

PROGRAMME D'ECHANTILLONNAGE BIOLOGIQUE DU GBYP, DANS LE CADRE DU PROGRAMME DE RECHERCHE DE L'ICCAT SUR LE THON ROUGE COUVRANT TOUT L'ATLANTIQUE.

(ICCAT/GBYP-Phase 2/2011)

Equipe impliquée:

Mr. Noureddine ABID : Coordinateur du projet et base de données.

Dr. Mansour SERGHINI : Conception mathématique et statistique.

Dr. Benyounes ABDELLAOUI : Traitement de la base de données et calculs numériques.

Mr. Mostapha BAHADDA: Applications informatiques.

Mr. Hassan NHHALA: Appui scientifique et appui à la rédaction.

Mr. Said BENCHOUCHA: Appui scientifique.

PLAN

I. INTRODUCTION

II. MATERIELS ET METHODES

- II.1. Sources des données utilisées
- II.2. Approche statistique
- II.3. Traitement des données

III. RESULTATS ET DISCUSSION

- III.1. Analyse statistique de la base de données
- III.2. Variation du coefficient de variation en fonction du niveau d'échantillonnage
- III.3. Détermination du niveau optimal d'échantillonnage
- III.4. Estimation du coût en fonction du niveau optimal d'échantillonnage

VI. CONCLUSION ET RECOMMANDATIONS

V. REFERENCES BIBLIOGRAPHIQUES

VI. ANNEXES

I. INTRODUCTION

Les évaluations des stocks du thon rouge de l'Atlantique (Est et Ouest), menées par l'ICCAT, sont basées essentiellement sur des modèles analytiques. Ces modèles reposent principalement sur les données de tailles et les paramètres biologiques des populations exploitées.

Malgré la mise en place des programmes nationaux d'échantillonnage par les pays membres de l'ICCAT, les données biologiques font toujours défaut dans la plupart des pêcheries ciblant le thon rouge. En effet, souvent ces programmes ne sont pas exécutés d'une façon continue et selon des normes d'échantillonnage recommandées par l'ICCAT. En outre, le matériel biologique n'est pas suffisamment collecté au niveau de ces pêcheries.

L'insuffisance des données d'échantillonnage de tailles par pêcherie et les données biologiques du thon rouge collectées au sein des pays membres de l'ICCAT, a conduit à des résultats d'évaluations des stocks peu fiables. En conséquence, les recommandations de gestion de l'ICCAT, basées essentiellement sur ces évaluations, sont peu crédibles.

Conscient de l'ampleur de cette problématique, l'ICCAT a mis en place en 2010 un grand projet de recherche sur le thon rouge couvrant tout l'Atlantique (GBYP). Son objectif principal est d'améliorer la collecte des données statistiques et biologiques relatives à l'exploitation du thon rouge. A cet effet, le GBYP a lancé un appel d'offre (ICCAT/GBYP-phase 2-2011) pour la mise en place d'un programme d'échantillonnage, permettant de déterminer le niveau adéquat d'échantillonnage par strate, en utilisant des techniques d'optimisation statistiques.

Le présent travail s'inscrit dans cet objectif et pourvoit à mettre en place un programme d'échantillonnage le plus approprié possible.

II. MATERIELS ET METHODES

II.1. Sources des données utilisées:

La base de données utilisée pour l'élaboration de ce programme d'échantillonnage du thon rouge du GBYP a été extraite du site web de l'ICCAT (Task II size, version novembre 2010). Les données de captures par taille (CAS) actualisées (communiquées officiellement par le secrétariat, le 5 avril 2011) pour la période récente (2005-2009), ont été aussi employées dans la présente analyse. A préciser que ces données (CAS) concernent uniquement le stock du thon rouge de l'Atlantique Est. Les données de captures par taille pour le stock Ouest ont été extraites de la base de données (Task II size).

II.2. Approche statistique

Selon les termes de référence, le plan d'échantillonnage est stratifié par région, par zone, par engin et par catégorie de poids de poissons aussi homogènes que possible du point de vue variabilité de la grandeur à estimer. Ces strates sont listées dans l'appendice 1 de la circulaire ICCAT 903/11.

Dans un environnement hétérogène du point de vue variabilité des paramètres biologiques du thon rouge, un plan stratifié est plus précis qu'un plan non stratifié de même taux d'échantillonnage. Le principe, qui est en fait très général en échantillonnage, est que, dans un milieu hétérogène, on a intérêt à porter un effort relativement plus élevé dans les zones très variables et un effort relativement plus faible dans les zones moins variables, plutôt que de porter un effort d'échantillonnage constant en tout point.

II.2.1. Définition de la terminologie employée

Pour mieux comprendre les liaisons entre les paramètres, les formules et les différentes strates, un ensemble de symboles a été adopté pour calculer les paramètres statistiques des différentes strates, conformément au circulaire ICCAT # 903/2011.

Les symboles employés sont définis comme suit :

z : Région géographique de débarquement,

s : Zone d'échantillonnage dans une strate géographique,

e : Engin de pêche,

m : Catégorie de poisson,

 $\{z, s, e, m\}$: Strate composée de la région z, zone s, engin e et catégorie m,

t : Année de l'échantillonnage,

 N_{sem}^z : Nombre total de poissons capturés dans la strate,

 $i:i^{\text{ème}}$ enregistrement.

 n_{semi}^z : Nombre de poisson de taille L_{semi}^z par strate $\{z, s, e, m\}$.

 n_{sem}^{z} : Nombre de poissons échantillonnés dans la strate $\{z, s, e, m\}$.

Avec
$$n_{sem}^z = \sum_i n_{semi}^z$$

 L_{semi}^{z} : Longueur individuelle de n_{semi}^{z} poissons échantillonnés dans la strate $\{z, s, e, m\}$.

II.2.2. Méthode d'échantillonnage

La méthode d'échantillonnage adoptée est basée sur une stratégie stratifiée et aléatoire de collecte des données de longueur par strate. Faute de données et d'informations, les autres paramètres biologiques (âge, sexe, maturité sexuelle et fécondité par strate) n'ont pas été pris en compte dans la présente analyse.

