
 50

4.4 CPUE and LPUE as relative abundance indices 
 
Section 4.2.4 described sources of information about tuna fisheries and pointed out that these 
are mostly linked with commercial fisheries.  This section comments on the use of fishery 
dependent data for landings or catch per unit effort (LPUE or CPUE respectively) as indices 
of relative abundance of fish.  A concluding paragraph comments very briefly on fishery 
independent CPUE data. 
 
CPUE is usually taken to be proportional to numbers of fish, N, in the stock present in an 
area: 
 
    NqCPUE .=  
 
The constant of proportionality, q, is called the ‘catchability’.  The equation could be re-
written with subscripts, l, to refer to specific length classes if required.  Strong assumptions 
are inherent in the general relationship (Paloheimo and Dickie, 1964; Maunder and Punt, 
2004), e.g. 
 

• Mean CPUE is estimated for the same time period, depths, and geographic region as 
those supporting the N fish of the stock. 

• q is constant under all fishing conditions. 
• q does not vary with N. 

 
The difference between LPUE and CPUE unfortunately creates further uncertainty if no 
information about discarding or other losses of fish at sea is available.  When estimating 
abundance as an index based on mean LPUE or CPUE by time-area strata, it is necessary to 
consider many factors, e.g.  
 

• whether fishing covered the same area as the stock; 
• whether fishing covered the same depths as the stock;  
• what the effects of migrations, both horizontally and vertically, would be on local 

abundance (or q);  
• whether fish aggregate and become less catchable at low stock numbers; and 
• whether the technologies and strategies being used by the fishing fleet are sufficiently 

stable to assume that q is constant.  A gradual improvement in the fishing power of a 
vessel is often observed as the captain develops fishing skills, and as the vessel is 
fitted with better fish finding equipment and possibly more engine power etc.  This is 
referred to as ‘technical creep’. 

 
Other potential specific issues for tuna include: 
 

• seasonal migration effects on the CPUE data from a single nation; 
• the effect of Fish Aggregation Devices (FADs) on CPUE; 
• co-operation between different gear types when fishing on FADs4; 
• calculating CPUE as an index of population abundance for a schooling species; 

                                                      
4 Purse seine vessels may hold a large school of tuna in place while baitboats take part of the fish. In 
this case, when the baitboats are sampled in port, the composition of their catch will be different from 
that achieved by baitboats under normal circumstances. The effort to catch these fish will also be 
different to that under normal circumstances. This might require the addition of a gear category for 
purse-seine co-operating baitboats, and the issue returns to the clear definition of the fishery to be 
sampled. Another example is the co-operation of purse seine vessels to search for and catch bluefin in 
the Mediterranean. CPUE of individual vessels are then inconsistent. 



 51

• calculating CPUE where tuna are caught for farming. Length and weight measured at 
market (e.g. Japan) will not be comparable to that of ‘wild fish’. 

 
Clear answers to these questions are seldom available so it will be necessary either to accept 
the proportionality assumption with great caution, or to undertake modelling to try to improve 
LPUE or CPUE as an index of abundance (Xiao et al., 2004, part I).   Regression trees offer 
another, less prescriptive, model based approach (Watters and Deriso, 2000).   
 
Modelling of CPUEs is a research exercise. The predictor variables usually have to be 
selected from a long list of possibilities that should include the interactions among the 
variables (e.g. Rodríguez-Marín et al., 2003).  Omission of one important variable could 
cause the model to perform erratically when used to predict outside the time or space frame of 
the observations used to fit the model.  Prior biological knowledge is the best guide for an 
initial selection of predictor variables which can subsequently be refined by statistical 
methods (Burnham and Anderson, 2002).  An approach to avoid is that of stepwise selection 
through all available variables.  This is because the statistical significance of a predictor with 
one set of data and one set of additional predictors will often change substantially when 
slightly different conditions prevail.  The distribution of ‘error’ (=observed – fitted) values 
around the model has to be chosen from several statistical possibilities which include 
allowance for zero CPUE values (Ortiz and Arocha, 2004). The modelling method has to be 
chosen to suit the error distribution.  The simplest situation is when log(CPUE) can be treated 
as approximately normally distributed around a linear model with zeros ignored; least squares 
linear regression methods, described in many textbooks, are then suitable.  Other 
distributions, e.g. Poisson, would require a Generalised Linear model (McCullagh and Nelder, 
1989).  Non-linear relationships can be estimated with Generalised Additive models (Hastie 
and Tibshirani, 1990).  They require a decision on the degree of flexibility to be allowed in 
the fitted curves, in addition to specification of the model function.  Differential weighting of 
observations having different degrees of reliability is another consideration for modelling 
(Cotter and Buckland, 2004).  A useful general summary of modelling theory in a fisheries 
context is by Venables and Dichmont (2004).    
 
