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PEER REVIEW OF THE NORTH ATLANTIC SWORDFISH MANAGEMENT 
STRATEGY EVALUATION (MSE) CODE AND ALGORITHMS 

Anonymous1 

SUMMARY 

This paper presents a draft peer review of the source code in the SWOMSE R package and its 
dependencies in the openMSE package. A static code analysis for programming style and package 
structure was completed and followed by a line-by-line review of all R, TMB, and C++ functions for 
mathematical accuracy and potential performance bottlenecks, and finally, simulation tests on the 
package, including estimating model equilibria via simulation, and performing unit-tests on core 
functions. Particular attention was paid to the translation from a sex-structured, multi-fleet Stock 
Synthesis 3 assessment model to a single-sex, single-fleet operating model, and its effect on model 
equilibria. Overall, there were relatively few errors and omissions in the source code and 
documentation, which is encouraging given the nature and scope of the package; however, the 
population dynamics code implementing the plus group was incorrect, leading to positively biased 
variability in population biomass and fishing mortality. We demonstrate this error, as well as its 
correction, via simulation. Otherwise, we noted missing documentation for several key calculations, 
importantly, the specifics of how SS3 assessments were used to condition the SWOMSE operating 
model, and a tendency for the TAC to not be completely caught in low fixed TAC simulations. 

RÉSUMÉ 

Ce document présente un examen par des pairs provisoire du code source du progiciel SWOMSE R 
et de ses dépendances dans le progiciel openMSE. Une analyse du code statique pour le style de 
programmation et la structure du progiciel a été réalisée et suivie d’un examen ligne par ligne de 
toutes les fonctions R, TMB et C++ à des fins de précision mathématique et d’éventuels goulots 
d'étranglement des performances, et finalement de tests de simulation sur le progiciel, incluant 
l’estimation des conditions d’équilibre du modèle par simulation ainsi que la réalisation de tests 
unitaires sur les fonctions de base. Une attention particulière a été accordée à la traduction d’un 
modèle d’évaluation Stock Synthesis 3 structuré par sexe, pluri-flottilles en un modèle opérationnel 
à un seul sexe et une seule flottille, et son impact sur les conditions d’équilibre du modèle. Dans 
l’ensemble, il y avait relativement peu d’erreurs et d’omissions dans le code source et la 
documentation, ce qui est encourageant au vu de la nature et de la portée du progiciel ; toutefois, le 
code de la dynamique des populations appliquant le groupe plus était incorrect, donnant lieu à une 
variabilité positivement biaisée de la biomasse de la population et de la mortalité par pêche. Nous 
démontrons cette erreur, et sa correction, par simulation. Nous avons noté autrement une 
documentation manquante pour plusieurs calculs clés, et surtout les détails de la façon dont les 
évaluations SS3 avaient été utilisées pour conditionner le modèle opérationnel SWOMSE et une 
tendance du TAC à ne pas être complètement capturé dans les simulations ayant un faible TAC établi 

RESUMEN 

Este documento presenta un proyecto de revisión por pares del código fuente del paquete R SWOMSE 
y sus dependencias en el paquete openMSE. Se finalizó un análisis del código estático para el estilo 
de programación y la estructura del paquete seguido de una revisión línea por línea de todas las 
funciones de R, TMB y C++ para ver su precisión matemática y posibles cuellos de botella del 
desempeño. Finalmente, se realizaron pruebas de simulación del paquete, lo que incluye estimar el 
equilibrio del modelo por medio de simulación y realizar pruebas unitarias de las funciones 
principales. Se prestó particular atención a la traducción desde un modelo de evaluación Stock 
Synthesis 3 multiflota y estructurado por sexo a un modelo operativo de un solo sexo y una sola flota 
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y a su efecto en el equilibrio del modelo. En general, hubo relativamente pocos errores y omisiones 
en el código fuente y la documentación, lo que es alentador dada la naturaleza y el alcance del 
paquete, sin embargo, el código de la dinámica de la población que implementa el grupo plus era 
incorrecto, por lo que conducía a una variabilidad sesgada positivamente en la biomasa de la 
población y la mortalidad por pesca. Demostramos este error, así como su corrección por medio de 
simulación. Por otra parte, hemos advertido que falta documentación para varios cálculos clave, 
siendo los más importantes los detalles de cómo se utilizaron las evaluaciones de SS3 para 
condicionar el modelo operativo de SWOMSE y una tendencia a que el TAC no sea capturado 
completamente en las simulaciones de un TAC bajo fijado. 

 
 
1. Introduction 
 
The International Commission for the Conservation of Atlantic Tunas (ICCAT) has initiated a Management Strategy 
Evaluation (MSE) for the North Atlantic Swordfish (SWO) transboundary fishery. A key part of any MSE process is 
the closed-loop feedback simulation framework, which is a linked set of models representing the biological population, 
fishery independent and dependent observations and removals, and harvest decision making components of the fishery 
system. The R package SWOMSE, developed by Blue Matter Science, implements the closed-loop feedback 
simulation framework used for the SWO MSE, providing functions that together simulation test candidate management 
procedures (CMPs) against (yet to be defined) quantitative fishery management objectives.  
 
This document, submitted to the Standing Committee on Research and Statistics (SCRS), reports the findings of an in-
depth code review, conducted by Landmark Fisheries Research, of the SWOMSE R package and its dependencies in 
the openMSE package. The package version reviewed below is current as of May 12, 2021, and any updates to any of 
the package code since that time are not reviewed. However, the reconditioned SS3 assessments for Operating Model 
1, dated May 19 2021, were used for simulation tests. 
 
The structure of this review includes (i) review and recommendations for the documentation, (ii) a set of 
recommendations for the package code, and (iii) some simulation and unit tests of the package behaviour under 
scenarios testing model equilibria and model response to extreme catches. Within the code reviews, we identify Major 
or Minor Recommendations given their overall impact on expected results (e.g., Minor Recommendations are usually 
optional style and coding suggestions). Supporting details of the static code analyses and line-by-line review can be 
found in Appendices A and B, respectively. 
 
2. Review of documentation, code, and simulation testing 
 
2.1 Documentation 
 
The Trial Specifications Document (TSD) is clearly written and informative; however, a precise mathematical 
description of the translation simplifying the SS3 operating model from a sex-structured, multi-fleet model to a 
combined-sex, single fleet operating model was not included. A webpage comparing SS3 and openMSE models for 
Operating Model 1 in the SWOMSE package showed that the spawning biomass is much larger for the SWOMSE OM 
than the SS3 model, due to the inclusion of males in the spawning biomass, but, otherwise, much closer on the biomass 
depletion scale2. Catches and fishing mortality rates in the MSEtool reconstruction appear, on average, positively 
biased compared to their corresponding SS3 values.  
 
