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SUMMARY  

 

The objective of this study was to extract parameter information from multiple sources and 

quantify parameter uncertainty for model application.  Following PRISMA methods, we searched 

Scopus, reviewed titles and abstracts in AbstrackR, and extracted tropical tuna movement 

parameters from relevant articles. We quantified parameters and uncertainty for four drivers 

affecting tuna movement: speed, temperature preferences, oxygen preferences, and associations 

of tuna with Fish Aggregation Devices (FADs). Bigeye, yellowfin, and skipjack, move at about 1 

m/s. Bigeye prefer a wider and colder range of temperatures (14.7℃-23.2℃) than yellowfin 

(20.3℃-25.5℃) and skipjack (19.3℃-27.9℃). Bigeye dives into less oxygenated waters than 

yellowfin (1.4 ml/L, 3.1 ml/L), but oxygen information on skipjack is lacking (n=1).  The 

continuous residence time of bigeye and yellowfin on FADs (7.7 days, 6.8 days) is double the 

residence times of skipjack (2.6 days).  All species sense a FAD from 5.4 nautical miles away and 

take 23.8 days to colonize it. We hope that this systematic review can inform movement models 

and encourage others to fill gaps in the literature to improve tropical tuna management.   

 

 

RÉSUMÉ  

 

L'objectif de cette étude était d'extraire les informations sur les paramètres à partir de sources 

multiples et de quantifier l'incertitude des paramètres pour l'application du modèle.  En suivant 

les méthodes PRISMA, nous avons effectué des recherches dans Scopus, examiné les titres et les 

résumés dans AbstrackR, et extrait les paramètres de mouvement des thonidés tropicaux des 

articles pertinents. Nous avons quantifié les paramètres et l'incertitude pour quatre facteurs 

affectant le mouvement du thon : la vitesse, les préférences en matière de température, les 

préférences en matière d'oxygène et les associations des thonidés avec les dispositifs de 

concentration de poissons (DCP). Le thon obèse, l'albacore et le listao se déplacent à environ 1 

m/s. Le thon obèse préfère une gamme de températures plus large et plus froide (14,7℃-23,2℃) 

que l'albacore (20,3℃-25,5℃) et le listao (19,3℃-27,9℃). Le thon obèse plonge dans des eaux 

moins oxygénées que l'albacore (1,4 ml/L, 3,1 ml/L), mais les informations sur l'oxygène en ce 

qui concerne le listao font défaut (n=1).  Le temps de séjour continu du thon obèse et de l'albacore 

sur les DCP (7,7 jours, 6,8 jours) est le double du temps de séjour du listao (2,6 jours).  Toutes 

les espèces détectent un DCP à 5,4 miles nautiques de distance et mettent 23,8 jours à le coloniser. 

Les auteurs espèrent que cet examen systématique pourra alimenter les modèles de mouvement 

et encourager d'autres personnes à combler les lacunes de la littérature afin d'améliorer la 

gestion des thonidés tropicaux.   

 

RESUMEN  

 

El objetivo de este estudio era extraer información sobre los parámetros a partir de múltiples 

fuentes y cuantificar la incertidumbre de los parámetros para la aplicación del 

modelo.  Siguiendo los métodos PRISMA, se realizaron búsquedas en Scopus, se revisaron los 

títulos y resúmenes en AbstrackR y se extrajeron los parámetros de movimiento del atún tropical 

de los artículos pertinentes. Cuantificamos los parámetros y la incertidumbre de cuatro 

impulsores que afectan al movimiento de los túnidos: la velocidad, las preferencias de 

temperatura, las preferencias de oxígeno y la asociación de los túnidos con los dispositivos de 

concentración de peces (DCP). El patudo, el rabil y el listado se mueven a aproximadamente 1 

m/s. El patudo prefiere un rango de temperaturas más amplio y frío (14,7℃-23,2℃) que el rabil 

(20,3℃-25,5℃) y el listado (19,3℃-27,9℃). El patudo se sumerge en aguas menos oxigenadas 
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que el rabil (1,4 ml/L, 3,1 ml/L), pero se carece de información sobre el oxígeno en el listado 

