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SUMMARY 

 
Bayesian State-Space Surplus Production Models were fitted to Mediterranean albacore 
(Thunnus alalunga) catch and relative abundance indices using the ‘JABBA’ R package. This 
document presents details on the model diagnostics and stock status estimates for three 
preliminary scenarios, S1, S2 and S4. S1 was fitted to the three indices used in 2017, while S2 
also included fits to four more historical indices and S4 included in addition a Spanish 
Tournament index. The prior assumptions and a Fox production function were kept consistent 
with the last assessment in 2017. We evaluated model plausibility using four objective model 
diagnostics: (1) model convergence, (2) fits to the data, (3) retrospective consistency and (4) 
prediction skill. Our results suggest that S2 and S4 represent the most plausible candidate 
models. These models reduced uncertainty about the absolute biomass estimates, and additional 
sensitivity runs indicated that these models were robust to alternative productivity and variance 
assumptions, while a Jackknife analysis revealed that either removing Balearic larval index or 
the Italian long-line index had the strong effects on the stock status estimates.  
 

RÉSUMÉ  
 

Les modèles de production excédentaire état-espace de type bayésien ont été ajustés aux 
données de capture et aux indices d’abondance relative du germon de la Méditerranée 
(Thunnus alalunga) en utilisant le progiciel « JABBA » R. Ce document présente des détails sur 
les diagnostics du modèle et les estimations de l'état des stocks pour trois scénarios 
préliminaires, S1, S2 et S4. S1 a été ajusté aux trois indices utilisés en 2017, tandis que S2 
incluait également des ajustements à quatre indices historiques supplémentaires et S4 incluait, 
en outre, un indice des tournois espagnols. Les postulats a priori et une fonction de production 
de Fox correspondaient à la dernière évaluation de 2017. Nous avons évalué la plausibilité des 
modèles en utilisant quatre diagnostics de modèle objectifs : (1) la convergence des modèles, 
(2) les ajustements aux données, (3) la cohérence rétrospective et (4) la capacité de prédiction. 
Nos résultats suggèrent que S2 et S4 constituent les modèles potentiels les plus plausibles. Ces 
modèles réduisaient l’incertitude quant aux estimations de la biomasse absolue et des analyses 
de sensibilité supplémentaires indiquaient que ces modèles étaient robustes face aux autres 
postulats de productivité et de variance, alors qu’une analyse du Jackknife révélait que la 
suppression de l’indice larvaire des Baléares ou de l’indice de la palangre italienne avait de 
forts effets sur les estimations de l’état du stock. 
 

RESUMEN 
 

Los modelos de producción excedente bayesianos de estado espacio se ajustaron a los índices 
de captura y CPUE del atún blanco (Thunnus alalunga) del Mediterráneo utilizando el paquete 
R de «JABBA». Este documento presenta detalles sobre los diagnósticos del modelo y las 
estimaciones del estado del stock para tres escenarios preliminares, S1, S2 y S4. S1 se ajustó a 
los tres índices utilizados en 2017, mientras que S2 incluía también ajustes a cuatro índices 
históricos más y S4 incluía además un índice de torneos español. Los supuestos previos y una 
función de producción Fox se mantuvieron coherentes con la última evaluación, en 2017. La 
plausibilidad de estos modelos se evaluó mediante cuatro diagnósticos objetivos del modelo: 
(1) la convergencia del modelo, (2) el ajuste a los datos, (3) la coherencia retrospectiva y (4) la 
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capacidad de predicción. Nuestros resultados sugieren que S2 y S4 representan los modelos 
candidatos más plausibles. Estos modelos redujeron la incertidumbre acerca de las 
estimaciones de biomasa absoluta y ensayos de sensibilidad adicionales indicaron que estos 
modelos eran robustos ante supuestos de productividad y varianza alternativos, mientras que 
un análisis Jackknife reveló que, eliminar bien el índice larval balear o bien el índice de 
palangre italiano, tenía grandes efectos sobre el estado del stock. 
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1. Introduction 

 
The albacore (Thunnus alalunga) is widely distributed in temperate and tropical waters of all oceans, including 
the Mediterranean Sea (Collette and Nauen, 1983). This species has habitat preferences for an epipelagic and 
mesopelagic realm and prefers cooler sea temperatures in comparison to other tropical tuna species. In the 
Atlantic Ocean, due to its wide distribution, albacore has been intensively exploited by a variety of fisheries. For 
management purposes, the International Commission for the Conservation of Atlantic Tunas (ICCAT) considers 
three stocks, a North Atlantic, a South Atlantic and a Mediterranean stock.  
 