There will be some level of irreducible bias in this simplification, because fishing mortality is a non-linear effect, 
modulated by size selectivity, which cannot simply be averaged across the two sexes similar to the approach used for 
weight-at-age.  
 
Documentation Recommendation 1: Include a precise mathematical description of the method used to translate the 
sex-structured, multi-fleet Stock Synthesis 3 (SS3) model outputs to the combined-sex, single-fleet MSEtool operating 
model. 

 
2 https://iccat.github.io/nswo-mse/OM_Compare/OM_1.html 
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Documentation Recommendation 2: Remove the following line from the TSD: 
 
“Provided that the candidate management procedures use information on the relative trends in fishery data (e.g., 
indices of abundance and historical landings) rather than the absolute level, the disparity in absolute magnitude 
between the two OM frameworks is unlikely to impact the relative performance of the CMPs.” 
 
This statement about expected MP performance based on relative trends is not guaranteed and seems to arm-wave the 
issue away. It may also be impractical for MP design, as presumably the chosen MP would need to be able to set an 
absolute TAC for the real SWO system. Further, it gives a misleading impression that the conditioning is more different 
to the SS3 model than shown in the example comparison. In fact, relative errors in absolute catches and depletion are 
very small, and the key trends in biomass and catch are all present. Contractors should instead focus on the close match 
between the SS3 assessment and MSEtool OM biomass and catch series1 for why the discrepancies are not an issue.  
 
Documentation Recommendation 3: Ensure that OM reports and example comparison plots match the current 
conditioning of the operating model. 
 
We found in the course of our review that some plots and reported reference points on the SWOMSE website/TSD did 
not match the quantities in the SWOMSE package. For example, aggregated fleet selectivity in the example OM/SS3 
comparison has a peak at age 3 for all years, but the reconditioned OMs appear to have a peak at age 1 (see Major 
Code Recommendation 4 below). Similarly, the OM reports have different reference points reported (see section 2.3). 
 
2.2 Code analysis 
 
In what follows, square bracket notation (e.g., [35], [122 – 137]) indicates line numbers in the source code. Source 
code filenames are given at the beginning of each recommendation. 
 
2.2.1 Major Recommendations 
 
Major Code Recommendation 1: Correct the numbers-at-age calculations in the popdynOneTSCPP() function from 
the MSEtool package file src/popdynCPP.cpp [35]. This formulation is incorrect and produces overly variable plus 
group dynamics compared to the correct formulation (Figure 1). Apart from being a necessary correction from a model 
accuracy point of view, this change may also reduce the bias in the conditioning and simplification from the SS3 model 
mentioned above. 
 
The popdynOneTScpp() function advances the population’s numbers-at-age and mortality forward by a single time-
step. This function incorrectly models the population dynamics of the plus group [35] using an equilibrium formula. 
The mathematical form of the equation (as coded) is 
 

𝑁𝑁𝐴𝐴+,𝑡𝑡 = 𝑁𝑁𝐴𝐴−1,𝑡𝑡−1𝑒𝑒−𝑍𝑍𝐴𝐴−1,𝑡𝑡−1 + 𝑁𝑁𝐴𝐴−1,𝑡𝑡−1𝑒𝑒−𝑍𝑍𝐴𝐴−1,𝑡𝑡−1
e−ZA,t−1

1 − 𝑒𝑒−𝑍𝑍𝐴𝐴,𝑡𝑡−1
. 

 
where A+ is the plus group and t is the time step. This formulation ignores the accumulation of age A+ fish in the plus 
group, and instead replaces them with recruitment from age A-1, scaled by the limit of a geometric series in 𝑒𝑒−𝑍𝑍𝐴𝐴,𝑡𝑡−1. 
The apparent intent is to match the dynamics from the equilibrium survival. The reason the sum of a geometric series 
can be used for equilibrium survival is that the coefficient of the term 𝑒𝑒−∑ 𝑍𝑍𝑎𝑎𝑎𝑎  is the same for all ages (i.e., 1), so the 
series can be collapsed to its limit. For non-equilibrium population dynamics, that condition is violated by recruitment 
process error, but the algebra is actually simpler. Starting from 
 

𝑁𝑁𝐴𝐴+,𝑡𝑡 = � 𝑁𝑁𝑎𝑎,𝑡𝑡−1𝑒𝑒−𝑍𝑍𝑎𝑎,𝑡𝑡−1

∞

𝑎𝑎=𝐴𝐴−1

 

 
we can separate the first term to get 

𝑁𝑁𝐴𝐴+,𝑡𝑡 = 𝑁𝑁𝐴𝐴−1,𝑡𝑡−1𝑒𝑒−𝑍𝑍𝐴𝐴−1,𝑡𝑡−1  +  �𝑁𝑁𝑎𝑎,𝑡𝑡−1𝑒𝑒−𝑍𝑍𝑎𝑎,𝑡𝑡−1

∞

𝑎𝑎=𝐴𝐴

. 
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Next, we apply the assumption that Za,t−1 = 𝑍𝑍𝐴𝐴,𝑡𝑡−1 for all 𝑎𝑎 ≥ 𝐴𝐴, which gives 
 

𝑁𝑁𝐴𝐴+,𝑡𝑡 = 𝑁𝑁𝐴𝐴−1,𝑡𝑡−1𝑒𝑒−𝑍𝑍𝐴𝐴−1,𝑡𝑡−1  + 𝑒𝑒−𝑍𝑍𝐴𝐴,𝑡𝑡−1  �𝑁𝑁𝑎𝑎,𝑡𝑡−1

∞

𝑎𝑎=𝐴𝐴

. 

 
Finally, substituting 𝑁𝑁𝐴𝐴+,𝑡𝑡−1 = ∑ 𝑁𝑁𝑎𝑎,𝑡𝑡−1

∞
𝑎𝑎=𝐴𝐴  to reflect that the plus-group accumulates all ages 𝑎𝑎 ≥ 𝐴𝐴 gives 
𝑁𝑁𝐴𝐴+,𝑡𝑡 = 𝑁𝑁𝐴𝐴−1,𝑡𝑡−1𝑒𝑒−𝑍𝑍𝐴𝐴−1,𝑡𝑡−1 + 𝑁𝑁𝐴𝐴+,𝑡𝑡−1𝑒𝑒−𝑍𝑍𝐴𝐴,𝑡𝑡−1 .  

 
The application of the geometric sum here creates a large relative difference between the two specifications, which 
makes sense as some of the variability in the plus group each year is lost when any age A+ fish are assumed to die (or 
emigrate). The plus group under the MSEtool specification appears to be on average unbiased from the plus group 
using correct dynamics, but the MSEtool specification is relatively quite variable (Figure 1), which matches 
expectations since we simulated an average recruitment model. Under the MSEtool specification, the plus group ranges 
from one-half to three times the correct plus group size under the corrected version (Figure 1, right hand column). The 
code for the comparison is included in Appendix C. 
 
