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SUMMARY 
 

The present analysis aimed to update the initial operating models (OMs) for the management 
strategy evaluation for Western Atlantic skipjack tuna. The OMs were conditioned using the same 
fleet structure agreed during the ICCAT Data Preparatory for Skipjack tuna meeting in February 
2022, with the catch time series spanning from 1952 to 2020, CPUEs, and length compositions 
from five different fleets. During the data preparatory meeting, several sources of uncertainty 
were identified for growth and natural mortality. Therefore, a set of 11 OMs, covering much of 
the discussions on life-history parameter uncertainty, was explored in the present analysis. The 
analysis also included the initial trials of the closed-loop simulation of the management strategy 
evaluation for the western Atlantic skipjack tuna stock by evaluating the relative performance of 
pre-selected management procedures across an initial set of performance metrics. 
 

RÉSUMÉ 
 

La présente analyse visait à actualiser les modèles opérationnels (OM) initiaux pour l'évaluation 
de la stratégie de gestion du listao de l'Atlantique Ouest. Les OM ont été conditionnés en utilisant 
la même structure de flottille que celle convenue lors de la réunion de préparation des données 
de l'ICCAT pour le listao en février 2022, avec les séries temporelles de capture s'étendant de 
1952 à 2020, les CPUE et les compositions par taille de cinq flottilles différentes. Au cours de la 
réunion de préparation des données, plusieurs sources d'incertitude ont été identifiées pour la 
croissance et la mortalité naturelle. Par conséquent, un ensemble de 11 OM, couvrant une grande 
partie des discussions sur l'incertitude des paramètres du cycle vital, a été exploré dans la 
présente analyse. L'analyse a également inclus les premiers essais de la simulation en boucle 
fermée de l'évaluation de la stratégie de gestion pour le stock de listao de l'Atlantique Ouest en 
évaluant la performance relative des procédures de gestion présélectionnées sur un ensemble 
initial de paramètres de performance. 

 
RESUMEN 

 
El presente análisis tenía como objetivo actualizar los modelos operativos (OM) iniciales para 
la evaluación de estrategias de ordenación del listado del Atlántico occidental. Los OM se 
condicionaron utilizando la misma estructura de flotas acordada durante la reunión de 
preparación de datos de ICCAT para el listado en febrero de 2022, con las series temporales de 
capturas que abarcan desde 1952 hasta 2020, las CPUE y las composiciones de tallas de cinco 
flotas diferentes. Durante la reunión de preparación de datos, se identificaron varias fuentes de 
incertidumbre para el crecimiento y la mortalidad natural. Por lo tanto, en el presente análisis 
se exploró un conjunto de 11 OM, que cubren gran parte de las discusiones relacionadas con la 
incertidumbre sobre los parámetros del ciclo vital. El análisis también incluyó las pruebas 
iniciales de la simulación en bucle cerrado de la evaluación de estrategias de ordenación para 
el stock de listado del Atlántico occidental, evaluando el desempeño relativo de los 
procedimientos de ordenación preseleccionados a través de un conjunto inicial de mediciones 
del desempeño. 
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1 Introduction 
 
The work on developing the western Atlantic skipjack MSE began in 2020 through a collaboration between 
Brazilian scientists with scientists who developed the openMSE R Package (Open-Source Software for 
Management Strategy Evaluation https://openmse.com/; Hordyk et al., 2021). This collaboration resulted in the 
presentation of the document SCRS/2020/140 (Huynh et al., 2020) at the ICCAT Tropical Tunas Species Group 
meeting in September 2020. It included a demonstration MSE framework with operating model (OM) conditioning 
for the western Atlantic Skipjack. However, this preliminary MSE exercise considered the southwestern Atlantic 
portion as a single stock using catches from the Brazilian bait boat and handline fleets.  
 
During the Tropical Tuna Species Group meeting in 2021 (ICCAT, 2021), it was agreed that the following steps 
on the development of western Atlantic Skipjack MSE must consider the current hypothesis of stock structure and 
should include data from all western fisheries, such as the Venezuelan and the US, in conformity with the stock 
structure used in the last western Atlantic Skipjack stock assessment.  
 
Taking into consideration the agreement made by the Tropical Species Group in 2020, the present analysis updates 
the initial operating models by including data from other fishing fleets from different CPCs. In addition, during 
the ICCAT Skipjack Data Preparatory meeting (ICCAT, 2022), several sources of uncertainty were identified for 
growth and natural mortality; therefore, a set of operating models covering much of the discussions on life history 
parameter uncertainty were explored in the present analysis, including an extra scenario that incorporated 
environmental factors for estimating the standardized CPUEs for the purse seine and bait boat fleets from 
Venezuela and Brazil. We also explored the AOTTP and tagging ICCAT data bases to assess the movement 
patterns of the western Atlantic Skipjack stock and inform the operating model spatial parameters. Finally, the 
analysis includes the relative performance of pre-selected management procedures across an initial set of 
performance metrics. It was done by conducting the initial trials of the closed-loop simulation of the management 
strategy evaluation for the western Atlantic skipjack tuna stock. These initial trials also included a specific scenario 
to evaluate the impact of climate change on the stock future projections. 
 
 
2 Methods 

2.1 Fleet structure and fisheries data 
 
ICCAT estimates catch for many fleets and nations based on the reported catch by contracting and non-contracting 
parties submitted to the ICCAT Secretariat. The operating models were conditioned using the same fleet structure 
agreed during the ICCAT Data Preparatory for Skipjack tuna meeting in February 2022. Table 1 shows the details 
and combinations of fleets, fishing gears, size, and CPUE data available. The operating models were conditioned 
using five different fleets with the catch time series spanning from 1952 to 2020 (Figure 1). The standardized 
CPUE series covers most of the fishing fleets operating in the western Atlantic Ocean, which include surface fleets 
(bait boat, BB and purse seine, PS), handline (HL), longline (LL), and a larvae index from the Gulf Mexico (GOM 
larvae) (Figure 2). In addition, an operating model with two additional CPUE series that incorporate environmental 
factors (Figure 2) for estimating the standardized CPUEs for the purse seine and bait boat fleets from Venezuela 
and Brazil was included (see details in Appendix A). This specific operating model (see details in the section 2.3) 
was built to consider the impact of climate change on the western Atlantic Skipjack tuna stock. For the length 
composition data that was included in the MSE operating models, the information was compiled by the ICCAT 
secretariat which covered most of the fishing fleets operating in the western Atlantic Ocean. 
 