The most recent stock assessment for Mediterranean albacore was carried out by ICCAT in 2017 (ICCAT, 
2017a). This assessment presented the stock status estimates for the assessment horizon 1980-2015, using an 
early version (BSPSP_ICCATv2.R) of the Bayesian state-space surplus production model JABBA (Just Another 
Bayesian Biomass Assessment; Winker et al., 2018a). The model was fitted to relatively short, joint CPUE index 
that started in 2001 and which was derived by applying state-space approach (Winker et al. 2018) to obtain an 
average estimate of the following three relative abundance indices: (i) standardized Spanish longline CPUE 
(ESP-LL), (ii) standardized Italian longline CPUE (ITA-LL) and (iii) the fisheries-independent Western 
Mediterranean larval density index based on ichthyoplankton surveys around the Balearic Islands (Larval-Index) 
that was considered as a proxy for spawning stock biomass.  
 
The models were fitted using alternative parameterization of the generalized Pella-Tomlinson production 
function, of which the Fox model, which produced more optimistic than the Schaefer model, was selected for the 
base-case scenario to estimate the stock status. The stock status estimates were deemed highly uncertain as 
judged by the performance of model diagnostics, including jackknife of CPUE time, retrospective analysis and 
hindcast cross-validation (Kell et al. 2016) applied to the averaged CPUE index. In particular, the last CPUE 
data point was found to be highly influential and deemed suspect. As a result, the 2017 stock status advice was 
based on a model that was fitted to abundance indices through 2014, excluding the 2015 data points. This model 
indicated that the 2015 biomass was approximately at BMSY level and that fishing mortality was below FMSY. It 
was noted, however, that the alternative fits including the 2015 data points are not biologically implausible, 
highlighting the risk that the stock status could be more pessimistic with current catches substantially exceeding 
sustainable fishing level. Due to the high uncertainty about the stock status characterization, no future 
projections were conducted. 
     
In this paper, we present the stock assessment results for Mediterranean albacore stock based on the Bayesian 
State-Space Surplus Production Model software, JABBA (Winker 2018a), using updated catch and standardized 
longline CPUE time series through 2019. The main improvement compared to the initial 2017 assessment 
include that the updated indices enabled fitting JABBA to the indices directly, without the need for an averaging 
approach for pre-processing indices. In general, index averaging introduces artificial smoothing, which can lead 
to overfitting, a lack of random residual pattern and model instability, and is therefore not recommended as a 
good practice in stock assessments. In addition, a number of standardized historical CPUE indices were made 
available, which were explored as part of this assessment update for Mediterranean albacore. 
 
 
2. Material and Methods 
 
This preliminary stock assessment is implemented using the Bayesian state-space surplus production model 
framework JABBA (Winker et al., 2018a). JABBA’s inbuilt options include: automatic fitting of multiple CPUE 
time series and associated standard errors; estimating or fixing the process variance, optional estimation of 
additional observation variance for individual or grouped CPUE time series, and specifying a Fox, Schaefer or 
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Pella-Tomlinson production function by setting the inflection point BMSY/K and converting this ratio into shape a 
parameter m. JABBA also provides a comprehensive toolbox to conduct model diagnostics to objectively 
evaluate the four model plausible criteria recommended in Carvalho et al. 2021: (1) model convergence (2) fit to 
the data, (3)  model consistency  (retrospective bias) and (4) prediction skill through hindcast cross-validation 
(Kell et al. 2017; 2021). A full JABBA model description, including formulation and state-space 
implementation, prior specification options and diagnostic tools is available in Winker et al (2018a). Following 
its first application to Mediterranean albacore in 2017  based on an early development version in 2017 (ICCAT, 
2017a), JABBA has evolved into  a fully documented, open-source R package 
(https://github.com/JABBAmodel/JABBA), which has been included in the ICCAT stock catalogue 
(https://github.com/ICCAT/software/wiki/2.8-JABBA). JABBA has subsequently been applied in a number of 
recent ICCAT stock assessments, including South Atlantic swordfish (ICCAT, 2017b; Winker et al., 2018), 
Atlantic shortfin mako shark stocks (south and north) (ICCAT, 2017c; Winker et al., 2020, 2017), Atlantic blue 
marlin (Mourato et al., 2019), Atlantic bigeye tuna (Winker et al., 2019), Atlantic White marlin (Mourato et al., 
2020), Atlantic yellowfin tuna (Sant’Ana et al., 2020), Mediterranean swordfish (Winker et al. 2020a) and South 
Atlantic albacore (Winker et al. 2020b). 
 
2.1 Fishery data 
 
Fishery catch data for Mediterranean albacore were made available by ICCAT Secretariat for the period 1950-
2019 (Figure 1). For this assessment, the time series was subset to 1980-2019, consistent with the 2017 
assessment. In 2021, the standardized CPUE time series used in the 2017 final model were updated. For Scenario 
1 (S1), the fisheries dependent CPUEs for the Spanish longline (ESP-LL) and for the Italian longline (ITA-LL), 
and the fisheries-independent ‘larval index’ from Balearic region (Balearic-Larval) were used.  
 