The code can be corrected to equation (1) by changing [35] to the following 
 

Nnext(maxage, A) += Ncurr(maxage, A) * exp(-Zcurr(maxage, A)); 
 

 
which corrects the term for fish that remain in the plus group. The term for recruitment from age A-1 was already 
correct, and added in the preceding loop over age classes [30-32]. 
 
Major Code Recommendation 2: Analyse sensitivity of the fleet selectivity aggregation to alternative weights 
(SWOMSE package, R/SWO_SS2OM.R [33]). 
 
We recommend a sensitivity analysis of the weightings used to average selectivity. Given that weights are based on 
exploitation rate as a proportion of vulnerable biomass, there may be some implicit over-weighting of some fleets, 
especially since all fleets do not have the same selectivity shape. We recommend additional tests of catch-weighting 
as well as weighting according to exploitation rate as a proportion of some total biomass that is independent of 
selectivity (e.g., age-3+). 
 
The aggregated fleet model calculates annual aggregated fleet selectivity and retention probability from an 
exploitation-rate weighted average of individual fleet selectivity-at-age in each year [539 – 638]. This approach results 
in time-varying fleet-averaged selectivity and retention curves reflecting the relative fishing pressure applied by each 
fleet.  
 
It is difficult to follow some parts of this calculation without clear and concise documentation of the simplification 
process, as recommended above. As noted above, the simplification method does produce some bias in the catch series. 
However, while there are other methods to achieve the similar results (e.g., Pope’s approximation or solving the 
Baranov equation), there will always be some level of irreducible bias associated with all methods given the averaging 
of sexual dimorphism, the higher complexity biomass dynamics, and time-varying allocation of catch to each fleet in 
the history. For example, solving the Baranov equation would make the catches match exactly, but might produce 
more bias in biomass depletion or numbers-at-age, as it will likely produce different fishing mortality rates. 
 
Major Code Recommendation 3: Convert the convergence criterion in the Newton-Raphson F estimation function 
calcF() to a relative error.  
 
A unit test of the calcF() function was conducted by deriving catch from a given input fishing mortality rate and model 
state, and then using that catch to estimate the F from the calcF() function. A grid of Fs was tested, with values ranging 
from 0.0001 to 10, roughly evenly spaced on the log10 scale (code supplied in Appendix C). 
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Results show that the maximum number of 50 Newton-Raphson iterations and the convergence threshold for a 
difference of 10-6 t in catch are incompatible (Table 1). For all cases where the input F > 10-3, the optimization reaches 
the maximum number of iterations and the difference in catch is always at least 10-2 t. Despite never satisfying the 
convergence criterion before reaching the maximum iterations, the performance of the iterative calcF() estimator is 
still acceptable, with the relative error in the F estimates on the order of 10-5, with larger errors for the highest tested 
input F = 10, which is never allowed in simulations given that catches are scaled to 99% of vulnerable biomass.  
 
The convergence criterion of 10-6 t is likely too strict for the SWO stock. SWO biomass units are in metric tonnes, but 
spawning biomass and catch series often have 5 or 4 significant digits, respectively. This means that the convergence 
criterion is about 10 orders of magnitude smaller than the catches being simulated in the projection period, which is 
overly conservative. We recommend changing the convergence criterion to a relative error, which would likely lead to 
performance gains by reducing iterations. 
 
Major Code Recommendation 4: Consider adding alternative projection scenarios testing for robustness to future 
selectivity patterns. 
 
The current package uses a fixed selectivity pattern in the projection period, which is the exploitation rate weighted 
average of fleet selectivity in 2017. While there are both asymptotic and dome-shaped selectivity curves in the full 
multi-fleet model, the fleet aggregated selectivity pattern is heavily domed2, and does not reach a maximum of 1.0, 
meaning that apical F values are over-estimated. From the most recent operating model reconditioning, the highest 
selectivity in projection years is for 1-year old fish (Figure 2), meaning that fish feel maximum fishing mortality 3-4 
years before they mature. While historical weighted-aggregate selectivity curves all show the peak of the dome at 3 
years old3, there is evidence of time-varying selectivity, especially in for age 2 - 4 fish. The effects of those dynamics 
may need to be explored, given the fast growth of swordfish at ages 2-4 (Figure 2), the lack of catch allocation control 
in the real fishery, and the implications of these two factors for recruitment overfishing. Further, the exploitation rates 
used to weight the selectivity in 2017 are highly uncertain, given the high uncertainty associated with biomass and 
recruitment in the final years of the stock assessments, and the high left skew of the selectivity pattern. 

 
Major Code Recommendation 5: Remove commented out code and deprecated calculations/objects/functions from the 
packages.  
 
One style issue found by static code analysis was the presence of commented out code (Appendix A). Commented out 
code is common during development phases of software, often related to debugging or deprecated functions that are 
no longer actively used by the software (Pham and Yang 2020). The presence of commented out code is controversial, 
but largely benign, primarily affecting readability of code. However, there is a risk of errors if collaborators or future 
developers uncomment the code without understanding why it was originally commented. Given that the openMSE 
package is version controlled on github, there is no reason for the commented out code to remain in the R scripts for 
production versions of the openMSE package. 
 
Major Code Recommendation 6: Compare simulated length-composition data from the aggregated fleet in the 
historical period to the true data, aggregated using the same weights as the selectivity averaging. 
 
It is hard to diagnose issues with the simulated length compositions used for setting TACs, as the length compositions 
are generated by a very different process between the OMs and the SS3 assessments. It would be informative to see 
how distributions of simulated historical length compositions for each year compare to weighted averages of the true 
data. This could be combined with the fleet aggregation sensitivity analysis, using the same weights for selectivity 
aggregation and observation aggregation. 
 
Major Code Recommendation 7: Explain why fixed TAC CMPs do not catch the full TAC by between 7% and 15%. 
 
In the constant TAC CMPs tested in Section 2.3.2, the STC() and LTC() functions showed that average catch was 
below the fixed TAC for the two lower TAC CMPs. Such behaviour was unexpected as there is no implementation 
error for the SWO stock, and the TACs were low enough that the stock was able to equilibrate at a high biomass. 

 
3 https://iccat.github.io/nswo-mse/OM_Compare/OM_1.html 
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Further, the CalcMPDynamics() function does not appear to count discarding against the TAC, which would be one 
explanation for this behaviour. 
 
2.2.2 Minor Code Recommendations 
 
Minor Code Recommendation 1: Remove deprecated fleet aggregation code from SWO_SS2OM() 
 
There are several lines of code that appear to calculate vulnerability V and apical fishing mortality F from a difference 
of total mortality Z and natural mortality M [482 – 525], similar to using Pope’s approximation (Pope 1972); however, 
it appears that aside from the Find array, these aren’t used in the operating model.  
 
Minor Code Recommendation 2: Simplify equilibrium survival calculations for the plus-group in the Simulate() and 
MSYCalcs() functions (See Table B2 for line numbers). 
 
