II database are incomplete but coarser records of total catch are available in the Task I database.  

 

A version of Virtual Population Analysis (VPA) ‘ADAPT’ (Gavaris 1988) is currently used as the status quo 

approach for providing management advice for Atlantic bluefin tuna. A central limitation of VPA analysis is that 

it requires complete records of catch-at-age (the total landings are apportioned to age classes by year across all 

fishing fleets). Currently, the complete catch-at-age data are derived by an ad-hoc algorithm that subdivides total 

reported catches to age classes based on the observed catch composition data. Once derived this total catch-at-

age dataset is considered to be known without error for the purpose of the VPA analysis. However two important 

sources of uncertainty have been removed from the analysis. The first is uncertainty in assigning lengths to the 

fish that are caught and documented in the Task I dataset: 

 

                                                                            Imputation of length data 

   (1)    Length observations + total catches                                                        Total catch-at-length 

               (Task II data)            (Task I data) 

 

 

The second source of uncertainty comes from converting these imputed lengths to age classes in order to create 

the total catch-at-age dataset: 

 

 

                                                         Length – age conversion (growth model) 

   (2)    Total catch-at-length                                                                                     Total catch-at-age  

 

 

In the second of two ICCAT contracts ‘(b) data imputation’ of ‘modelling approaches: support to Bluefin tuna 

stock assessment’ this research contract aims to address the first of these problems by determining length 

imputation approaches that allow uncertainty to be expressed in final assessment outputs.  

 

When imputing catch-at-length data it is necessary to understand the missing data problem since it determines 

the type of imputation method that can be applied legitimately. In this example we have a final dataset of fish 

lengths that contains missing data points (the Task I dataset indicates that fish were caught but their lengths are 

not known). If the pattern of the missing length data is unrelated to both the values of the observed and the 

missing data (the lengths themselves) and all observable variables, the data are considered missing completely at 

random (MCAR) (Gelman et al., 1995). In this case, the probability that data are missing cannot be explained by 

either the magnitude of the lengths that are missing, a pattern in the observed lengths or any other variable such 

as fishing gear, or season. Suppose however that small fish may be caught in coastal areas or nearer spawning 

grounds. If this is the case, the absence of data for small fish is dependent on a variable (sampling location) that 

is observable. In this example, the missing data mechanism is still independent of the missing values (length) 

and the data are said to be missing at random (MAR) (Rubin, 1976). Where the parameters of the missing data 

mechanism (that describes the effect of sampling location on probability of capture) are independent of the 

parameters that describe the probability model of the observed data (e.g. given a fish is caught, the chance of 

obtaining a length measurement is not related to sampling location), the mechanism is considered 'ignorable' 

(Rubin, 1976). It may be the case however, that larger fish, of greater power and mobility, are more difficult to 

measure regardless of where they were caught. Under these conditions the missing data mechanism may be 

dependent on the missing values themselves. Here the data are not MAR and the mechanism is considered ‘non-
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ignorable’. In this analysis we will assume that the data are MAR and the mechanism is ‘ignorable’; that the 

probability that a fish is measured is not related to the length. 

 

The simplest model-based method of imputing MAR (ignorable) data is Expectation Maximisation (EM). EM is 

a model fitting exercise; it estimates the most probable values of parameters in a model that predicts observed 

data and uses this model to predict replacement data. Expectation maximisation is one of the most widely used 

of the ‘more principled’ methods (Little and Rubin 1987). This is exactly the same as fitting a spatio-temporal 

model to the observed length frequencies. Since such a model has predictive capacity it can impute (fill-in, 

‘guess’) the expected length of a fish caught in a given time or area.  

 

The product of EM is a single imputed data set corresponding to the best fit of the model on the observed data. 