In addition, we considered an alternative scenario (Scenario 2), where JABBA was fitted to additional four 
historical indices. These included a historical nominal CPUE from Italian drifting longlines fishery in the 
southern Adriatic Sea from FAO-MiPAF document (Marano et al., 2005), which covered early years 1984 to 
2000, but with no data for 1988-89 and 1996-97, and three new indices based on data collected in the frames of 
past European and national projects. The data were obtained from the MEDPEL project dataset, which was 
based both on landings and observation on board information, from available historical time series. The three 
relative abundance indices comprised a standardized Italian long-line CPUE index for the Ionian Sea from 1995 
to 2003 (LL-Ionian) collected by the University of Bari, a standardized (non-target) longline index for Ligurian 
Sea from 1991 to 2009 (Ligurian_Bycatch) collected by the University of Genoa, a standardized Southern 
Mediterranean longline index (MedSouth_LL) based on data provided by the Aquastudio Research Institute for 
the period 2004 to 2009, covering five southern Mediterranean areas: Libya, North and South Ionian Sea, South 
of Sicily, South Thyrrenian Sea (SCRS/2021/115). The indices used in this assessment were provided in mass 
per unit effort and assumed to be proportional to biomass.  
 
Furthermore, a new Spanish Tournament index was provided that covered a relatively long period from 2005-
2019, but only represented limited spatial and seasonal coverages (SCRS/2021/103). This index was fitted 
together will all indices in Scenario 2, in an alternative scenario (Scenario 4).  
 
2.2 Model specifications and sensitivity runs 
 
Initially, three candidate model scenarios were considered:  
 

− S1: a reference scenario, fitted to the updated three indices (ESP-LL, Larval-Index and ITA-LL) used in 
the 2017 assessment 
 

− S2: an “extended” model, fitted to the seven available candidate indices (Spanish, Italian, Ionian, 
Ligurian, Med-South, and historical Italian longline indices, and western Mediterranean larval index 
(providing information on the trends of the spawning biomass)).  
 

− S4: a “full” model, fitted to all eight available candidate indices (S2 + Spanish Tournament index). 
 

An additional, intermediate Scenario S3 represented a variation of S2 by excluding the fisheries-independent 
larval index. The results of this scenario are presented in the Supplementary Material. 
 
For the unfished equilibrium biomass K, we used default settings of the JABBA R package in the form of 
vaguely informative lognormal prior with a large CV of 100% and a central value that corresponds to eight times 

https://github.com/JABBAmodel/JABBA
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the maximum total catch and is consistent with other platforms, such as Catch-MSY (Martell and Froese, 2013) 
or the initial value for K in SpiCt (Pederson and Berg 2017). We assumed a Fox production function (BMSY/K = 
0.37), a lognormal prior distribution for r with mean of log(0.153) and a standard deviation for log(r) of 0.457 
and initial beta prior for the relative biomass (φ= B1980/K) with mean = 0.85 and CV of 10%, which is consistent 
with the 2017 base-case model (ICCAT, 2017). All catchability parameters were formulated as uninformative 
uniform priors, while the process error of log(By) in year y was estimated “freely” by the model using an 
uninformative inverse-gamma distribution with both scaling parameters set at 0.001. Initial trials indicated that it 
was challenging to reliably estimate observation errors using an additional variance approach for model internal 
weighting (e.g. Winker et al. 2020), because several of the indices covered only a few years and were subject to 
missing values and irregular spacing. To address this, we considered a fixed observation error approach by 
assuming a standard error for log(CPUE) of 0.25 for the three most recent indices, while slightly down-
weighting the historical indices and the Spanish Tournament CPUE by setting the standard error to 0.35. To 
explore sensitivity, additional robust tests were conducted for alternative observation and process error variance 
settings (Table 1), as is common practice in many age-structured tuna assessments with Stock Synthesis. The 
robustness tests also included an alternative assumption of a 50% higher prior mean for r (Table 1). To examine 
the sensitivity of the assessment results to the inclusion of individual CPUE indices, we iteratively re-fitted the 
models while excluding one index at the time and refitting the model (i.e. Jackknife index analysis). 
 
2.3 Model diagnostics  
 
The evaluation model diagnostics follows the principles in Carvalho et al. (2021), who recommended to 
objectively evaluate the base-case candidate model based on the following four model plausible criteria: (1) 
model convergence (2) fit to the data, (3) model consistency (retrospective pattern) and (4) prediction skill 
through hindcast cross-validation (Kell et al. 2016; 2021). 
 
JABBA is implemented in R (R Development Core Team, https://www.r-project.org/) with JAGS interface 
(Plummer, 2003) to estimate the Bayesian posterior distributions of all quantities of interest by means of a 
Markov Chains Monte Carlo (MCMC) simulation. In this study, three MCMC chains were used. Each model 
was run for 30,000 iterations, sampled with a burn-in period of 5,000 for each chain and thinning rate of five 
iterations. Basic diagnostics of model convergence included visualization of the MCMC chains using MCMC 
trace-plots as well as Heidelberger and Welch (Heidelberger and Welch, 1992) and Geweke (1992) and Gelman 
and Rubin (1992) diagnostics as implemented in the coda package (Plummer et al., 2006).  
 