The equilibrium survival model is oddly specified but mathematically accurate. The plus group age survival dynamics 
are coded as 
 

𝑙𝑙𝐴𝐴+ = 𝑙𝑙𝐴𝐴−1𝑒𝑒−𝑀𝑀𝐴𝐴−1 + 𝑙𝑙𝐴𝐴−1𝑒𝑒−𝑀𝑀𝐴𝐴−1𝑒𝑒−𝑀𝑀𝐴𝐴/(1 − 𝑒𝑒−𝑀𝑀𝐴𝐴). 
 
where A+ is the plus group age. As commented in the code, the second term is capturing the sum of a geometric series 
in 𝑒𝑒−𝑀𝑀𝐴𝐴 , i.e. ∑ 𝑒𝑒−𝑖𝑖𝑀𝑀𝐴𝐴∞

𝑖𝑖=1 = 𝑒𝑒−𝑀𝑀𝐴𝐴

1−𝑒𝑒−𝑀𝑀𝐴𝐴
. It is more common (and slightly simpler) to use 

 
𝑙𝑙𝐴𝐴+ = 𝑙𝑙𝐴𝐴−1𝑒𝑒−𝑀𝑀𝐴𝐴−1/(1 − 𝑒𝑒−𝑀𝑀𝐴𝐴) 

 
which can also be derived from the sum of a geometric series, or equivalently by solving 𝑙𝑙𝐴𝐴+ = 𝑙𝑙𝐴𝐴−1𝑒𝑒−𝑀𝑀𝐴𝐴−1 + 𝑙𝑙𝐴𝐴+𝑒𝑒−𝑀𝑀𝐴𝐴 
for 𝑙𝑙𝐴𝐴. Both specifications give the same equilibrium survival for an unfished and fished population (Figure 1, left 
column). The latter simpler specification will produce marginally faster run-times as there will be fewer mathematical 
operations, but otherwise there is no difference. 
 
Minor Code Recommendation 3: Scale step sizes in calcF() function by half when iteratively applying the Jacobian to 
avoid non-convergence in edge cases. 
 
The mathematics of the calcF() function are correct, but the formulation with no scaling of steps between iterations 
could lead to non-convergence (e.g, an infinite loop or overshoot) at very high or very low catches. This is a common 
problem with Newton-Raphson optimization in general, which can be addressed by scaling step-sizes by a fixed 
fraction, or in some cases by an adaptive step size algorithm. 
 
2.3 Simulation tests 
 
2.3.1 Deriving yield curves by simulation 
 
MSY reference points were estimated for Operating Model 1 by simulation. A grid of CMPs was defined over a fixed 
harvest rate applied to the SWO spawning stock biomass, which was known exactly at a 1-year lag. We reconditioned 
OM 1 from the recently completed SS3 reconditioning, modified to have a 200 year projection and deterministic 
recruitment so that long-run equilibria could be reached. The code used to define the CMPs and modify the OMs is 
provided in Appendix C. 
 
The CMP grid generates TACs from harvest rates applied to perfectly known spawning biomass, stepping from 0% to 
50% over a grid of 100 harvest rates (using approximately 0.5% jumps). For each harvest rate, approximate equilibrium 
yield and biomass curves are taken as the median over all simulation replicates over the last 2 years of the projection 
period. While the median over replicates was probably unnecessary given the deterministic recruitment, there were 
some minor numerical differences between replicates that we wished to integrate over. Approximate optimal fishing 
mortality (𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀∗ ), and the associated yield (MSY*) and spawning biomass (𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀∗ ) were then found by fitting a cubic 
spline to the catch as a function of fishing mortality and solving for the stationary point (i.e., 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀∗ ), which was then 
substituted into the catch spline and a biomass spline to estimate MSY* and 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀∗ . For comparison, operating model 
equilibrium yield and biomass curves were also calculated using the yield-per-recruit approach in the MSYCalcs() 
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function. MSYCalcs() was applied to a grid of fishing mortality rates from 0 - 3, with the life history and selectivity 
parameters taken from the MSE@Hist object for OM 1. YPR equilibria were calculated for both 1950 and 2018 to 
account for time-varying selectivity and weight-at-age from fleet aggregation in the historical period. The reference 
points reported in the @RefPoints slot of the MSE object were averages of the optima for every year in the historical 
period. 
 
Simulated equilibria and YPR reference points did not match, likely due to the incorrect plus-group population 
dynamics. The 1-year lag in biomass information may have an effect on short term dynamics, but not at the end of 200 
years of deterministic recruitments. The approximated 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀∗  value is very close to the YPR derived reference value for 
2018, and the averaged historical 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 value, but the simulated MSY* value was about 500t lower than the YPR value 
for 2018 (Figure 3). As expected, given the weight-at-age difference in 1950, the OM unfished spawning biomass 
from 1950 did not match the biomass that the operating model approaches with no fishing over the full 50 year 
projection (Figure 3). When compared to the reference points calculated based on 2018 life history parameters, the 
SSB0 values are closer, reflecting that the same weight-at-age is used for the entire projection time period. However, 
there is still a bias, that may be an effect of the incorrect plus-group population dynamics model noted in the 
recommendations above. At low fishing mortality rates the trajectory of the spawning stock biomass starts to smoothly 
decrease its growth rate after around 25 years into the projection, but at a 0% harvest rate the biomass climbs past the 
2018 SSB0 value and clearly equilibrates above the expected equilibrium (Figure 4).  At higher levels of fishing 
mortality, the biomass stops climbing and equilibrates at lower biomasses, as expected, but the biomass is still 
positively biased, as based on the YPR optimal harvest rates we expect the biomass to equilibrate to 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 for a harvest 
rate around 4.5% (Figure 4). 
 
Fishing mortality rates associated with higher harvest rates in OM 1 peak at about 0.8, which is at a constant target 
harvest rate of around 40%, after a notch showing a sharp decline at harvest rates of around 20% (Figure 5). 
Presumably, both the notch and plateau behaviour is caused by scaling catches in the applyMP() function so that they 
are less than 99% of available biomass. Catch scaling is a standard approach to robustifying the OM against edge-
cases that may cause aborted simulations or biased performance metrics, which are explored further in the next section 
of this review. Such catch scaling explains the behaviour of the right-hand end of the simulated yield curve, where 
instead of coming down sharply to the x-axis, as is shown for YPR derived yield curves, the simulated yield curve 
smoothly approaches zero as fishing mortality increases (Figure 3). Catch scaling also explains the divergence between 
the target harvest rate applied to set TACs, and the realised harvest rates defined as catch over spawning biomass 
(Figure 6).  
 