2.2 Life History parameters 
 
During the ICCAT Data Preparatory for Skipjack tuna meeting in February 2022, the group reviewed the available 
data on skipjack biology. It made a set of decisions regarding the inputs for the different assessment models. The 
operating models were conditioned following the same recommendations and encompass two significant sources 
of uncertainty concerning the growth pattern and its consequences in estimating natural mortality at age vector. For 
the specific coefficients of the length-weight relationship, we used the same that was used in the assessment in 
2014 (a = 7.48E-6 and b = 3.253). Size-at-maturity was also the same used in the 2014 assessment, an L50 of 42 
cm FL and an L95 of 53 cm FL. 

https://openmse.com/


386 

Growth curve scenarios 
 
Given the uncertainty of growth for skipjack, the group decided to build a simulation framework for estimating a 
plausible range of growth curves. This simulation was based on studies about the growth of skipjack tuna carried 
out worldwide, but excluding the ones based on spines and vertebrae age readings. Figure 3 shows the simulation 
results that were considered for the operating model conditioning. The estimated VB growth parameters (median 
and associated 25th-75th quantiles) were: 
 
-   Linf: 76 cm (67-86 cm) 
-   K: 0.53 (0.54-049) 
-   t0: -0.31 (-0.09--0.49) 
 
After an exploratory analysis, it was noted that the estimated growth curve based on the 25th quantile does not 
provide a reliable growth pattern for this species, noting that Linf is about half of the largest observed specimen (~ 
150 cm FL). Also, it was noted that the estimated length-at-age using the 25th quantile scenario resulted in an 
underestimation of size (less than 5 cm, see the red line in Figure 3) for the age group "0+". For this reason, the 
operating models conditioning exercise only considered the median and 75th quantile (scenarios "med" and "up", 
respectively) for the hypothesis of the growth pattern for the western Atlantic Skipjack tuna. 
 
Natural Mortality scenarios 
 
During the ICCAT Data Preparatory for Skipjack tuna in February 2022, the Group decided that the M-at-length 
vector should be estimated using the Gaertner (2015) scaling approach. In the past assessment, this approach was 
used to estimate the M-at-age vector using the three growth curve assumptions described in the above section. Also, 
the group noticed that the estimated M-at-age vector (Gaertner, 2015) resulted in a significant impact on the 
predicted M, characterized by high values, on age 0, 1, and 2 fish, primarily if the low growth curve scenario (25th 
quantile) was used (Figure 4). Given the high uncertainty on M, we also explored alternative approaches for 
estimating a plausible range of M-at-age vectors for operating model conditioning. One possible solution is to use 
the "half length-at-age" vector for estimating the M vector, which is essentially the use of 0.5-6.5 instead of 0-6 
age groups for estimating the M-at-age (scenarios "LowM" and "M", respectively). We also explored alternative 
methodologies, such as Lorenzen (1996) and Gislason (2010) (Figure 4). The exploratory analyses showed that 
scenarios "LowM" (half age vector) with Lorenzen's method provided the most reliable predicted age compositions 
(results not shown). Therefore, the combination of "med" and "up" growth curves scenarios with the "LowM" and 
Lorenzen method was considered to explore the alternative steepness values (0.7, 08, and 0.9). See the set of 
operating models on the section on “Uncertainty grid”. 
 
2.3 Uncertainty grid and operating model conditioning 
 
It is difficult to incorporate all major uncertainties into a single operating model. An initial set of OMs was described 
in Huynh et al. (2020) which included alternative assumptions about selectivity, growth, natural mortality, and 
steepness. In the present analysis, we explored a new set of operating models covering much of the discussions on 
life history parameter uncertainty during the ICCAT Skipjack Data Preparatory meeting (ICCAT, 2022). Table 2 
discriminate the list of operating models, including a description of the main parameters and methods for the 
assumptions regarding growth and natural mortality (described in the above sections). 
 
We used a multi-fleet Stock Reduction Analysis (SRA; Walters et al., 2006) for operating model conditioning 
through the R package openMSE framework. The openMSE is an umbrella R package for building operating 
models, analyzing fishery data, and conducting management strategy evaluation for fisheries systems (Hordyk et 
al., 2021). It includes the R core packages, MSEtool, DLMtool, and SAMtool (see https://openmse.com/; Hordyk 
et al., 2022; Carruthers et al., 2022; Huynh et al., 2022). The stock reduction analysis for operating models 
conditioning is available through the RCM function accessible in the SAMtool R package. The stock reduction 
analysis is a useful tool in the absence of stock assessment models to parameterize operating models and it is 
comparable to statistical catch-at-age (SCA) models (see Huynh et al., 2020). The SRA model can estimate a range 
of plausible stock depletion levels by reconstructing the historical fishing mortality and recruitment levels that 
could have generated the observed data. More details about the structure of this model and the mathematical 
description can be found in: https://openmse.com/tutorial-rcm-eq/. 
 
The MSEtool uses a two-box spatial model (see details in https://openmse.com/object-stock/7-spatial-movement/) 
and requires input parametrization for important parameters regarding spatial movements and exchange among the 
Atlantic Skipjack tuna stocks (west and east). For this reason, we also analyzed the AOTTP and tagging ICCAT 

https://openmse.com/
https://openmse.com/tutorial-rcm-eq/
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data bases to assess the movement patterns of the western Atlantic Skipjack stock and inform the operating models. 
A detailed analysis can be accessed in Appendix B. We used the output from this analysis to guide the 
parameterization regarding the probability of individuals staying in each stock, by setting the slots “prob_staying”, 
“Size_area_1” and “Frac_area_1” at 0.5. This value-level allows some exchanges (migrations) between western 
and eastern stocks. 
 