To evaluate the JABBA fit to the abundance index data, the model predicted values were compared to the 
observed indices. JABBA-residual plots were used to examine (1) color-coded lognormal residuals of observed 
versus predicted CPUE indices by fleet together with (2) boxplots indicating the median and quantiles of all 
residuals available for any given year; the area of each box indicates the strength of the discrepancy between 
CPUE series (larger box means higher degree of conflicting information) and (3) a loess smoother through all 
residuals which highlights systematically auto-correlated residual patterns to evaluate the randomness of model 
residuals. In addition it depicts the root-mean-squared-error (RMSE) as a goodness-of-fit statistic. We conducted 
run tests to evaluate the randomness of residuals (Carvalho et al., 2017). The runs test diagnostic was applied to 
residuals of the CPUE fit on log-scale using the function runs.test in the R package tseries, considering the 1-
sided p-value of the Wald-Wolfowitz runs test (Carvalho et al. 2021). The runs test results can be visualized 
within JABBA using a specifically designed plot function that illustrates which time series passed or failed the 
runs test and highlights individual time-series data points that fall outside the three-sigma limits (e.g. Anhøj and 
Olesen, 2014). 
 
To check for model consistency with respect to the stock status estimates, we also performed a retrospective 
analysis by removing one year of data at a time sequentially (n = 5), refitting the model and comparing quantities 
of interest (i.e. biomass, fishing mortality, B/BMSY, F/FMSY, B/B0 and MSY) to the reference model that is fitted to 
full time series. To compare the bias between the models, we computed Mohn’s (Mohn, 1999) rho (ρ) statistic 
and specifically the commonly used formulation Hurtado-Ferro et al. (2015).  
 
Although the above model diagnostics are important to evaluate model convergence, the fit to the data and 
retrospective consistency, providing scientific advice should also involve checking that the model has prediction 
skill of future states under alternative management scenarios (Carvalho et al. 2021). To validate a model’s 
prediction skill requires that the system be observable and measurable (Kell et al. 2021). Therefore, we applied a 
hindcasting cross-validation (HCXval) technique (Kell et al. 2016), where observations are compared to their 
predicted future values. HCxval is a form of cross-validation where, like retrospective analysis, recent data are 
removed, and the model refitted with the remaining data, but HCXval involves the additional steps of projecting 
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ahead over the missing years and then cross-validating these forecasts against observations to assess the model’s 
prediction skill. A robust statistic for evaluating prediction skill is the Mean Absolute Scaled Error (MASE), 
which scales the mean absolute error of prediction residuals to a naïve baseline prediction, where a ‘prediction’ 
is said to have ‘skill’ if it improves the model forecast when compared to the naïve baseline (Kell et al. 2021). A 
widely used baseline forecast for time series is the ‘persistence algorithm’ that takes the value at the previous 
time step to predict the expected outcome at the next time step as a naïve in-sample prediction, e.g., tomorrow’s 
weather will be the same as today’s. The MASE score scales the mean absolute error of the prediction residuals 
to the mean absolute error of a naïve in-sample prediction. A MASE score higher than one can then be 
interpreted such that the average model forecasts are no better than a random walk. Conversely, a MASE score 
of 0.5 indicates that the model forecasts twice as accurately as a naïve baseline prediction; thus, the model has 
prediction skill.   
  
 
3. Results and Discussion  

 
The MCMC convergence tests by Heidelberger and Welch (Heidelberger and Welch, 1992) and Geweke (1992) 
and Gelman and Rubin (1992) were passed by all estimable key parameters for all scenarios S1, S2 and S4. 
Adequate convergence of the MCMC chains was also corroborated by visual inspection of trace plots (results 
available on request), which showed good mixing in general (i.e., moving around the parameter space).  
 
The model fits to each of the relative abundance indices, comprising the standardized CPUE indices ESP-LL and 
ITA-LL and the fisheries-independent Larval-Index, are shown for the scenarios S1, S2 and S4 in Figures 3 - 5, 
respectively. The fits to the four historical indices, included in S2 and S4 are presented in Figures 6 - 7. All three 
models appeared to fit the abundance trends reasonably well, and run tests conducted on the log-residuals 
provided no evidence to reject the hypothesis of randomly distributed residual patterns for the three indices used 
in S1, S2 and S4 (Figures 3 - 5), as well as, the four historical indices used in S2 and S4 (Figures 6 - 7).  
 
The overall goodness-of-fit indicated a fairly low precision of the fits from the reference run S1 (RMSE = 
50.1%) and S4 (RMSE = 50.1%), which were slightly better for S2 (RMSE = 44.1%), which incorporated the 
historical indices but not the Spanish Tournament CPUE index (Figure 8). The residual patterns of the last years 
2018-2019 indicated some conflicts between positive residuals from the ITA-LL index and negative 2019 
residuals for the ESP-LL and Balearic-Larval indices (Figure 8). This still resulted in an, on average, positive 
trend in the residual pattern for most recent years, which is probably due to the sharp increase in CPUE in the 
LL-ITA in 2018-2019. Notably, the LL-ITA index attains additional influence because of the lack of estimates 
for 2018 in both the ESP-LL and Balearic-Larval (Figure 8). The estimated process error deviations had a 
similar trend for all scenarios, showing particularly strong variations in most recent years. The process deviations 
for the terminal year are close to zero and therefore to average expectation (Figure 8).  
 