The need for catch scaling at relatively low target harvest rates (as applied to spawning biomass) is related to the large 
difference between the harvest rates, measured as catch over spawning biomass, and the apical F values applied to the 
vulnerable biomass. For example, Fmsy = 0.15 under OM 1, but this translates to a Umsy of 4.3 % (Figure 3). This 
stems from the difference between the shape of the aggregated selectivity curve, with a dome that peaks at age-1, and 
the logistic shape of the maturity ogive (Figure 2). Given the lower weight-at-age of fully selected fish, a high apical 
F produces a much lower harvest rate as a proportion of spawning biomass. While these dynamics are not incorrect, 
they are important to keep in mind when designing management procedures and choosing target harvest rates, 
especially if MPs will set TACs based on surveys with asymptotic selectivity or estimates of spawning biomass. 
 
The reference points found by simulation and the YPR derivation do not match the reference points reported on the 
SWOMSE website4. The report for OM 1 on the website show FMSY = 0.039, while the YPR derivation gives FMSY = 
0.15. Spawning biomass is also incorrect, and apparently too low by a factor of 2, which may indicate that female 
spawning biomass is being reported on the SWOMSE website. 
 
2.3.2 Testing OMs under constant catch 
 
The choice to scale catches to be less than the vulnerable biomass is a standard method of robustifying the simulations 
against crashes caused by overly aggressive CMPs and/or assessment errors. These ‘edge-cases’ that cause stock 
biomass crashes can lead to aborted simulation runs, costing precious development and simulation time, or defects that 
produce biased performance metrics and, possibly, the wrong choice of MP. Therefore, the effects of catch scaling to 
avoid failure under edge cases should be quantified and well-understood. 

 
4 https://iccat.github.io/nswo-mse/Reports/OM_Diagnostics/OM-1-Report.html#7_Reference_Points 



205 

Five constant catch MPs were simulated for OM 1 with a 200 year projection, with catch set to multiples of MSY: 2.52 
kt, 5.04 kt, 10.08 kt (MSY*), 15.12 kt, and 20.16 kt. Under each fixed catch level, projected spawning biomass and 
realised catch trajectories for each of the 48 replicates with process error were reviewed, with performance metrics 
calculated using SWOMSE functions.  
 
Constant catch MPs with catch at or below OM maximum sustainable yield performed as expected. Median spawning 
biomass approached the equilibrium biomass level associated with the constant removals, while the distribution of 
biomass showed reasonable variation (Figure 9). For the constant TAC = 10.08 kt (MSY), the lower percentiles of 
biomass appeared to approach zero, which is to be expected in replicates where a string of negative log-normal process 
errors occur, especially when the auto-correlation is high as in OM 1 (𝐴𝐴𝐴𝐴 ≈ 0.8). All constant catch MPs with TAC 
> MSY eventually crashed with 100% probability, as expected, with the TAC = 15.12 kt MP taking longer to crash 
than the TAC = 20.06 kt MP. Spawning biomass under all TAC ≥ MSY MPs smoothly approached 0 instead of 
crashing hard (Figure 9), similar to the simulated equilibria (Figure 3). The smooth decline was a function of the catch 
scaling to 99% of vulnerable biomass, creating an optimistically biased (i.e., longer) “time-to-fail”. 
 
According to average catch performance metrics STC() and LTC() (see Table B1), realised catches appear to be 
negatively biased by about 7% - 15% compared to the TAC (Table 2). This is expected for the TACs that are greater 
than or equal to MSY, as the stock crashes, but was not expected for the TACs below MSY, given that there was no 
implementation error. Based on the CalcMPDynamics() function, discarding is not being counted against the TAC, so 
it is unclear why this negative bias would persist. 
 
There does not appear to be a significant issue from the edge cases where catch scaling needs to be applied. While 
scaling catches above 99% of vulnerable biomass produces more optimistic outcomes than allowing MPs to take all 
the available biomass, the effect is only applied when MPs are already fishing very hard (i.e., at target harvest rates 
above 99%). Any MP that triggers the catch scaling in almost every year and replicate (e.g., the TAC > MSY MPs 
above) would presumably be rejected by fishery managers based on a range of metrics. However, there may be some 
middle ground that extirpates the stock at a more realistic rate while avoiding exceptions that create model defects, 
such as biased performance metrics, or programmatic failures such as crashed software. After all, some stocks (e.g. 
Northern Cod in Canada) crash pretty quickly 
 
 
3. Conclusion 
 
In general, the SWOMSE and related packages are good examples of applied scientific computing software developed 
for testing management procedures. There are some style issues noted by the static code analysis, which the developers 
can choose to address or not. We are confident that after the Major Recommendations and code corrections are 
implemented, the SWOMSE and MSEtool packages will help identify precautionary management procedures suitable 
for application to the North Atlantic transboundary Swordfish fishery. 
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Table 1. Results of the unit test of the calcF() function. 
 

True F Catch NR Iterations Estimated F Difference in 
catch 

Relative error 
in F 

1.00E-04 1.51E+01 0 1.00E-15 15.071102 1 

0.001 1.51E+02 0 1.00E-15 150.696016 1 

0.01 1.51E+03 50 0.00999992 0.01564414 8.34E-06 

0.1 1.49E+04 50 0.09999913 0.15999214 8.71E-06 

0.5 7.14E+04 50 0.49999476 0.87957212 1.05E-05 

1 1.35E+05 50 0.99998696 1.96016628 1.30E-05 

2 2.45E+05 50 1.99996105 4.72247575 1.95E-05 

10 6.44E+05 50 9.99828557 45.7675651 0.00017144 

 
 
Table 2. Realised short-term average catch (2018 – 2027) and long-term average catch (2208 – 2217) as calculated 
by the STC() and LTC() metrics, under the five fixed TAC CMPs. All quantities are in kilotonnes, short-term and 
long-term columns show the mean values and range across 48 simulation replicates. 
 

Fixed TAC Short-term average 
catch 

Long-term average 
catch 

2.52 2.35 (2.27 – 2.41) 2.41 (2.36 – 2.45) 

5.04 4.68 (4.54 – 4.81) 4.81 (4.70 – 4.88) 
10.08 9.28 (9.01 – 9.52) 0.79 (0.00 – 0.96) 
15.12 13.68 (8.37 – 14.13) 0.00  
20.16 14.42 (5.08 – 18.85) 0.00  
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Figure 1. A comparison of equilibrium survival (left) and plus group population dynamics (right) specifications for 7 
different levels of constant fishing mortality under the MSEtool coded specification (pink) and suggested specification 
(grey). The right hand column is a relative difference of the two specifications under a simulated time-varying 
recruitment, with the MSEtool plus group numbers (pink) divided by the corrected plus group numbers (grey). 
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Figure 2. Length-at-age (top) for males and females in the stock-synthesis model conditioning Operating Model 1, 
and projection period fleet-aggregated selectivity- and maturity-at-age (bottom) for the conditioned MSEtool OM 1. 
  