(n=1).  El tiempo de residencia continuo del patudo y el rabil en los DCP (7,7 días, 6,8 días) es 

el doble que el del listado (2,6 días).  Todas las especies perciben un DCP a 5,4 millas náuticas 

de distancia y tardan 23,8 días en colonizarlo. Esperamos que esta revisión sistemática pueda 

servir de base a los modelos de movimiento y anime a otros a llenar las lagunas de la bibliografía 

para mejorar la ordenación de los túnidos tropicales.   
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Introduction 

 

As ICCAT and other RFMOs, move toward spatially explicit stock assessment models incorporating migration 

patterns, seasonal trends, and habitat-dependent scenarios, a review of movement model parameters is necessary.  

This systematic review identifies relevant papers, extract numbers, and summarize those numbers for use in 

movement models.   

 

Modeling tropical tuna movement and migrations relies on speed and habitat preference assumptions.  Base tuna 

speeds are required for selecting time and space scales of models; the tuna must be able to migrate between areas 

in a reasonable amount of time.  When examining seasonal or habitat dynamics, it is useful to know the 

relationship between tuna and environmental features such as temperature and oxygen.  Fish Aggregation Devices 

may drastically alter fish movement behaviors as an ecological trap or a generally productive area (Marsac et al. 

2000).  So, knowing both the distance that tuna can sense FADs and the amount of time spent at FADs is useful 

to modeling movement.   

 

These assumptions typically come from the literature and are selected based on location, recency, and quality. 

Choosing a paper that is too specific to a study area, has a small sample size, or is outdated can result in model 

misspecification.  This would likely lead to skewed outputs by using mis-matched inputs.  Using more than one 

reference to define a model parameter reduces uncertainty and can improve evidence surrounding policy decisions 

(Myers and Mertz 1998; O’Leary et al. 2015).  Additionally, larger sample size and emergent trends from the 

cumulation of multiple sources can produce stronger averaged parameters.   

 

The objective of this study was to extract parameter information from multiple sources and quantify parameter 

uncertainty for model application.  We completed a systematic review within the SCOPUS database following 

PRISMA standards for each parameter (Page et al. 2021).  A summary of the parameters for speed, temperature 

preferences, oxygen preferences, and behavior around FADs for each species of tropical tuna are presented below.   

 

 

1. Data and methods  

 

This project followed Preferred Reporting Items for Systematic reviews & Meta-Analyses (PRISMA) 

methodology (Page et al. 2021).  We used the Boolean statements listed in Table 1 to search the Scopus database.  

The titles and abstracts were reviewed for relevance in AbstrackR (Wallace et al. 2012). We defined relevance as 

any paper pertaining to tropical tuna or “large pelagic species” and by type of driver including habitat, 

environmental effects, or tagging studies.  If a paper was retained after review, it would be confirmed as relevant 

by reading in detail, and relevant numbers would be extracted to a database.  The PRISMA flow charts for each 

section are presented as Figures 1-4 and demonstrate the number of papers eliminated at each round of review.   

 

Once collected, the extracted data were summarized using R version 4.0.5 (R Core Team, 2021).  A series of bar 

charts describing the number of papers by locations, species, methods, and the type of data extracted are available 

in Figures 5-7.  Statistical analysis for each driver was completed based on the available data for that driver and 

any unique trends discovered during the systematic review process. Below are each of the analyses summarized 

by driver. 
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2. Analysis  

 

2.1 Speed analysis 

 

Speed was reported in either body lengths per second (BL/s) or meters per second (m/s). When possible, the speed 

was converted to both units to allow for a comparison of all studies.  We averaged the mean, minimum, and 

maximum speeds by species and reported the number of papers that contributed to those means.  If a mean had 

standard deviations, we used the following equation, adapted from Borenstein et al. (2009), to weight the mean 

speed for all species:   

 

∑(𝑠𝑝𝑒𝑒𝑑 ∗ ∑
1

𝑠𝑑
)

∑
1

𝑠𝑑

= 𝑀𝑒𝑎𝑛 𝑆𝑝𝑒𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑏𝑦 𝑠𝑑 

1

∑
1

𝑠𝑑

= 𝑠𝑑 𝑜𝑓 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑀𝑒𝑎𝑛 

 

 

We calculated the weighted mean overall (n=12) and by species, however there were only 4 means reported with 

standard deviations for skipjack (n=2) and bigeye tunas (n=2).   