Each operating model contained 100 stochastic replicates that incorporated uncertainty in the estimates of 
recruitment, including the unfished recruitment parameter (R0) and annual recruitment deviates. From a single SRA 
fit, the variance-covariance matrix was re-sampled 100 times. The annual multinomial sample size for the length 
compositions was taken to be the natural logarithm of the nominal sample size. The Beverton-Holt model was used 
to describe the stock-recruitment relationship and the parameter SigmaR was set at 0.4 for all operating models. 
The selectivity was constant within operating model as estimated in the SRA and was set to be flat-topped for the 
longline fleets (LL_USMX and LL others), while for the surface fleets (PS west, BB west and HL_RR) the dome-
shape function was considered. 
 
2.4 MSE simulation 
 
The projection period for this initial exercise of the closed-loop MSE simulation was 40 years with 100 replicates 
and considered a data lag of two years (e.g., in 2022, the TAC for 2023 is set with data up to 2020). Projected 
catches were assumed to be perfectly known without any error and in full compliance with the established TACs. 
The selectivity is based on the F-at-age in the terminal year of the historical period (e.g. 2020). A coefficient of 
variation of 0.4 and the autocorrelation based on the operating model conditioning was used as the model's error 
structure. 
 
A set of management procures based on constant catches, index-slope, and assessment model scenarios were 
initially pre-selected for the MSE evaluation over the reference set of operating models. The constant catch 
management procedures were based on setting a fixed TAC, as follows: 
 
- CC_15kt (fixed TAC of 15 thousand tonnes) 
- CC_20kt (fixed TAC of 20 thousand tonnes) 
- CC_25kt (fixed TAC of 25 thousand tonnes) 
- CC_30kt (fixed TAC of 30 thousand tonnes) 
- CC_35kt (fixed TAC of 35 thousand tonnes) 
- CC_40kt (fixed TAC of 40 thousand tonnes) 
 
Index-slope management procedures adjust the TAC up and down as the CPUE increases and decreases, 
respectively. Three index-slope management procedures were evaluated: Iratio, Islope, and GBslope (see Huynh 
et al., 2020). We also tested a 40-10 harvest control rule (HCR) management procedure by associating the output 
of the assessment models for obtaining the reference points, as follows: 
 
- SP_4010 - A surplus production model with a 40-10 control rule. 
- SCA_4010 - A statistical catch-at-age model with a 40-10 control rule.  
 
A management procedure that establishes no fishing (NFref) and the current fishing effort management (curE) 
was also considered. Both allow an assessment of the rebuilding time of a collapsed stock and evaluate a status 
quo approach (projecting the current fishing mortality) (see Huynh et al., 2020). 
 
Four preliminary performance metrics (PMs) were used to compare the pre-selected management procedures 
(see Huynh et al., 2020): 
 
- 40% B0 – the probability (mean over 100 replicates) that the spawning depletion is greater than 40% during the 
projection period.  
- STC30 (short term catch) – the probability that the catch exceeds 30 kt in the first decade of the projection 
period. 
- LTC30 (long term catch) – the probability that the catch exceeds 30 kt in the second decade of the projection 
period. 
- AAVC (average annual variability in catch) – the probability that the interannual catch variability is less than 
20% during the projection period. 
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To consider possible impacts of climate changes in the management strategy evaluation analysis, the operating 
model "OM_med_Lorenzen_LowM_h09_env" that incorporates environmental covariates on the CPUE time series 
from Venezuelan purse seiners and Brazilian bait boat fisheries were used to create a robustness test by increasing 
the recruitment variability in the future projections (e.g., increased sigmaR to 0.9, see Figure 5). This allowed us 
the initial and preliminary assessment of the possible impacts of the climate changes in the MSE through the 
robustness testing from different OM scenarios.  
 
We used the R package ggmse (https://github.com/pbs-assess/ggmse) to generate many of the figures and outputs 
from the operating model conditioning and the evaluation of the initial exercise of the closed-loop MSE simulation. 
 
 
3 Results and Discussion 

3.1 Operating model conditioning  
 
In this document, the main operating models outputs are described, as well as, most of the figures for the OM 
scenario "OM_growth_med_Lorenzen_LowM_h09”. The complete detailed output for all individual operating 
models can be accessed, and a summary of all operating models results at https://github.com/ICCAT/wskj-mse.  
 
The historical trajectories of spawning biomass (SSB) and SSB depletion for most of the fitted operating models 
show similar trends, with the SSB falling in the early 1980s followed by a general stable trend up to 2020 (Figure 
6 and 7). However, for the OM scenario that includes the GOM larvae CPUE 
("OM_med_Lorenzen_LowM_h09_larvae") these trajectories were different, and it shows an increasing trend 
after the decline observed in the early 1980s (Figure 6 and 7). Also, for the OM scenario that includes 
environmental factors on CPUE time series, these trajectories seem to be more pessimistic with levels oscillating 
close to or below 40% of virgin spawning biomass (SSB0) (Figures 6 and 7). After the late 1970s, the shape of 
trajectories is mostly driven by the CPUE time series (Figure 8, see https://github.com/ICCAT/wskj-mse) in 
conjunction with the catch time series. The decline observed in the early 1980s coincides with the peaks of catches 
and the apical fishing mortality (the maximum annual fishing mortality) (Figure 9).  
 
For all scenarios, the effective selectivity for the projection period is a dome shape, with the age of full selection 
being estimated to be age 2 and fully maturity was set at age 2 (Figure 10). The effective selectivity was obtained 
using the terminal year F-at-age, which is informed by the estimates of fleet selectivity from fitting to the length 
data (Figure 11 - 15). While maturity and selectivity are unchanged, the spawning biomass is expected to be very 
close to the exploitable biomass. 
 
One crucial point for all scenarios is the difficulty of estimating MSY reference points. Figure 16 shows the yield 
curves by apical F. As the apical F increases, and the yield curves tend to be flat but do not reach an optimum 
level. Therefore, MSY reference points might not be a good choice for the management of this stock. Here, we 
proposed 40% depletion as a proxy for BMSY and build this proxy into the performance metrics (see Huynh et 
al., 2020). 
 