 



209 

 

 
Figure 3. Equilibrium biomass (top) and yield (bottom) curves for OM 1 found via YPR analysis assuming model pars 
in 1950 and 2018, and via simulation of a grid of constant harvest rate MPs. Red points in both panels show the 
reference points reported in the MSE object, while dashed line segments joining the axes to the curves show the 
estimated reference points from the simulated curves. The horizontal dashed line at the top of the biomass panel shows 
OM SSB0. Umsy was calculated as operating model MSY/Bmsy, and the Umsy* was calculated as simulation 
MSY/Bmsy. 
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Figure 4. Spawning stock biomass trajectories for OM 1 with deterministic recruitment under constant harvest rates 
between 0% and 5%. The vertical dotted line shows the beginning of the projection period, and the horizontal dashed 
lines show unfished spawning stock biomass (grey) and BMSY (pink). 
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Figure 5. Median realised fishing mortality rates in the last 2 years of the 200 year projection (vertical axis) resulting 
from applying fixed target harvest rates as a percentage of spawning biomass (horizontal axis) in OM 1 with 
deterministic recruitment. 
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Figure 6. Realised harvest rates in the projection period when applying a perfect information, fixed harvest rate MP 
to OM 1. Each line represents the median realised harvest rate under a single fixed harvest rate applied to the spawning 
stock biomass known with perfect information, which is indicated by the line labels on the right. The optimal harvest 
rate, as a proportion of spawning biomass, based on 2018 weigh-at-age and selectivity is shown as a pink dashed line 
at 4.5%. 
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Figure 7. Spawning stock biomass simulation envelopes under 5 fixed TAC MPs. 
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Appendix A 
Static Code Analyses 

 
Static code analysis involves applying automated tools that analyse code for common issues. The most common static 
code analyses are “linters”, which are used for making sure code adheres to a common programming style, but other 
applications include logic checking, and code dependency mapping.  
 
A.1 Inter-package and intra-package function dependencies 
We applied the DependenciesGraph R package5 to determine the dependencies of the SWOMSE package (Robert 
2016), such as the openMSE package. As advertised, SWOMSE depends on the openMSE package (Figure A1), which 
is an umbrella/meta-package containing the MSEtool, DLMtool, and SAMtool packages developed by Blue Matter 
Science (Figure A2).  
 
For function dependencies within each package, the SWOMSE package acts as a wrapper for openMSE (Figure A3), 
with the main purpose of providing functions for SWO specific tasks that do not fit within the general 
MSEtool/openMSE framework. This is a completely acceptable way of meeting unique requirements for SWO that 
are too path-specific for the general openMSE suite of packages. 
 
The main workhorse function of the SWOMSE package is the SWO_SS2OM() function that conditions the openMSE 
operating model history from the SWO Stock Synthesis 3 (SS3) assessment models. The SWOMSE package contains 
other functions (Figure A3), such as example CMPs and performance metrics, but the conditioning function forms the 
foundation of the population dynamics for the SWO MSE, and therefore is the most important function reviewed. 
Further, the conditioning process simplifies the structure of the SWO SS3 model from sex-structured and multi-fleet 
to the openMSE combined sex and single-fleet operating model. Assumptions for this reduction in dimensionality 
require careful consideration and should be clearly stated, since they have potential to affect MP performance. 
 
Review of the openMSE package is restricted to selected functions from the MSEtool package. The DLMtool and 
SAMtool packages provide data-limited and data-moderate/rich stock assessment model functions that are not utilized 
at this stage for SWO MSE, and therefore were not reviewed. The SAMtool and DLMtool may be used as examples 
for CMP development, but are unlikely to be applied for the management of the SWO stock. The SWO related 
functions from the MSEtool package were determined by static code analysis (Figure A4), and ‘following our nose’ 
through from the initial call of the runMSE() function that starts a closed loop feedback simulation.  
 
A.2 Flowcharts of package functions 
 
We applied the flow R package6 to generate flowchart diagrams for all functions in the SWOMSE  and MSEtool 
pacakages (Fabri 2021). We did not find any logical errors or inconsistencies in the flow-charts, but they did assist in 
providing improved readability of the code-base. Flow charts were quite large, so we do not include all of them here, 
but an example is shown in Figure A5. From the flow charts, we identified the functions that are called when a user 
initiates SWO MSE simulations using the runMSE() function, which were reviewed line-by-line (Table B1 and B2) 
 
A.3 Linting for programming style 
 
We applied the lintr package to the SWOMSE and MSEtool packages (Hester et al. 2020). We have attached a 
summary of the linting output for SWOMSE (Table A.1). The linting output for MSEtool is much longer, given the 
higher number of functions, so an excerpt is included (Table A.2) and some raw data is supplied in Appendix C.  
 
There were about 1400 exceptions in the SWOMSE package, and about 32000 exceptions in the MSEtool package. 
Most exceptions are simple style issues that can likely be ignored, such as line-lengths and spacing, but would have 
readability benefits. However, there was a non-trivial amount of commented out code. Commented out code is common 
during development phases of software, often related to debugging or deprecated functions that are no longer actively 
used by the software (Pham and Yang 2020). The presence of commented out code is controversial, but largely benign, 
and also primarily affects readability of code. However, there is a risk of errors if collaborators or future developers 

 
5 https://github.com/datastorm-open/DependenciesGraphs 
6 https://github.com/moodymudskipper/flow 
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uncomment the code without understanding why it was originally commented. Given that the openMSE package is 
version controlled on github, there is no reason for commented out code to remain in the R scripts for production 
versions of the openMSE package.  
 
A.4 Literature cited 
 
Fabri, A. (2021). flow: View and Browse Code Using Flow Diagrams. R package version 0.0.2. 
 
Hester, J., Angly, F., and Hyde, R. (2020). lintr: A ’Linter’ for R Code. R package version 2.0.1. 
 
Pham, T. M. T. and Yang, J. (2020). The secret life of commented-out source code. In Proceedings of the 28th 

International Conference on Program Comprehension, pages 308–318. 
 
