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4.4 CPUE and LPUE as relative abundance indices 
 
Section 4.2.4 described sources of information about tuna fisheries and pointed out that these are mostly linked 
with commercial fisheries. This section comments on the use of fishery dependent data for landings or catch per 
unit effort (LPUE or CPUE respectively) as indices of relative abundance of fish. A concluding paragraph 
comments very briefly on fishery independent CPUE data. 
 
CPUE is usually taken to be proportional to numbers of fish, N, in the stock present in an area: 
 
    NqCPUE .=  
 
The constant of proportionality, q, is called the ‘catchability’. The equation could be re-written with subscripts, l, 
to refer to specific length classes if required. Strong assumptions are inherent in the general relationship 
(Paloheimo and Dickie, 1964; Maunder and Punt, 2004), e.g. 

• Mean CPUE is estimated for the same time period, depths, and geographic region as those supporting 
the N fish of the stock. 

• q is constant under all fishing conditions. 
• q does not vary with N. 

 
The difference between LPUE and CPUE unfortunately creates further uncertainty if no information about 
discarding or other losses of fish at sea is available. When estimating abundance as an index based on mean 
LPUE or CPUE by time-area strata, it is necessary to consider many factors, e.g.  

• whether fishing covered the same area as the stock; 
• whether fishing covered the same depths as the stock;  
• what the effects of migrations, both horizontally and vertically, would be on local abundance (or q);  
• whether fish aggregate and become less catchable at low stock numbers; and 
• whether the technologies and strategies being used by the fishing fleet are sufficiently stable to assume 

that q is constant. A gradual improvement in the fishing power of a vessel is often observed as the 
captain develops fishing skills, and as the vessel is fitted with better fish finding equipment, 
occasionally accompanied by more capacity to explore the fishing zones, etc. This is referred to as 
‘technical creep’. 

 

Other potential specific issues for tuna include: 

• seasonal migration effects on the CPUE data from a single nation; 
• the effect of Fish Aggregation Devices (FADs) on CPUE; 
• co-operation between different gear types when fishing on FADs4; 
• calculating CPUE as an index of population abundance for a schooling species; 
• calculating CPUE where tuna are caught for farming. Length and weight measured at market (e.g. 

Japan) will not be comparable to that of ‘wild fish’. 
 
Clear answers to these questions are seldom available so it will be necessary either to accept the proportionality 
assumption with great caution, or to undertake modelling to try to improve LPUE or CPUE as an index of 
abundance (Xiao et al., 2004, part I). Regression trees offer another, less prescriptive, model based approach 
(Watters and Deriso, 2000).  
 
Modelling of CPUEs is a research exercise. The predictor variables usually have to be selected from a long list 
of possibilities that should include the interactions among the variables (e.g. Rodríguez-Marín et al., 2003). 
Omission of one important variable could cause the model to perform erratically when used to predict outside the 
time or space frame of the observations used to fit the model. Prior biological knowledge is the best guide for an 

                                                      
4 Purse seine vessels may hold a large school of tuna in place while baitboats take part of the fish. In this case, when the 
baitboats are sampled in port, the composition of their catch will be different from that achieved by baitboats under normal 
circumstances. The effort to catch these fish will also be different to that under normal circumstances. This might require the 
addition of a gear category for purse-seine co-operating baitboats, and the issue returns to the clear definition of the fishery to 
be sampled. Another example is the co-operation of purse seine vessels to search for and catch bluefin in the Mediterranean. 
CPUE of individual vessels are then inconsistent. 
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initial selection of predictor variables which can subsequently be refined by statistical methods (Burnham and 
Anderson, 2002). An approach to avoid is that of stepwise selection through all available variables. This is 
because the statistical significance of a predictor with one set of data and one set of additional predictors will 
often change substantially when slightly different conditions prevail. The distribution of ‘error’ (=observed – 
fitted) values around the model has to be chosen from several statistical possibilities which include allowance for 
zero CPUE values (Ortiz and Arocha, 2004). The modelling method has to be chosen to suit the error 
distribution. The simplest situation is when log(CPUE) can be treated as approximately normally distributed 
around a linear model with zeros ignored; least squares linear regression methods, described in many textbooks, 
are then suitable. Other distributions, e.g. Poisson, would require a Generalised Linear model (McCullagh and 
Nelder, 1989). Non-linear relationships can be estimated with Generalised Additive models (Hastie and 
Tibshirani, 1990). They require a decision on the degree of flexibility to be allowed in the fitted curves, in 
addition to specification of the model function. Differential weighting of observations having different degrees 
of reliability is another consideration for modelling (Cotter and Buckland, 2004). A useful general summary of 
modelling theory in a fisheries context is by Venables and Dichmont (2004).  
 