 

2.2 Temperature analysis 

 

Tropical tuna temperature preferences were reported as either ambient or sea surface temperatures and all analysis 

for temperature was split between those two categories.  Following the same methods as speed, we took the mean 

of the mean temperatures reported in the literature and calculated the standard deviation. There were enough 

means reported (n=31) to do this calculation for both ambient (n=22) and sea surface (n=9) temperatures, but there 

were not enough reported standard deviations (n=1, n=8) to do a weighted mean.  

 

Most temperatures were reported as a preferred range (n=84). The mean of the upper limit and the lower limit of 

the ranges were calculated with standard deviation.  We calculated the mean range of temperature by method 

(remote sensing and electronic tags) and by species to account for possible covariates.   

 

We recorded the absolute minimum and maximum reported temperatures for each tuna species in the literature. 

The mean was not calculated for these numbers as they represented the lethal or extreme temperatures for each 

species. 

 

2.3 Oxygen analysis 

 

Oxygen preferences were reported the least consistently in the literature, so the results were limited.  We calculated 

the mean of the upper and lower limits of oxygen tolerance.  The means were also calculated by species; however 

no analysis was completed for skipjack because only one data point was available.   

 

2.4 FAD analysis 

 

The target statistics for tuna behaviors around FADs were Continuous Residence Time (CRT), colonization time, 

and attraction distance.  CRT, defined as the total time an individual continuously stayed at a FAD excluding short 

excursions (< 24 hours), was the most common statistic (n=57).  We took the Mean of the collected CRTs and 

categorized by species.   

 

We defined colonization time as the total soak time before tuna gather on a FAD. There were two methods, in situ 

and fisher interviews, and we calculated a mean colonization time for both.  We were unable to calculate the mean 

colonization time by species due to the limitations in the literature.   

 

We defined attraction distance as the maximum distance that a tuna can sense and move towards a FAD.  This 

was typically determined by tuna leaving and returning to a FAD or a tuna changing trajectory to move toward a 

FAD.  Some papers reported much shorter attraction distances which were likely indicative of a tuna that was 

“associated” with a FAD rather than where the tuna first sensed the FAD.  The mean attraction distance could be 

calculated for yellowfin, skipjack, and mixed schools but not for bigeye.   
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3. Results and conclusions 

 

3.1 Speed 

 

A summary of 18 papers suggested that tropical tuna all move at the same speed of approximately 1 m/s.  All 

means in m/s and BL/s are provided in Table 2.  The mean speed of all species combined was 0.0929 ± 0.012 

m/s. The weighted means of each species 0.863 ± 0.015 m/s, 1.14 ± 0.073 m/s, and 1.28 ± 0.23 m/s, for yellowfin, 

bigeye, and skipjack respectively.   When weighted, there was a clearer trend that skipjack tended to swim slightly 

faster than bigeye and yellowfin.  Yellowfin were seen to reach the lowest and highest speeds at .322 m/s and 5.4 

m/s and had the largest sample size which may have contributed to their lower weighted mean.  Figures 8 and 9 

illustrate the speeds reported in the literature by paper and the final means for both unweighted and weighted 

treatments.     

 

Magnuson (1970, 1973, 1978) are the most referenced speed articles but are based on anatomical models and 

swim tunnels instead of in situ behaviors (Dewar and Graham 1994).  The results ended up most similar to 

Magnuson (1973) reporting speeds of 1.5-2.2 L/sec for skipjack, 1.3 L/sec for yellowfin, and 1.08 l/sec for bigeye.  

We recommend using the weighted means by species in m/s for parameterizing movement models.   