Robert, T. (2016). DependenciesGraphs: Dependencies visualization between functions and environments. R 

package version 0.3. 
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Table A1. Summary of the lintr package output when applied to the functions in the SWOMSE package. 
Filename Linter No of issues 
R/functions.R function_left_parentheses_linter 1 
R/functions.R infix_spaces_linter 6 
R/functions.R line_length_linter 1 
R/functions.R object_name_linter 9 
R/functions.R object_usage_linter 5 
R/functions.R single_quotes_linter 1 
R/MPs.R commas_linter 2 
R/MPs.R infix_spaces_linter 9 
R/MPs.R object_name_linter 33 
R/MPs.R single_quotes_linter 3 
R/MPs.R spaces_left_parentheses_linter 1 
R/MPs.R trailing_blank_lines_linter 2 
R/OMfit_diagnostics.R assignment_linter 3 
R/OMfit_diagnostics.R commas_linter 13 
R/OMfit_diagnostics.R infix_spaces_linter 86 
R/OMfit_diagnostics.R object_name_linter 7 
R/OMfit_diagnostics.R object_usage_linter 12 
R/OMfit_diagnostics.R paren_brace_linter 5 
R/OMfit_diagnostics.R pipe_continuation_linter 1 
R/OMfit_diagnostics.R seq_linter 1 
R/OMfit_diagnostics.R single_quotes_linter 10 
R/OMfit_diagnostics.R spaces_left_parentheses_linter 6 
R/PMs.R commas_linter 2 
R/PMs.R object_name_linter 12 
R/PMs.R object_usage_linter 6 
R/Roxygen_OMs.r single_quotes_linter 289 
R/Roxygen_OMs.r trailing_blank_lines_linter 2 
R/Roxygen_OMs.r trailing_whitespace_linter 316 
R/Shiny.R commas_linter 1 
R/Shiny.R object_name_linter 2 
R/Shiny.R single_quotes_linter 1 
R/SWO_SS2OM.R assignment_linter 1 
R/SWO_SS2OM.R commas_linter 65 
R/SWO_SS2OM.R cyclocomp_linter 1 
R/SWO_SS2OM.R function_left_parentheses_linter 1 
R/SWO_SS2OM.R infix_spaces_linter 190 
R/SWO_SS2OM.R line_length_linter 11 
R/SWO_SS2OM.R object_name_linter 178 
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R/SWO_SS2OM.R object_usage_linter 55 
R/SWO_SS2OM.R open_curly_linter 2 
R/SWO_SS2OM.R paren_brace_linter 6 
R/SWO_SS2OM.R pipe_continuation_linter 9 
R/SWO_SS2OM.R seq_linter 6 
R/SWO_SS2OM.R single_quotes_linter 24 
R/SWO_SS2OM.R spaces_inside_linter 4 
R/SWO_SS2OM.R spaces_left_parentheses_linter 64 
R/SWO_SS2OM.R trailing_blank_lines_linter 2 

Table A2. An excerpted summary of the lintr package output when applied to the functions in the popdyn.R and 
runMSE.R scripts in the MSEtool package. 

File Path Linter name No. of Issues 
R/popdyn.R commas_linter 205 
R/popdyn.R commented_code_linter 9 
R/popdyn.R cyclocomp_linter 2 
R/popdyn.R infix_spaces_linter 396 
R/popdyn.R line_length_linter 182 
R/popdyn.R object_name_linter 296 
R/popdyn.R object_usage_linter 11 
R/popdyn.R single_quotes_linter 2 
R/popdyn.R spaces_inside_linter 2 
R/popdyn.R spaces_left_parentheses_linter 52 
R/runMSE.R assignment_linter 2 
R/runMSE.R commas_linter 405 
R/runMSE.R commented_code_linter 17 
R/runMSE.R cyclocomp_linter 2 
R/runMSE.R function_left_parentheses_linter 1 
R/runMSE.R infix_spaces_linter 505 
R/runMSE.R line_length_linter 155 
R/runMSE.R object_name_linter 464 
R/runMSE.R object_usage_linter 29 
R/runMSE.R open_curly_linter 1 
R/runMSE.R seq_linter 1 
R/runMSE.R single_quotes_linter 35 
R/runMSE.R spaces_inside_linter 1 
R/runMSE.R spaces_left_parentheses_linter 35 
R/runMSE.R trailing_blank_lines_linter 20 
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Figure A1. Package dependency directed graph for the SWOMSE package (indicated by the thicker border on blue 
circle). Arrow direction indicates contribution (i.e., an arrow from r4ss to SWOMSE indicates that SWOMSE 
depends on r4ss). [SAM – read package manual for description of the legend here) 



219 

Figure A2. Package dependency directed graph for the openMSE package (indicated by the thicker border on blue 
circle). This is the same graph as in Figure 1, but with the openMSE package as the focus. Arrow direction indicates 
contribution (i.e., an arrow from openMSE to SWOMSE indicates that SWOMSE depends on openMSE). [SAM – 
read package manual for description of the legend here] 
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Figure A3. Function dependency graph for the SWOMSE package. There are no arrows here because the functions 
in the SWOMSE package do not depend on the other functions, as SWOMSE provides NSWO MSE specific 
functionality for the openMSE package. 



221 

Figure A4. A cropped image of the function dependency graph for the openMSE package. Arrows indicate 
dependency (e.g., an arrow from the circle labeled runMSE to the circle labeled Simulate indicates that the runMSE() 
function calls the Simulate() function. 
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Figure A5. An example logical flow-chart generated by the flow package for the runMSE() function in the MSEtool 
package. Square boxes are an inserted space character meant to preserve indenting, and are unable to be removed 
without affecting formatting. 
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Appendix B 
Line-by-line review 

Table B3. Selected SWOMSE package functions that were reviewed line-by-line. Function names are appended with parentheses (e.g., foo()), and other R 
variable are in italics. Line numbers are shown in square brackets in the comments and recommendations. 

File Path Function name(s) Line 
No 

Comments Recommendations 

R/SWO_SS2OM.R SWO_SS2OM() 33 The SWO_SS2OM() function conditions the 
openMSE operating model from the sex-
structured, multi-fleet SS3 assessment 
models. The conditioning process simplifies 
the model structure, collapsing the sex-
structured and multi-fleet SS3 model into a 
combined sex and single-fleet operating 
model.  

Improve documentation of simplification in 
the TSD.  

Remove deprecated fleet aggregation [482 – 
525], and sensitivity test the exploitation 
rate weightings. 

R/PMs.R STC(), 
LTC() 

Both the STC() and LTC() functions are 
example performance metrics that calculate 
the short term and long term average catch, 
respectively. They call the ChkYrs(), 
calcProb(), and calcMean() functions from 
the MSEtool package, which are reviewed 
below. STC() and LTC() are tested in the 
evaluation of the constant catch MPs in this 
review. 
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Table B4. Selected MSEtool package functions reviewed line-by-line. Function names are appended with parentheses (e.g., foo()), and other R variable are in 
italics. Line numbers are shown in square brackets in the comments and recommendations. 

File Path Function name Line 
No 

Comments Recommendation 

R/runMSE.R Simulate() 4 The Simulate() function sets up the historical 
operating model population dynamics, using 
outputs from the SWO_SS2OM() function, and 
simulates the historical period of the simulations, 
which are passed to the Project() function for CMP 
testing. As per functional programming principles, 
most mathematical expressions are included in 
functions that are called by Simulate(), so detailed 
review is saved for those functions. The parameter 
sampling functions are not reviewed in detail, as the 
SWO stock has a single history across simulation 
replicates with fixed parameter values [67 - 123]. 
While the simulated combined index of abundance 
will have sampled observation model parameters, 
these are sampled at another location after post-
fitting the parameters to the OM.  

