
ATLANTIC-WIDE RESEARCH PROGRAMME ON BLUEFIN TUNA 

(ICCAT-GBYP – PHASE 5 - 2015) 

POWER ANALYSIS AND COST-BENEFIT ANALYSIS FOR THE ICCAT 

GBYP AERIAL SURVEY ON BLUEFIN TUNA SPAWNING 

AGGREGATIONS 

Tender No. ICCAT-GBYP 08/2015, ITEM A 

 

 

Final Draft Report 

12 February 2016 

Ana Cañadas  & Abdelouahed Ben Mhamed 

Alnilam Research and Conservation Ltd  

Pradillos 29, 28491 Navacerrada, Madrid, Spain 

 

Background 

The objectives of the comprehensive ICCAT Atlantic-Wide Research Programme on Bluefin Tuna (GBYP) 

are to improve (a) the understanding of key biological and ecological processes, (b) current assessment 

methodology, (c) the management procedures, and (d) advice. 

Key tasks are to reduce uncertainty in stock assessment and to provide robust management advice. This 

requires improved knowledge of key biological processes and parameters. However, currently almost all the 

data used in stock assessments are obtained from the fisheries-dependent data. It is therefore important to 

obtain data from alternative sources, i.e. aerial survey or tagging studies, in order to verify the assumptions 

made when conducting the assessments. 

Important parts of the mayor research tasks under the ICCAT Atlantic-wide Bluefin Tuna Research 

Programme (GBYP) are an aerial survey on bluefin spawning aggregations in the Mediterranean Sea, a large, 

wide and intensive scientific tagging program to address several important biological and ecological topics 

regarding Atlantic bluefin tuna, and an Atlantic-wide sampling programme including a wide range of 

biological studies (ageing, genetics, micro.-chemistry and otolith shape analyses). 

The comprehensive GBYP activities were initially assessed by a panel of external reviewers in 2013. The 

ICCAT GBYP Steering Committee recommended to carry out analysis on the main GBYP research activities 

before the end of Phase 5 (February 21, 2016), in order to have a more focused overview of the works carried 

out so far and have further details for adopting the best research strategy in Phase 6. 

At the 2015 SCRS meeting it was recognized that if the GBYP continues to use the same methods without 

evaluating how the data and knowledge gained will improve the scientific advice framework, the programme 

may fail to meet management objectives. To avoid this potential risk it is essential to conduct a cost/benefit 

analysis to help design a programme which will meet the programme objectives in a cost-effective way. This 

also requires a clear definition of objectives and milestones to monitor progress. 

SCRS/2015/146 detailed how to conduct a power analysis for one of the GBYP programmes, specifically for 

the aerial survey. The benefits of a particular aerial survey design also depend on the knowledge gained by 

other programmes of the GBYP, i.e. on population structure and behavior. Conducting a full cost-benefit 

analysis of the main research programmes of the GBYP, however, will not allow a decision on the aerial survey 

programme to be made before the start of the 2016 campaign. 

Taking into account that the recent SCRS BFT species group meeting clarified that several fishery-related 

indices could not be updated and therefore used in the next assessment, the potential importance of any 

additional GBYP data may be increased for future assessments and for the MSE process. 



Objectives 

The primary objective is to evaluate whether the aerial survey can provide a reliable and robust index of 

abundance of the spawning stock with sufficient precision to be used in BFT stock assessment. The specific 

objectives are: 

1. A comprehensive review of the ICCAT GBYP surveys conducted so far and an analysis of the power of the 

current design to detect changes in the stock for a range of population growth rates. 

2. An analysis of the design and costs to detect a range of population growth rates in 3, 5 and 10 years with no 

reduction in the additional variance. 

3. An analysis of the design and costs to detect a range of population growth rates in 3, 5 and 10 years with a 

reduction in additional variance. Discussion on how other programmes under the GBYP, e.g. tagging or a 

better understanding or habitat usage should be designed. 

4. Provision of Recommendations. 

 

  



I. Comprehensive review of the ICCAT GBYP surveys conducted so far and an 

analysis of the power of the current design to detect changes in the stock for a 

range of population growth rates 

I.1 Review of how the different designs used in the surveys conducted in the first 

four years affected the results 

The ICCAT GBYP is now known in marine science as a one of the most challenging and efficient 

research programme, currently the most comprehensive on one single marine species.  The value of 

the programme is increased by the fact that some scientific activities, namely the aerial survey for 

spawning aggregations, were made possible only because they have been supported by an 

international organization and by the ICCAT CPCs concerned, all working for the common purpose 

of making feasible an otherwise impossible endeavor. The coordination team faced enormous 

difficulties, particularly when extended surveys have been planned. The aerial surveys carried out so 

far by ICCAT GBYP have been the first over a so extended area and in so many different FIRs 

belonging to a number of countries, having all different rules. Just the fact that these surveys have 

been carried out is a standing alone result for ICCAT. The scientific results of the survey can be 

obviously discussed and for sure they could improve under more favourable conditions and medium-

term planning. 

 

I.1.1 Data availability and analysis 

The information available from previous reports for the surveys of 2010, 2011, 2013 and 2015 was 

used, including the parallel work being done as an in-depth analyses of the collected data to assess 

the reliably and consistency with which the survey protocols have been implemented within years 

among the different companies and airplanes.  

 

I.1.2 Results and discussion 

a) Spatial extent of the surveys 

Most of the inside sub-areas have been slightly (A, C, G) or to a greater extent (E) modified across 

the years. Table 1 shows these variations, as well as the overlap areas defined in 2015; i.e. the areas 

common to all years and therefore comparable (see report Cañadas and Vazquez, 2015). 

 

Table 1. Surface area (km2) of the inside sub-areas surveyed each year, and the surface area of the 

overlap areas defined in 2015 

 Inside sub-areas 
Year A C E G Total 

2010 62,150 54,636 132,453 68,819 318,058 

2011 62,150 54,636 104,366  221,151 

2013 62,194 56,329   82,054 56,329 254,754 

2015 62,150 64,610 117,718 68,013 312,491 

Overlap 61,933 53,868 93,614 56,211 265,627 

 

The CVs are generally lower when estimating abundance in the overlap areas is compared with the 

pre-overlap areas (see report Cañadas and Vazquez, 2015) but equally important is that by using every 

year the same area, comparisons are possible without the potential bias created by changing the extent 

of the areas. Furthermore, due to logistic constraints, some years there have been changes in the 

survey areas after the survey design was done, and some sectors remained unsurveyed (the problem 



is mostly in E), compromising the equal coverage probability assumption of the line transect 

methodology. These changes and unsurveyed sectors should be avoided in future surveys. Of course, 

due to the many problems in the Mediterranean (security, political issues, sudden flight restrictions, 

etc.), these facts cannot be fully excluded. 

The choice of the areas was originally done based on the available scientific knowledge of the 

spawning behaviour of BFT by the experts and of 3-year VMS data. We recommend that the selected 

overlap areas are maintained as stand-alone areas for the survey design, independently on potential 

extensions when it is considered necessary, so comparisons are possible in future surveys. 

Another issue to consider is to survey or not the outside areas. The effort in the inside areas was very 

much reduced in 2013 and 2015 due to the allocation of 50% of the effort to the outside areas. The 

amount of observations in the outside areas have been minimum, not even allowing a robust 

abundance estimation in most cases. The reduction of effort allocated in the inside areas in 2013 and 

2015 has yielded a reduced amount of observations of BFT in them and an increased CV in most 

cases (decrease of precision in the estimates), which is an undesirable effect, especially when there is 

little or no gain in information in the outside areas. This large reduction in effort in the inside areas 

makes also much more difficult to compare between years with so different survey effort. In this 

sense, we recommend that the amount of effort is maintained in the inside areas every year of survey. 

When an extended survey will be decided, then it would be necessary to allocate extra resources to 

survey the outside areas for checking any possible presence of bluefin tuna spawning aggregation in 

other areas, always  maintaining the level of effort in the inside areas. 