EM provides no statistically rigorous manner with which to estimate standard errors. It follows that although 

there is an inevitable uncertainty associated with imputation (e.g. a model that fits the observed data poorly), this 

uncertainty cannot be quantified by EM. With this problem in mind, Rubin (1987) developed a procedure known 

as Multiple Imputation (MI). In essence, MI is EM with replication. Typically, the replication process occurs 

between 4 and 10 times creating a different set of imputed values each time. When the mean of the replicate 

imputations for each data point is used and the standard error incorporated into the final analysis as a measure of 

uncertainty, the MI method is termed ‘repeated-imputation inference’. Under these circumstances, a greater 

proportion of missing data and/or a model and explanatory variables that do not explain the data well, result in 

greater uncertainty over the imputed data and the results of any subsequent analyses. Multiple imputation was 

originally designed to deal with missing data in survey data sets but since its conception in 1987 (Rubin, 1987) it 

has been successfully applied in a wide range of disciplines (e.g. Medicine, Mishra and Dobson 2004; Air 

quality analysis, Junninen et al. 2004). Though MI has received some general criticism on the grounds of 

inefficiency (Nielsen  2003) it is still thought among many to be the imputation method with the most potential 

(Olinsky et al. 2003). 

 

An alternative to EM is hot-deck imputation which is based on the idea of replacing a missing value with a 

similar observed value. Though model based, hot-deck imputation differs from EM in that the model is implicit; 

i.e. they are not expressed mathematically (as are the explicit models in EM) and they follow a nonparametric 

procedure (see Little and Schenker, 1995). Though similarity is the primary condition, hot-deck methods may 

define similarity by any relevant criterion. For example, 'Hot-deck next case' simply imputes the required data 

from the next complete case and 'hot-deck nearest neighbour' minimizes a function of the 'distance' between 

incomplete case and donor case (e.g. the number of records, a function of other covariates). Hot-deck methods 

are most applicable in cases where data are MAR and only the observable variables are those used to decide 

which case is most similar to that with missing data. 

 

In this research contract I identify a non-parametric approach to imputation that is a hybrid of multiple 

imputation and hot-deck nearest neighbour. Using a distance model I assign weights to observed data in relation 

to a set of missing data points and then randomly sample from observations in proportion to their weight in order 

to fill the missing data points. The method has the ability to create multiple random data sets like multiple 

imputation but relies on a non-parametric resampling approach and does not require fitting a predictive model to 

observed data. By generating multiple length data sets and therefor possible catch-at-age datasets, repeated-

imputation inference can be obtained by running a VPA stock assessment on each catch-at-age dataset.  

 

 

3   Methods 
 

3.1 Programming environment  
 

The computer programming for this work was conducted in the statistical environment R (2.14.2, 64bit; R core 

team 2013). Computations were conducted in Windows 7 using a high-performance laptop (Intel® Core i7-

2670QM 2.2Ghz, 16GB RAM). The source code and examples are available online (Carruthers and Kell 2013). 

 



5 

 

3.2 Data processing 

 

Length data were extracted from the ICCAT Task II dataset ‘t2sz_20111103’ that is available online at 

www.iccat.int. The data were formatted such that each line of the observed data constitutes an individual length 

frequency (e.g. Table 1).  

 

 
Table 1. Example formatting of observed length frequency data for the Bluefin tuna data of the Japanese longline fleet. 

‘ClassFrq’ is the fork-jaw length in cm. ‘n’ is the number of fish sampled at this length. ‘Time’ is the decimal year. 

‘DOY’ is day of the year to be used in season calculations.  

 
 

 

In cases where lengths are reported in different standards (e.g. ‘CFL’, ‘PFFL’ or ‘CPFFL’) these were converted 

to fork-jaw length using the conversion equations provided on the ICCAT website. Additionally the reporting of 

geographic location was standardised by taking the gravity of each reported cell using the ‘convUL’ and 

‘calcCentroid’ functions of the R package ‘PBSmapping’.  

 

For cross validation purposes a second dataset was formed by simply ignoring the length (‘ClassFrq’) and 

aggregating the number of observations ‘n’ by time and space (e.g. Table 2). In this way, for any time and place 

the known values can be compared with multiple imputed datasets. In this analysis we undertake a cross-

validation of the Task II data that are available for the Japanese and Spanish longline fleets 

 

 
Table 2. Example formatting of the cross-evaluation dataset to be imputed for the Bluefin tuna data of the Japanese 

longline fleet. ‘Time’ is the decimal year. ‘DOY’ is day of the year to be used in season calculations.  