Le système d'échantillonnage adopté par l'ICCAT repose sur le principe de stratification suivant : une zone *s* appartient à une super strate géographique *z*, formée par les bateaux utilisant l'engin *e*, dont les éléments observés sont les poissons par catégories. Dans chaque strate, le tirage des poissons est considéré aléatoire, sans remise et à probabilités égales. Ce modèle d'estimation correspond à un échantillonnage aléatoire sans remise.

II.2.2.1. Estimation de la longueur moyenne des poissons par strate $\{z, s, e, m\}$

La longueur moyenne des poissons par strate est estimée sur la base de tous les poissons échantillonnés dans la strate en question.

La longueur moyenne des poissons par strate $\{z, s, e, m\}$ est exprimée par la formule suivante :

$$\overline{L}_{sem}^z$$
 est estimé par la formule suivante : $\hat{L}_{sem}^z = \sum_i \frac{n_{semi}^z L_{semi}^z}{n_{semi}^z}$

 n_{semi}^z : Nombre de poissons de taille L_{semi}^z échantillonnés dans la strate $\{z, s, e, m\}$.

II.2.2.2. Estimation de la variance des longueurs de poissons par strate $\{z, s, e, m\}$

Pour calculer la variance de la longueur des poissons de la population potentielle par strate $\{z, s, e, m\}$, on a considéré d'une part la population totale formée par le nombre total de poisson capturés N_{sem}^z dans la strate et d'autre part l'échantillon formé par le nombre de poisson n_{sem}^z dans la même strate.

D'où la variance des longueurs de poissons est estimée par la formule suivante :

$$V\hat{a}r(\hat{\overline{L}}_{sem}^{z}) = \left(1 - \frac{n_{sem}^{z}}{N_{sem}^{z}}\right) \frac{\sum_{i} n_{semi}^{z} \left(L_{semi}^{z} - \hat{\overline{L}}_{sem}^{z}\right)^{2}}{n_{sem}^{z} (n_{sem}^{z} - 1)}$$

 $^{L}(S_{sem}^{z})^{2}$ est la dispersion des longueurs de poissons calculée par strate $\{z, s, e, m\}$,

$$\operatorname{Avec}^{L}(S_{sem}^{z})^{2} = \frac{1}{n_{sem}^{z} - 1} \sum_{i} n_{semi}^{z} \left(L_{semi}^{z} - \hat{L}_{sem}^{z} \right)^{2}$$

 f_{sem}^{z} est le taux de l'échantillonnage dans la strate $\{z, s, e, m\}$.

$$f_{sem}^{z} = \frac{n_{sem}^{z}}{N_{sem}^{z}}$$

II.2.3. Méthodes d'optimation d'échantillonnage

Parmi les méthodes d'optimisation utilisées dans de nombreux domaines, la méthode de Power allocation a été retenue, car elle est la mieux adaptée à ce cas traité. Selon Bankier (1988), elle est utilisée dans le cas d'une population composée de plusieurs petites strates et qui varie considérablement d'une strate à l'autre.

Power allocation offre un compromis entre une précision d'un estimateur au niveau de la population et une précision identique dans chacune des strates $\{z, s, e, m\}$. L'Effort de l'échantillonnage (en nombre de poisson) alloué à chaque strate est obtenu en minimisant le système suivant :

$$\begin{cases} \sum_{\{z,s,e,m\}} \left[\left(X_{sem}^z \right)^{\alpha} * CV(\overline{L}_{sem}^z) \right]^2 \\ s/c & \sum_{\{z,s,e,m\}} n_{sem}^z = n \end{cases}$$

Avec : X_{sem}^z une variable auxiliaire connue, qui mesure l'importance de la strate. Dans notre cas, on prend $X_{sem}^z = N_{sem}^z$ (Ardilly, P, 1994).

 α un paramètre tel que $0 \le \alpha \le 1$ quelle que soit la strate

$$CV(\overline{L}_{sem}^z) \text{ le coefficient de variation de l'estimateur } \overline{L}_{sem}^z \text{ par strate } \{z, s, e, m\}.$$

$$CV(\overline{L}_{sem}^z) = \frac{\sqrt{V(\overline{L}_{sem}^z)}}{\overline{L}_{sem}^z} = \sqrt{\frac{(1 - f_{sem}^z)}{n_{sem}^z}} * \frac{L(S_{sem}^z)}{\overline{L}_{sem}^z}$$

On obtient une allocation appelée «power allocation », en référence à la puissance α , de la formule:

$$n_{sem}^{z} = n * \frac{\left(X_{sem}^{z}\right)^{\alpha} * \frac{L\left(S_{sem}^{z}\right)}{\overline{L}_{sem}^{z}}}{\sum_{\{z,s,e,m\}} \left[\left(X_{sem}^{z}\right)^{\alpha} * \frac{L\left(S_{sem}^{z}\right)}{\overline{L}_{sem}^{z}}\right]}$$

Les différents calculs sont effectués en considérant que $\alpha = 1/3$. En effet, en général, la valeur attribuée à ce paramètre est $\frac{1}{2}$ et $\frac{1}{3}$ (Risoto lehtonen et al., 2004). Ce choix permet de donner un poids raisonnable en termes de l'importance d'effectif en capture qui fluctue considérablement d'une strate à l'autre. Le choix de $\alpha = \frac{1}{3}$ offre un compromis de ne pas négliger, ni les strates de petites tailles, ni celles de grandes tailles.

II.3. Traitement des données

La première étape du traitement de la base de données consistait à extraire à partir des deux bases de données ICCAT (Task II size et CAS), toutes les informations de la taille (échantillons et captures totales) correspondant aux principales zones d'échantillonnage définies lors de la réunion opérationnelle sur l'échantillonnage biologique du GBYP (17 févier 2011). Pour ce faire, les critères suivants ont été utilisés : pavillon, code engin, code flottille et code zone d'échantillonnage ICCAT (Annexe 1).

