NOTING that the objective of the Convention is to maintain populations of tuna and tuna-like species at levels that will support Maximum Sustainable Yield (MSY);

RECALLING that the Commission often had difficulties in deciding the Total Allowable Catch (TAC) based on advice from the Standing Committee on Research and Statistics (SCRS);

ALSO RECALLING that the SCRS had difficulties in providing robust scientific advice to the Commission due to various uncertainties such as the low quality of data;

RECOGNIZING that Harvest Control Rules (HCRs) and Management Procedures (MPs) developed using Management Strategy Evaluation (MSE) provide a more robust management framework than that based on a conventional stock assessment, ensuring a more precautionary approach and better stability of TACs;

ALSO RECOGNIZING the intent of the Commission to adopt HCRs and MPs developed using MSE, as established in Recommendation by ICCAT on the development of Harvest Control Rules and of Management Strategy Evaluation (Rec. 15-07);

NOTING the Resolution by ICCAT on developing initial management objectives for eastern and western bluefin tuna (Res. 18-03), which outlined the conceptual objectives for the Atlantic bluefin tuna MSE;

RECALLING that the Commission requested the SCRS to continue testing various candidate MPs in 2022 and to meet with Panel 2 to review the results and support the Panel in selecting one to adopt and apply for 2023 as anticipated in the 2021 Recommendations, the Recommendation by ICCAT amending Recommendation 17-06 for an interim conservation and management plan for western Atlantic bluefin tuna (Rec. 21-07) and Recommendation by ICCAT amending the Recommendation 19-04 amending Recommendation 18-02 establishing a multi-annual management plan for bluefin tuna in the eastern Atlantic and the Mediterranean (Rec. 21-08) and for this purpose Panel 2 held four intersessional meetings in 2022;

STRESSING the importance that all the stakeholders are involved in the MSE process since the MP automatically calculates the TAC to be adopted by the Commission unless it encountered an exceptional circumstance that is not envisaged by the MP;

APPRECIATING the efforts of all the scientists involved in the MSE process who made tremendous contribution not only to the scientific work but also to better communication of the results to various stakeholders involved in the bluefin tuna fisheries, including through informal ambassador meetings in three languages;

RECOGNIZING that the bluefin tuna MSE framework evaluated the status of the stock over the course of a 30-year projection period ending in 2052;

FURTHER RECOGNIZING that the relative biomass statistic (lowest depletion or LD value, which is the spawning biomass relative to dynamic SSB MSY) will be evaluated across years 11-30 in this projection period to provide time for the MP to rebuild stocks given that the MSE operating models have been designed to cover a wide range of plausible scenarios, including scenarios that depict the stocks in a depleted state in the first 10 years of the 30 -year projection period;

NOTING the importance of establishing an exceptional circumstances protocol in 2023 that could result in suspending or modifying the application of the MP;

THE INTERNATIONAL COMMISSION FOR THE CONSERVATION OF ATLANTIC TUNAS (ICCAT) RECOMMENDS THAT:

Part I General provisions

1. Contracting Parties and Cooperating non-Contracting Parties, Entities or Fishing Entities (CPCs) whose vessels fish for Atlantic bluefin tuna (Thunnus thynnus) in the Convention area shall implement the following MP. This MP shall be used to calculate the Total Allowable Catch (TAC) for both the western Atlantic management area (hereafter called "the western management area") and the eastern Atlantic and the Mediterranean management area (hereafter called "the eastern management area").

Management objectives

2. The management objectives for Atlantic bluefin tuna are:
a) Stock Status:

- Both the western and eastern stocks should have a 60% or greater probability of occurring in the green quadrant of the Kobe plot (no overfishing occurring and not overfished);
b) Safety:
- There should be a 15% or less probability of either stock falling below BLIM^{1};
c) Yield:
- Maximize overall catch levels in both the western and eastern management areas;
d) Stability:
- Any change in TAC between consecutive management periods in both the western and eastern management areas should be no more than a 20% increase or a 35% decrease.

Performance Measures (indicators) used to evaluate the performance of MPs for each management objective are found in Annex 1.

Part II

Management procedure and catch limits

3. Consistent with the management objectives specified in paragraph 2 , the BR management procedure has been selected and is fully described in Annex 2.