 
 

 

3.3 Non-parametric imputation algorithms for catch-at-length data 

 
For any missing data Mi the ‘proximity’ to an observed data point Oj can be calculated from a multivariate 

normal distribution based on the distance in terms of season S, year Y and geographic location G. This proximity 

or weight W can be used in a multinomial sampling model to determine the relative probability of sampling an 

observation given the location of a missing data point: P(0j|Mi). Expressed fully this is: 

 

(3a)                 �������� ∝ 
�,� = ��, �, �� = ���	��.��/�����  ��!�  ��!� �"�����!��!�#��"√"%&/�'#�����  ��!�  ��!� � "�����!��! , 

SpeciesCod FleetCod GearGrpCod Lat Lon ClassFrq n FreqTypeCod ClassInterval Time DOY

BFT JPN LL -7.50043 -22.5139 230 1 FL 1 1956.875 320

BFT JPN LL 2.500806 -42.5062 246 1 FL 1 1957.125 46

BFT JPN LL -2.50017 -22.5142 214 3 FL 1 1957.125 46

BFT JPN LL -2.50017 -22.5142 188 1 FL 1 1957.875 320

BFT JPN LL -2.50017 -22.5142 190 12 FL 1 1957.875 320

BFT JPN LL -2.50017 -22.5142 196 1 FL 1 1957.875 320

…

SpeciesCod FleetCod GearGrpCod Lon Lat Time DOY n

BFT JPN LL 5.005029 -42.5761 1970.042 16 2

BFT JPN LL -35.0072 32.57651 1973.042 16 1

BFT JPN LL -55.0546 42.57742 1975.042 16 3

BFT JPN LL -24.9674 27.57184 1976.042 16 13

BFT JPN LL -14.9257 27.5744 1976.042 16 2

BFT JPN LL -24.9713 32.57704 1976.042 16 5

…
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      where       ( = �")*+" − 1� + �")/+" − 1� + �")/*" − 1� + 2[��)/* − )/+)*+� + ��)/+ − )/*)*+� + ��)*+ − )/*)*+�], 
 

      and p is the correlation among variables, 

 

which looks considerably more complicated than the corresponding R code:  

 

‘dmnorm(S,Y,G, mean values (S,Y,G),variance-covariance matrix(S,Y,G))’. 

 

When applying this method, I assume there to be no covariance among the three variables leaving only the 

positive diagonal of the variance-covariance matrix ‘sigma’ to be specified. A graphical representation of a 

bivariate normal distribution for differences in time (among years, Y) and space (among geographic areas, G) is 

illustrated in Figure 1. 

 

 
Figure 1. A bivariate normal distribution showing probability density (W) with increasing difference in geographic 

location (G, km) and sampling date (Y, years). Over this surface, observations Oj are sampled in proportion to their 

probability density (W) according to a multinomial distribution.  

 

 

Over a large number of observations the multivariate normal approach may be computationally intensive, in 

which case either an additive univariate normal model: 

 

(3b) ��0����� ∝ 
�,� = ��� + ��� + ��� = 14/√25 exp 9−
12 : �4/;

"< + 14*√25 exp 9−
12 : �4*;

"< + 14+√25 exp	−
12 : �4+;

"� 
 

where the terms σ are the normal standard deviations corresponding to distance in season S, year Y and among 

geographic locations G.  

 

Alternatively a Euclidean distance model may offer a viable alternative: 

 

(3c)        ��0����� ∝ 
�,� = => /?�@" +A> *?�@" + > +?!@"
�#

 

 

� 
G 

Probability Density 
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All three of these implementations are available in an R function ‘imputeCAS’ (imputation of Catch-At-Size, 

Carruthers and Kell 2013). The multinomial probability of sampling a length observation Oj given a missing data 

point Mi is calculated from the weighting values W and is simply: 

 

(4) ����|��� = CD,E∑ CD,EE  

 

 

4  Results 

 
The predictive ability of the three non-parametric imputation algorithms is illustrated in Figure 2 and also 

described in Table 3. In terms of predicting the mean length frequency, all three methods show poor predictive 

capacity when length observations are used for imputation that are from distant years, seasons and areas. For 

example, the first row of panels in Figure 2 shows the predictive capacity of the additive normal, multivariate 

normal and Euclidean linear algorithms given the standard deviation (σ) for among years, within year and among 

geographic areas set to 10 years, 60 days and 5000km, respectively. In this case all three models fail to predict 

high and low mean lengths. Additionally the R-squared measure (variance in observations that can be explained 

by imputations) is poor in the case of the additive normal model.  