Etant donné que la base de données de la taille des poissons (Task II size) de l'ICCAT contient différents types de mensuration linéaire (FL, CFL, PFFL et CPFFL), ces derniers ont été standardisés en les convertissant en longueur à la fourche correspondante (FL), moyennant les relations de conversion de tailles en usage par l'ICCAT (**Tableau 1**). Ensuite, la valeur centrale de chaque classe de taille standardisée (LF) a été calculée et convertie en poids vif correspondant (RW), en utilisant les deux relations taille/poids du thon rouge adoptées par le SCRS pour les stocks Est et Ouest (**Tableau 2**).

Tableau 1. Différentes relations de conversion de tailles de l'ICCAT

Relation	Auteur	Stock
FL=0.955.CFL	Parrack et al. (1979)	Atlantique Ouest
FL=1.348.PFFL	Turner(Unpublished)	Atlantique Ouest
FL=1.348.CPFFL/0.955	Turner(Unpublished	Atlantique Ouest

Tableau 2. Les relations taille/poids utilisées par l'ICCAT

Relation taille/poids	Auteur	Stock
RWT=2.95.10 ⁻⁵ (FL) ^{2.899}	Rey and Cort (unpublished)	Atlantique Est
RWT=2.861.10 ⁻⁵ (FL) ^{2.929}	Parrack and Phares(1979)	Atlantique Ouest

Cette base de données composée des effectifs de poissons échantillonnés et totaux, répertoriés par poids, par mois, par zone d'échantillonnage, par engin de pêche (totalisant 13.405 enregistrements) a été agrégée par année, par zone d'échantillonnage et par catégorie de poids tel que définie par le GBYP (\leq 3 kg, >3& \leq 25 kg, >25& \leq 100 kg & >100 kg). En employant un ensemble de requêtes sous logiciel «*Access*», cette agrégation a permis d'obtenir 175 strates d'échantillonnage.

III. RESULTATS ET DISCUSSIONS

III.1. Analyse statistique de la base de données

Pour chaque strate $\{z, s, e, m\}$, ont été calculés les principaux paramètres statistiques caractéristiques de l'échantillon en fonction de la taille des poissons, afin de connaître sa fiabilité et sa représentativité par rapport à la population totale.

En effet les différents paramètres statistiques suivants (N_{sem}^z , n_{sem}^z , \overline{L}_{sem}^z , $V\hat{a}r(\hat{L}_{sem}^z)$, $L(S_{sem}^z)$) et $CV(\overline{L}_{sem}^z)$) ont été tous calculés pour les 175 strates identifiées auparavant en fonction de la zone et la catégorie de poids pour chaque année dont les données sont disponibles. L'analyse de ces paramètres a montré que certaines strates présentent des données incomplètes ou non précises, ne permettant pas ainsi de faire des traitements plus poussés.

C'est le cas par exemple de la strate n°5 pour l'ensemble des catégories de poids, dont le nombre de poissons échantillonnés au cours de l'années 2006 est supérieur au nombre total de poissons capturés au cours de la même année (**Annexe 2**). Ainsi, le nombre total de strates d'échantillonnage retenu pour l'analyse d'optimisation est réduit à 143.

Le nombre total de poissons capturés par strate durant une année varie entre 5 et 190.505 individus, avec une moyenne pour l'ensemble des strates de l'ordre de 10.039 poissons. Les tailles des poissons échantillonnés varie entre un minimum de 49 cm et un maximum de 270 cm, avec une moyenne de 152 cm. La variance et la dispersion maximum de la taille des poissons par strate, sont de l'ordre de 274 et 1.956, respectivement (**Tableaux 3 et 4**).

Tableau 3 : Paramètres statistiques des poissons échantillonnés et totaux par strate

	Min strate / an	Max strate / an	Moy strate / an	Total
n capture échantillonnée	2	35.960	1.655	237
N capture totale	5	190.505	10.039	1.436

Tableau 4 : Paramètres statistiques des tailles des poissons par strate

<u> </u>			
	Min	Max	Moy
	strate / an	strate / an	strate / an
Taille moyenne du poisson en cm	49	270	152
Variance (Var)	0	274	8
Dispersion (S)	0	1956	279
Cæfficient de variation (Cv)	0,0	16,65	1,48

III.2. Détermination du coefficient de variation en fonction du niveau d'échantillonnage

La méthode d'optimisation qui a été choisie pour déterminer les coefficients de variation de la taille en fonction du niveau d'échantillonnage par strates, est celle de Power allocation. Les estimations des paramètres ${}^L(S_{sem}^z)$, \overline{L}_{sem}^z et (N_{sem}^z) , pour chaque strate, nécessaires à l'application de cette méthode sont basées sur les hypothèse suivantes :

a) Si les dispersions calculées au sein de la même strate, varient considérablement d'une année à l'autre, les paramètres $^L(S_{sem}^z)$, \overline{L}_{sem}^z et (N_{sem}^z) , sont calculés sur la base d'une moyenne annuelle ;

b) Si les dispersions sont très proches d'une année à l'autre, les paramètres ${}^L(S_{sem}^z)$, \overline{L}_{sem}^z et (N_{sem}^z) retenus, sont ceux correspondant à l'année pour laquelle la taille de l'échantillon et le nombre total de poissons capturés sont les plus élevés.

Ces estimations ont permis ainsi de mettre en place une matrice de 41 strates/catégorie ayant chacune les trois paramètres suivants $^L(S_{sem}^z)$ \overline{L}_{sem}^z (N_{sem}^z) , qui ont été utilisés pour le calcul des allocations par strate. En faisant varier le nombre total de poissons échantillonnés dans l'ensemble des strates, les variations relatives aux coefficients de variation Cv obtenus sont présentées dans les Figures n°1, 2 3.

L'interprétation des résultats montre que le coefficient de variation (Cv) est relativement faible (inférieur à 0,3) pour l'ensemble des strates et catégories, notamment à partir d'un niveau d'échantillonnage n = 5000 avec une tendance progressive à la baisse. Il devient alors relativement plus stable à partir de n = 9000 pour les strates de catégorie (>3& \leq 25 kg) et n = 13500 pour les strates de catégories (>25& \leq 100 kg) et (>100 kg).