 

3.2 Temperature 

 

The types of papers used for the temperature analysis are in Tables 3-5. Papers were evenly divided between 

species even when split into ambient and sea surface temperatures (Table 3). Most of the research was conducted 

in the Pacific Ocean (n = 52) however there was representation from all three major oceans and three global studies 

(Table 4). Additional research on tropical tuna temperature trends in the Atlantic Ocean would be beneficial to 

ICCAT initiatives, but the global data is sufficient for analysis.  The most prominent method in the papers was 

remote sensing (n = 42), closely followed by electronic tagging (n = 29) (Table 5). Remote sensing papers 

examined sea surface temperature by comparing tag locations to temperature models or satellite maps.  Electronic 

tagging papers were more focused on ambient temperature since electronic tags can sense the temperature around 

the fish.  Thus, most of the results ended up being split between these two methods. We calculated separate means, 

minimums, and maximums for SST and ambient temperature.   

 

Most of the temperatures were reported as ranges with an upper and lower limit (n=84), in a few cases only an 

upper limit or lower limit was reported. The means and histograms of the upper and lower limits for each species 

and the two major methods are presented in Table 6 and Figure 10. Bigeye tuna preferred colder waters than 

yellowfin and skipjack in both ambient and sea surface conditions.   

 

Means represented 32 of the extracted numbers. The nine SST means and 22 ambient means are illustrated in 

Figure 11 by species and by method.   None of the ambient temperatures had standard deviations while 8 of the 

9 sea surface temperatures had standard deviations. Due to the lack of standard deviations overall, we reported 

the unweighted means by species in Table 7.  

 

Since we extracted data from all types of tropical tuna temperature studies, we captured the lethal extremes of 

their temperature ranges. 21 minimum temperatures were recorded with the absolute minimum being 2.0 in an 

electronic tag study on diving yellowfin tuna (Table 8). The minimum temperature for bigeye was 2.5 and 7.7 for 

skipjack. There were 9 maximum temperatures recorded.  Dizon et al. (1977) found the lethal maximum for 

skipjack was 34 degrees in a lab study. Bigeye and yellowfin were found at 31.9 and 32.2 degrees C (Evans et al. 

2008, Aoki et al. 2020). These numbers were not included in any temperature preference range analyses to avoid 

bias from the extremes.  

 

In 9 cases a preferred isotherm was reported. The mean isotherms preferred by bigeye, yellowfin, and skipjack 

were 19, 17.75, and 24.5 respectively. A future analysis examining isotherms or depth relationships in the 

literature could benefit three-dimensional models and lead to an improved understanding of ambient temperature 

effects on tuna movement.   

 

Another 9 studies were recorded because they reported a relationship between tropical tuna and temperature. 

Power and May (1991) found no relationship between temperature and yellowfin tuna CPUE. The remaining 8 

papers found that SST has a strong relationship with tropical tuna catches. In 3 of the papers Chlorophyll-a and 

SST were the best predictors of tuna catch.   
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3.3 Oxygen 

 

Papers on the relationship between oxygen and tropical tuna were the hardest to extract information from resulting 

in the smallest database of oxygen-related numbers (n=41).  Many papers looked at metabolic processes which 

mention internal tolerances but not the external oxygen level (Blank et al. 2007).  Bushnell and Brill (1991), Lowe 

et al. (2000) and Bach et al. (2003) reported oxygen preferences in incomparable units (partial pressures, gradients, 

etc.). Arrizabalaga et al (2015) and Hu et al. (2018) found that oxygen explained some of the deviance in their 

CPUE GAMs.  The highest reported percent of explained deviance was 31.19% for Yellowfin tuna CPUE in a 

univariate GAM.  However, some papers including Bigelow and Maunder (2007) and Brill et al. (1999) argued 

that oxygen was less important than temperature and thus excluded oxygen analysis from their paper.  This belief 

that oxygen is less important than temperature for tropical tuna distribution may have influenced the infrequency 

of oxygen reports in the literature.   

 

There were 8 upper limits and 15 lower limits of oxygen preference ranges extracted from the literature.  Unlike 

temperature, the upper limits referred to the low oxygen zones where the fish were observed and not the lethal or 

stressful upper limit as well-oxygenated waters are preferred by tuna.  The extracted upper and lower limits by 

paper and by species are in Figure 12.  The mean lower and upper limits for each species are reported in Table 

9.  There was not sufficient data for skipjack analysis for either mean lower or upper limits.  The lowest oxygen 

level bigeye tuna were seen diving into was 1 ml/L.  Bigeye were seen in lower oxygen levels than Yellowfin tuna 

at 1.4 ml/L and 3.1 ml/L respectively.   