TAC setting

4. The first TACs derived from the MP shall apply in 2023, 2024, and 2025. The management cycle length shall be three years; therefore, the MP shall be applied every three years.
5. Notwithstanding the stability management objective in paragraph 2 d , there will be a phase-in period of one management cycle where the decrease in TAC shall be no more than 10%.
6. If the TAC change as a result of the application of the MP is less than 50 t for the western management area and $1,000 t$ for the eastern management area, the TAC shall not be changed.
7. According to the timeline set out in Annex 3, the SCRS shall run the MP specified in Annex 2 and advise the Commission of the resulting TAC for both the western management area and the eastern management area.

[^0]8. The Commission shall then adopt the TACs based on the outcome of the MP, unless the SCRS identifies exceptional circumstances that require consideration of alternative management actions to be taken by the Commission.
9. The SCRS shall assess the occurrence of exceptional circumstances annually and the Commission shall act in accordance with the exceptional circumstances protocol set out in Annex 4.

TAC implementation

10. The MP shall be applied according to the determined schedule and procedure and the resulting TACs for the eastern and western management areas shall be implemented and monitored according to the provisions set out in the Recommendation by ICCAT amending Recommendation 21-08 establishing a Multi-annual Management Plan for bluefin tuna in the eastern Atlantic and Mediterranean (Rec. 22-08) and the Recommendation by ICCAT for a Conservation and Management Plan for western Atlantic bluefin tuna (Rec. 22-10).

Part III Final provisions

11. A review of the performance of the MP by the Commission and the SCRS shall be completed by 2028 and every 6 years thereafter. The aim of the review is to ensure the MP is performing as expected and to determine whether there are conditions that justify its continuation, or that warrant: reconditioning the MSE operating models; retuning the existing MP; including new indices into a new MP; and/or considering alternate candidate management procedures or development of a new MSE framework. Based on that review and subsequent SCRS advice, the Commission shall decide on future management measures, approaches, and strategies, including, inter alia, regarding TAC levels, for bluefin tuna stocks in both management areas.
12. This Recommendation repeals and replaces Recommendation by ICCAT establishing a management procedure for Atlantic bluefin tuna to be used for both the western Atlantic and eastern Atlantic and Mediterranean management areas (Rec. 22-09).

Table of Operational Management Objectives and Performance Measures

Performance Measures are calculated based on 48 simulations/replicates for each of the 48 operating models of a 30-year projection under a CMP.

Management Objectives	Primary Performance Measures	Secondary Performance Measures
Status Both the western and eastern stocks should have a 60% or greater probability of occurring in the green quadrant of the Kobe plot (no overfishing occurring and not overfished). (To be evaluated at intermediate points between zero and 30 years, and at the end of the 30 -year period.)	PGK: Probability of being in the Kobe green quadrant (i.e., SSB \geqq dynamic SSBmsy 2 and $\mathrm{U}<\mathrm{Umš}^{3}{ }^{3}$) in year 30 of the management period (2052).	Br30 - Br (i.e., biomass ratio, or spawning stock biomass (SSB) relative to dynamic SSBmsY) after 30 years. AvgBr - Average Br over projection years 11-30. Br 20 - Br after 20 years. POF - Probability of overfishing (U U (UMSY) after 30 projected years. PNRK - Probability of not being in the red Kobe quadrant (SSB \geqq SSBmSY and/or U < Umsy) after 30 projected years. OFT - Overfished Trend, SSB trend if Br30<1.
Safety There should be a 15% or less probability of either stock falling below Bum at any point during the years 11-30 of the projection period.	LD* - Lowest depletion (i.e., the lowest SSB relative to dynamic SSBmsy) over years $11-30$ in the projection period. $L D^{*}$ value is evaluated relative to Bиім $(40 \%$ of dynamic SSBmsy). LD* ${ }^{*} 5 \%$ (15th percentile) is used as the primary performance measures.	LD* - LD*5\% (5th percentile) and LD $^{*}{ }_{10 \%}$ (10th percentile) are presented in the secondary performance measures.
Yield Maximize overall catch levels in both western and eastern management areas.	AvC10 - Median TAC (t) over years 1-10. AvC30 - Median TAC (t) over years 1-30.	C1 - TAC in first 3 years of MP (i.e., 2023-25). AvC20 - Median TAC (t) over years 1-20.
Stability Any change in TAC between consecutive management periods in both the western and eastern management areas should be no more than a 20% increase or a 35% decrease, except during the first application of the MP, where any TAC change shall not exceed a 20% increase or a 10% decrease.	VarC - Variation in TAC (\%) between management cycles.	