 

For all imputation algorithms the predictive capacity improves markedly as the standard deviations for each 

dimension (among year, within year, geographic) are reduced (rows of panels nearer the bottom of Figure 2). 

This points to spatially and temporally heterogeneous distribution of lengths that are highly specific to season 

which might be expected given the migratory behaviour of Atlantic bluefin tuna and the general pattern of 

increasing latitudinal range with size. By far the best performing method is the multivariate normal approach that 

offers relatively high predictive capacity (R-squared 0.834 for Japanese longline data) when standard deviations 

are low (middle panel, bottom row Figure 1; σy=1.5 years, σs=10 days and σg=400km).    

 

When extending the same approach to the Spanish longline fleet the method appears to work better at very near 

geographic scales. For example a standard deviation of 150km offered a significant increase in the predictive 

capacity (in terms of sample mean length) compared to 400km (Figure 3). 

 

A plot of the cross-evaluation of the best performing method (multivariate normal, σy=1.5 years, σs=10 days and 

σg=400km) for the 50 largest length samples of the Japanese longline fleet reveals the reliability of the method at 

approximating sample-specific length frequency characteristics (Figure 4). A standout result is that there is very 

little variability among imputations when using this approach. All of the imputations (the red, blue and green 

lines of Figure 4) are similar and when they do not fit the real length frequency data (the black lines) they do not 

bracket the real data. 

 

In several instances the imputation method fails to recreate clear bimodality in the length frequencies that may 

be describing important population size structure (for example second panel down, leftmost column of panels).  

There are a number of instances where the multivariate method appears to impute the data rather too well and it 

may be due to data reliability problems. For example the third and fourth row of panels from the bottom in 

Figure 4 show length samples with identical sample size numbers (n) and identical length frequency patterns. It 

is possible that these are the same data erroneously recorded twice in the Task II dataset with similar but not the 

same year, season and geographic location. A similar issue can be seen with sample sizes 2917, 2789 and 1274 

that show identical frequency patterns and mean observed and predicted lengths.  

 

In some cases the multivariate normal algorithm appears to follow potentially important patterns in the size 

composition such as bimodality. For example size samples n=3694 and n=2533 of Figure 2 appear to closely 

approximate the real size sample composition. However in general, the imputation performance of the 

multivariate method appears to be somewhat worse for the Spanish longline fleet (Figure 5). In several cross-

validations the imputations completely miss a clear modality in the observed data (n=1488) or the imputed 

length frequency runs completely opposite to the pattern in the observed data (n=1218).  
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Figure 2. The predictive ability of the imputation model for the Japanese longline fleet. The mean of the observed length 

frequency samples plotted against mean imputed lengths for sample sizes over 200 (225 points). Each plot contains a 1:1 

line and two horizontal lines representing the range of the predicted mean data. Each row represents different imputation 

conditions in terms of the standard deviation among years (σy=SDy), the seasonal standard deviation within year (σs=SDs) 

and the standard deviation in geographic space (σg=SDg). The orange number in the bottom right of each panel is the R-

squared statistic representing the fraction of variance in observed mean length explained by the imputed mean length 

(assuming a linear model).  
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Figure 3. The predictive ability of the imputation model for the Spanish longline fleet. The mean of the observed length 

frequency samples plotted against mean imputed lengths for sample sizes over 200 (90 points). Each plot contains a 1:1 line 

and two horizontal lines representing the range of the predicted mean data. In both panels the standard deviation among 

years  and the standard deviation within year are kept the same (SDy=1.5years, SDs=10days). The left-hand panel however 

includes a lower standard deviation and is more likely to sample lengths that are closer geographically (SDg=150km and 

SDg=400km respectively). The orange number in the bottom right of each panel is the R-squared statistic representing the 

fraction of variance in observed mean length explained by the imputed mean length (assuming a linear model).  