 

3.4 Fish Aggregation Devices 

 

We extracted 153 statistics related to tropical tuna and FADs from 33 papers.  Most papers studied Yellowfin 

tuna, but there were at least 10 papers studying each species (Figure 7).  11 papers focused on school relationships 

with FADs and did not specify the species within the schools.  As expected, most studies were conducted in the 

Pacific Ocean and Indian Ocean with many studies in FAD systems in Hawaii and the Maldives (Figure 5 and 

7).   

 

Most papers used ultrasonic or acoustic transmitters to track fish around floating objects, boats, or buoys (n= 25, 

Figure 7).  4 studies interviewed purse seine fishers from Spain, France, and China to determine fisher knowledge 

on Tuna-FAD relationships.  There was 1 study using a small-scale fishery, 1 study using mark-recapture data, 

and 2 studies using archival tags.   

 

The most common statistic extracted was CRT.  The mean CRT was 6.2 days, but when categorized by species 

the CRTs were 6.8 days, 7.7 days, and 2.6 days for yellowfin, bigeye, and skipjack respectively (Figure 13, Table 

10).  There was also a separate mean of 8.6 days calculated for all the papers that reported CRT without specifying 

the species (n = 4).   

 

Only 10 papers reported colonization times which fell into two categories: interviews and in situ.  The mean 

colonization time of the in situ papers (n=4) was 23.8 days which was very similar to 32.3 days the mean 

colonization time of the interview papers (n=6).  The minimum colonization times were reported by Schaefer et 

al. 2021 suggesting that tuna could start gathering at FADs as early as 1.5 days after setting.  Schaefer et al. 2021 

looked at 150 FADs instead at specific tunas which may have resulted in the lowest colonization time.   

 

The extracted attraction distances to FADs are displayed in the forest plot on Figure 14.  There are a mix of short 

and long distances because the “attraction distance” definition varied too much.  Trygonis et al. 2016, Moreno et 

al. 2007b, and Cillaurren et al. 1994 all used echosounders attached to the FAD or a nearby buoy with a limited 

range, so this may be more accurately defined as the “association distance” or how far away tuna stay from a FAD 

when considered associated with it.  Other papers investigated how far away a tracked fish could travel to and 

from a FAD or change trajectory to find another FAD.  There were no reported FAD attraction distances for bigeye 

tuna.  The mean attraction distance was 10,074.4 m or 5.4 nm for all tuna species excluding the shorter reports 

from different methods.   
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3.5 Limitations and applications 

 

This systematic review was only comprehensive for the Scopus database.  The speed study was conducted in 2 

databases: Scopus and Web of Science.  Web of Science added only one unique paper to the collected information 

and was subsequently not worth the additional time needed to search it.  Now that the methods have been refined 

by repeated execution, it would be easier to complete this analysis in additional databases to better capture the 

entire breadth of the literature.   

 

During the search process, many papers used parameters referenced from other papers.  Papers describing models 

have references to the speeds, temperatures, oxygen, and FAD parameters used in their model descriptions.  Some 

of these secondary references were noted during the collection process, but those references were rarely back 

checked unless they came up as a paper in the search. A future study on connected papers, including those 

referenced by models would be interesting to compare to the parameters proposed in this paper.   

 

These collected parameters will be used in an agent-based model of tropical tuna movement in the Atlantic Ocean.  

We encourage anyone who is interested in this data for use in their own models or who wishes to expand this 

systematic review contact the authors.   
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Table 1. Boolean statements used for searching Scopus database.  SPECIES represents the scientific name and 

COMMON NAME represents the common name, these fields were changed for each search in order to search 

each species one at a time.   