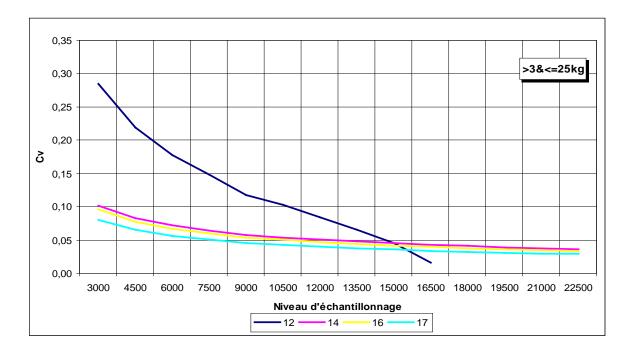


Figure 1: variation du coefficient de variation de la taille des poissons en fonction du niveau d'échantillonnage pour les strates de catégorie (>3&\leq 25 kg).

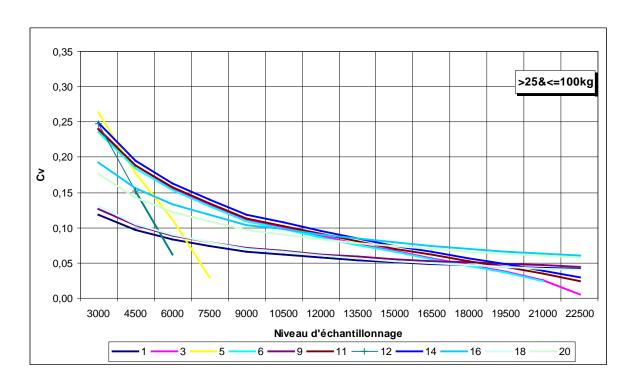


Figure 2: variation du coefficient de variation de la taille des poissons en fonction du niveau d'échantillonnage pour les strates de catégorie (>25&≤100 kg)

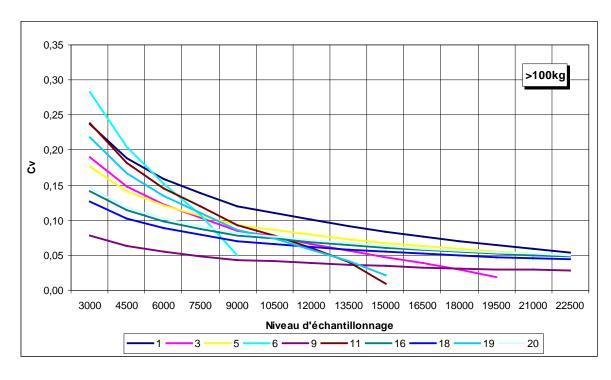


Figure 3 : variation du coefficient de variation de la taille des poissons en fonction du niveau d'échantillonnage pour les strates de catégorie (>100 kg)

III.3. Détermination du niveau optimal d'échantillonnage

Les valeurs du niveau optimal d'échantillonnage relatif à chaque strate/catégorie, sont attribuées en fonction du niveau d'échantillonnage dont le coefficient de variation est le plus stable possible. Ces valeurs varient d'une strate à l'autre d'un maximum de 1366 individus pour la strate n° 9 de catégorie (> $25\&\le100~kg$) dont la dispersion des tailles est de 326,29 et un minimum de l'ordre de 72 individus attribué à la strate n° 18 catégorie (> $25\&\le100~kg$) qui présente une dispersion de 92,9 (**Tableaux 5, 6 et 7**).

Tableau 5 : niveau d'échantillonnage optimal et le cœfficient de variation relatifs à la catégorie (>3&≤25 kg).

					_ 0	
Strate	N_{sem}^z	n_{sem}^z	\overline{L}_{sem}^z	$L(S_{sem}^z)$	Allocation optimale	$CV(\overline{L}_{sem}^z)$
12	995	62	81,4	342,1	714	0,08
14	22594	2890	86,8	109,1	529	0,05
16	2037	1413	100,1	50,0	94	0,05
17	88069	2659	88,8	106,7	712	0,04

Tableau 6 : niveau d'échantillonnage optimal et le cœfficient de variation relatifs à la catégorie (>25&<100 kg).

variation relatins a la categorie (>2562100 kg).									
Strate	N_{sem}^{z}	n_{sem}^z	\overline{L}^z_{sem}	$L(S_{sem}^z)$	Allocation optimale	$CV(\overline{L}_{sem}^z)$			
1	6492	94	135,3	152,4	357	0,06			
3	749	81	142,2	366,7	448	0,08			
5	149	10	151,0	391,6	146	0,03			
6	659	659	142,5	338,5	308	0,10			
9	39769	15003	138,6	326,3	1366	0,06			
11	871	206	140,6	374,3	432	0,09			
12	89	23	127,7	278,8	83	0,06			
14	1160	441	144,8	454,2	701	0,07			
16	5719	2565	133,4	392,2	894	0,09			
18	418	20	163,4	92,9	72	0,06			
20	7031	442	147,5	386,9	854	0,08			

Tableau 7 : niveau d'échantillonnage optimal et le cœfficient de variation relatifs à la catégorie (>100 kg)

Strate	N_{sem}^z	n_{sem}^z	\overline{L}_{sem}^z	$L(S_{sem}^z)$	Allocation optimale	$CV(\overline{L}_{sem}^z)$
1	2166	25	226,6	762,2	648	0,11
3	141	18	192,5	179,1	82	0,07
5	971	384	216,4	301,2	264	0,07
6	326	326	216,5	717,0	242	0,11
9	26509	10440	198,5	151,6	484	0,03
11	266	63	201,7	390,5	166	0,09
16	6634	2083	210,0	341,6	585	0,06
18	8846	1050	230,1	325,7	560	0,06
19	170	170	218,2	302,1	102	0,09
20	11209	747	207,4	429,9	789	0,07