 

b) Timing of the survey 

The timing of the survey was selected each year based on the knowledge of the biology and ecology 

of BFT during the spawning season, which occurs generally between the second part of May and the 

first part of July, with a peak in June. It is known the relationship between BFT spawning behaviour 

and some oceanographic features such as the thermocline and sea surface temperature (SCRS paper 

Di Natale et al, 2015).  

The timing of the survey has varied slightly from year to year (Table 2) mainly due to logistic reasons 

and also trying to adapt to the suspected starting of the spawning season according to the recorded 

values of sea surface temperature in the Mediterranean in late spring and early summer. In 2011 

surveys started a few days later than in 2010, 2013 and 2015 in sub-area A and C, while in E it was 

2013 the year with latest start, due to permits problems. In general surveys start earlier in area A, and 

the latest in area G and E, where permit issues are usually more relevant. Date for ending the surveys 

are more variable with no clear pattern, probably more dependent on weather conditions to finish all 

or most of the tracks designed, and most finish around end of June or mid-July, except in 2010 when 

area E was prolonged to beginning of August. 

 

Table 2. Dates of survey in 2010 – 2015. ‘n’ is the number of survey days within the survey period. 

 

 A inside C inside E inside G inside Total 

Year n Start End n Start End n Start End n Start End n Start End 

2010 13 01/06 02/07 8 05/06 29/06 23 06/06 03/08 14 05/06 30/06 58 01/06 03/08 

2011 19 15/06 11/07 13 19/06 08/07 15 13/06 29/06    47 13/06 11/07 

2013 17 06/06 06/07 5 18/06 28/06 11 22/06 12/07 9 20/06 15/07 42 06/06 15/07 

2015 20 01/06 11/07 5 01/06 06/06 11 12/06 28/06 5 20/06 25/06 41 01/06 11/07 

Total  69 01/06 11/07 31 05/06 06/06 60 06/06 28/06 28 05/06 25/06 188 01/06 11/07 



 

It is important to “capture” within the survey time the main spawning season of BFT. Therefore, as 

long as there are no too large variations in the timing, we recommend that the survey should always 

cover the various areas around the usual peak of the spawning season. Even if organizing the surveys 

start time according to analysis, by the relevant experts, of the information on oceanographic 

conditions in the weeks/days prior to the usual spawning season, will possibly create important 

problems for the contracts, because it implies to pay for a longer availability of both aircrafts and 

crews, and it would possibly create additional problems for permits and additional costs. 

 

c) Duration of the survey 

Despite having an extended period of around one month to do the surveys each year, the actual days 

spent surveying are much less, going from 5 to 23 days (the latter in E 2010, when two months in 

total were allocated). In C, E and G the number of days for surveying the inside areas in 2013 and 

2015 was reduced in comparison to 2010 and 2011; this was mostly induced by  the time spent in 

surveying the outside areas. It is important to allocate enough time to the survey in order to cover the 

whole extent of the designed tracks, taking into account the stand-by days caused by unfavourable 

weather conditions. So far, GBYP coordination had provided a punctual overview of the percentage 

of unfavourable days in each area after each survey and this may help the prediction. Therefore, the 

duration itself of the survey does not seem to affect its efficiency, because all the primary designed 

tracks were covered (except in E in some cases) in all surveys and in some cases even extra designed 

tracks were done. Hence, it is important to maintain enough duration (minimum one month, as the 

previous years) to ensure that there is enough time to cover everything despite the days of bad 

weather. 

 

d) Range of planes and spotters utilized 

The use of different aircrafts and many different spotters, a survey procedure that is inevitable for 

covering so many areas at the same time within a very limited period of time, introduces undesirable 

variability when trying to compare estimates. It is practically impossible to conclude whether 

differences observed among areas or years are due to real differences in abundance, or to differences 

induced by different types of aircrafts or/and by the individual observers (different experiences, 

different skills, ways of dealing with the protocols, criteria to read the inclinometers, criteria to 

estimate school sizes and weight, etc.). Furthermore, the variables linked to the environmental 

conditions (in a broad comprehensive sense) and to the both fast-moving platform and target are 

factors very difficult to duly assess. 

According to the analysis done within the contract “Elaboration of 2015 data from the aerial survey 

on spawning aggregations” (see report Cañadas and Vazquez, 2016), quite surprisingly Cessna has a 

positive effect on the encounter rate compared to Partenavia. As described in that report, after 

comparing the effect of the aircraft type on BFT detections and also on all species pooled together: 

“In the case of BFT it could be argued that as the different airplanes were used in different areas, 

these effect may be mainly due to the different densities of BFT in the different areas. But the fact 

that the same effect is observed for all species pooled together suggests that it is not only a matter of 

density but maybe the type of aircraft has indeed some real effect for some reason. On the other hand, 

it does not have any effect on the distance of detection when considering all species together, but it 

does when looking only at BFT. With Cessna there is a tendency for detection at closer distances in 

average, and much larger with Partenavia in average. Whether this is an effect of different searching 

behaviours by the different teams using each airplane or due to the configuration of the airplane itself, 

is unknown.”  



In terms of spotters, the very large amount of different spotters even within a single team, precludes 

any reliable analysis, comparison or conclusion, but also any possible calibration. In terms of school 

sizes, in average, SS give larger estimates than PS, by 22% in school size and by 16% by weight. But 

these differences (which are quite logical, due to the different experience and skills) are not constant 

and are just an average, with differences ranging from negative to positive in both cases, and with no 

observable pattern.  

The number of observations of BFT per observer is very variable and generally very low in most 

cases. Therefore an appropriate exploration of the searching patterns of individual observers would 

only be possible for very few of them. Hence, it is in practice impossible to make reliable comparisons 

among them. However, an exploration has been done to compare Professional Spotters as a whole 

(PS) with Scientific Spotters (SS). Results are shown in the report for “Elaboration of 2015 data from 

the aerial survey on spawning aggregations” (see report Cañadas and Vazquez 2016). The main 

conclusions are that (a) PS prove to be much more efficient in finding schools of BFT than SS (much 

larger encounter rate), presumably due to their large experience in this task; and (b) it is clear that in 

most cases PS tend to look further away than SS, despite having repeatedly insisted that the most 

important observations for the analysis are those at the shortest distances. This searching pattern by 

the PS needs to be improved for searching more at closer distances. 

Furthermore, apart from the impossibility to make any analysis on individual spotters, the fact of 

having so many different ones, with different degree of experience, introduces huge variability and 

noise in the data. This is an issue that should be discussed before the next survey, but if the survey 

will be carried out on the four overlapping areas, even this variability will be smoothed; furthermore, 

it is recommended to possibly always use the same spotters in the same areas, because this approach 

will reduce biases due to changes in crew components, as it was discussed during the SCRS BFT 

Species Group meeting in 2015. 

 

e) Methods for estimating perpendicular distances 

Two methods have been used to estimate perpendicular distances: (a) with inclinometer (vertical 

angle transformed later in perpendicular distance); and (b) by circling over the animals and 

calculating a posteriori the distance between the track and the centre of the circle over the animals. 

Both methods have their own associated problems. Measuring the angle with the inclinometer may 

be difficult at times, for example, due to lack of experience, not having enough time for the 

measurement before the school is missed, or when the school is spotted by the PS and the plane turns 

towards it before the SS with inclinometer takes a proper measurement; furthermore, any possible 

turbulence may increase imprecision. On the other hand, as demonstrated in the report by Cañadas 

and Vazquez (2016), circling is not always possible, as sometimes the school is missed before arriving 

to it; but even when circling is properly done, sometimes it is difficult to estimate the centre of such 

circles (theoretically the position of the school) when they are not concentric. This happens mostly 

when the target is moving, which is a usual condition at least for bluefin tuna. 

When both measurements are taken, there is a huge variability in the difference between the 

perpendicular distance estimates derived from both, either in favour of one or the other method. Not 

a clear pattern can be extracted from these differences due to such extreme variability. It is very 

difficult also to assess which one is more precise, as no ground truth is available, although logic would 

lead to think that estimating a position a posteriori using GPS coordinates, when it is possible and 

circling is well done, is a safer method. 

In the survey report  by Cañadas and Vazquez (2016) there is an experiment to test what difference 

would it make using one estimate of perpendicular distance or the other, on the abundance estimates. 