[^1]
Description and formulae for calculating TACs for western Atlantic and eastern Atlantic and Mediterranean bluefin tuna management areas using the BR Management Procedure

The BR MP is empirical, based on inputs related to abundance indices which are first standardised for magnitude, then aggregated by way of a weighted average of all indices available for the East or for the West areas as appropriate (Table A1, five indices in each management area), and finally smoothed over years to reduce observation error variability effects. TACs are then set based on the concept of taking a fixed proportion of the abundance present, as indicated by these aggregated and smoothed abundance indices.

Aggregate abundance indices

An aggregate abundance index is developed for each of the East and the West areas by first standardising each index available for that area to an average value of 1 over the past years for which the index appeared reasonably stable, and then taking a weighted average of the results for each index, where the weight is inversely proportional to the variance ${ }^{4}$ of the residuals used to generate future values of that index in the future modified to take into account the loss of information content as a result of autocorrelation. The mathematical details are as follows:

The indices, I_{y}^{i}, are first standardised to an average value of 1 over the past years for which the index appeared reasonably stable:

$$
\begin{equation*}
I_{y}^{i *}=\frac{I_{y}^{i}}{\sum_{y_{1}^{i}}^{y_{2}^{i}} I_{y}^{i} /\left(y_{2}^{i}-y_{1}^{i}+1\right)} \tag{A1}
\end{equation*}
$$

where y_{1}^{i} and y_{2}^{i} specify the period to which each index (i) is standardised (Table A1).
$J_{y}^{E / W}$ is an average index over n series ($n=5$ for the East area and $n=5$ for the West area):

$$
\begin{equation*}
J_{y}^{E / W}=\frac{\sum_{i}^{n} w_{i} \times I_{y}^{i *}}{\sum_{i}^{n} w_{i}} \tag{A2}
\end{equation*}
$$

where $w_{i}=\frac{1}{\sqrt{\sigma^{i}}}$ (i.e., effective inverse variance to the power $1 / 4$ weighting). σ^{i} is computed as $\sigma^{i}=\frac{S D^{i}}{1-A C^{i}}$, where $S D^{i}$ is the standard deviation of the residuals in \log space and AC^{i} is their autocorrelation, averaged over the OMs, as used for generating future pseudo-data. Table A1 lists these values for w_{i}.

For the West, the weights computed above for US_RR_66_144, JPN_LL_West2 and CAN_SWNS have been multiplied by 3 (i.e., $w_{i} \rightarrow 3 w_{i}$). This change has been implemented to avoid a steep drop in the median TAC for the West area during the 2030s.

In case of a missing index value in year $y, J_{y}^{E / W}$, is computed by setting w_{i} to zero, i.e., that index is disregarded when averaging over indices for that year only.

The actual index used in the MP, $J_{a v, y-2}^{E / W}$, is the average over the last three years for which data would be available at the time the MP would be applied, hence:

$$
\begin{equation*}
J_{a v, y-2}^{E / W}=\frac{1}{3}\left(J_{y-2}^{E / W}+J_{y-3}^{E / W}+J_{y-4}^{E / W}\right) \tag{A3}
\end{equation*}
$$

where the $J_{a v, y-2}^{E / W}$ applies either to the East or to the West area.

[^2]
MP specifications

The BR Fixed Proportion MP sets the TAC (in mt) every management cycle simply as a multiple of the Jav value for the area at the time (Figure A1), but subject to the change in the TAC for each area being restricted to a maximum of 20% up and 35% down (10% down for the phase-in period).

For the East area:

$$
\begin{gather*}
T A C_{E, y}=\left\{\begin{array}{cc}
\left(\frac{35032.31}{J_{2017}^{E}}\right) \cdot \alpha_{y} \cdot J_{a v, y-2}^{E} & \text { for } J_{a v, y-2}^{E} \geq T^{E} \\
\left(\frac{35032.31}{J_{2017}^{E}}\right) \cdot \alpha_{y} \cdot \frac{\left(J_{a v, y-2}^{E}\right)^{2}}{T^{E}} & \text { for } J_{a v, y-2}^{E}<T^{E}
\end{array}\right. \tag{A4a}\\
\alpha_{y}=\left\{\begin{array}{cc}
\alpha_{0}+\Delta \alpha(y-2023) & \text { for } 2023 \leq y \leq 2027 \\
\alpha_{0}+4 \Delta \alpha & \text { for } y>2027
\end{array}\right.
\end{gather*}
$$