The medians of marginal posteriors for r were estimated to be lower for S1 at 0.134 than for S2 at 0.174 and S4 
at 0.186 (Table 2). The scale of absolute biomass estimates for K and BMSY was the lowest for S4 (Table 2), 
which was also associated with an improved, smaller posterior to prior ratio of variance for K (PPRV = 0.094) 
compared to S1 (PPRV = 0.161) and S2 (PPRV = 0.101) as shown in Figures 9-11. This indicates that the 
historical indices may hold information about the total biomass to effectively update the posterior of K given its 
relatively vague prior. Estimates of the median MSY were very similar among all scenarios, and so were the 
posterior medians of B2019/BMSY and F2019/FMSY (Table 2). The most notable difference among the three scenarios 
was therefore the reduced uncertainty about the total biomass scale for S2 and S4, as result of the inclusion of the 
historical indices in the model (Figure 12).  The addition of Spanish Tournament index to S2 reduced 
uncertainty about the estimates in the 2000’s, however both scenarios S2 and S4 showed similar results for the 
recent years. 
 
The sensitivity runs indicated that the ‘extended’ model S2 was largely robust to alternative assumptions about r 
and the observation and process errors (Figure 13). Assuming a higher prior mean for r showed surprisingly 
little effect on the current stock status in terms of B2019/BMSY and F2019/FMSY, and only resulted in a slight increase 
on the MSY estimate as indicated by the height of the production function in Figure 13. The only effects on 
stock status estimates were observed in the form of higher F2019/FMSY  estimates for the runs with a fixed process 
error (fixed.pe) and larger observation error (high.oe), which also resulted in lower MSY estimates, while no 
effect on B2019/BMSY was observed (Figure 13). Both settings resulted in similar properties, because fixing the 
process error at 0.1 and thus lower than the estimate (Table 3), results in larger observation errors to fit to the 
data, whereas admitting higher observation error a priori, results in lower process error.  
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The Jackknife index analysis was applied to S4 by removing one index at the time and showed that removing the 
‘Larval-Index’ was most influential with regards to stock status trajectories and resulted in current estimate of 
B2019 being approximately at BMSY and F2019 below FMSY (Figure 14). Thus excluding the Larval-Index would 
change the perception of the stock to a more optimistic status that is also associated with a higher MSY (Figure 
14). The second most influential effect was the removal of the ITA-LL, resulting in a more pessimistic estimate 
of B2019/BMSY and a much higher F2019 that corresponded to two times that of FMSY (Figure 14). The relatively 
strong influence of the ITA-LL index is probably related to the strong increase in CPUE for the 2018-2019, 
which is contrary to the recent trends in the ESP-LL CPUE and the Larval-Index.  
 
The retrospective analysis applied over a horizon of five years to S1, S2 and S4 (Figures 15-17) revealed a much 
improved retrospective pattern for S2 and S4 (Figures 16 and 17), which included the additional fits to the 
historical indices.  For S1, the Mohn’s 𝜌𝜌 values fell outside the acceptable thresholds of -0.15 and 0.2 for longer 
lived species (Huerto-Ferro et al., 2015) for the three quantities B, F and F/FMSY (Table 3; Figure 15). In 
particular, F and F/FMSY were associated with large retrospective bias estimates Mohn’s 𝜌𝜌 = 0.32 and 0.41, 
respectively (Table 3).  For S2 and S4 models, the retrospective bias was reduced for quantities, with Mohn’s 𝜌𝜌 
values falling within acceptable thresholds for all evaluated quantities (B, F, B/BMSY, B/K and MSY), with  
F/FMSY for S2 being the only exception that a slightly higher Mohn’s 𝜌𝜌 of 0.24 (Table 3, Figures 16 and 17). 
 
Hindcasting cross-validation results suggested that the ESP-LL and ITA-LL have prediction skill for all S1, S2 
and S4 scenarios as judged by the MASE scores < 1 (Figure 18), which provides a means to validate that short-
term forecast are consistent with the ‘future’ observations that were unknown to the model (Kell et al. 2021). 
The MASE scores for the Balearic-Larval index were close to one and the prediction residuals appeared 
relatively small. This suggests that forecasts are also relatively precise for the Balearic-Larval index. Generally, 
MASE scores were marginally better in S2.  
 
Due to the strong influence of the Balearic-Larval index on the stock status estimates (Figure 14, Figure S1), we 
also evaluated an additional scenario S3, which was based on S2 but excluded the Balearic-Larval index (see 
Supplement Figures S1-S5). Although the S3 model appeared to fit the data well, with no evidence for an 
undesirable residual pattern (Figure S3), it resulted in a concerning increase of retrospective bias for all 
evaluated key quantities, but MSY (Figure S4), while prediction skill for two retained indices ESP-LL and ITA-
LL could be improved and had even slightly decreased (Figure S5). 
 