The results are strikingly different in 2011 (much higher) and 2015 (much lower), although very 

similar in 2013. 2010 does not have data for GPS derived distances. One of the effects of changing 

the perpendicular distances is that the amount of observations inside the truncation distance may vary. 



In this exercise, two observations from C in 2011 and two in A 2013 were removed, one observation 

in A 2015 was included. Additionally, the “corrected” distances derived from GPS are in some cases 

very different from the original ones derived from the angle. These differences can be of several 

thousand meters in some cases, which can produce an important effect on the detection function. 

 

f) Use of bubble windows 

All aerial surveys for marine mammals strongly encourage the use of bubble windows. On the same 

principles it is strongly encouraged for aerial surveys for other megafauna such as BFT. The lack of 

observations in the blind sector below the airplane when no bubble windows are available may 

produce a bias difficult to quantify, even if the observers in the front could potentially look directly 

on the track line. It is assumed that the probability of detection would be the same or similar to the 

closest distance available (next bin of frequencies), and therefore the curve of the detection function 

is extrapolated from the available information until distance zero, usually through the shoulder of a 

hazard-rate key function. But this assumption may or may not be true, as shown in the report of 

Cañadas and Vazquez (2016), and there is much variability among years/aircrafts in the searching 

pattern from below the aircraft towards further away.  

It is clear that by not using bubble windows, much information is lost for the same resources, and 

more importantly, the most valuable information for a reliable detection function, which is the 

observations closer to the track lines. Therefore we strongly recommend that bubble windows 

continue to be used in future surveys.  

 

I.2 Estimate of the additional variances associated with the current indices 

I.2.1 Data availability and processing 

Aerial surveys were conducted during spawning seasons in 2010, 2011, 2013 and 2015. The study 

areas differ from one year to another and a final four overlapped areas were identified, A-inside, C-

inside, E-inside and G-inside. All study areas were surveyed each year except for G-inside in 2011, 

due to the lack of permit.  

A primary analysis using the aerial survey data was conducted using the software DISTANCE 6.2 to 

estimate different parameters that will be used in the next analysis. The estimation of the additional 

variance and the assessment of population trends was conducted using the Bayesian framework given 

that it allows different facilities. Bayesian Hierarchical Modeling (BHM) is a framework that 

represents the underlying processes generating the data in a multi-level form and allows the 

estimation and inference on parameters using in addition to the observable data, the external 

knowledge or expert opinion (Clark & Gelfand, 2006). In the context of distance sampling, BHM 

provide numerous advantages concerning estimation and inference on abundance and related trends. 

Firstly, the abundance and trends estimation and inference are handled in the same model. In addition, 

this framework allows the separation of sources of variation (e.g. sampling and process error). 

Moreover it enables accommodating fixed and random effects implicitly (Moore & Barlow, 2011). 

The proposed model consists of two components: a state process that describes the underlying 

biological dynamics of interest and an observation process that describes the relationship between the 

unobservable processes (state process) and the observed data. In our context the state model describes 

the dynamics of the population density (𝐷𝑡), while the observation model characterizes the probability 

of observing 𝑛𝑡 individuals during survey given 𝐷𝑡 and the detection probability process specific to 

the distance sampling design. 

 

 



I.2.2 Data analysis 

The abundance estimate following (Buckland et al., 2001) is given by: 

 𝑁̂jt = 𝐷̂jt ⋅ 𝐴jt (eqn. 1) 

where 𝑁jt is the population abundance, 𝐷jt is population density, and 𝐴jt is the study area of stratum 

𝑗 during year 𝑡. The density may be estimated as: 

 𝐷̂jt =
𝑛jt⋅𝑠jt⋅𝑓jt(0)

2⋅𝐿jt⋅𝑔(0)^   (eqn. 2) 

where 𝑛jt is the number of schools detected; 𝑠jt is mean school size; 𝑓jt(0) is the evaluation at distance 

y=0 of the probability density (pdf) for detection probability; 𝑔(0) is the probability of detection on 

the transect line if not assumed to be 1; and 𝐿jt is the on-effort transect length. Table 3 shows some 

of the parameters estimated using DISTANCE. 

 

Table 3. Parameters estimated with Distance. 

 

 Year 

Areas 2010 2011 2013 2015 

A-inside     

𝑛jt 8 10 10 6 

𝐿jt 6277 7975 6743 4119 

𝑠jt  678.1 611 825 

C-inside     

𝑛jt 6 10 10 3 

𝐿jt 8168 8466 2682 2658 

𝑠jt 733 291 1285 1533 

E-inside     

𝑛jt 29 45 20 13 

𝐿jt 12621 9806 3720 4484 

𝑠jt 1015 1715 361 2030 

G-inside     

𝑛jt 33  12 2 

𝐿jt 2900  1716 785 

𝑠jt   336 600 

 

a) Process model 

The process model describes the underlying dynamics of the density taking into account the inherent 

spatial and temporal variability. The model describes the density as a function of the mean stratum 

differences (fixed intercept), a yearly trend coefficients (fixed effect) and a stochastic component 

(random variable) c (j,t). The full density model is: 



 𝐷𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + 𝛽𝑘 ⋅ 𝑠𝑡𝑟𝑎𝑡𝑎𝑘 + 𝛽𝐾+1 ⋅ 𝑡 + 𝛾𝑗𝑡) for k=1,…,K  (eqn. 3) 

𝛾jt~Norm(0,𝜎𝑑) 

Where 𝛽0 is an intercept for log-density; 𝛽k for k=1,2,...,K are fixed effect for binary dummy variables 

for strata A-inside, C-inside and E-inside; and 𝛽(K+1) the year-specific trend coefficient considered 

as a fixed effect. 𝛾jt is a random effect with mean zero and variance 𝜎𝑑 that describes process variation 

in year-to-year density. 

b) Observation model 

The observation model describes the relationship between the unobservable state process and the 

observed data. Rearranging (eqn. 2) and treating observed counts as a Poisson random variable: 

𝑛jt~Pois(𝐸[𝑛jt]) 

𝐸[𝑛jt] =
2 ⋅ 𝐿jt ⋅ 𝑔(0)

𝑠jt ⋅ 𝑓jt(0)
⋅ 𝐷jt 

The main inputs of the model are the transect length 𝐿𝑗𝑡 which is considered measured without error, 

mean school size𝑠𝑗𝑡 and𝑓𝑗𝑡(0) which are estimated based on the perpendicular distances using the 

software Distance 6.2. The correction factor 𝑔(0) was estimated independently based on the tagging 

data that records the percentage of time spent in a depth band (ICCAT report Cañadas and Vazquez 

2016).  

c) Mean school size 

To account for the inter-annual variability in spatial and temporal distribution of spawning schools 

and school size, raw data representing the on-effort observations of schools and their sizes were used. 

The range of available data cover all survey years 2010, 2011, 2013 and 2015 and all overlapped 

areas A-inside, C-inside, E-inside and G-inside. The exception was for 2010 in areas A-inside and G-

inside and in 2011 for G-inside.  

The observed school sizes were assumed having a Negative-Binomial distribution with a time varying 

over-dispersion parameter. As in the model of density we consider covariates such as strata as fixed 

effects, and year as fixed trend effect. The likelihood of the observed school sizes (𝑆. 𝑜𝑏𝑠) is given 

by: 

𝑆. 𝑜𝑏𝑠𝑗𝑡~𝑛𝑒𝑔𝐵𝑖𝑛(𝜆𝑗𝑡 , 𝑟𝑡) 

Where 𝑟𝑡 is the time-dependent random over-dispersion parameter with mean 𝑟̄ and variance 𝜎2
𝑟. 

The process model of school size is given by: 

𝜆𝑗𝑡 = 𝑒𝑥𝑝(𝛽𝑠0 + 𝛽𝑠𝑘 ⋅ 𝑆𝑡𝑟𝑎𝑡𝑎𝑘 + 𝛽𝑠,𝐾+1 ⋅ 𝑡 + 𝛼𝑗𝑡) 

𝛼jt~Norm(0,𝜎𝑠) 

where 𝛽𝑠0 is an intercept, 𝛽𝑠𝑘 for k=1,2,3 are fixed effect coefficients for the dummy variables 

representing stratum A-inside, C-inside and E-inside, 𝛽𝑠𝐾+1 is a fixed effect trend coefficient and 𝛼𝑗𝑡 

is a normal random variable for each stratum-year with mean 0 and variance 𝜎𝑠
2. 

d) Parameter estimation 

Parameter estimation was implemented using a Bayesian MCMC approach in JAGS 3.4.0 (Plummer, 

2003, 2012) that was called from the statistical software R 3.1.1 using the package ‘R2jags’ 0.5-7. 