Tableau 8 : Menu-table- Biological sampling scheme

			Size classes to be sampled					
	_		Age 0	Juveniles	Medium	Large		
		s trate	<=3 kg	>3 & <=25 kg	>25 & <=100 kg	>100 kg		
	Northern Levantine Sea (medium-large): Turkish PS	1			357	648		
Eastern Mediterranean	North Egypt coast (medium-large): PS if in activity in that area							
	Crete (medium-large fish): Greek LL	3			448	82		
	Gulf of Syrta (medium-large): French, Italian and Libyan PS	4						
	Malta (medium-large): Maltese LL	5			146	264		
Central Mediterranean	South of Sicily and Ionian Sea (medium-large): Italian PS and LL	6			308	242		
	Adriatic Sea (small): Croatian and Italian PS	7	50	50				
	Gulf of Gabes (small): Tunisian PS	8	50	50				
	•							
	Balearic (medium-large): French and Spanish PS	9			1366	484		
	South Tyrrhenian (medium-large): Italian PS	10			50	50		
	Sardinia (medium-large): Italian Trap	11		50	432	166		
	Catalan-Gulf of Lion-Ligurian (small): Spanish, French and Italian							
Vestern Mediterranean	artisanal fleets, French sport	12		714	83			
	Tyrrhenian (small): Italian handline	13	50					
	Southern Spain (juveniles & medium size): Spanish LL	14	50	529	701			
	North African coasts (medium size): Algerian PS	15						
	Gibraltar (small, medium-large): Moroccan and Spanish HL, Portuguese &							
	Spanish traps, Spanish BB	16	50	94	894	585		
ortheast Atlantic	Bay of Biscay (small): Spanish BB & French TW	17		712				
	Western coast of Africa (medium-large): Morrocan Trap	18			72	560		
	Madeira – Canary Islands (medium-large): Portuguese & Spanish BB	19			50	102		
Central North Atlantic	Central and North (medium-large): Japanese & Taiwanese I I	20			854	789		
Jeneral 1 101 til 1 itimilitie	, C, 1	_		50		763		
Central North Atlantic	Central and North (medium-large): Japanese & Taiwanese LL Azores (small-medium): Portuguese artisanal	20 21		50	854 50			

Il est à remarquer que les strates qui présentent un échantillon (n_{sem}^z) et une dispersion calculée très faibles, un minimum théorique de l'ordre de 50 individus leur a été attribué sur recommandation de l'ICCAT. C'est le cas des strates 7, 8, 11, 21 dans la catégorie (>3& \leq 25 kg), les strates 10, 19, 21 dans la catégorie (>25& \leq 100 kg) et la strate 10 dans la catégorie (>100 kg).

Pour les strates ayant un effectif d'échantillon (n_{sem}^z) supérieur à la population total (N_{sem}^z) , avec (n_{sem}^z) relativement importante, l'allocation optimale théorique est estimée en considérant l'effectif de l'échantillon (n_{sem}^z) égale à la population total (N_{sem}^z) . C'est le cas de la strate 19 catégorie (>100 kg) et la strate 6 catégories (>3& \leq 25 kg) et (>25& \leq 100 kg), (**Tableau 8**). Concernant la catégorie juvénile (\leq 3 kg), faute de données, un minimum de 50 individus a été attribué aux strates présentant d'éventuelles captures de juvéniles. Selon les termes de référence, ces strates sont 7, 8, 13, 14 et 16.

L'examen des résultats (**Tableau 8**) montre que les niveaux d'échantillonnage les plus élevés sont alloués aux strates présentant une grande population (capture) et une forte dispersion. Il est à rappeler que, conformément aux termes de référence de cette étude, les strates 2, 4 et 15 (indiquées en e couleur jaune sur le tableau 8) ne sont pas tenues en compte dans cette analyse.

III.4. Estimation du niveau d'échantillonnage en considérant la contrainte du budget

Comme le coût unitaire par strate est inconnu (très peu de scientifiques ayant fourni cette information), on a considéré, dans la présente analyse, un coût unitaire moyen par strate de 25 euros à titre indicatif. Ce coût représente uniquement les frais liés à l'effort de l'échantillonnage et n'offre pas la possibilité d'achat du poisson à échantillonner.

Si on applique ce coût unitaire, le budget total de GBYP de 470.000 euros, alloué à l'échantillonnage biologique pour les deux années (2011-2012), permettra un niveau d'échantillonnage de n=9400 poissons par an. Les allocations attribuées à chaque strate en fonction de ce budget sont présentées dans le **Tableau 8**, avec leurs cœfficients de variation respectifs. Les estimations ont été basées sur la méthode «Power Allocation» tout en considérant $\alpha=0,33$. Le niveau d'échantillonnage estimé (9 297) inclut aussi l'effectif total alloué (250 individus) aux strates de la catégorie Ages 0, ainsi que l'effectif total alloué (400 individus) aux strates ayant une minimale allocation à cause des incohérences des données.

Tableau 9 : Estimation du niveau d'échantillonnage en considérant la contrainte du budget alloué.

Strate	Catégorie	Allocation / budget	Cv
1	>25&<=100kg	261	0,11
1	>100kg	540	0,08
3	>25&<=100kg	290	0,16
3	>100kg	60	0,09
5	>25&<=100kg	146	0,16
5	>100kg	171	0,12
6	>25&<=100kg	256	0,11
6	>100kg	242	0,12
7	<=3kg	50*	-
7	>3&<=25kg	50*	-
8	<=3kg	50*	-
8	>3&<=25kg	50*	-
9	>25&<=100kg	996	0,01
9	>100kg	282	0,02
10	>25&<=100kg	50*	-
10	>100kg	50*	-
11	>3&<=25kg	50*	-
11	>25&<=100kg	315	0,01
11	>100kg	154	0,06
12	>3&<=25kg	520	0,06
12	>25&<=100kg	83	0,09
13	<=3kg	50*	-
14	<=3kg	50*	-
14	>3&<=25kg	441	0,05
14	>25&<=100kg	409	0,11
16	<=3kg	50*	-
16	>3&<=25kg	78	0,16
16	>25&<=100kg	652	0,14
16	>100kg	379	0,18
17	>3&<=25kg	663	0,05
18	>25&<=100kg	53	0,07
18	>100kg	363	0,16
19	>25&<=100kg	50*	-
19	>100kg	95	0,11
20	>25&<=100kg	623	0,07
20	>100kg	575	0,13
21	>3&<=25kg	50*	-
21	>25&<=100kg	50*	-
Total allocation d'échantillonnage	PICCAT	9 297	

^{*}niveau d'échantillonnage recommandé par l'ICCAT

Pour les strates 5, 12 catégories (>25&≤100 kg) et la strate 6 catégorie (>100 kg), les allocations calculées tenant compte de budget, ont été supérieur à l'effectif de leur population totale ; elles ont été remplacées par les allocations qui correspondent à leurs allocations optimales estimées sans tenir compte du budget, soit une différence de 103 individus en moins.