The results of an eight-year retrospective analysis applied to all scenarios show that the estimated Mohn’s rho 
statistics for biomass, apical F and recruitment fell within the acceptable range of -0.15 and 0.20 (Hurtado-Ferro 
et al. 2014; Carvalho et al. 2017) (Table 3) and confirm the absence of an undesirable retrospective pattern in the 
trajectories (Figure 17, see https://github.com/ICCAT/wskj-mse).  
 
3.2 Management procedures evaluation  
 
In all OMs there was a clear trade-off between keeping the SSB above 40% depletion and achieving high catches 
(CC_35kt, CC_40kt), with higher values associated with the STC30 and LTC30 (Table 4). Trade-off plots show 
that a set of candidate MPs with a higher probability of being above 40% depletion also have lower chances of 
exceeding 30,000 t in the first decade of the projection period (Figure 18). The MPs with constant catch TACs 
higher than 30,000 t show higher probabilities of STC30 but oscillate around 50% for the performance metric 40% 
depletion (Figure 18). For OMs with steepness less than 0.9, it was noted that the 40% depletion probability is 
even lower, around 30% (Figure 18).  
 
From the radar plots (Figure 19), the CC_35kt and CC_35kt MPs often had the highest STC30, LTC30, and 
AAVY but lower ‘40% B0’. The CC_25kt and SP_4010 seem to be good options for managing the western Atlantic 
Skipjack tuna, with both presenting high probabilities for ‘40% B0’, and low values for STC30 and LTC30. 
Although the statistical catch-at-age model MP (SCA_4010) presented satisfactory for biomass performance 
metric, it failed in AAVY with low probabilities in all OMs (Figure 19). 

https://github.com/ICCAT/wskj-mse
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The projected depletion and catches time series is presented for the OM scenario 
“OM_growth_med_Lorenzen_LowM_h09” (Figure 20). In general, CC_35kt and CC_40kt MPs resulted in a 
decline of biomass in the future, while the rest of the MPs show a relatively stable trend, with few exceptions, such 
as GBslope and SCA_4010 that resulted in an increase of biomass in the projection period (Figure 20). A summary 
of MSE simulation results including additional plots can be accessed at https://github.com/ICCAT/wskj-mse 
 
Overall, short-term catch performance (STC30) was similar to the long-term catch performance (LTC30). As 
expected, for the MSE simulations that incorporate environmental factors and climate change 
(“OM_med_lorenzen_LowM_env” and “OM_med_lorenzen_LowM_env_sigmaR09”), the MPs were less likely 
to achieve the conservation performance metric with lower ‘40% B0’ compared to the other 10 OMs. In all OMs, 
catches of at least 30 kt were not likely to be achieved with any MP (except CC_35kt and CC_40kt), consistent 
with the yield curve calculations from the OM conditioning (Figure 16). 
 
The present analysis updates the initial operating models presented by Huynh et al. (2020) by including data from 
other fishing fleets from different CPCs, covering the current hypothesis of stock structure for Atlantic Skipjack 
tuna in the Atlantic Ocean. We explored a set of OMs including different life-history parameter uncertainty 
assumptions, including an initial closed-loop evaluation of pre-selected MPs and a presentation of relevant 
performance metrics. The results demonstrate that the uncertainty in natural mortality, growth parameters, and 
alternative steepness values are most consequential in predicting stock dynamics. With guidance from the ICCAT 
Tropical Tunas MSE Technical Group, additional axes of uncertainty that improve the characterization of core 
assumptions for western Atlantic Skipjack stock can be explored for the operating model conditioning. After the 
upcoming Atlantic Skipjack tuna assessment meeting, this process might include the operating model 
reconditioning with the assessment model outputs (i.e., SS model). Additional management procedures and 
performance metrics can also be explored in future MSE simulations.   
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Table 1. Fleet structure for the management strategy evaluation of the western Atlantic Skipjack stock 
 
 

 
 
Table 2. Operating model scenarios for the management strategy evaluation of the western Atlantic Skipjack stock 
 

  

Fleet 
Name Description Gear 

Catch 
(Flag name or fleet code 

ICCAT) 
Size Fleet code CPUE 

available 

PS West Purse seine PS All PS flags (mainly 
VEN, USA) USA, VEN PS Venezuela: 1987-2020 

BB West Baitboat BB All BB flags (BRA, 
VEN, CUB, JPN, PAN) 

BRA, VEN, CUB, 
JPN, PAN 

Brazil BB: 2000-2021 
Historic Brazil BB: 1981 -

1999 

LL USMX Longline USA, Mexico 
and Canada LL All LL flags except JPN, 

CTP MEX USA LL: 1993-2020 

LL Others Longline Japan and 
Chinese-Taipei LL JPN, CTP LL 

Add catch other gears JPN, TAI GOM larvae: sensitivity 
only 

HL_RR Handline Brazil Rod & 
Reel USA 

HL+RR
+SP BRA, USA BRA, USA Brazil HL: 2010-2016 

OM 
scenario Name Linf K t0 h M at age 

scenario Fisheries data (CPUE) 