For the West area:

$$
\begin{gather*}
T A C_{W, y}=\left\{\begin{array}{cc}
\left(\frac{2269.362}{J_{2017}^{W}}\right) \cdot \beta_{y} \cdot J_{a v, y-2}^{W} & \text { for } J_{a v, y-2}^{W} \geq T^{W} \\
\left(\frac{2269.362}{J_{2017}^{W}}\right) \cdot \beta_{y} \cdot \frac{\left(J_{a v, y-2}^{W}\right)^{W}}{T^{W}} & \text { for } J_{a v, y-2}^{W}<T^{W}
\end{array}\right. \tag{A4b}\\
\beta_{y}=\left\{\begin{array}{cc}
\beta_{0}+\Delta \beta(y-2023) & \text { for } 2023 \leq y \leq 2030 \\
\beta_{0}+7 \Delta \beta & \text { for } y>2030
\end{array}\right.
\end{gather*}
$$

The values $35,032.314 \mathrm{mt}$ and $2,269.362 \mathrm{mt}$ used in equations A4a and b respectively are the ICCAT Task 1 catch by management area in 2020 as at April 2022.

Note that in equation (A4a), setting $\alpha_{y}=1$ would amount to keeping the East area TAC the same as the corresponding catch in 2020 (as explained above) if the abundance indices stayed at their 2017 level. If α_{y} or $\beta_{y}>1$ harvesting would be more intensive than at that time, and for α_{y} or $\beta_{y}<1$ it would be less intensive.

Below T, the law is parabolic rather than linear at low abundance (i.e., below some threshold, so as to reduce the proportion taken by the fishery as abundance drops); this is to better enable resource recovery in the event of unintended depletion of the stock. For the BR MP, the choices of $T^{E}=1$ and $T^{W}=1$ have been made.

Constraints on the extent of TAC increase and decrease

$$
\begin{equation*}
\Delta T A C^{E / W}=\frac{T A C_{y}^{E / W}}{T A C_{y-1}^{E / W}} \tag{A5}
\end{equation*}
$$

with $T A C_{y}^{E / W}$ from equation A4. $\Delta T A C^{E / W}$ is then modified as follows:

$$
\begin{equation*}
\Delta T A C^{E / W^{\prime}}=\exp \left(\ln \left(\Delta T A C^{E / W}\right) \operatorname{VarCadj}\right) \tag{A6}
\end{equation*}
$$

with a control parameter, VarCadj, taken for the BR MP to be 0.5 . This parameter is introduced to reduce the magnitude of the TAC changes; the smaller the value of this parameter the smaller the TAC change.
$\Delta T A C^{E / W^{\prime}}$ is then constrained to a maximum of 20% up and 35% down and 10% down for the phase-in period,

$$
\begin{aligned}
& \text { if } \Delta T A C^{E / W^{\prime}}>\left(1+\max U p^{E / W}\right) \text { then } \Delta T A C^{E / W^{\prime}}=\left(1+\max U p^{E / W}\right) \text {, or } \\
& \text { if } \Delta T A C^{E / W^{\prime}}<\left(1-\operatorname{maxDown}{ }^{E / W}\right) \text { then } \Delta T A C^{E / W^{\prime}}=(1-\operatorname{maxDown})
\end{aligned}
$$

The TAC is then computed as:

$$
\begin{equation*}
T A C_{y}^{E / W^{\prime}}=T A C_{y-1}^{E / W} \cdot \Delta T A C^{E / W^{\prime}} \tag{A7}
\end{equation*}
$$

Minimum TAC change constraints lead to the addition of the following rules:

$$
\begin{array}{ll}
\text { if } & \left|T A C_{y-1}^{E / W}-T A C_{y}^{E / W^{\prime}}\right|<\min \Delta T A C^{E / W} \tag{A8}\\
\text { then } & T A C^{E / W \prime \prime}=T A C_{y-1}^{E / W}
\end{array}
$$

where values for $\min \Delta T A C^{E / W}$ are 50 t for the West and 1,000 t for the East.
Table A1. The index periods y_{1}^{i} and y_{2}^{i} (equation A1) and w^{i} weights used when averaging over the indices to provide composite indices for the East and the West areas (equation A2).