Simplify equilibrium survival calculations 
[145 & 175]. They are mathematically 
accurate, but perform extraneous 
calculations that could be removed to 
improve code execution speed. 

Project() 910 The Project() function takes a Hist object generated 
by Simulate(), and projects the closed loop 
feedback simulations into the future one time-step 
at a time. Similar to Simulate(), most mathematical 
expressions are contained in other called functions. 

runMSE() 1556 The runMSE() function is the external package 
function that runs an MSE given an OM, a set of 
MPs, and other user-defined MSE settings (e.g., 
observation and implementation models). This 
function wraps the CheckMPs(), Simulate() and 
Project() functions. 

src/popdynCPP.cpp popdynOneTScpp() 19 The popdynOneTScpp() function advances the 
population’s numbers-at-age and mortality forward 
by a single time-step. 

Correct plus-group dynamics [35] 
(derivation given in main text) 
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File Path Function name Line 
No 

Comments Recommendation 

movestockCPP() 57 The movestockCPP() function applies the age-
dependent movement model. At each time-step, 
movestockCPP() takes the arrays for the numbers-
at-age and the Markov movement matrices for each 
age class, and applies the movement matrix.  

There may be marginal performance gains 
by using a matrix multiplication library 
such as Eigen for applying Markov 
movement models, rather than nested 
loops [65-71]. Gains would likely be 
small, given the small number of spatial 
strata used for SWO. 

popdynCPP() 123 The popdynCPP() function is used in the historical 
period to advance the population dynamics forward 
in multiple time-steps when closed loop feedback 
simulation is unnecessary (i.e., the fishing mortality 
rates are fixed inputs). The popdynCPP() function 
uses the popdynOneTSCPP() function for annual 
population dynamics calculations, the 
moveStockCPP() function for applying movement, 
and calculates recruitment for the specified stock-
recruitment model. 

R/Data_Functions.R applyMP() 2655 The applyMP() function organises list/array objects 
for the application of an MP, and then applies the 
MP.  

runMP() 744 The runMP() function acts as a wrapper for the 
applyMP() function for use in MP testing. This 
function is only used for testing CMPs outside of 
closed loop simulations. 

R/popdyn.R optMSY_eq() 129 A wrapper for the MSYcalcs() function to optimise 
yield as a function of fishing mortality. 

MSYcalcs() 176 Calculates equilibrium yield, given an input logF 
value and the stock life history parameters. The 

Same recommendation as the Simulate() 
function for the survival calculations. They 
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File Path Function name Line 
No 

Comments Recommendation 

MSYcalcs() function was tested in the equilibrium 
simulations in this review.  

are correct but involve more mathematical 
operations than necessary. 

CalcMPDynamics() 407 The calcMPDynamics() function enables 
progressing population dynamics forward for a 
single time step, based on the TAC 
recommendation from a management procedure. Its 
primary purpose is to convert a TAC into a fishing 
mortality rate by solving the Baranov catch 
equation  using the calcF() function. 

calcF() 866 The calcF() function solves the Baranov catch 
equation for fishing mortality rates using a Newton-
Raphson method. This is a standard approach used 
for both stock assessments conditioned on catch, or 
generating Fs from TACs in simulation. The 
mathematics of the calcF() function are correct, but 
the formulation with no scaling of steps between 
iterations could lead to non-convergence (e.g, an 
infinite loop or overshoot) at very high or very low 
catches. This is a common problem with Newton-
Raphson optimization in general, and can be 
addressed by scaling step-sizes by a fixed fraction, 
or in some cases by an automated optimization of 
step sizes. We explore whether this behaviour exists 
for calcF() in a unit test. 

Scale step sizes when iteratively applying 
Jacobian by a half to avoid non-
convergence. 

R/Data_make_update.R makeData() 3 This function sets up the Data object that is 
provided to MP functions to generate TACs at each 
projection time step. The hyperstability and 
hyperdepletion equations [32, 41, 50] are accurate. 

updateData() 202 Updates the Data object in each projection year. 
This mostly involves re-arranging data structures. 
There are some observation index calculations for 
biomass indices with possible 
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File Path Function name Line 
No 

Comments Recommendation 

hyperstability/hyperdepletion [248, 282, 312], all of 
which are accurate.  

simCAL() 202 Generates catch-at-length data and summary 
statistics for each time step. Wraps the 
genSizeCompWrap() function. Summary statistics 
are length-at-first-capture [619], mean length [626], 
modal length [630] and the mean length above the 
modal length [633]. This function was unit tested in 
this review. 

genSizeCompWrap() 677 Generates catch-at-length data. Wraps 
genSizeComp2(), which is a C++ function. The 
inner function is reviewed and unit tested.  

There is some commented out code for 
another method to generate size 
composition data, which we recommend 
removing if it is not used. 

AddRealData() 750 The AddRealData() function overwrites the 
historical period data with real data from the 
conditioning assessment. There is nothing 
mathematical to review here.  

We recommend visual checks of this 
process by plotting the data in the Data 
object against the real data. 

src/genLenComp.cpp genSizeComp2() 176 Generates size composition from numbers at age, 
selectivity, and a catch-at-length effective sample 
size. Standard approach, where the normal 
distribution of length-at-age [193] is modulated by 
size-selectivity [196], and used to sample the catch-
at-age [199] via a multinomial distribution. 
Samples by age and length are combined and scaled 
to the total sample size [205-208], and returned as a 
matrix [215].  

Compare simulated historical length 
comps against real data, aggregated using 
the same rules as the selectivity 
aggregation. 

R/Misc_Exported.R Required() 395 The Required() function checks that all data 
required by an MP are present in the Data object. 
This is a good robustness function for CMP 
developers who may be less familiar with the 
MSEtool package. 
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File Path Function name Line 
No 

Comments Recommendation 

Setup() 544 This function sets up parallel processing and 
exports functions to cluster nodes. If this function 
had an error, then the model would fail to run in 
parallel. The rest of the functionality is in exported 
objects reviewed above and below. 

updateMSE() 605 Allows backwards compatibility with older 
DLMtool and MSEtool outputs. 

R/Misc_Internal.R calcRecruitment() 290 Calculates recruitment in the projection period. The 
calcRecruitment() function distributes recruitment 
spatially based on an R0a parameter, which is the 
R0 value scaled to the fraction of unfished biomass 
in each area. 

The recruitment calculations in the 
projection period are central to population 
dynamics and should be better 
documented. 

applyAC() 396 Standard application of auto-correlation to a 
sequence of random errors. It is correctly 
implemented. 
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Appendix C 
Code for simulation and unit tests 

Code for the SWOMSE and MSEtool code review functions and plots can be found at the public bitbucket repository 

https://bitbucket.org/lfr_code/swo_codereview/  

https://bitbucket.org/lfr_code/swo_codereview/src/master/
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