The prior distributions of all parameters were informative normal and uniform distributions except 

for 𝑔(0) that was chosen so that it has a mean of 0.47 (CV=52%). The 𝑔(0) distribution parameters 

were estimated based on the diving data collected from the electronic tags used by ICCAT. The 

parameters estimation was held using 2 chains each of length 100,000 with a thinning interval of 50. 



30,000 iterations were run as a burning period to ensure the convergence of the Markov chains of all 

parameters. 

e) g(0) estimation 

The Electronic tagging data provided by ICCAT contains the information about the percentage of 

time spent by BFT in depth bands that goes down from the surface to 10m maximum. The estimation 

of trackline detection probability, g(0), was based on data collected from the overlapping areas A, E, 

C during 2011, 2013 and 2015 in day time. The filtered data kept 13 tagged fishes and 154 data points. 

For the purpose of this analysis the estimation of g(0) was conducted independently of area and year. 

Table 4 shows a summary of the data used in the analyses. 

Cañadas and Vazquez (2016) have estimated g(0) by area and year. The estimation shows that it 

varies between a 0.3 and 0.7. Based on the data available, an overall estimate of g(0) was 0.47 

(CV=52%). A bounded beta prior between 0.3 and 0.7 was used in the analysis to avoid unrealistic 

estimates of abundance that could be obtained when g(0) takes values near zero. 

 

Table 4. Number of data points per area and year 

 

NB - IDArgos Overlapping areas 

Years Month A C E Total 

2012 June   10 10 

2013 
June 42 9 41 92 

July 4   4 

2015 June 13 8 27 48 

Total 59 17 78 154 

 

f) Model selection 

Model selection was conducted using the Deviance Information Criterion (DIC) (Spiegelhalter et al., 

2002). This criterion is defined as 𝐷𝐼𝐶 = 𝐷̄ + 𝑝𝐷 where 𝐷̄ is the posterior mean model deviance and 

𝑝𝐷 is termed the effective number of parameters which account for the complexity of the model. The 

model selection was held without incorporating the process error because almost all models behave 

equally well when it is present. 

 

I.2.3 Results 

a) Mean school size model 

Five school size models were analysed. Table 5 shows the DIC values. Based on the criteria it is clear 

that model S1 that has the lowest DIC is the model that fits the data well. The convergence of the 

Markov chains to a stationary state was verified using the Gelman-Rubin diagnostic (Gelman & 

Rubin 1992). Parameter estimation for the school size model was held using the model S1. Table 6 

shows the estimates of the mean school size using the model.  

 



Table 5. DIC values for the different models of school size 

ID Model 𝐷̄ pD DIC 𝛥𝐷𝐼𝐶 

S1 𝜆𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + 𝛽𝑡 + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 2591.11 7.33 2598.44 0 

S2 𝜆𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + 𝛽1 ⋅ 𝑡 + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 2593.47 8.41 2601.84 3.39 

S3 𝜆𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + 𝛽1 ⋅ 𝑙𝑜𝑔(𝑡) + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 2593.06 7.85 2600.91 2.47 

S4 𝜆𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + (𝛽1 + 𝛽𝑗) ⋅ 𝑡 + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 2593.29 8.57 2601.86 3.41 

S5 𝜆𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + (𝛽1 + 𝛽𝑗) ⋅ 𝑙𝑜𝑔(𝑡) + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 2586.04 14.52 2600.56 2.12 

 

 

Table 6. Mean school size estimates (CV between ()) based on model S1.   

 

Year A-inside C-inside E-inside G-inside 

2010 - 1077 (73 %) 1031 (35 %) - 

2011 937 (46 %) 861 (73 %) 1664 (27 %) - 

2013 703 (55 %) 1232 (49) 670 (48 %) 396 (53 %) 

2015 960 (71 %) 1785 (125 %) 1905 (60 %) 784 (120 %) 

 

b) Density model 

The estimation of the additional variance is conducted using a Bayesian hierarchical model. The data 

used are estimated using the aerial survey data gathered by ICCAT. Table 3 shows the main input 

used in the analysis. The mean school sizes are corrected using the model in [1.2.2) c)]. Table 6 shows 

the estimated mean value of the mean school sizes used in the model.  

Six different models were fitted to data and a final model was selected based on the deviance 

information criteria. The selected model incorporate stratum effect and a yearly linear trend. The 

strong relation between the fitted and the observed number of schools and the absence of correlation 

between the residuals and the fitted number of schools suggest a good fit to the data (Figure 1).  

 

Table 7. DIC of the different models of density 

 

ID Model 𝐷̄ pD DIC 𝛥𝐷𝐼𝐶 

D1 𝐷𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 474.03 18.46 492.50 2.96 

D2 𝐷𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + 𝛽𝑡 + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 473.94 16.73 490.67 1.14 

D3 𝐷𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + 𝛽1 ⋅ 𝑇 + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 473.97 16.87 490.84 1.31 

D4 𝐷𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + 𝛽1 ⋅ 𝑙𝑜𝑔(𝑇) + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 473.69 15.83 489.53 0 

D5 𝐷𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + (𝛽1 + 𝛽𝑗) ⋅ 𝑇 + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 473.90 17.88 491.78 2.25 

D6 𝐷𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + (𝛽1 + 𝛽𝑗) ⋅ 𝑙𝑜𝑔(𝑇) + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 473.72 16.50 490.22 0.68 

 



I.2.4 Discussion 

The analysis followed above allows the quantification of the process error which could be used for 

the prediction of abundance. Another advantage of the hierarchical structure of the model is that it 

has shown flexible ability to accommodate fixed and random effects. The lack of calibration of the 

school size is a key question in the estimation of abundance. Such correction might be held using 

parallel external data like aerial photos or sonar images to calibrate the abundance estimates, but all 

available methodologies have currently limits and biases. The quantification of the track-line 

probability of detection induce an underestimation of the abundance given that the used 𝑔(0)estimate 

account only for availability bias. The posterior mean of the additional variance estimated based on 

the density model is 0.8 (CV=28%). This high value of the process error could be the result of the 

estimation based on the pooled data of all areas. The estimation of the additional variance by area has 

been tested but it yields relatively low additional variance but with very high CV. For this reason it 

was decided to use the first one. Table 8 shows a comparison of the estimates of the total abundance 

by area and year and their CV using the model of density and DISTANCE. It is remarkable that the 

estimates using the model have a reduced CV compared to those of DISTANCE. 

 

 

Figure 1. Observed vs fitted number of schools (left) and residual vs fitted number of schools 

(right) 

 

  



Table 8. Abundance estimates by year and area using the Density model and DISTANCE. 

 

Area Year 
N 

(Model) 

CV % 

(Model) 

N 

(DISTANCE) 

CV % 

(DISTANCE) 

A-inside 

2010 31636 43   

2011 52542 40 38720 45.5 

2013 24069 39 18717 44.5 

2015 30513 46 38248 44.7 

C-inside 

2010 19142 44 9797 59.2 

2011 42180 40 13614 45.3 

2013 76426 42 86114 38.3 

2015 38253 57 47900 65.5 

E-inside 

2010 84130 31 73676 37.8 

2011 535824 29 541634 32.2 

2013 123552 34 60614 75.4 

2015 180266 37 283100 64.1 

G-inside 

2010 233273 32   

2011     

2013 58870 37 44041 54.8 

2015 56432 59 44162 95.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I.3 Estimate the use of electronic tagging or other data to evaluate spatial and 

vertical differences between spawning seasons and provide an estimate of 

additional variance independently of I.2. 