	East			West					
i	Index	y_{1}^{i}	y_{2}^{i}	w^{i}	Index	y_{1}^{i}	y_{2}^{i}	w^{i}	
1	FR_AER_SUV2	2014	2017	1.33	GOM_LAR_SUV	2006	2017	1.33	
2	MED_LAR_SUV	2012	2016	1.66	US_RR_66_144	2006	2018	2.55	
3	GBYP_AER_SUV_BAR 5	2015	2018	1.06	MEXUS_GOM_PLL2	2006	2018	1.39	
4	MOR_POR_TRAP	2012	2018	1.43		JPN_LL_West2	2010	2019	3.96
5	JPN_LL_NEAtl2	2012	2019	1.33	CAN_SWNS	2006	2017	2.88	

Table A2. Control parameter values for the MP (equation A4). A TAC variation reduction adjustment factor with VarCadj $=0.5$ has been applied.

CMP name	PGK	Cycle	stability	α_{0}	$\Delta \alpha$	β_{0}	$\Delta \beta$
B360	60	3	$+20 /-35$	1.235	0.204	0.810	-0.032

Figure A1. Illustrative relationship (the "catch control law") of TAC against $J_{a v, y}$ for the BR MP, which includes the parabolic decrease below T.

[^3]
Schedule for Management Procedure implementation

3 Year Cycle

	2022	2023	2024	2025	2026	2027	2028
SCRS check for exceptional circumstances		X	X	X	X	X	X
SCRS runs MP	X			X			X
Commission endorses and implements TAC based on MP (unless other action is needed due to exceptional circumstances)							
TAC in effect		X	X	X	X	X	X
SCRS MP review						X	
Status Check/Assessment					X*	X*	
Commission assesses SCRS review and next steps							X

*The Commission shall decide the timing of the next stock assessment in consultation with the SCRS.

Exceptional Circumstances (ECs) protocol for Atlantic bluefin tuna

 based on the comments submitted by the Standing Committee on Research and Statistics (SCRS)
1. Principles of ECs

The following three general principles should be considered as a signal indicating the possibility that ECs exist:
a. When there is evidence that the stock and/or fishery dynamics are in states (as defined in Table $\mathbf{1}$ a) not previously considered to be plausible in the context of the management strategy evaluation (MSE);
b. When there is evidence that the data required to apply the management procedure (MP) are not available or sufficient, or are no longer appropriate (as defined in Table 1 b); and/or,
c. When there is evidence that total catch for either the West area or the East area is above the total allowable catch (TAC) for the respective area set using the MP (as defined in Table 1 c).

2. Indicators for ECs and process to determine if ECs occur

In light of the principles specified in Section 1, the SCRS should use Table 1 below to evaluate annually whether ECs exist and will inform the Commission of any such occurrence. Triggering an EC does not immediately result in TAC advice from the MP being rescinded; rather, it means that the SCRS needs to examine the indicators in Table $\mathbf{1}$ and determine if a change in advice is warranted.

Table 1. Indicators for bluefin tuna ECs and timetable for conducting the evaluation.

Principle	Indicator	Criterion	Frequency
a. Stock and fishery dynamics	Indices	If either of the combined index values fall outside the 2.5% and 97.5% percentile range ${ }^{6}$ in any year from the operating models used in the MSE when the accepted MP was tested.	Annually
	Abundance, life history and fishery dynamics	If there is evidence that the stock and/or fishery dynamics ${ }^{7 *}$ are in states not previously considered to be plausible in the context of the MSE; such evidence would need to be so consequential that it would meaningfully affect TAC advice from the MP.	After completion, presentation, and acceptance by the SCRS of a study as the new reference
b. Data availability for the MP	Indices	If three or more indices among the 10 are missing in a single year or if two or more indices are missing consecutively for two or more years.	Annually
c. Implementation of the TAC	Catch	If the total catch for either the West area or the East area is 20% or more above the TAC for the respective area set using the MP8.	Annually

[^4]
3. Actions to be taken in light of ECs

If the SCRS determines that an EC exists that precludes the application of the MP or makes the application of the MP or the implementation of its results unadvisable based on the principles outlined in Section 1, the SCRS shall evaluate the nature of the EC and advise the Commission on:
(a) alternative management options for the coming fishing year aimed at ensuring, at a minimum, stability in the status of the stocks, including the implications of: (i) maintaining the TACs decided through the MP, (ii) reducing the TACs by various percentages in light of indications of stock decline, and (iii) any other appropriate conservation and management actions, potentially including various percentage increases in TACs;
(b) whether the existing MP can and should be adjusted or whether development of a new MP is required; and
(c) whether a stock assessment or other SCRS-approved method of determining TACs is needed for providing management advice in the interim.