The surplus production phase plots were similar for the S1, S2 and S4 scenarios, suggesting that the stock has 
been in an overfished state since the late 2000s, with current fishing pressure remaining unsustainable (Figure 
15). Catches exceeded MSY for several years while biomass remained above BMSY and from 2006 onwards these 
high catches were longer sustainable.  The probability that the stock is overfished and that overfishing is 
currently occurring is estimated to be 65.6% for S1 and 74.3% for S2 (Figure 15). The current 2019 catch is 
slightly below the expected average surplus production, so, while biomass may slowly increase under current 
catch levels, the current fishing mortality is high for rebuilding the stock to biomass levels that are capable of 
producing MSY (Figure 15).    
 
In line with the recommendations by the 2021 Working Group of Stock Assessment Methods (WGSAM), we 
evaluated the plausibility of two alternative JABBA model scenarios for the Mediterranean albacore based on 
best practice in using model diagnostics (Carvalho et al. 2021). These criteria are: (1) model convergence, (2) 
fits to the data, (3) model consistency (e.g.  retrospective bias) and (4) prediction skill. Our results suggest that 
S2 and S4 represent the most plausible candidate model for the Mediterranean albacore stock status. Specifically, 
S2 and S4 converged adequately, provided a robust fit to the data, is largely consistent retrospectively and 
indicated that two of three abundance indices that covered the most recent years have desirable prediction skill. 
The most notable improvement compared to the alternative candidate models is a substantially reduced 
retrospective bias and reduced uncertainty about the absolute biomass estimates. 
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Table 1.  Model specifications of alternative productivity and variance parameters used in the sensitivity analysis 
for Scenario1. r-prior: mean value of the prior for r, σobs_cur: observation error assumption for the three current 
indices,  σobs_hist: observation error assumption for the four historical indices. 
  

Run  r-prior  σobs_cur σobs_hist σproc Description 

high-r 0.230 0.25 0.35 est Increased r prior mean by a factor of 1.5 

fixe.pe 0.153 0.25 0.35 0.1 Fixed process error  

low.oe 0.153 0.20 0.30 est lower fixed observation error 

high.oe 0.153 0.30 0.40 est higher fixed observation error 

equal.oe 0.153 0.25 0.25 est equal observation for current and historical indices 
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Table 2. Summary of posterior quantiles presented in the form of marginal posterior medians and associated the 
95% credibility intervals of parameters for the Bayesian state-space surplus production models for 
Mediterranean albacore Scenarios 1,2, and 4 model runs. 
  S1 S2 S4 
Estimates Median 2.50% 97.50% Median 2.50% 97.50% Median 2.50% 97.50% 

K 75670.
0 

41077.
9 169938.2 56453.

4 
33409.

6 107606.6 53240.
7 

31551.
1 

99528.
3 

r 0.134 0.063 0.255 0.173 0.085 0.319 0.186 0.093 0.339 
ψ (psi) 0.858 0.638 0.970 0.851 0.629 0.969 0.852 0.623 0.970 
σproc 0.190 0.141 0.211 0.189 0.139 0.211 0.032 0.013 0.044 
FMSY 0.132 0.063 0.252 0.171 0.084 0.315 0.184 0.091 0.335 

BMSY 28003.
6 

15201.
9 62890.0 20892.

0 
12364.

1 39822.6 19703.
1 

11676.
3 

36833.
0 

MSY 3742.1 2231.3 6384.8 3641.4 2319.5 5228.6 3653.9 2445.9 5090.1 
B1980/K 0.825 0.534 1.183 0.8 0.508 1.168 0.805 0.527 1.153 
B2019/K 0.214 0.106 0.39 0.207 0.113 0.368 0.211 0.119 0.372 
B2019/BMS

Y 0.580 0.286 1.054 0.560 0.307 0.994 0.57 0.322 1.004 

F2019/FMS

Y 1.182 0.49 2.488 1.246 0.621 2.386 1.213 0.618 2.175 

 
 

Table 3. Summary Mohn’s rho statistic for the Scenarios S1, S2, and S4 models, computed for a retrospective 
evaluation period of five years. The larger the threshold the stronger is the retrospective bias.   

  Stock Quantity 
Scenario B F B/BMSY F/FMSY B/K MSY 
S1  -0.168 0.233 -0.106 0.374 -0.106 0.162 
S2 -0.009 0.110 0.162 0.259 -0.062 -0.127 
S4 -0.034 0.044 -0.027 0.172 -0.027 -0.095 
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Figure 1 - Catch times series 1980-2019 in metric tons (t) for Mediterranean albacore. 
 