1 OM_growth_med_Gaertner_M_h09 76 0.53 -0.31 0.9 Gaertner 
(2014) 

PS_VEN, BB_BRA, 
LL_USA, HL_BRA, 

BB_BRA_hist 

2 OM_growth_med_Gaertner_LowM_h09 76 0.53 -0.31 0.9 
Gaertner 
(2014) & 
LowM 

PS_VEN, BB_BRA, 
LL_USA, HL_BRA, 

BB_BRA_hist 

3 OM_growth_med_Lorenzen_M_h09 76 0.53 -0.31 0.9 Lorenzen 
(1996) 

PS_VEN, BB_BRA, 
LL_USA, HL_BRA, 

BB_BRA_hist 

4 OM_growth_med_Lorenzen_LowM_h09 76 0.53 -0.31 0.9 
Lorenzen 
(1996) & 
LowM 

PS_VEN, BB_BRA, 
LL_USA, HL_BRA, 

BB_BRA_hist 

5 OM_growth_up_Lorenzen_LowM_h09 86 0.49 -0.49 0.9 
Lorenzen 
(1996) & 
LowM 

PS_VEN, BB_BRA, 
LL_USA, HL_BRA, 

BB_BRA_hist 

6 OM_growth_med_Lorenzen_LowM_h08 76 0.53 -0.31 0.8 
Lorenzen 
(1996) & 
LowM 

PS_VEN, BB_BRA, 
LL_USA, HL_BRA, 

BB_BRA_hist 

7 OM_growth_up_Lorenzen_LowM_h08 86 0.49 -0.49 0.8 
Lorenzen 
(1996) & 
LowM 

PS_VEN, BB_BRA, 
LL_USA, HL_BRA, 

BB_BRA_hist 

8 OM_growth_med_Lorenzen_LowM_h07 76 0.53 -0.31 0.7 
Lorenzen 
(1996) & 
LowM 

PS_VEN, BB_BRA, 
LL_USA, HL_BRA, 

BB_BRA_hist 

9 OM_growth_up_Lorenzen_LowM_h07 86 0.49 -0.49 0.7 
Lorenzen 
(1996) & 
LowM 

PS_VEN, BB_BRA, 
LL_USA, HL_BRA, 

BB_BRA_hist 

10 OM_med_Lorenzen_LowM_h09_env 76 0.53 -0.31 0.9 
Lorenzen 
(1996) & 
LowM 

same but including 
environmental factors 

(BRA_BB and PS_VEN) 

11 OM_med_Lorenzen_LowM_h09_larvae 76 0.53 -0.31 0.9 
Lorenzen 
(1996) & 
LowM 

same but including 
USA_GOM larvae 
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Table 3. Estimated Mohn's rho statistic values for the retrospective analysis of the main trajectories of the 
operating model outputs 

 
 
 
 
  

 Mohn's rho statistic  

 OM_1 OM_2 OM_3 OM_4 OM_5 OM_6 OM_7 OM_8 OM_9 OM_10 OM_11 
Fishing mortality 

of PSwest 0.164 0.132 0.138 0.153 -0.036 0.187 0.159 0.187 0.159 0.408 0.057 

Fishing mortality 
of BBwest 0.154 0.126 0.136 0.164 -0.032 0.187 0.17 0.187 0.17 0.417 0.056 

Fishing mortality 
of LL_USMX 0.23 0.198 0.203 0.244 0.002 0.281 0.25 0.281 0.25 0.314 0.066 

Fishing mortality 
of LL_others 0.228 0.196 0.201 0.24 0.001 0.278 0.246 0.278 0.246 0.279 0.069 

Fishing mortality 
of HL_RR 0.187 0.154 0.161 0.185 -0.028 0.22 0.191 0.22 0.191 0.378 0.061 

Apical F 0.157 0.128 0.139 0.166 -0.033 0.19 0.172 0.19 0.172 0.407 0.057 

Spawning biomass -0.14 -0.124 -0.131 -0.135 0.057 -0.164 -0.143 -0.164 -0.143 -0.084 -0.08 
Spawning 
depletion -0.084 -0.084 -0.075 -0.102 0.031 -0.121 -0.108 -0.121 -0.108 -0.073 -0.076 

Recruitment 0.152 0.18 0.159 0.192 0.295 0.167 0.18 0.167 0.18 0.335 0.138 
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Table 4. Performance metrics for each MP in the 12 MSE simulations. The color gradient spans blue to white to 
light orange, corresponding to values of 0, 0.5, and 1, respectively, for each performance metric. 
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Figure 1. Catches (t) of the western Atlantic Skipjack stock by fleet between 1952 and 2020. 

 
 

 
 
Figure 2. Available abundance indices of the western Atlantic Skipjack stock. 
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Figure 3. Estimated Von Bertalanffy growth parameters (median and associated 25th-75th quantiles) of the 
western Atlantic Skipjack stock. 
 
 
 

 
 
Figure 4. Estimated natural mortality at age by growth scenario (median and associated 25th-75th quantiles) and 
method of the western Atlantic Skipjack stock. 
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Figure 5. Recruitment deviates for the historical and projection periods of the western Atlantic Skipjack stock, 
based on the operating model "OM_med_Lorenzen_LowM_h09_env".  
 
 

 
Figure 6. Predicted spawning biomass (tonnes) for the 11 operating models in the historical period of the western 
Atlantic Skipjack stock. 
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Figure 7. Predicted spawning biomass depletion for the 11 operating models in the historical period of the western 
Atlantic Skipjack stock. 
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Figure 8. Observed (dots, with confidence intervals in vertical red lines) and predicted CPUE (color lines) by fleet 
of the western Atlantic Skipjack stock, based on the operating model "OM_growth_med_Lorenzen_LowM_h09".  
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Figure 9. Apical instantaneous fishing mortality rates (per year) for the 11 operating models in the historical 
period of the western Atlantic Skipjack stock, 
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Figure 10. Effective selectivity (from the terminal year F-at-age) in the projection period relative to maturity-at-
age for the 11 skipjack operating models. Length-at-age relative to Linf is shown. 
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Figure 11. Observed (black lines) and predicted (color lines) length compositions for the PS west fleet. 
 

 
Figure 12. Observed (black lines) and predicted (color lines) length compositions for the BB west fleet. 
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Figure 13. Observed (black lines) and predicted (color lines) length compositions for the LL USMX fleet. 
 

 
Figure 14. Observed (black lines) and predicted (color lines) length compositions for the LL others fleet.  
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Figure 15. Observed (black lines) and predicted (color lines) length compositions for the HL_RR fleet. 
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Figure 16. Yield curve by Apical instantaneous fishing mortality rates for the 11 operating models in the 
historical period of the western Atlantic Skipjack stock, 
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Figure 17. Retrospective analysis for the main trajectories outputs of the western Atlantic Skipjack stock, based 
on the operating model "OM_growth_med_Lorenzen_LowM_h09".  
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Figure 18. Trade-off plots between ‘40% B0’ and STC30 for the 12 MSE simulations of the western Atlantic 
Skipjack stock.  
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Figure 19. Radar plots between ‘40% B0’ and STC30 for the 12 MSE simulations of the western Atlantic Skipjack 
stock.  
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Figure 20. Spawning depletion (left column) and catches (right column) from the closed-loop simulation for a 
selection of MPs (rows) in the operating model "OM_growth_med_Lorenzen_LowM_h09". Dashed, horizontal 
lines for spawning depletion indicate a value of 0.4. Dashed, vertical lines separate the historical and projection 
periods of the operating model. The dark blue line indicates the median from 100 simulation replicates, while 
lighter blue bands represent the interquartile range and 95% confidence intervals. Solid, grey lines plot 3 individual 
simulations. 
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Appendix A 
 