Based on the SCRS advice on (a) above, the Commission shall decide on alternative management action(s), including, as appropriate, a reduction in TAC(s) for the following year. If the SCRS has advised that there are indications of a decline in one or both stocks that warrant an alternative management action, but the Commission is unable to agree on such an action, the TACs of the West area and/or the East area shall be reduced by 10% for the implicated areas(s) for the following year. In addition, as needed and appropriate, the SCRS shall conduct a new stock assessment and/or provide advice on new candidate MPs as soon as possible.

See the flowchart below for a schematic representation of the above process:

The SCRS shall check if ECs exist using the indicators and criteria specified in Table 1 and according to the indicated frequency.

Year 1 \& 2:

1. Update indices of abundance
2.Update catch
2. Consider evidence that the stocks and fishery dynamics are in states not previously considered to be plausible in the context of the MSE
3. Consider availability of indices

Year 3:

1. Check that all datasets required in running the MP are available
2. Re-run MP
3. Same checks done in Years 1 \& 2

The TACs calculated by the MP continues to be valid (in years 1-3) and the MP continues to be applied in year 3 to calculate the TACs for the next three-year management period.

SCRS determines that EC precludes the application of the MP or makes the application of the MP or the implementation of its results (i.e., TACs) unadvisable.

The SCRS shall advise the Commission on:
(A) Alternative management options for the coming fishing year aimed at ensuring, at a minimum, stability in the status of the stock, including the implications of:
(i) maintaining the TACs decided through the MP;
(ii) reducing the TACs by various percentages, in light of indications of stock decline; and
(iii) any other appropriate conservation and management actions, potentially including various percentage increases in TACs;
(B) whether the existing MP can and should be adjusted or whether development of a new MP is required; and
(C) whether a stock assessment or other SCRS-approved methods of determining TACs is needed for providing management advice in the interim.

Based on the SCRS advice on (a) above, the Commission shall decide on alternative management action(s), including, as appropriate, a reduction in TAC(s) for the following year. If the SCRS has advised that there are indications of a decline in one or both stocks that warrant an alternative management action, but the Commission is unable to agree on such an action, the TACs of the West area and/or the East area shall be reduced by 10% for the implicated areas(s) for the following year. In addition, as needed and appropriate, the SCRS shall conduct a new stock assessment and/or provide advice on new candidate MPs as soon as possible.

[^0]: ${ }^{1}$ For the purposes of this bluefin tuna MSE, the Commission has agreed to use a BLIM of 40% of the dynamic spawning stock biomass at Maximum Sustainable Yield.

[^1]: ${ }^{2}$ Dynamic SSB ${ }_{\text {MSY }}$ is a set fraction of dynamic SSB0, which is the spawning stock biomass that would occur in the absence of fishing, historically and in the future. Dynamic SSB $_{\text {MSY }}$ can change over time since it is based on current recruitment levels, which fluctuate due to time-varying dynamics in the models.
 ${ }^{3}$ The exploitation rate (U) is annual catch (in tonnes) divided by the total annual biomass in tonnes. $U_{\text {MSY }}$ is the fixed harvest rate (U) corresponding with SSB/SSBMSY=1 at year 50 .

[^2]: ${ }^{4}$ This is modified somewhat in a few cases to provide the smoother TAC trend over time, as explained further below.

[^3]: ${ }^{5}$ For the GBYP aerial survey, there is no value for 2016 and that year was therefore omitted from this averaging.

[^4]: ${ }^{6}$ This range is the two-tailed 95% confidence interval, which is a standard for determining statistically significant deviations.
 ${ }^{7}$ Fishery dynamics: Established spatial and temporal patterns that influence catchability, selectivity, targeting, and bycatch of Atlantic bluefin tuna.
 ${ }^{8}$ This discussion focuses on excess catches which would constitute EC. Exceeding TAC set though an MP by catch levels that do not constitute EC still carries the same potential adverse consequences of exceeding TAC determined by other means. Sufficient mechanisms to prevent exceeding the TAC should be maintained.