 
Figure 2 - Time-series of four recent and four historical relative abundance indices considered in the preliminary 
JABBA stock assessment for Mediterranean albacore. Error bars represent the 95% Confidence Interval 
corresponding to the assumed standard errors on logarithm of the annual index estimates. SPNSP: Spanish 
Tournament Index 
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Figure 3. Time-series of observed (circle) with error 95% CIs (error bars) and predicted (solid line) CPUE (left) 
and Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals (right) for the 
Mediterranean albacore reference scenario (S1). On the left panel, the Dark shaded grey areas show 95% 
credibility intervals of the expected mean CPUE and light shaded grey areas denote the 95% posterior predictive 
distribution intervals. On the right panel, green areas indicate no evidence of lack of randomness of time-series 
residuals (p>0.05) while red panels (not shown here) indicate the opposite. The inner shaded area shows three 
standard errors from the overall mean and red circles identify a specific year with residuals greater than this 
threshold value (3- sigma rule).  
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Figure 4. Time-series of observed (circle) with error 95% CIs (error bars) and predicted (solid line) CPUE (left) 
and Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals (right) for 
Mediterranean albacore “extended” model (S2), shown for the most recent indices that were also used in the 
reference run S1. On the left panel, the Dark shaded grey areas show 95% credibility intervals of the expected 
mean CPUE and light shaded grey areas denote the 95% posterior predictive distribution intervals. On the right 
panel, green areas indicate no evidence of lack of randomness of time-series residuals (p>0.05) while red panels 
(not shown here) indicate the opposite. The inner shaded area shows three standard errors from the overall mean 
and red circles identify a specific year with residuals greater than this threshold value (3- sigma rule).  

 
 



258 

 
Figure 5. Time-series of observed (circle) with error 95% CIs (error bars) and predicted (solid line) CPUE (left) 
and Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals (right) for 
Mediterranean albacore “full” model (S4), shown for the most recent indices. On the left panel, the Dark shaded 
grey areas show 95% credibility intervals of the expected mean CPUE and light shaded grey areas denote the 
95% posterior predictive distribution intervals. On the right panel, green areas indicate no evidence of lack of 
randomness of time-series residuals (p>0.05) while red panels (not shown here) indicate the opposite. The inner 
shaded area shows three standard errors from the overall mean and red circles identify a specific year with 
residuals greater than this threshold value (3- sigma rule).  
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Figure 6. Time-series of observed (circle) with error 95% CIs (error bars) and predicted (solid line) CPUE (left) 
and Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals (right) for 
Mediterranean albacore “extended” model (S2), shown for the four historical indices that were included as 
additional indices in S2. On the left panel, the Dark shaded grey areas show 95% credibility intervals of the 
expected mean CPUE and light shaded grey areas denote the 95% posterior predictive distribution intervals. On 
the right panel, green areas indicate no evidence of lack of randomness of time-series residuals (p>0.05) while 
red panels (not shown here) indicate the opposite. The inner shaded area shows three standard errors from the 
overall mean and red circles identify a specific year with residuals greater than this threshold value (3- sigma 
rule).  
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Figure 7. Time-series of observed (circle) with error 95% CIs (error bars) and predicted (solid line) CPUE (left) 
and Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals (right) for 
Mediterranean albacore “full” model (S4), shown for the four historical indices that were included as additional 
indices in S4. On the left panel, the Dark shaded grey areas show 95% credibility intervals of the expected mean 
CPUE and light shaded grey areas denote the 95% posterior predictive distribution intervals. On the right panel, 
green areas indicate no evidence of lack of randomness of time-series residuals (p>0.05) while red panels (not 
shown here) indicate the opposite. The inner shaded area shows three standard errors from the overall mean and 
red circles identify a specific year with residuals greater than this threshold value (3- sigma rule).  
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Figure 8. JABBA residual diagnostic plots for alternative sets of relative abundance indices examined for each 
scenario (Left: reference S1; Middle: “extended” S2; Right: “full” S4) for Mediterranean albacore. Top panels: 
Boxplots indicating the median and quantiles of all residuals available for any given year, and solid black lines 
indicate a loess smoother through all residuals.  Bottom panels: Process error deviates (median: solid line) with 
shaded grey area indicating 95% credibility intervals. 
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Figure 9. Prior and posterior distributions of various model and management parameters for reference run S1 for 
Mediterranean albacore. PPRM: Posterior to Prior Ratio of Means; PPRV: Posterior to Prior Ratio of Variances. 
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Figure 10. Prior and posterior distributions of various model and management parameters for the “extended” S2 
model for Mediterranean albacore. PPRM: Posterior to Prior Ratio of Means; PPRV: Posterior to Prior Ratio of 
Variances. 
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Figure 11. Prior and posterior distributions of various model and management parameters for the “full” S4 
model for Mediterranean albacore. PPRM: Posterior to Prior Ratio of Means; PPRV: Posterior to Prior Ratio of 
Variances. 
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Figure 12. Comparison stock trajectory estimates for the Mediterranean albacore S1, S2 and S4 scenarios, 
showing trends in biomass and fishing mortality (upper panels), biomass relative to BMSY (B/BMSY) and fishing 
mortality relative to FMSY (F/FMSY) (middle panels) and biomass relative to K (B/K) and surplus production curve 
(bottom panels) 
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Figure 13.  Sensitivity analysis performed on the “extended” model S2 for alternative productivity (r) and 
variance parameter assumptions described in Table 2. high-r: Increased r prior mean by a factor of 1.5, fixed.pe: 
process error fixed to 0.1, low.oe: lower fixed observation error, high.oe: higher observation error, equal.oe: 
equal observation for current and historical indices  
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Figure 14. Jackknife index analysis performed on the “full” model S4, by removing one CPUE fleet at a time 
and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to BMSY (B/BMSY) and 
fishing mortality relative to FMSY (F/FMSY) (middle panels) and biomass relative to K (B/K) and surplus 
production curve (bottom panels) for each scenario from the Bayesian state-space surplus production model fits 
to Mediterranean albacore.    
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Figure 15. Retrospective analysis performed for the reference model run S1, by removing one year at a time 
sequentially (n=5) and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to 
BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) and biomass relative to K (B/K) 
and surplus production curve (bottom panels) for each scenario from the Bayesian state-space surplus production 
model fits to Mediterranean albacore.    
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Figure 16. Retrospective analysis performed for the “extended” model run S2, by removing one year at a time 
sequentially (n=5) and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to 
BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) and biomass relative to K (B/K) 
and surplus production curve (bottom panels) for each scenario from the Bayesian state-space surplus production 
model fits to Mediterranean albacore.   
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Figure 17. Retrospective analysis performed for the “full” model run S4, by removing one year at a time 
sequentially (n=5) and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to 
BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) and biomass relative to K (B/K) 
and surplus production curve (bottom panels) for each scenario from the Bayesian state-space surplus production 
model fits to Mediterranean albacore.   
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Figure 18. Hindcasting cross-validation results (HCxval) for the scenarios S1, S2, and S4 for Mediterranean 
albacore, showing one-year-ahead forecasts of CPUE values (2015-2019), performed with five model hindcast 
runs. The CPUE observations, used for cross-validation as prediction residuals, are highlighted as color-coded 
solid circles with associated light-grey shaded 95% confidence interval. The model reference year refers to the 
end points of each one-year-ahead forecast and the corresponding observation (i.e. year of peel + 1). 
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Figure 19. JABBA surplus production phase plot for the reference run S1 (left panels), “full” model S2 (middle 
panels) and “full” model S4 (right panels) showing trajectories of the catches in relation to BMSY and MSY (top 
panels) and Kobe phase plot showing estimated trajectories (1980-2019) of B/BMSY and F/FMSY for the Bayesian 
state-space surplus production model for the Mediterranean albacore (bottom panels). Different grey shaded 
areas denote the 50%, 80%, and 95% credibility interval for the terminal assessment year.  The probability of 
terminal year points falling within each quadrant is indicated in the figure legend.  
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Supplement: Additional Model Diagnostics for a third scenario that excluded the Balearic Larval Index 