VI. CONCLUSION ET RECOMMANDATIONS

La présente étude a permis de ressortir un niveau d'échantillonnage optimal de l'ordre de 12.282 individus. Rapporté sous la contrainte du budget de GBYP, ce niveau d'échantillonnage est ramené 9.297 individus, soit une différence en moins de 2.985 individus. Cependant, la précision en termes de coefficient de variation demeure comparable entre les deux cas (cas optimisé et cas sous contrainte budgétaire).

L'étude a également montré que les bases de données de taille (CAS et Task II size data) présentent des défaillances en termes d'insuffisance d'échantillonnage (informations manquantes ou incomplètes) et d'incohérence entre effectifs échantillonnés et capturés. Ces contraintes ont conduit à prendre un certain nombre d'hypothèses pour minimiser la variabilité des données d'où on recommande de :

- Améliorer la collecte des données d'échantillonnage de taille et des données biologiques (croissance, maturité, etc.), au niveau de l'ensemble des strates, afin d'en tenir compte dans les futures analyses d'optimisation d'échantillonnage;
- Améliorer l'information et les données sur la distribution spatiale des flottilles des senneurs opérant en Méditerranée afin de mieux cerner leurs zones de pêche.

V. BIBLIOGRAPHIE

Risto lehtonen and Erkki Pahkinen, 2004. Practical Methods for Design and Analysis of Complex Surveys. *Second Edition, John Wiley & Sons, Ltd.*

Ardilly, P., 1994. Les techniques de sondage. *Edition Technip – Paris*.

Bankier, Michael D., 1988. Power Allocations: Determining Sample Sizes for. Subnational Areas. *American Statistician, Vol. 42, pp. 174-177.*

Cochran, William G., 1977. Sampling Techniques, 3rd ed. John Wiley and Sons, New York.

Anonyme, 2009. Report of the 2009 SCRS Meeting,

Anonyme, 2010. Report of the 2010 Atlantic Bluefin tuna stock assessment session (Madrid, Spain – September 6 to 12, 2010)

Parrack, M. and P. Phares, 1979. Aspects of the growth of Atlantic bluefin tuna determined from mark-recapture data. *Col.Vol.Sci.Pap. ICCAT*, 8 (2): 356-366.

Turner, 1986. Length to weight and weight to length conversions for swordfish in the western North Atlantic and Gulf of Mexico. *Document No. 86/11 presented at the 1986 NMFS/SEFC Swordfish Assessment Workshop*. (Unpublished).

www.iccat.int

ANNEXES

Annexe 1. Les principales zones d'échantillonnage du thon rouge (BFT) du GBYP et les codes ICCAT utilisés pour leur identification

N°	Région	Zone d'échantillonnage	Pavillon	Code engin	Code flottille	Code zone échantillonnage ICCAT
1		Mer du levant septentrional	Turquie	PS	TUR	BF59
2	Méditerranée orientale	Côte égyptienne septentrionale	Egypte	PS		
3		Crète	Grèce	LL	EU.GRC	BF59
4*		Golf de Syrte	France- Italie-Libye	PS	Imprécise	BF59
5		Malte	Malte	LL	EU.MLT	BF59
6		Sud de la Sicile et Mer ionienne	Italie	PS-LL	EU.ITA-IT- IONIAN & EU.ITA-IT- SIC.ST	BF59
7		Mer Adriatique	Croatie- Italie	PS	EU.ITA-IT- ADRI.C & HRV	BF59
8	Méditerranée centrale	Golf de Gabès	Tunisie	PS	TUN-TUN- KELIBIA & TUN-TUN- MAHDIA & TUN-TUN- MONAST & TUN-TUN-SFAX & TUN-TUN-SSAX SOUSSE	BF59
9		Iles Baléares	France- Espagne	PS	EU.ESP & EU.ESP-ES- MEDI_PS & EU.FRA & EU.FRA-FR	BF59
10		Mer Tyrrhénienne Méridionale	Italie	PS	EU.ITA-IT-TY.LI	BF59
11	Méditerranée	Sardaigne	Italie	TP	EU.ITA-IT- SARDHA	BF59
12	Occidentale	Côtes catalanes, Golf du Lion, mer de Ligurie	Espagne- France-Italie	GN-HL- SU	EU.ESP & EU.FRA & EU.ITA	BF59
13		Mer Tyrrhénienne	Italie	HL	EU.ITA-IT- TYRREN	BF59
14		Espagne méridionale	Espagne	LL	EU.ESP & EU.ESP-ES-SWO	BF59
15*		Côte africaine septentrionale	Algérie	PS		
16	Atlantique Nord- Est	Détroit de Gibraltar	Maroc- Espagne- Portugal	HL-TP- BB	EU.ESP & EU.PRT-PT- MAINLND & MAR	BF58

17		Golf de Gascogne	Espagne- France	BB-TW	EU.ESP-ES- CANT_BFT & EU.FRA & EU.FRA-FR	BF54
18		Côte occidentale de l'Afrique	Maroc	TP	MAR	BF58
19		Madère-Iles canaries	Portugal- Espagne	ВВ	EU.ESP-ES- CANARY & EU.PRT-PT- MADEIRA	BF58
20	Atlantique Nord central	Central et Septentrionale	Japon- Taiwan	LL	JPN & TAI	BF51, BF52, BF53, BF54, BF55, BF56, BF57, BF58
21		Açores	Portugal	BB	EU.PRT-PT- AZORES	BF58

^{*}Strates surlignées en jaunes n'ont pas été utilisées dans l'analyse.