CPUE STANDARDIZATION OF SKIPJACK TUNA (Katsuwonus pelamis) CAUGHT BY BRAZILIAN 
BAITBOAT FLEET IN SOUTHWESTERN ATLANTIC OCEAN INCLUDING ENVIRONMENTAL 

VARIABLES 
 

Methodology 
 
Data from fishing effort and skipjack tuna caught in the southwest Atlantic Ocean by the Brazilian baitboat fleet 
used here was provided by fisheries landings monitoring projects conducted by the Universidade do Vale do Itajaí 
(http://pmap-sc.acad.univali.br/). This database is composed of fishing effort and catches information collected 
between the years 2000 and 2021. The information was collected by interviews conducted with each skipper at the 
end of each cruise, logbooks completed and provided by the fishing skippers also at the end of each cruise and/or 
from data collected onboard the vessels through historical official observer monitoring programmes and recently 
scientific observer programmes. 
 
More than 2,000 fishing trips were analyzed, the information corresponds to 57.7% of all fishing trips conducted 
by the Brazilian baitboat fleet during the period between 2000 and 2021. The baitboat fleet have been fishing 
offshore of Brazil since 1981, unfortunately, the information available for the models for the early period between 
1981 and 1999 do not have the same spatial coverage and general detailing required here. The spatial resolution 
was 0.5º x 0.5º. The reports of skipjack catch equal to zero are scarce, less than 1.6%. 
 
The E.U. Copernicus Marine Service Information was accessed in a way to compile the environmental variables 
that were considered for the models fitted in this study. In this sense, data from Sea Surface Temperature (SST, in 
degree Celsius), Chlorophyll-α (Chl, in mg.m-3) and Mixed Layer Depth (MLD, in m) for the southwestern 
Atlantic ocean, between 2000 and 2021, were downloaded and included in the standardization models. 
 
Data cleaning and preparation for the analysis were based on the approaches proposed by Hoyle et al. (2015), 
Hoyle et al. (2016) and Hoyle et al. (2018). All analyses were carried out in R version 4.1.0 (R Core Team, 2021). 
During the cleaning process, in the first step, vessels that had never caught a skipjack tuna before were removed 
from the dataset. 
 
For the CPUE standardization of the skipjack caught in the southwest Atlantic Ocean, Hierarchical Bayesian 
models were used, structured through the Integrated Nested Laplace Approximations (INLA) (Rue et al., 2009; 
Lindgren et al., 2011). This approach allows understanding the spatial, temporal and seasonal trends in the 
abundance index estimated for a species. In this sense, effects that may be contained and directly related to spatial-
temporal or even seasonal variations can be minimized due to this model structuring format. Thus, providing a 
cleaner view of the behavior of the abundance index of the species being evaluated. Similarly to Generalized 
Linear Models, this type of model assumes that the response variable belongs to the exponential distribution 
families, here used as a Lognormal distribution and that its parameters (θ) are linked to the linear predictor 
addictive structure (η) through a logarithmic canonic connection function g(.), such as g(θ) = η (Agresti, 2002; 
Cosandey-Godin et al., 2014). The model differs from the traditional linear component specification 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 due the 
inclusion of the term f(.), so that: 
 

𝜂𝜂𝑖𝑖 = 𝑔𝑔(𝜇𝜇𝑖𝑖) = 𝛽𝛽0 + �𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗 +
𝐽𝐽

𝑗𝑗=1

�𝑓𝑓𝑘𝑘(
𝐾𝐾

𝑘𝑘=1

𝑧𝑧𝑖𝑖𝑘𝑘) 

 
where 𝜂𝜂𝑖𝑖 is the linear predictor; 𝑔𝑔(𝜇𝜇𝑖𝑖) is the link function for the expected values of the i observations (𝐸𝐸(𝑦𝑦𝑖𝑖));  
𝛽𝛽0 is the intercept of the model; the coefficients 𝛽𝛽 = �𝛽𝛽1, … ,𝛽𝛽𝑗𝑗� quantify the fixed effect of some covariates 𝑥𝑥 =
(𝑥𝑥1, … , 𝑥𝑥𝑗𝑗) on the response; and 𝑓𝑓 = {𝑓𝑓1(. ), … , 𝑓𝑓𝑘𝑘(. )} is the collection of functions defined in terms of a set of 
covariates 𝑧𝑧 = (𝑧𝑧1, … , 𝑧𝑧𝑘𝑘). The terms 𝑓𝑓𝑘𝑘(. ) can assume different forms such as smooth and nonlinear effects of 
covariates, environmental and oceanographic effects, random intercepts and slopes as well as temporal or spatial 
random effects (Blagiardo and Cameletti, 2015). These components define the latent field as 𝜃𝜃 =  {𝛽𝛽0,𝛽𝛽, 𝑓𝑓}, where 
𝛽𝛽 and 𝑓𝑓 are the covariates and smooth functions and/or random effects included in the linear predictor with their 
appropriate prior distributions (𝜓𝜓). 
 