Given all this flexibility associated with modelling approaches to standardisation of LPUE 
and CPUE, it is essential that those reporting the results of modelling work to ICCAT should 
summarise all the choices and assumptions made and, so far as possible, explain the reasons 
for them. The resulting diagnostic plots (e.g. residual, QQ plots) should also be presented to 
demonstrate appropriate selection of model and error structure. General understanding of the 
foundations of a modelling study and of its strengths and weaknesses is of considerable 
assistance when weighing up the information it produces for the purposes of assessment and 
management of a stock. 
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CPUE data from fishery independent sources such as surveys by research vessels or spotter 
planes may be available.  The advantage of these is that they are not influenced by 
commercial decisions about fishing locations and times, or, if well standardised and 
documented in SOPs, by changes of fishing gear and technique over time.  The disadvantages 
of such surveys are that they are unlikely to cover the whole area occupied by a stock, and 
that the degree of overlap may itself vary with season, migrations, and possibly from year to 
year.  The design of the survey is also important.  A systematic grid, for example, will be poor 
for finding fish when the stock is low and aggregated in small, localised concentrations that 
fall between the nodes of the grid.  Generally, survey abundance indices are likely to have 
higher variance than mean LPUE values from a widespread commercial fishery.  They are 
also likely to be biased due to the mismatch of locations of fish and survey observation points.  
Use of a time-series of survey results requires the strong assumption that the survey bias is 
constant over time. 
 

4.4.1 Specific ICCAT issues 
 
A growing issue concerns the overlap between the time-space ‘sampled’ by the gear and the 
time-space inhabited by the fish; does the degree of overlap change through time? 
 

LPUEs of fishing vessels can vary by orders of magnitude from set to set.  As a result, it is 
important to use the right estimator for average LPUE in a time-area stratum.  For 
simplicity, consider just two sets labelled 2,1=i  in which iL  fish were retained for landing 
following application of iE  units of fishing effort.  Two different estimators for average 
LPUE are: 
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Suppose, for illustrative purposes, that contrasting catches of fish occurred such that 11 =L , 

1002 =L , 11 =E , and 22 =E .  Then 
 
    ( ) 5.251 =LPUEmean  
 
and     ( ) 66.332 =LPUEmean . 
 
The first estimator is the unweighted average of the two point values of LPUE, one for each 
set.  This estimator uses the information of which sets provided each pair of L and E values 
(cf. second bullet point under Information, above) and is the recommended estimator for 
average LPUE because each set, whatever the catch, is an equally valid observation of 
fishing success.  In contrast, the second estimator gives more weight to the larger landing 
figure, 2L .  This estimator has to be used when total landings and total effort for multiple 
sets are the only available data.  The bias for the example data is +32%.   
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For bycatch species such as Atlantic white marlin, the only available time series of relative 
abundance are fishery-derived CPUE indices. Commercial indices come from wide-ranging 
fisheries, but these may have changed in spatial distribution, gear (moving from shallow to 
deeper longline sets) or target species over time (deeper set hooks indicate a change in 
targeting to bigeye tuna). Other CPUE data come from more localized sport fisheries that 
have always targeted marlins. Alternative GLM formulations have been put forward in an 
attempt to remove biases caused by changes in fishing depth over time in the fishery 
(Babcock and McAllister, 2004). 
 
A further extension for billfish species is the application of ‘habitat-based’ standardisation 
models (Hinton and Nakano, 1996). ‘Habitat-based’ models incorporate understanding of 
behavioural (depth and temperature preferences) and oceanographic parameters to standardise 
historical CPUE time series data, as well as accounting for significant gear changes over time. 
The basic idea is that if a hook is fished in an environment that is preferred by the species, it 
has a higher probability of capturing that species (Hinton and Maunder, 2004). Bigelow et al. 
(2002) have used the habitat based standardization method to create CPUE based indices of 
relative abundance for bigeye and yellowfin tuna in the Pacific Ocean. These indices have 
been used for assessments in both the western-central Pacific Ocean by SPC (Hampton, 2002) 
and the eastern Pacific Ocean by the IATTC (Maunder, 2002). The debate over the use of 
‘habitat-based’ standardisation models is on-going. 
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