 

 

 

Table 3. The performance of the different imputation algorithms given six different parameterizations. These are 

plotted graphically in Figure 2. The parameters σY, σS and σG refer to the multivariate normal standard deviations 

for among years, within years (seasonally) and among geographic areas. Good performance is highlighted by 

three criteria that may be satisfied simultaneously, a positive regression slope of unity (between 0.9 and 1.1) that 

is statistically significant (p-value <  0.05) and explains over 50% of the variability in the observed lengths. 

Results fitting these criteria are highlighted in light grey. 

 

σ
Y  (years) σ S  (days) σ

G  (km) Slope p-value R
2

Slope p-value R
2

Slope p-value R
2

10 60 5000 3.496 1.03E-07 0.119 2.276 3.67E-29 0.431 4.207 7.02E-43 0.571

10 30 2000 4.06 1.44E-13 0.218 1.587 9.40E-52 0.643 3.858 8.98E-45 0.588

5 30 2000 3.041 3.81E-09 0.144 1.543 8.59E-57 0.678 4.363 2.91E-42 0.566

3 20 1000 1.282 4.00E-07 0.109 1.045 1.15E-77 0.791 3.071 1.85E-47 0.61

2 10 750 1.313 1.32E-08 0.135 0.984 8.39E-81 0.804 2.833 1.63E-47 0.61

1.5 10 400 1.361 5.91E-10 0.158 0.974 7.02E-89 0.834 2.987 2.94E-49 0.624

Parameters Additive normal Multivariate normal Euclidean linear
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Figure 4. The observed and imputed length samples for the 50 largest samples of the Japanese longline fleet. The black line 

is the observed length frequency. The red, blue and green lines are three imputed length frequencies using the multivariate 

normal method (σY =1.5years, σS =10days, σG =400km). The number in the top-left of each panel is the number length 

observations plotted. The two numbers in the top-right are the mean observed length (black) and the mean imputed length 

(orange).  
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Figure 5. The observed and imputed length samples for the 50 largest samples of the Spanish longline fleet. The black line 

is the observed length frequency. The red, blue and green lines are three imputed length frequencies using the multivariate 

normal method (σY =1.5years, σS =10days, σG =150km). The number in the top-left of each panel is the number length 

observations plotted. The two numbers in the top-right are the mean observed length (black) and the mean imputed length 

(orange).  
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5  Discussion 

 
This brief report describes a relatively simple approach for the imputation of length frequency data for pelagic 

species such as Atlantic bluefin tuna. While the predictive capability of the method is strongly determined by 

how the ‘distance’ between observed and missing data are determined these may be tailored to a specific case 

using cross-validation. A more rigorous approach to tuning the imputation method using cross- validation may 

be optimization. For example it may be possible to numerically solve for the year, season and geographic 

standard deviation inputs that maximize the R-squared statistic for imputed versus observed means.  

 

A core advantage of imputing length frequency data that is specific to time and location is that appropriate 

growth models may be applied to convert the lengths into ages. For example different growth rates for fish 

caught in Mediterranean and Gulf of Mexico areas. When combined with growth models, the multivariate 

normal imputation model assumed here may be used to investigate how uncertainty over imputing lengths 

affects the management recommendations of an assessment. This can be achieved by repeated-imputation 

inference. The analysis starts by imputing a number of length datasets that are all different, say 20. For each 

length dataset generated, a length-age conversion takes place that creates an individual total catch-at-age matrix 

for an assessment. For each imputation there is a corresponding assessment and a corresponding management 

recommendation. In this way the relative contribution of uncertainty from data processing can be quantified. 

Additionally it may be possible to integrate uncertainty in the length-age conversion by simply adding this to 

each imputed dataset (for example by sampling from distributions for values for growth parameters).  