 

Database Boolean Statement 

Speed WoS ((“tropical tuna” OR skipjack OR yellowfin OR bigeye) AND (speed OR velocity)) 

Speed 

Scopus 

( ( "tropical tuna"  OR  "skipjack"  OR  "yellowfin"  OR  "bigeye" )  AND  ( "speed"  OR  

"velocity" ) ) AND ( LIMIT-TO ( DOCTYPE ,  "ar" ) )  AND  ( LIMIT-TO ( SRCTYPE ,  

"j" ) ) 

Temperature 

Scopus* 

( "SPECIES" )  AND  ( "temperature*" )  AND NOT  ( "bone" )  AND  ( LIMIT-TO ( 

SRCTYPE ,  "j" ) )  AND  ( LIMIT-TO ( DOCTYPE ,  "ar" ) )  AND  ( EXCLUDE ( 

EXACTSRCTITLE ,  "Food Chemistry" ) ) 

Oxygen 

Scopus 

( "SPECIES"  OR  "COMMON NAME" )  AND  ( "oxygen*"  OR  "aerobic*"  OR  

"respiration" ) AND ( LIMIT-TO ( SRCTYPE ,  "j" ) ) AND  ( LIMIT-TO ( DOCTYPE ,  

"ar" )) 

FAD 

Scopus 

( "SPECIES" )  AND  ( "FAD"  OR  "Fish Aggregation Device*"  OR  "Association"  OR  

"Seamount"  OR  "Aggregation"  OR  "FAD-Associated"  OR  "log"  OR  "floating object"  

OR  "Fish Aggregating Device"  OR  "Fish Attracting Device" )  AND  ( LIMIT-TO ( 

SRCTYPE ,  "j" ) )  AND  ( LIMIT-TO ( DOCTYPE ,  "ar" ) ) 

 

*”AND NOT (“bone”) was added to eliminate a strange abundance of bone related papers and (EXCLUDE 

(EXACTSRCTITLE ,  "Food Chemistry") was added because of a high number of Food Chemistry papers that 

had nothing to do with live tuna.  This exclusion was not added to later searches due to capacity improvements.  

 

 

Table 2. The maximum, minimum, and average speed of each tropical tuna species in m/s and BL/s.  The total 

number of papers used for the average analysis and the total number of papers recorded in the database are 

included.   

 

m/s 

species min average max number of papers included 

in average 

total papers 

YFT 0.322 0.988 5.4 8 26 

BET 0.88 1.07 1.91 2 4 

SKJ 0.6 1.09 2.06 7 11 

All 0.322 1.041 5.4 17 41 

 

BL/s 

species min average max number of papers included 

in average 

total papers 

YFT 0.65 0.929 3.7 8 16 

BET NA NA NA 0 0 

SKJ 1.1 NA 10 0 6 

All 0.65 0.929 10 8 22 

 

Table 3. Number of papers with temperature data by species and by data type.   

 

Species Ambient Sea Surface Total 

Bigeye 21 12 33 

Yellowfin 14 22 37 

Skipjack 12 15 27 
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Table 4. Number of papers with temperature data by ocean and by data type.   

 

Ocean Ambient Sea Surface Total 

Pacific 36 17 52 

Atlantic 5 9 14 

Indian 4 8 11 

Global 0 3 3 

Table 5. Number of papers with temperature data by method and by data type.   

 

Method Ambient Sea Surface Total 

Remote Sensing 12 30 42 

Electronic Tagging 28 5 31 

Lab 3 0 3 

Fishing 2 2 4 

 

Table 6. Ranges of temperature preferences by species and by method for ambient and sea surface temperatures 

with standard deviation.   

   
Ambient SST 

Species Methods lower upper lower Upper 

Bigeye All 14.7±4.6 23.2±5.4 20.8±7.0 25.2±6.5 
 

Selected 15.1±4.19 24.3±4.8 24.2±2.4 28.5±082 

Yellowfin All 20.3±3.3 25.3±4.0 23.6±5.0 28.6±2.0 
 

Selected 21.4±3.1 26.7±3.0 24.4±5.0 28.6±2.2 

Skipjack All 19.3±2.7 27.9±2.1 23±3.6 28.3±2.2 
 

Selected 19.2±3.4 28±2.31 23±3.6 28.3±2.2 

 

Table 7. Mean of the tropical tuna mean temperature preferences in the literature by species with standard 

deviation.   