Annexe 2. Les principaux paramètres statistiques par strate

Zone échantillonnage	Année	Catégorie	N_{sem}^z	n z	\overline{L}^{z}_{sem}	$V\hat{a}r(\hat{\overline{L}}_{sem}^z)$	$^{L}(S_{sem}^{z})$	$CV(\overline{L}_{sem}^z)$	Strates supprimées
1	2005	>3&<=25kg	2979	20	104,0	0,73		0,86	
1	2005	>25&<=100kg	6555	44	133,9	4,72	209,14	2,17	
1	2005	>100kg	2384	16	224,7	42,31	681,56	6,50	
1	2006	>3&<=25kg	1822	37	97,3	7,68	290,20	2,77	
1	2006	>25&<=100kg	9202	204	123,9	0,48	101,01	0,70	
1	2006	>100kg	1566	34	228,6	11,76	408,67	3,43	
1	2007	>3&<=25kg	319	3	97,0	33,02	100,00	5,75	
1	2007	>25&<=100kg	3718	35	148,1	4,17	147,18	2,04	
1	2007	>100kg	2550	24	226,4	49,38	1196,33	7,03	
3	2005	>3&<=25kg	1593	131	95,9	0,76	107,91	0,87	
3	2005	>25&<=100kg	1566	143	143,9	2,12	333,73	1,46	
3	2005	>100kg	277	31	187,8	0,48	16,83	0,69	
3	2005	<=3 kg	45	4	52,0	0,00	0,00	0,00	
3	2006	>3&<=25kg	2729	470	83,1	0,10	57,96	0,32	
3	2006	>25&<=100kg	261	64	131,5	4,76	403,27	2,18	
3	2006	>100kg	20	6	199,5	43,02	367,50	6,56	
3	2008	>3&<=25kg	46	4	92,0	57,04	250,00	7,55	
3	2008	>25&<=100kg	421	36	151,3	9,22	363,08	3,04	
3	2008	>100kg	127	17	190,2	7,79	152,94	2,79	
5	2005	>3&<=25kg	1	2	102,0	-5,74	8,00		*
5	2005	>25&<=100kg	12	14	152,0	-2,24	178,62		*
5	2005	>100kg	1288	174	220,3	1,19	239,57	1,09	
5	2006	>3&<=25kg	9	16	99,6	-1,75	36,52		*
5	2006	>25&<=100kg	71	126	151,7	-2,05	338,35		*
5	2006	>100kg	1040	1827	226,9	-0,13	313,93		*
5	2006	<=3 kg	1	2	23,0	0,00	0,00	0,00	*
5	2007	>3&<=25kg	30	2	105,0	0,00	0,00	0,00	
5	2007	>25&<=100kg	149	10	151,0	36,53	391,56	6,04	
5	2007	>100kg	641	43	213,6	6,78	312,52	2,60	
5	2008	>3&<=25kg	15	18	102,3	-0,98	81,53		*
5	2008	>25&<=100kg	342	416	136,4	-0,13	249,66		*
5	2008	>100kg	612	744	223,8	-0,13	431,05		*
5	2009	>3&<=25kg	52	74	101,2	-0,39	67,59		*
5	2009	>25&<=100kg	417	423	138,1	-0,01	329,31		*
5	2009	>100kg	984	935	215,2	0,02	351,64	0,14	
5	2009		5	5	39,8	0,13	44,20	0,36	*
6	2006	>3&<=25kg	19	194	81,4	-13,64	284,43		*
6	2006	>25&<=100kg	17	659	142,5	-19,03	338,48		
6	2006	>100kg	5	326	216,5	-140,63	717,03		
6	2006	<=3 kg	59	472	45,4	-0,14	9,42		*
7	2006	>3&<=25kg	9522	200	99,1	0,02	4,01	0,14	
7	2006	>25&<=100kg	3838	130	130,3	0,11	14,58	0,33	
8	2007	>25&<=100kg	52976	1095	133,5	0,13	144,09	0,36	
8	2008	>3&<=25kg	7405	320	104,1	0,02	6,13	0,14	
8	2008	>25&<=100kg	52197	2498	130,5	0,05	125,43	0,22	
8	2008	>100kg	115	5	201,0	5,74	30,00	2,40	
9	2006	>3&<=25kg	82779	35959,92997	91,5	0,00	88,74	0,04	