I.3.1 Data availability and processing 

The evaluation of the spatial and vertical differences between spawning seasons was assessed based 

on data from electronic tags of 36 fish including 320 observations (Table 9). The data filtered 

according to overlapping areas indicate the percentage of time, in periods of 6 hours in average, that 

the observed fish spent in different depth bands (0(0 m), 2 (0.1-2m) and 10 (2.1-10m)), during the 

observed time period. 

 

Table 9. Number of observations by area and year 

NB - IDArgos Overlapping areas 

Years A C E G Total 

2011 4    4 

2012  42 14  14 

2013 62 12 55  129 

2015 26 16 52 79 173 

Total 92 28 121 79 320 

 

A graphical exploration was held to show differences of time spent within 0-10m depth band 

according to area, year and day time (Figure 2). Generally there is a large dispersion of the time spent 

within depth bands according to day and night. Figure 3 shows the histograms of time spent within 

depth bands. The data are skewed to the left with important number of values near zero. The exception 

is for depth (10m) where data tend to be symmetric. 



Figure 2. Time spent within each depth band by year area 

 

 

Figure 3. Histogram of the percent time spent within a depth band 

 



I.3.2 Data analysis 

The collected data represent the percentage of time spent by a fish in a depth band. The particularity 

of this continuous data is that it lays between zero and one. Such data could be modelled using a 

suitable distribution such as the beta distribution. This distribution is extremely flexible and one can 

model its parameters as functions of explanatory variables which is the purpose of the present 

exercise. However the data contains zero proportion of time spent within some depth bands. This 

could be critical for the beta distribution because it is defined on the open interval (0,1). Another 

alternative is to combine a mixture of models to allow for the zero-one inflation (Ospina and Ferrari, 

2010, 2012) 

The beta zero-inflated (BEZI) distribution is given by : 

𝑏𝑒𝑧𝑖(𝑦; 𝛼, 𝜇, 𝜙) = 𝛼              𝑖𝑓𝑦 = 0 

𝑏𝑒𝑧𝑖(𝑦; 𝛼, 𝜇, 𝜙) = (1 − 𝛼)𝑓(𝑦; 𝜇, 𝜙)              𝑖𝑓𝑦 ∈ (0,1) 

𝑏𝑒𝑧𝑖(𝑦; 𝜇, 𝜙) =
𝛤(𝜙)

𝛤(𝜇𝜙)𝛤((1 − 𝜇)𝜙)
𝑦𝜇𝜙−1(1 − 𝑦)(1−𝜇)𝜙−1              𝑖𝑓𝑦 ∈ (0,1) 

 

where 𝛤(. ) is the gamma function, 0<𝛼<1, 0<𝜇<1 and 𝜙>0 

P(y=0)=𝛼, 𝐸(𝑦) = (1 − 𝛼)𝜇, 𝑉𝑎𝑟(𝑦) = (1 − 𝛼)
𝑉(𝜇)

𝜙+1
+ 𝛼(1 − 𝛼)𝜇2 

The two components 𝜇 and 𝛼 were modelled using covariates such as strata, day light and depth band 

as fixed effects and a random normal variable that accounts for inter-annual variability as random 

effect. 

 𝑙𝑜𝑔𝑖𝑡(𝛼) = 𝛾0 + 𝛾1 ∗ 𝑠𝑡𝑟𝑎𝑡𝑎 + 𝛾2 ∗ 𝑑𝑒𝑝𝑡ℎ + 𝛾3 ∗ 𝑑𝑎𝑦𝐿𝑖𝑔ℎ𝑡   (eqn4) 

 𝑙𝑜𝑔𝑖𝑡(𝜇) = 𝛽0 + 𝛽1 ∗ 𝑠𝑡𝑟𝑎𝑡𝑎 + 𝛽2 ∗ 𝑑𝑒𝑝𝑡ℎ + 𝛽3 ∗ 𝑑𝑎𝑦𝐿𝑖𝑔ℎ𝑡 + 𝜖  (eqn5) 

where eqn4 is the process component for the discrete model that models the presence / absence of 

zero percent time spent in depth bands, and eqn5 is the model for the mean of the Beta distribution 

with the random effect 𝜖 representing the process error with mean 0 and variance 𝜎. 

The modelling process was held using the Bayesian framework with JAGS via the statistical software 

R using R2jags. 

 

I.3.3 Results 

Modelling the percentage of time spent within a depth band could be used as an estimation for 

availability of BFT for the aerial survey. With a representative sample of BFT and good geographic 

coverage it is possible to build an environmental model to predict the availability of BFT when aerial 

surveys were being conducted (Scott-Hayward et al, 2014). Table 10 and Table 11 show the estimates 

of the different parameters of the discrete model for zero data and the continuous model for the data 

in (0.1). 

The process error is estimated to have a standard deviation of 0.282 (CV=57 %). 

 

 

 

 

 



Table 10. Parameters for the discrete model 

Parameter Mean SD 

b.v.0.zero -5.196 0.604 

b.v.strata.zero[1] 0.651 0.644 

b.v.strata.zero[2] 1.380 0.704 

b.v.strata.zero[3] 2.256 0.587 

b.v.light.zero 0.560 0.293 

b.v.depth.zero[1] 1.837 0.338 

b.v.depth.zero[2] 0.243 0.413 

 

Table 11.Parameters for the continuous model 

Parameter Mean SD 

b.v.0 -0.310 0.292 

b.v.strata[1] -0.134 0.365 

b.v.strata[2] -0.067 0.373 

b.v.strata[3] -0.308 0.358 

b.v.light -1.024 0.063 

b.v.depth[1] -2.011 0.078 

b.v.depth[2] -1.115 0.067 

Sig.v.jt 0.284 0.162 

tau 6.513 0.326 

 

 

I.4 Compare the additional variance estimates with the estimates of survey 

variance obtained using DISTANCE  

The accuracy of estimates and the reduction of variability could always be attained by increasing 

enough the sample size. Taking into account the cost of gathering data, it is always desirable to 

determine the minimal sample size or the minimal sampling duration that is required to achieve a 

desired accuracy (Kruschke, 2011). 

To conduct the question of comparing the additional variance estimates with the estimates of 

DISTANCE, multiple scenarios on the coverage percentage were analysed. The analysis of the effect 

of increasing or reducing the total transects length or the percentage of the surveyed area is measured 

by the improvement and the deterioration of the coefficients of variation of the estimates. For this 

exercise, six scenarios (Table 12) were analysed where the total range of areas coverage varies from 

10% to 60% (as in Cañadas and Vazquez, 2016). For each scenario, the total length and the number 

of schools detected were calculated based on the available data according to each scenario. 

 



 

Table 12. Transect length by area and year corresponding to six area coverage scenarios 

 

Area Year 

Survey 

area 

(km²) 

Real 

coverage % 

Real 

transect 

length 10 % 20 % 30 % 40 % 50 % 60 % 

A inside 2010 61933 30 6277 2092 4185 6277 8369 10462 12554 

C inside 2010 53868 44.9 8168 1819 3638 5457 7277 9096 10915 

E inside 2010 93614 40.0 12621 3155 6311 9466 12621 15776 18932 

G inside 2010 56211 15.3 2900 1895 3791 5686 7582 9477 11373 

A inside 2011 61933 17.5 7975 4557 9114 13671 18229 22786 27343 

C inside 2011 53868 21.4 8466 3956 7912 11868 15824 19780 23736 

E inside 2011 93614 14.2 9806 6906 13811 20717 27623 34528 41434 

G inside 2011 56211         

A inside 2013 61933 32.6 6743 2068 4137 6205 8274 10342 12410 

C inside 2013 53868 14.9 2682 1800 3600 5400 7200 9000 10800 

E inside 2013 93614 11.9 3720 3126 6252 9378 12504 15630 18756 

G inside 2013 56211 9.2 1716 1865 3730 5596 7461 9326 11191 

A inside 2015 61933 20.2 4119 2039 4078 6117 8156 10196 12235 

C inside 2015 53868 15.0 2658 1772 3544 5316 7088 8860 10632 

E inside 2015 93614 14.5 4484 3092 6185 9277 12370 15462 18554 

G inside 2015 56211 4.2 785 1869 3738 5607 7476 9345 11214 

 

 

Based on the data calculated according to each scenario, the model of density presented in I.2 was 

fitted to each of them and the abundances by area and year and their CVs were estimated.  Table 13 

shows the main results of the six scenarios. Figure 4 presents the trend of the CVs of abundance. It is 

clear that above a certain level of area coverage the gain in terms of variability reduction becomes 

unimportant compared to the cost of coverage. For example, when the total area coverage increases 

from 10 % to 20 % the average reduction of the abundances CVs is equals to 19.8 %. The average 

reduction of the CVs when increasing the total coverage from 20 % to 30 % in all areas in 9.66 %. 