Similar to Generalized Additive Model (GAM), the 𝑓𝑓𝑘𝑘 are semi-parametric functions defining the spatial, temporal 
and random effects included in the models. Distinct criteria were used to compare the performance of the different 
models: (i) reduction in deviance; (ii) Watanabe-Akaike Information Criteria (WAIC) (Watanabe, 2010); (iii) 

http://pmap-sc.acad.univali.br/
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Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) and (iv) Conditioning Predictive Ordinate (CPO) 
(Roos and Held, 2011). Additionally, as a measure of diagnostic, the Probability Integral Transform (PIT) was 
used (Schrödle and Held, 2011). Thus, the variable selection process and structure for the random effect for each 
covariate were based on the same four criteria. As proposed by Cosandey-Godin et al. (2014), the process was 
conducted in three hierarchical steps: (1) the structure was evaluated for temporal, seasonal and environmental 
covariates; (2) the contribution of each covariate with structure defined in the last step including the random effect 
(IID) for the covariate boat was evaluated, and; (3) finally, were evaluated the combination of all covariates with 
the respective structure pre-defined in the earlier steps. 
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SKJ PS VEN - STANDARDIZED CATCH RATE – MODELING APPROACH: GAM, INCLUDING 
ENVIRONMENTAL VARIABLES 
 
Methodology 
 
The data used in this study came from the INSOPESCA statistics collection database of purse seiners logbooks 
(1993-2020), which covers between 90-100% of total catch. Environmental data was available since 1993, for this 
reason the standardization model only used the 1993-2020 fishery data (although fishery CPUE data is available 
since 1987). Also, CPUE data records for which environmental data was missing (NA), were excluded from the 
analysis. A total of 9901 fishing sets were analyzed, of which 5120 sets were positives for SKJ catch. 
 
Factors included in the analysis were year, season (Jan-Mar, April-Jun, Jul-Sep and Oct-Dec), area of fishing 
(Caribbean and western Atlantic), association with whales (associated or not), association with whale shark 
(associated or not), seiner category (small-medium seiners and large seiners) according to Gaertner et al. (1998) 
classification. Environmental variables considered for the model were sea surface temperature, chlorophyll a 
(mg.m-3) and mixed layer depth (m), downloaded from E.U. Copernicus Marine Service Information. Catch rates 
were calculated as tons of skipjack tuna caught per set.  
 
Relative indices of abundance for skipjack tuna were estimated by Generalized Additive Modeling approach 
(Hastie and Tibshirani 1990) assuming a delta lognormal model distribution (Arocha et al. 2010). This method 
involves the fitting of two models; modeling the records for which the catch is non-zero, and modeling the 
probability of non-zero catch (Lo et al. 1992; Ortiz and Arocha 2004). Catch rates for the lognormal model were 
transformed to log (CPUE+10%mean) prior to the analysis (Arocha et al. 2008). For the positive catch rates 
lognormal error distribution was assumed, and binomial error distribution for the proportion of positive 
observations (positive sets/total sets). Deviance analysis was used to select explanatory factors and variables 
considering the relative percent of deviance explained by adding each one of them in the evaluation (those that 
explained more than 5% were selected) and the Chi-squared significance (McCullagh and Nelder 1989). Selection 
of the final model was based on the Akaike’s Information Criterion (AIC), the Bayesian Information Criterion 
(BIC), and a χ2 test of the difference between the [–2 loglikelihood] statistic of a successive model formulations 
(Littell et al. 1996). 
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Appendix B 
 
CROSSING POLITICAL BORDERS WITHOUT VISA: THE ATLANTIC SKIPJACK  
 
Introduction 
 
The skipjack tuna (SKJ) (Katsuwonus pelamis) is the main tuna species in terms of landed biomass in the Atlantic 
Ocean. The Standing Committee on Research and Statistics (SCRS) of the International Commission for the 
Conservation of Atlantic Tunas (ICCAT) has historically considered the existence of two distinct stocks of SKJ in 
the Atlantic Ocean; the western and eastern stocks.  
 
Tagging release and recovery efforts from several nations and research agencies constructed the ICCAT and the 
Atlantic Ocean Tropical Tuna Tagging Programme (AOTTP) tagging database for several species in the Atlantic 
and the Mediterranean Sea. Tagging data provides essential knowledge of the populations' structure and has been 
used to support the best scientific advice on the definition of the management units for ICCAT species.  
 
This document aims to add information for the discussion on the stock structure and particularly on the individual 
exchange between the two Atlantic SKJ stocks. For this, the current information on conventional tagging was 
summarized and presented in a preliminary analysis focusing on the movements of skipjack in the eastern and 
western stocks and between them. We have also provided the same analysis considering different scenarios of 
stock boundaries. The tagging information is the collection of multiple tagging programs carried out by ICCAT, 
some of them based on a scientific research plan, but others were more opportunistic (Ortiz, 2017). As such, results 
and conclusions from the analysis need to be considered with caution. 
 
Data 
 
Over 136,000 skipjack tunas were tagged and released from 1961 to 2020. The ICCAT database accounted for 
over 95,000 releases, while the AOTTP accounted for 40,000 releases (Figure 1). Most tag releases occurred from 
2016 to 2020 through the AOTTP program period (Figure 1). The individuals were released from several fishing 
gears (Figure 2a), mainly by the bait boat. Over 12,000 recaptures were reported from the released individuals, 
mainly by the Purse seine and Bait Boat (Figure 2b).  Table 1 summarizes the number of individuals tagged and 
recaptured by the fishing fleet and the overall tagged and released SKJ. The overall percentage of recapture was 
8.82%.  
 

 
Figure 1. Tagged individuals per year from 1961 to 2020 from ICCAT and AOTTP data bases. 
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Figure 2. Number of SKJ individuals released (a) and recovered (b) by fishing gear.  
 
Figure 3 shows the overall spatial distribution of SKJ tag releases and recaptures. Most tagging activities occurred 
upon the Eastern stock at the West African coast from Congo in the south to Marocco in the north. Nonetheless, 
some SKJ were tagged and released in the western stock area, in the southwestern Atlantic along the Southern 
Brazilian coast, in the equatorial west Atlantic along the north Brazilian coast, and in the northwest Atlantic along 
the southeastern US coast. The recovery locations were more spread-out than the releases, but followed the same 
general pattern of numbers of individuals by area. The recoveries spread over a broader region on the western 
African coast, with fish recovered in places far from the coast compared to where they were released. It was 
noticeable the low number of recoveries in the northwestern Atlantic along the US coast. 

 
Figure 3. Spatial distribution of the released (green dots) and recovered SKJ (red dots) in the Atlantic Ocean.  
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The longest time at liberty for a tagged SKJ was 1068 days (Figure 4), almost three years for a fish tagged off the 
Southern Brazilian coast in April 2018, measuring 49 cm FL when released and 50 cm FL when recaptured. The 
median time at liberty was 24 days. 56% of the tagged fish were recovered in the first month, 73% in the second, 
and 82% until the third month. Until the first year, 98% of the tagged fish were recaptured. A slight variation of 
time at liberty was observed concerning the releasing gear, with a median of 24 days for the fishes released by the 
Bait boat, 22 days by those released by the Hand line, and 31.5 days by those released by the Bait boat freezer.  
 