1 _1		l l			امييا			ا ـ . ـ ا	l
9	2006		25374	12405,68576	141,8	0,01	321,22	0,12	
9	2006	>100kg	39953	20138,07794	201,2	0,00	190,63	0,07	
9	2007	>3&<=25kg	35507	5405,48255	100,2	0,02	155,40	0,16	
9	2007	>25&<=100kg	76334	22384,92383	125,8	0,01	306,63	0,10	
9	2007	>100kg	39152	13145,96154	206,6	0,01	141,84	0,08	
9	2008	>3&<=25kg	1134	872	107,0	0,00	0,00	0,00	
9	2008	>25&<=100kg	26037	19011	138,7	0,01	353,22	0,07	
9	2008	>100kg	14953	6100	189,7	0,01	100,68	0,10	
9	2009	>3&<=25kg	126	25	99,0	0,00	0,00	0,00	
9	2009	>25&<=100kg	31329	6209	148,2	0,04	324,08	0,20	
9	2009	>100kg	11979	2374	196,5	0,06	173,10	0,24	
10	2006	>3&<=25kg	8344	232	82,0	0,73	173,93	0,85	
10	2006	>25&<=100kg	539	15	115,7	0,30	4,67	0,55	*
10	2006		36 21	1	50,0	7.50	40.70	2.75	Ψ
11	2006			5	104,8	7,59	49,70	2,75	
11	2006	>25&<=100kg	871	206	140,6	1,39	374,31	1,18	
11	2006	>100kg	266	63	201,7	4,73	390,50	2,18	
12	2005	>3&<=25kg	995	62	81,4	5,17	342,11	2,27	
	2005	>25&<=100kg	89	23	127,7	8,98	278,84	3,00	
12	2005	>100kg	87	10	209,0	14,35	162,22	3,79	
12	2005	<=3 kg	79	2	50,0	0,00	0,00	0,00	*
12	2006	>25&<=100kg	17	487	115,0	-1,03	17,89		*
12	2006	>100kg	34	1	185,0	0.04	20.00	4.50	•
14	2005	>3&<=25kg	12	5	94,0	2,31	20,00	1,52	
14	2005	>25&<=100kg	383	120	160,3	1,56	273,38	1,25	
14	2005		2354	796 1734	209,4	0,16	193,23	0,40	
14	2006	>3&<=25kg	25635	1724	88,6	0,10	181,77	0,31	
14	2006 2006	>25&<=100kg >100kg	646 1070	245 661	153,3 208,7	1,23	484,63 286,97	1,11	
14	2007	>100kg	27499	1008	90,6	0,17 0,11	118,26	0,41 0,34	
14	2007	>3&<=23kg >25&<=100kg	1870	689	140,3	0,61	666,62	0,34	
14	2007	>100kg	1605	1301	205,4	0,01	356,89	0,78	
14	2007	<=3 kg	911	22	48,5	0,03	4,64	0,23	
14		>3&<=25kg	25156	4472	80,8	0,21	43,94	0,43	
14	2008	>25&<=100kg	1065	516	134,9	0,46	456,52	0,68	
14	2008	>100kg	2332	1643	213,1	0,46	330,24	0,08	
14	2009	>3&<=25kg	12086	4354	87,1	0,00	92,34	0,24	
14	2009	>25&<=25kg	1834	634	135,1	0,40	389,66	0,12	
14	2009	>100kg	1577	1147	214,2	0,40	328,62	0,03	
14	2009	<=3 kg	30	10	50,9	0,05	0,77	0,23	
16	2005	>3&<=25kg	473	422	96,1	0,03	134,07	0,19	
16	2005	>25&<=100kg	890	568	141,0	0,43	671,66	0,65	
16	2005	>100kg	5702	2373	214,9	0,07	284,81	0,26	
16	2006	>3&<=25kg	2836	2305	99,8	0,00	44,39	0,06	
16	2006	>25&<=100kg	10803	5974	118,4	0,01	100,31	0,09	
16	2006	>100kg	4369	283	207,5	1,25	378,87	1,12	
16	2007	>3&<=25kg	3268	1567	104,3	0,00	13,65	0,07	
16	2007	>25&<=100kg	12098	3624	119,1	0,03	139,43	0,16	
16	2007	>100kg	6107	535	213,4	0,71	415,96	0,84	
16	2008	>3&<=25kg	104	68	102,6	0,22	42,93	0,47	
16	2008	>25&<=100kg	1521	832	143,8	0,32	596,54	0,57	
16	2008	>100kg	8788	3578	210,5	0,06	354,57	0,24	
10	_000	- 100kg	3,00	00.0	0,0	0,00	304,01	0,24	

16	2009	>3&<=25kg	3504	2704	97,7	0,00	14,79	0,04	
16	2009	>25&<=100kg	3282	1827	144,4	0,11	453,01	0,33	
16	2009	>100kg	8205	3646	203,9	0,04	273,81	0,20	
17	2005	>3&<=25kg	190505	6351	81,0	0,02	123,99	0,14	
17	2005	>25&<=100kg	6812	1115	131,6	0,18	238,14	0,42	
17	2005	>100kg	61	45	186,0	0,17	30,18	0,42	
17	2006	>3&<=25kg	115036	1884	84,0	0,06	106,26	0,24	
17	2006	>25&<=100kg	7785	604	141,6	0,68	447,14	0,83	
17	2006	>100kg	243	32	193,8	5,70	210,00	2,39	
17	2007	>3&<=25kg	50093	1095	94,8	0,11	126,85	0,34	
17	2007	>25&<=100kg	32328	1239	131,8	0,27	350,42	0,52	
17	2007	>100kg	1197	93	189,7	0,94	94,62	0,97	
17	2008	>3&<=25kg	59841	1853	90,3	0,04	70,79	0,19	
17	2008	>25&<=100kg	20049	861	132,8	0,33	297,87	0,58	
17	2008	>100kg	535	53	187,2	1,06	62,65	1,03	
17	2009	>3&<=25kg	24868	2110	94,0	0,05	105,55	0,21	
17	2009	>25&<=100kg	16608	2516	137,2	0,13	380,45	0,36	
17	2009	>100kg	849	203	192,4	0,58	156,05	0,76	
18	2006	>25&<=100kg	795	21	169,9	2,15	46,43	1,47	
18	2006	>100kg	8369	188	226,0	2,44	469,67	1,56	
18	2007	>25&<=100kg	324	12	167,4	4,18	52,08	2,04	
18	2007	>100kg	8923	311	233,6	0,70	224,09	0,83	
18	2008	>100kg	9434	64	227,5	6,94	447,40	2,63	
18	2009	>25&<=100kg	134	26	153,0	5,58	180,04	2,36	
18	2009	>100kg	8660	3636	233,4	0,03	161,53	0,16	
19	2005	>100kg	212	4	206,5	137,44	560,33	11,72	
19	2008	>3&<=25kg	3	10	62,6	-2,36	8,93		*
19	2008	>25&<=100kg	2	7	124,6	-25,01	66,29		*
19	2008	>100kg	47	170	218,2	-4,69	302,10		
19	2008	<=3 kg	0	1	52,0				*
20	2005	>3&<=25kg	951	94	95,6	0,74	76,94	0,86	
20	2005	>25&<=100kg	5285	673	149,2	0,56	430,57	0,75	
20	2005	>100kg	10859	1205	203,7	0,22	292,83	0,46	
20	2006	>3&<=25kg	577	35	89,3	2,53	94,26	1,59	
20	2006	>25&<=100kg	4897	315	143,8	1,11	374,77	1,06	
20	2006	>100kg	8759	541	210,4	0,83	476,07	0,91	
20	2007	>3&<=25kg	4769	324	96,3	0,06	20,49	0,24	
20	2007	>25&<=100kg	7426	588	146,1	0,56	359,60	0,75	
20	2007	>100kg	8573	731	205,0	0,51	408,83	0,72	
20	2008	>3&<=25kg	209	3	103,3	43,81	133,33	6,62	
20	2008	>25&<=100kg	10517	192	151,1	1,96	382,46	1,40	
20	2008	>100kg	16643	509	210,5	1,03	541,90	1,02	