Above 40 % total coverage of all areas, the CVs reduction decrease slowly from 5.35 % for 40 % 

coverage and 3.8 % for 60% coverage. 

 

 

 



 

Table 13. Abundance estimates and their CVs by year and area. 

 

Area Year Actual N 

Actual 

CV % N1 CV1 % N2 CV2 % N3 CV3 % N4 CV4 % N5 CV5 % N6 CV6 % 

A-inside 2010   37294 57.3 30946 48.4 31777 43.1 32378 39.5 30733 37.5 31190 36.4 

C-inside 2010 9797 59.2 26173 66.4 24599 52.3 20742 48.5 18702 46 19527 41.8 18224 40.5 

E-inside 2010 73676 37.8 94742 42.3 91487 35 86472 32.3 84121 30.7 83046 30.1 83419 28.9 

G-inside 2010   231058 34.9 233067 30.9 238697 29.6 239331 29.1 241146 28.6 239911 28 

A-inside 2011 38720 45.5 52821 47.5 50754 39.6 53746 35 55502 32.8 56148 31.2 55064 30.1 

C-inside 2011 13614 45.3 45366 48.3 41525 41 42592 35.9 43341 33.7 42250 32.2 42571 30.9 

E-inside 2011 541634 32.3 531352 31.2 537071 27.9 546944 26.6 552979 26.5 553171 26.1 553053 25.6 

G-inside 2011               

A-inside 2013 18717 44.5 25650 54.2 24153 44.6 23691 39.9 23460 37.3 23336 35.5 23093 33.6 

C-inside 2013 86114 38.3 75554 47.4 76236 38 81234 33.9 83824 31.8 85752 30.5 84066 29.2 

E-inside 2013 60614 75.4 125120 34.1 123331 30 120024 28.3 120401 27.7 120646 27.2 120280 26.5 

G-inside 2013 44041 54.8 57813 36.4 56385 31.2 55878 29.4 55944 28.5 55795 27.9 55553 27.1 

A-inside 2015 38248 44.7 30751 57.7 30501 46 30665 40.9 30698 37.7 30675 35.4 30691 34 

C-inside 2015 47900 65.5 38634 65.6 38114 51.9 38069 45.9 38070 42.8 38396 39.5 38017 37.5 

E-inside 2015 283100 64.1 178004 41.1 180242 34.2 181158 31.4 181494 30.1 182489 29 181443 28.3 

G-inside 2015 44162 95.9 48667 46.7 45702 38.9 41675 35.6 41489 33.5 41767 32 41484 30.4 
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Figure 4. Trend of the CVs of abundance under various scenarios of area coverage. 

 

Based on the coverage scenarios in table 12 and table 13, a comparison of the different strategies 

of surveying the overlapping areas was conducted. Figure 5 shows the comparison of average CVs 

of abundance of the four areas together for each coverage scenario based on 2010-2011, where the 

survey was held only in the overlapped areas, and 2013-2015, where 50 % of the survey was held 

outside the overlapped areas. Also the average based on the whole 2010-02015 period is shown. 

The figure shows that concentrating the survey in the overlapped areas (2010-2011) allows a gain 

in terms of reduction of abundance CVs within these overlap areas, when compared with years 

when extended survey is done (2013-2015). 

 

1. 

Plot of the CV according to each of the six scenarios of coverage by area and year 
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Figure 5. Trend of the CVs of abundance under various scenarios of area coverage in the overlap 

areas, based on the CVs of 2010-2011 (surveying only the inside areas), 2013-2015 (surveying 

both inside and outside areas), and the whole period. 
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II. Evaluation whether the aerial survey can provide a reliable and robust 

index of abundance for use in stock assessments 

All current methodologies for obtaining any index of abundance for large pelagic species provide 

estimates which cannot be checked against a real reference number or ground truth. Both fishery-

dependent indices (i.e. CPUE by gear and area) and fishery-independent indices (i.e. aerial 

surveys, larval index, sonar surveys) are always not precise. The advance of an aerial survey is 

that it produces estimates which are always prudential, because the number of sightings can be just 

a partial image of the reality, but it is almost impossible that they can be higher than the reality. 

As a matter of fact, this index is always conservative and prudential. 

 

II.1 Analysis of the design and costs to detect a range of population growth 

rates in 3, 5 and 10 years with no reduction in the additional variance 

The assessment of the reliability of the aerial survey index of abundance to reflect the underlying 

dynamics is conducted using a power analysis. Based on the model selected in I.2) above, Monte 

Carlo simulation were conducted to evaluate its ability to detect a known trend in different ranges 

of years. All parameters were given the posterior mean values estimated before, except for the 

trend parameter which is fixed according to each scenario. This parameter was given different 

values that represents increase and decrease in the density of BFT with magnitude of 20% and 

10%. The annual changes were tested over 3, 5 and 10 years. 

To test each combination of annual change and period, 100 random data sets were generated 

according to the following scheme: 

𝑛jt~Pois(𝐸[𝑛jt]) 

𝐸[𝑛jt] =
2 ⋅ 𝐿jt ⋅ 𝑔(0)

𝑠jt ⋅ 𝑓jt(0)
⋅ 𝐷jt 

𝐷𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + 𝛽1 ⋅ 𝑡 + 𝛽𝑘 ⋅ 𝑠𝑡𝑎𝑟𝑎𝑡𝑘) 

To estimate the power of the model to detect trends, each generated data set was analysed with the 

model selected in I.2. The trend is considered detected if the 95% confidence interval around the 

posterior mean value of the trend parameter fall completely in a region of practical equivalence 

(ROPE) of the fixed trend. It is obvious that the wider the ROPE the more the power will be 

improved. The ROPE tested were intervals around the known trend that have a width calculated 

based on a percentage of the trend value. For example for a trend 𝜃, two ROPE will be tested that 

are 𝜃 ± 0.1 ⋅ 𝜃, and 𝜃 ± 0.2 ⋅ 𝜃. 

For each combination of trend magnitude, number of year sampling and ROPE width, a fraction 

of the simulations do not detect the trend. This fraction represent the 𝛽 − 𝑒𝑟𝑟𝑜𝑟 (Type II error). 

The fraction of simulations that yields a confidence interval around the mean falling completely 

in the ROPE, represents the power. 

a) Scenario 1: Data simulation without process error 

In this scenario the data sets simulated to detect trends were held without using the process error. 

So the density was calculated deterministically as a function of the estimated parameters and only 

the number of schools generated using 'rpois' that adds some randomness to data. Table 14 shows 

the results of the trend detection. For the largest trend 20%, there is a probability above 0.6 to be 

detected within the range [0.16, 0.24]. 
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Table 14.  Power to detect a trend 

No. of 

years 

% annual 

change 

Power to detect a trend 

𝜷 ± 𝟎. 𝟏𝟎𝜷 𝜷 ± 𝟎. 𝟐𝜷 

3 +20 0.10 0.29 

5 +20 0.21 0.43 

10 +20 0.36 0.68 

3 -20 0.06 0.2 

5 -20 0.17 0.33 

10 -20 0.29 0.63 

3 +10 0.02 0.09 

5 +10 0.07 0.2 

10 +10 0.12 0.37 

3 -10 0.05 0.05 

5 -10 0.08 0.12 

10 -10 0.1 0.36 

 

b) Scenario 2: Data simulation with process error 

This scenario has the data generated by adding a normal random variable with mean zero and 

standard deviation equal to the additional variance. In this scenario we have tested large annual 

change equal to 25% and a wider ROPE with a half width equal the 20% of the trend. Results has 

shown that in the presence of the additional variance it becomes difficult to detect even a large 

annual change. Table 15 presents the results of the power to detect a 25% annual change. 