 
Figure S1. Comparison stock trajectory estimates for the Mediterranean albacore reference runs S1, the “full” S2 
model and third scenarios S3, based on S3 but excluding the Larval-Index, showing trends in biomass and 
fishing mortality (upper panels), biomass relative to BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) 
(middle panels) and biomass relative to K (B/K) and surplus production curve (bottom panels) 
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Figure S2. Prior and posterior distributions of various model and management parameters for the additional S3 
scenario, excluding the ‘Larval-Index’, for Mediterranean albacore. PPRM: Posterior to Prior Ratio of Means; 
PPRV: Posterior to Prior Ratio of Variances. 
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Figure S3. Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals the 
additional S3 scenario, excluding the ‘Larval-Index’. On the left panel, the Dark shaded grey areas show 95% 
credibility intervals of the expected mean CPUE and light shaded grey areas denote the 95% posterior predictive 
distribution intervals. On the right panel, green areas indicate no evidence of lack of randomness of time-series 
residuals (p>0.05) while red panels (not shown here) indicate the opposite. The inner shaded area shows three 
standard errors from the overall mean and red circles identify a specific year with residuals greater than this 
threshold value (3- sigma rule).  
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Figure S4. Retrospective analysis performed for S3, which is based on S2 but excluding the Larval-Index, by 
removing one year at a time sequentially (n=5) and predicting the trends in biomass and fishing mortality (upper 
panels), biomass relative to BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) and 
biomass relative to K (B/K) and surplus production curve (bottom panels) for each scenario from the Bayesian 
state-space surplus production model fits to Mediterranean albacore.   
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Figure S5. Hindcasting cross-validation results (HCxval) for the scenario S3 for Mediterranean albacore, 
showing one-year-ahead forecasts of CPUE values (2015-2019), performed with five model hindcast runs. The 
CPUE observations, used for cross-validation as prediction residuals, are highlighted as color-coded solid circles 
with associated light-grey shaded 95% confidence interval. The model reference year refers to the end points of 
each one-year-ahead forecast and the corresponding observation (i.e. year of peel + 1). 
 