Given all this flexibility associated with modelling approaches to standardisation of LPUE and CPUE, it is 
essential that those reporting the results of modelling work to ICCAT should summarise all the choices and 
assumptions made and, so far as possible, explain the reasons for them. The resulting diagnostic plots (e.g. 
residual, QQ plots) should also be presented to demonstrate appropriate selection of model and error structure. 
General understanding of the foundations of a modelling study and of its strengths and weaknesses is of 
considerable assistance when weighing up the information it produces for the purposes of assessment and 
management of a stock. 
 

LPUEs of fishing vessels can vary by orders of magnitude from set to set.  As a result, it is important 
to use the right estimator for average LPUE in a time-area stratum.  For simplicity, consider just two 
sets labelled 2,1=i  in which iL  fish were retained for landing following application of iE  units of 
fishing effort.  Two different estimators for average LPUE are: 
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Suppose, for illustrative purposes, that contrasting catches of fish occurred such that 11 =L , 

1002 =L , 11 =E , and 22 =E .  Then 
 
    ( ) 5.251 =LPUEmean  
 
and     ( ) 66.332 =LPUEmean . 
 
The first estimator is the unweighted average of the two point values of LPUE, one for each set.  This 
estimator uses the information of which sets provided each pair of L and E values (cf. second bullet 
point under Information, above) and is the recommended estimator for average LPUE because each 
set, whatever the catch, is an equally valid observation of fishing success.  In contrast, the second 
estimator gives more weight to the larger landing figure, 2L .  This estimator has to be used when 
total landings and total effort for multiple sets are the only available data.  The bias for the example 
data is +32%.   
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CPUE data from fishery independent sources such as surveys by research vessels or spotter planes may be 
available. The advantage of these is that they are not influenced by commercial decisions about fishing locations 
and times, or, if well standardised and documented in SOPs, by changes of fishing gear and technique over time. 
The disadvantages of such surveys are that they are unlikely to cover the whole area occupied by a stock, and 
that the degree of overlap may itself vary with season, migrations, and possibly from year to year. The design of 
the survey is also important. A systematic grid, for example, will be poor for finding fish when the stock is low 
and aggregated in small, localised concentrations that fall between the nodes of the grid. Generally, survey 
abundance indices are likely to have higher variance than mean LPUE values from a widespread commercial 
fishery. They are also likely to be biased due to the mismatch of locations of fish and survey observation points. 
Use of a time-series of survey results requires the strong assumption that the survey bias is constant over time. 
 
4.4.1 Specific ICCAT issues 
 
A growing issue concerns the overlap between the time-space ‘sampled’ by the gear and the time-space 
inhabited by the fish; does the degree of overlap change through time? 
 
For bycatch species such as Atlantic white marlin, the only available time series of relative abundance are 
fishery-derived CPUE indices. Commercial indices come from wide-ranging fisheries, but these may have 
changed in spatial distribution, gear (moving from shallow to deeper longline sets) or target species over time 
(deeper set hooks indicate a change in targeting to bigeye tuna). Other CPUE data come from more localized 
sport fisheries that have always targeted marlins. Alternative GLM formulations have been put forward in an 
attempt to remove biases caused by changes in fishing depth over time in the fishery (Babcock and McAllister, 
2004). 
 
A further extension for billfish species is the application of ‘habitat-based’ standardisation models (Hinton and 
Nakano, 1996). ‘Habitat-based’ models incorporate understanding of behavioural (depth and temperature 
preferences) and oceanographic parameters to standardise historical CPUE time series data, as well as 
accounting for significant gear changes over time. The basic idea is that if a hook is fished in an environment 
that is preferred by the species, it has a higher probability of capturing that species (Hinton and Maunder, 2004). 
Bigelow et al. (2002) have used the habitat based standardization method to create CPUE based indices of 
relative abundance for bigeye and yellowfin tuna in the Pacific Ocean. These indices have been used for 
assessments in both the western-central Pacific Ocean by SPC (Hampton, 2002) and the eastern Pacific Ocean by 
the IATTC (Maunder, 2002). The debate over the use of ‘habitat-based’ standardisation models is on-going. 
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