 

Table 15.  Power to detect a 25% annual change 

No. of 

years 
% annual change 

Power to detect a 

trend 

𝛽 ± 0.2𝛽 

10 +25 0.223 

5 +25 0.087 

3 +25 0.051 

10 -25 0.18 

5 -25 0.042 

3 -25 0.032 

 

c) Cost analysis: 

The analysis of the cost of the aerial surveys designed to detect a range of growth rates in different 

range of years was based on the cost of one survey. The estimation of the total costs of the aerial 

surveys necessary to detect a trend could be calculated as the product of the cost of an actual survey 

and the number of years necessary to detect such a trend. 
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See cost analysis in II.2. 

 

Discussion 

The number of years to detect trends in the BFT population using the described methodology 

depends mainly on two parameters: 1) the magnitude of annual change to be detected and 2) the 

width of the ROPE which could be interpreted as the accuracy with which we want to detect the 

trend. A survey stability (meaning a survey conducted with the same methodology, always in the 

same areas, in the same periods and with the same spotters) will certainly and substantially 

improve the current estimates, which are necessarily based on the data from different survey 

approaches. Detecting an annual trend of 50% will be more likely than a 25% annual change. 

Similarly, detecting a trend within an interval of [20%, 30%] will be more probable than detecting 

a trend within [23%, 27%]. If a method requires a large increase or decline to be detected in large 

number of years, then the followed methodology will be of limited use (Forney et al., 1991). The 

large estimate of the additional variance (80% (CV=28%)) is the main source that induced the 

weak power to detect the trends. The analysis confirms that a 25% annual change takes 10 years 

to be detected with a weak probability equal 0.2. 

 

II.2 Analysis of the design and costs to detect a range of population growth 

rates in 3, 5 and 10 years with a reduction in additional variance 

The reduction of the additional variance and the improvement of the power to detect a trend could 

be handled by increasing the sample size. In the next exercise multiple data sets were created and 

analyzed based on the model in I.2.  

To increase the sample size and therefore reduce the additional variance, three scenarios specifying 

the total coverage of each overlapping area were analyzed. Table 16 shows the total transect length 

corresponding to 20%, 40% and 60% total coverage of each area. Three cases are shown, as the 

length of transects for a given coverage depends on the effective strip width (esw) considered for 

the detection function The three cases considered of twice the esw (as the esw only counts one side 

of the track, so it needs to be multiplied by two to take into account both sides of the track) were: 

- Esw x2 = 1.94 (being the esw of the last year, 2015) 

- Esw x2 = 2.30 (being the average esw for the four years) 

- Esw x2 = 2.96 (being the highest esw of the four years) 

Table 17 shows the results of the power estimations. It is clear that by increasing the total length 

of transect the power increases also. 

 

Table 16. Total transect according to each scenario of total coverage by area. 

 

 esw x2=1.94 esw x2=2.30 esw x2=2.96 

Area 20 % 40 % 60 % 20 % 40 % 60 % 20 % 40 % 60 % 

A-inside 6,385 12,770 19,155 5,385 10,771 16,156 4,185 8,369 12,554 

C-inside 5,553 11,107 16,660 4,684 9,368 14,053 3,640 7,279 10,919 

G-inside 9,651 19,302 28,953 8,140 16,281 24,421 6,325 12,651 18,976 

E-inside 5,795 11,590 17,385 4,888 9,776 14,664 3,798 7,596 11,394 

Total 27,384 54,768 82,152 23,098 46,196 69,294 17,948 35,895 53,843 
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Table 17. Power to detect a trend with increased transect length (considering here esw x2 = 

2.96) 

 

No. of 

years 

% annual 

change 

𝛽 + 20%𝛽 

20 % 40 % 60 % 

10 +20 0.13 0.145 0.20 

5 +20 0.09 0.12 0.137 

3 +20 0.02 0.06 0.07 

10 -20 0.17 0.18 0.19 

5 -20 0.06 0.09 0.11 

3 -20 0.0 0.04 0.05 

 

 

The results of the variance reduction shows that even with a large coverage of the different areas, 

the probability to detect a 20% annual change equal 0.2, is relatively weak. The major reason of 

this inability to detect a trend with sufficient confidence is due mainly to the process error which 

in our case equals 80% (CV=28%). 

 

Cost analysis: 

The available cost data provided by ICCAT cover the four aerial surveys conducted in the four 

phases 1, 2, 4 and 5. Table 18 presents the total transect length and Table 19 shows the total costs 

by year and the average cost by km transect on effort. Costs have been differentiated into field 

work cost and other costs (design, training and meetings, and analysis). Field costs depend on the 

transect length and the logistics, while ‘other costs’ are mostly independent of the coverage. 

 

Table 18.  Total transect length (km) in each year of survey 

 

Year Inside Outside Total 

2010 30,879 - 30,879 

2011 28,177 - 28,177 

2013 15,669 13,278 28,947 

2015 14,413 11,079 25,492 

Total 89,138 24,357 113,495 
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Table 19.  Total cost by phase and average cost by km of transect 

 

 Cost (€) 

Transect length on 

effort (km) Cost per km 

Year 

Field 

work Other Total Outside Inside Total 

Field 

work Other Total 

2010 300,000 13,266 313,266  30,879 30,879 9.72 0.43 10.14 

2011 282,097 34,236 316,333  28,177 28,177 10.01 1.22 11.23 

2013 491,718 26,708 518,426 13,278 15,669 28,947 16.99 0.92 17.91 

2015 431,425 48,002 479,427 11,079 14,413 25,492 16.92 1.88 18.81 

 

As the costs have varied from year to year, a “typical” cost was chosen for the cost analysis. For 

‘other costs’ the average cost for the four years of survey was taken. For field work, we considered 

only 2010-2011, as in 2013-2015 the outside areas were also surveyed increasing very much the 

costs associated with field work logistics. Therefore, the average of the field work cost of 2010 

and 2011 was calculated, and prudentially a 10% was added to account for potential increases in 

costs of aircraft renting, personnel, fuel, and other associated costs. The resulting “typical” cost 

used for the cost analysis is shown in Table 20.  

 

Table 20. “Typical” cost to be used in the cost analysis. 

 

 Cost (€) 

 Field work Other Total 

Total cost 320,153 30,553 350,706 

Cost per km 10.85 1.11 11.96 

 

 

Table 21 shows the cost analysis for five scenarios of coverage (20% to 60%) and the three cases 

of esw, as the amount of transect length is what would define the cost. The “typical” cost was 

applied. The reduction in CVs of abundance and with additional variance 1 were taken for the 

“Average Scenario” (see Cañadas and Vazquez, 2016). 
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Table 21. Cost analysis for one survey over the four overlap areas together (265,626 km2) 

 

esw x2 

(km) 

% 

cov. 

Transect 

length 

on effort 

(km) 

Cost (€) CV abundance 
CV Final 1 (with additional 

variance from tagging) 