 

There are several reasons to be concerned about the length data that were used for cross-validation of the 

imputation algorithms. It is possible that such errors might provide an artificially favourable basis for 

performance evaluation. For example if identical data were erroneously replicated in the dataset in a similar, 

time or location, these data would provide a numerically perfect (albeit logically flawed) basis for imputing 

replicate data. This may explain three phenomena observed in the imputation of bluefin tuna longline data: (1) 

the strong tendency for performance to increase as ‘distances’ are made very small, (2) as distances are reduced 

the imputed data get very similar in composition (there is much less variability among imputations), (3) the very 

high R-squared number for the prediction of data that are inherently stochastic observations. The third point is 

perhaps the most compelling: R-squared values of almost 85% are very high considering that only time and 

space are used to predict a very complex sampling process. It seems likely that this is an artefact of erroneous 

replication of size samples. Possible mechanisms for this might be the replication of data from a wider area (e.g. 

20 x 20 degree ocean square) to a number of smaller areas (the four 5 x 5 degree sub areas of the 20 x 20 degree 

square) or replication from course temporal block (quarter) to finer temporal block (month). A comprehensive 

data-vetting procedure should be undertaken prior to cross-validation to avoid incorrectly tuning the approach. 

Alternatively, a spatially explicit population dynamics model could be used to simulate data to test the 

imputation algorithms.  

 

Assuming that the Japanese longline data are correctly reported, it proved considerably harder to impute the 

Spanish longline length compositions. It is likely that covariate data other than time, season and location could 

provide a better basis for predicting missing lengths. Such covariates could include specific gear type (rather 

than the coarser longline ‘gear group code’) and set depth information (or a proxy such as hooks-per-basket). 

The imputation for the Spanish longline data helped to illustrate the variable computation demand of the 

multivariate normal imputation approach that is squared in nature. While the Japanese imputation (1250 length 

frequency samples imputed from 41 000 observations) took 45 seconds to complete, the Spanish longline 

imputation (260 length frequency samples imputed from 6700 observations) took just 3 seconds. Due to the 

design of the algorithm replicate imputations incur virtually no computation cost (for example less than a 1% 

increase in computation time per 20 replicates for the Japanese longline imputation). Since the multivariate 

normal probability density function operates on each line (each set of length frequencies to be imputed) the 

process can be re-coded to make use of parallel processing using R packages such a snowfall.  

 

Development priorities for the imputation algorithm should focus on improving the bracketing behaviour of the 

model: where the method fails to predict length frequency patterns the imputations should at the very least 
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overlap with the known length composition. Other possible avenues for development could include the 

separation of longitudinal and latitudinal distance to form a four-dimensional multivariate distribution and the 

addition of artificial error to increase the variability among imputations.  

 

It should be noted that imputing lengths according to spatio-temporal model may generate artificial patterns in 

the data that are inconsistent with biological or ecological theory that have important consequences for 

subsequent management implications. An alternative to imputation is to test alternative approaches that do not 

require complete catch composition data. For example both Multifan-CL (Fournier et al. 1990) and CASAL 

(Bull et al. 2012) allow length frequency data to inform size structure without complete records of catch at 

length or cohort slicing. A possible downside to such an approach may be the inability to fit a spatial assessment 

model and therefor account for regional growth characteristics.  

 

The non-parametric approaches of this preliminary results paper were chosen after investigating other modelling 

options. Initial investigation of Conditional Auto-Regressive (CAR) models and GLM modelling of parametric 

length compositions revealed a relatively poor predictive capacity. Both approaches rely on the formulation of a 

flexible parametric model of length compositions. The principal problem was the inability of such methods to 

approximate multimodal length frequency distributions and the computational demand of creating multiple 

imputations.  

 

In this paper I describe a computationally efficient approach to the imputation of length data for Atlantic bluefin 

tuna. While the approach requires fine tuning and further development it can generate stochastic length samples 

that through repeated-imputation inference can quantify the uncertainty from data-processing. The method offers 

a reproducible alternative to the current status quo that is statistically rigorous and can be easily applied to stocks 

of other pelagic species such as tropical tunas.  
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