 

Species Ambient Sea 

Surface 

Total 

Bigeye 18.07±5.7 27.4±0.14 19.2±6.2 

Yellowfin 23.59±0.79 23.9±5.7 23.7±3.6 

Skipjack 24.34±1.4 23.3±3.6 23.9±2.5 

 

Table 8. Extreme temperatures experienced by tropical tuna in the literature with citations.   

 

Species Minimum Citation Maximum Citation 

Bigeye 2.5 Evans et al. 2008 31.9 Evans et al. 2008 

Yellowfin 2 Aldana-Flores 2018 32.2 Dagorn et al. 2006 

Skipjack 7.7 Schafer and Fuller 2007 34 Dizon et al. 1977 

 

Table 9. Mean oxygen ranges preferred by tropical tuna with standard deviation and sample size. 

 

Species Lower 

Limit 

Upper Limit n 

Bigeye 1.4±0.5 1.8±0.79 8 

Yellowfin 3.1±1.5 4.6±1.4 7 

Skipjack 1 NA 1 

All 2.2±1.4 3.2±1.9 16 
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Table 10. Mean Continuous Residence time by species with standard deviation.   

 

Species Lower 

Limit 

n 

Bigeye 7.7±8.7 13 

Yellowfin 6.8±6.3 28 

Skipjack 1 12 

Unspecified 8.6±3.1 4 

All 6.2±6.4 57 
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Figure 1. PRISMA 2020 flow diagram of Tropical Tuna Speed. A Boolean search of tropical tuna speeds started 

with 1,638 papers, after screening 271 papers were skimmed for relevant numbers, 81 numbers from 25 papers 

were included in the final analysis.   
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Figure 2. PRISMA 2020 flow diagram of Tropical Tuna Temperature preferences. A Boolean search of tropical 

tuna temperature started with 3,674 papers, after screening 230 papers were skimmed for relevant numbers, 272 

numbers from 87 papers were included in the final analysis.   
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Figure 3. PRISMA 2020 flow diagram of Tropical Tuna Oxygen preferences. A Boolean search of tropical tuna 

oxygen started with 3,348 papers, after screening, 56 papers were skimmed for relevant numbers, 41 numbers 

from 21 papers were included in the final analysis.   
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Figure 4. PRISMA 2020 flow diagram of Tropical Tuna FAD relationships.  A Boolean search of tropical tuna 

and FADs started with 8,014 papers.  After screening, 181 papers were skimmed for relevant numbers, 33 numbers 

from 153 papers were included in the final analysis.   
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Figure 5. The distribution of temperature information related to each species, location, method, and statistics type. 

Grey represents the number of papers related to ambient temperatures and the black represents the number of 

papers related to sea surface temperatures. 

 

 
Figure 6. The distribution of oxygen information related to each species, location, method, and statistics type.  
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Figure 7. The distribution of FAD information related to each species, location, method, and statistics type.  

 

 

 
 

 

Figure 8. A forest plot of Mean tropical tuna speeds by species with standard deviations.  The mean of all data is 

Final All valued at 0.929 + 0.012.   
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Figure 9. Mean tropical tuna speeds weighted by standard deviations sorted by species.  
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A. Ambient     B. Sea Surface 

 
 

 

Figure 10. The upper and lower limits of temperature preferences divided by species and method. The black bars 

represent the upper limits of the extracted ranges, and the white bars represent the lower limits.  Figure A includes 

the papers where the ambient temperature was reported, and Figure B includes the papers where the sea surface 

temperature was reported.   
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Figure 11. The mean temperature preferences for each species sorted by method. The dotted lines represent the 

mean temperature for each species within each method.   
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Figure 12. A forest plot of the minimum and maximum oxygen preferences for each paper by species.   

 

 

 

  
 

Figure 13. Continuous Residence Time distributions by species with the mean lines for bigeye tuna in navy, 

yellowfin tuna in yellow, and skipjack in grey.   
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Figure 14. A forest plot of the minimum and maximum attraction distances to FADs by species.      