Field 

work 
Other Total A C E G A C E G 

1.94 

20 27,384 297,113 30,467 327,580 0.56 0.58 0.49 0.60 0.63 0.64 0.57 0.66 

30 41,076 445,669 45,701 491,370 0.48 0.50 0.47 0.58 0.55 0.57 0.55 0.64 

40 54,768 594,226 60,934 655,160 0.43 0.46 0.46 0.57 0.52 0.54 0.54 0.63 

50 68,460 742,782 76,168 818,950 0.40 0.43 0.45 0.56 0.49 0.51 0.53 0.63 

60 82,152 891,339 91,401 982,740 0.38 0.41 0.45 0.56 0.47 0.50 0.53 0.62 

2.30 

20 23,098 250,608 25,698 276,307 0.56 0.58 0.49 0.60 0.63 0.64 0.57 0.66 

30 34,647 375,912 38,547 414,460 0.48 0.50 0.47 0.58 0.55 0.57 0.55 0.64 

40 46,196 501,217 51,397 552,613 0.43 0.46 0.46 0.57 0.52 0.54 0.54 0.63 

50 57,745 626,521 64,246 690,766 0.40 0.43 0.45 0.56 0.49 0.51 0.53 0.63 

60 69,294 751,825 77,095 828,920 0.38 0.41 0.45 0.56 0.47 0.50 0.53 0.62 

2.96 

20 17,948 194,729 19,968 214,698 0.56 0.58 0.49 0.60 0.63 0.64 0.57 0.66 

30 26,922 292,094 29,952 322,047 0.48 0.50 0.47 0.58 0.55 0.57 0.55 0.64 

40 35,895 389,459 39,937 429,395 0.43 0.46 0.46 0.57 0.52 0.54 0.54 0.63 

50 44,869 486,824 49,921 536,744 0.40 0.43 0.45 0.56 0.49 0.51 0.53 0.63 

60 53,843 584,188 59,905 644,093 0.38 0.41 0.45 0.56 0.47 0.50 0.53 0.62 
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When comparing the estimated “typical” cost for an ICCAT aerial survey for bluefin tuna, with other aerial 

surveys, it comes out cheaper. Table 22 shows a comparison with the costs of an aerial survey for marine 

life in the Adriatic Sea in 2013 (C. Fortuna, pers. comm.) with one aircraft for a total of 7,900 km on effort; 

with the budget for the planned aerial survey SCANS-III in 2016 (P. Hammond, pers. comm) in the NE 

Atlantic with 5 aircrafts and a coverage of 4.6% (total effort of 46,250 km): and with the budget for the 

next aerial survey in Italian waters and Pelagos in 2016 (S. Panigada, pers. comm) for 7,400 km on effort 

planned. 

 

Table 22. Cost of other aerial surveys. 

 

 Cost per km (€) 

Survey Field work Other Total 

“Typical” cost ICCAT 10.85 1.11 11.96 

SCANS-III (2016) 11.35 2.05 13.41 

Italy (2016)   15.05 

Adriatic Sea (2013) 12.28 0.91 13.19 

 

Additionally, a comparison has been made with other ICCAT techniques carried out during the past years. 

Even if the different techniques yield very different and complementary information, it at least puts into 

perspective the overal cost of the aerial surveys within the research of ICCAT. Table 23 shows a comparison 

for the 5 phases. The costs per year for the aerial surveys are overall more or less similar than those for the 

biosampling; being the survey much cheaper when done only within the inside areas (2011) and more 

expensive when surveying the extended areas (when the costs increases due to operational and logistical 

issues), than the biosampling. The tagging, however, is much more expensive (up to 2 or 3 times) every 

year than the aerial surveys.  

 

Table 23.  Total cost (€) by phase for the different techniques. 

 

 Aerial survey Tagging Biosampling 

Year 

Field 

work Other Total 

Field 

work Other Total 

Field 

work Other Total 

2010 300,000 13,266 313,266 0 36,604 36,604    

2011 282,097 34,236 316,333 568,376 350,569 918,945 440,406 10,082 450,488 

2012    1,080,000 40,157 1,120,157 396,000 0 396,000 

2013 491,718 26,708 518,426 943,963 172,710 1,116,673 350,000 0 350,000 

2015 431,425 48,002 479,427 245,701 394,877 640,578 342,496 0 342,496 

Total 1,505,240 122,212 1,627,452 2,838,040 994,916 3,832,957 1,528,902 10,082 1,538,984 

 

 

II.3 Previous power analysis 

Previous power analyses (2010 and 2013) were carried out under a different situation, at first because these 

analyses were based on the four main spawning areas only, the strategy at that time.  The results of these 

two previous power analyses were very much promising in terms of opportunities for getting a SSB trend 

within the life span of GBYP. The situation changed after the second analysis, because the strategy 
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requested by the GBYP Steering Committee was to carry out extensive surveys in all available 

Mediterranean areas where Bluefin tuna spawning may potentially occur.  

The problem was that this strategy was enforced without a parallel budget increasing for ensuring the same 

previous coverage in the four main spawning areas selected at the beginning of the aerial survey. 

Furthermore, in the period 2010-2015, the aerial survey was not carried out in 2012 and 2014, for budget 

shortage in one case and for a decision of the Steering Committee in the other case. 

The combination of these changes and suspensions obviously resulted in a general increase of CV for the 

whole surveys and mostly in the last two. As a consequence, the results of this power analysis are not much 

comparable with the two previous analyses. In a possible simulation, one additional aerial survey in 2016, 

providing a coverage able to ensure a similar number of replicates and transect length in the four main areas 

(defined in the analysis as “overlapped areas”), could provide major elements for better defining a more 

reliable power analysis under a stable survey strategy. 
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III. Recommendations 

 

Reduction of coefficients of variation 

The main recommendation from this report is that if a reduction of coefficients of variations, at several 

levels (encounter rates, school size, detection function and additional variances), is required to be able to 

detect trends in population growth, increased coverage in terms of kilometers of tracks on effort should be 

done.  

This reduction could be gained by a more stable survey strategy, focused on the same areas over the years 

and by using always the same type of aircraft and the same team of spotters in each area, because this 

approach will reduce most of the most relevant variables. The main recommendation is, thus, to 

concentrate the survey effort in the inside overlap areas for future surveys. This would reduce considerably 

the CVs, but also the cost per km surveyed, and the operational and logistical problems. Surveying the 

extended areas, on the other hand, do increase CVs, costs and operational and logistical problems, without 

increasing or improving the scientific knowledge (apart from verifying, once  more, tht the chosen survey 

areas are the right ones). 

Tables of different cost analysis and power analysis have been provided throughout the report so that 

ICCAT can evaluate the level of power (and therefore coverage) they want to achieve with the available 

resources. 

It has also been shown that additional variance, when considering spatial and temporal variability, is very 

high. However, if additional variance wants to be applied for each area in particular, so that trends can be 

detected in each of them, then only temporal variability needs to be considered in the aera-specific 

additional variance. These could not be estimated with the available data due to the small sample size. It is 

possible that one more year of survey will provide enoughdata to estimate the area-specific additional 

variances with a higher confidence. But the requirement for area-specific or global (or any combination of 

areas) additional variations would ultimately depend on the consideration about the population structure 

(i.e. whether the whole Mediterranean is considered a single population, in which case all areas could be 

pooled together for abundance estimates, or 2 or more coexist and different areas can be assigned to 

different populations, in which case not all of them should be pooled together). 

The additional variance from tagging data is much smaller, but possibly it could be reduced even further if 

more precise data from the tags will be available and the sample size gets increased. Also information on 

population structure could help in this sense, as data on tagging may need to be stratified, if possible, 

according to populations if more than one is present in the Mediterranean. 

 

Long-term planning for the GBYP 

ICCAT GBYP in general is increasing in a substantial way the scientific knowledge on bluefin tuna and 

this is essential for both assisting the recovery of this species and its sustainable management. The variety 

of bluefin tuna behaviours and its capacity to immediately respond to any environmental change are the 

great challenge of the bluefin tuna research and the aerial surveys are surely a part of this challenge.  

The aerial surveys are still one of the very few available methodologies for providing fishery-independent 

data; no-one of the fishery independent methodologies is perfect and without biases but, considering the 

cost of the ICCAT GBYP aerial survey, this approach is not among the most expensive.  

Several data have been collected in the first four surveys and surely the stop-and-go strategy, induced also 

by budget unavailability in some years, played a severe role in partly affecting the quality of the data, 

resulting in a substantial CV. The difficulties in keeping active the same teams in each area were another 

limit. These problems can be smoothed and possibly reduced to a minimum in a medium- long-term 

strategy, building on the knowledge already achieved with many efforts.  

The Steering Committee and the SCRS had already planned a longer GBYP activity in 2014, extending it 

up to 2021, and this proposal was endorsed by the Commission. The current assessment of the aerial survey 

activity is that it is a clear operational success so far and that the scientific results need more years and 

efforts for providing the necessary trends to be used for scientific and management purposes. This was 
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already clearly stated in previous power analyses, because any trend needs several years to be duly detected 

and assessed, considering any possible improvement included in this report. The necessary budget should 

be provided in the following years to ensure that the aerial surveys will continue following a more stable 

strategy. 
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