 
Figure 4. Times at liberty between the day the fish was tagged and released until the day the tag was recovered. 
 
 
Methods 
 
The location of release and recapture were available for each fish tagged, released, and recaptured. The 
displacement distances were estimated in km as the geodesic shortest distance between two points on an ellipsoid 
using the WGS84 and earth radius of 6378137 m (Karney 2013).  
The linear displacement distances of each tagged and recovered individual were shown in different ways to 
highlight: 1) The gears of releasing and recovering; 2) The individuals who crossed and did not cross the ICCAT 
SKJ stock boundaries, and 3) Different groups of times at liberty. The same charts were constructed considering 
two alternative scenarios for stock boundaries, displacing the northern boundary of the stock 2.5 and 5 degrees to 
the east, respectively.  
 
The rate of tagged individuals crossing the current stock boundaries was estimated with all the data. Considering 
the high numbers of individuals who crossed the stock boundaries in the western equatorial Atlantic, we calculated 
the crossing rate for two restricted data sets: 1) considering only the releases and recoveries performed between 
10°N and 10°S, and 2) considering only the releases and recoveries performed between 10°N and 10°S of latitude 
and west of 30 and east of 40 degrees of longitude.  
 
All the calculations were performed using R version 4.0.3. (R Core Team, 2020). 
 
 
Results and Discussion 
 
Table 2 presents the number of individuals crossing the ICCAT SKJ stock boundaries considering the different 
datasets selected and the alternative scenarios of stock boundaries. Overall, the proportion of fish crossing the 
stock boundary decreased as the northern boundary was displaced further east (Table 2). Considering all the 
recovery data set, 0.33% of the SKJ crossed the current stock boundary (Figure 5), with fish crossing mainly from 
West to East. If the northern stock boundary were 2.5 degrees of latitude further east, 0.18% of recovered fish 
would have crossed the border (Figure 6), with fish crossing mainly from West to East. If the northern stock 
boundary were 5 degrees of latitude further east, 0.13% of recovered fish would have crossed the boundary (Figure 
7), with fish crossing mainly from East to West.   
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Limiting the release and recovery data for fish tagged between 10°N and 10°S of latitude, the crossing frequency 
increased for 1.04% with the current stock boundaries and for 0.6% and 0.36% considering the two alternative 
stock boundaries scenarios, respectively (Table 2). When considering the fish tagged and recovered only between 
10°N and 10°S of latitude and 30 and 40° West of longitude, the crossing frequency increased abruptly for 53.3% 
with the current stock boundaries and for 18.56% and 8.49% considering the two alternative stock boundaries 
scenarios, respectively (Table 2).  
 
Table 2. Number of individuals which crossed the current ICCAT SKJ stock boundary and the alternative 
scenarios of northern stock boundary displacement towards east for different data sets.  

Recovery data  
Northern 

stock 
boundary 

Did not 
cross Crossed Crossing 

frequency  W-->E E-->W 

All Current 10458 26 0.25% 22 4 
All 2.5 east 10467 17 0.16% 11 6 
All 5 east 10475 9 0.09% 3 6 
10N-10S Current 3264 26 0.80% 22 4 
10N-10S 2.5 east 3273 17 0.52% 11 6 
10N-10S 5 east 3282 8 0.24% 3 5 
10N-10S & 30-
40W Current 49 25 51.02% 22 3 
10N-10S & 30-
40W 2.5 east 58 16 27.59% 6 10 
10N-10S & 30-
40W 5 east 68 6 8.82% 0 6 
10-35S & 20-55W Current 145 0 0% 0 0 

 
 

 
Figure 5. Skipjack releases and recoveries in the Atlantic Ocean highlighting the fish which crossed (red arrows) 
the current ICCAT stock boundaries (in blue).  
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Figure 6. Skipjack releases and recoveries in the Atlantic Ocean highlighting the fish which would have crossed 
(red arrows) an alternative stock boundary displaced 2.5° further east (in blue). 

 
Figure 7. Skipjack releases and recoveries in the Atlantic Ocean highlighting the fish which would have crossed 
(red arrows) an alternative stock boundary displaced 5° further east (in blue). 
 
The days at liberty do not influence the movement patterns observed for SKJ (Figure 8). In other words, the general 
movement patterns raised from releases and recoveries data were similar among fish despite the time it remained 
with the tag until being recaptured. Furthermore, there is no apparent relationship between the distance between 
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the release and recovery locations and the time at liberty (Figure 9). The long-term permanence in specific areas 
of the Atlantic Ocean by the fish that remained with the tags for more than a half year may be seen as evidence of 
solid stock structuration across the sampled area.  

 
Figure 8. Skipjack releases and recoveries in the Atlantic Ocean grouped into fish that remained between 0 and 
182 days at liberty, between 182-365 and > than 365.  

 
Figure 9. Displacement distances and days at liberty data for released and recovery Skipjack in the Atlantic 
Ocean.  
 
 
Concluding remarks 
 
The results achieved in this study help to understand better the stock structuration of SKJ in the Atlantic Ocean. 
The data allowed us to observe an intense fish movement through all of the eastern Atlantic from Africa's 
southwestern coast to the mid North Atlantic area around the Azores islands. This strong exchange indicates a 
stock unit in the east of the Atlantic. There is an area with a high rate of fish exchanges in the equatorial Atlantic 
near Brazil's northeastern coast between the currently defined east and west stock boundary. When considering 
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only the fish recovered in that area, the rate of individuals that cross the stock borders can attain more than 50%. 
In hypothetic scenarios where the northern boundary of the stock was displaced further east, the crossing rates 
decreased substantially. On the other hand, little exchange was observed between the northern and southern 
portions of the western stock along the south of the Brazilian coast. However, it is crucial to recognize that the 
spatial coverage of the tag and recovery data is related to the fishing areas; thus, the results and conclusions 
presented in this study should be used carefully.  
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