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SUMMARY  

 

Bayesian State-Space Surplus Production Models were fitted to Atlantic bigeye tuna catch and 

CPUE data using the ‘JABBA’ R package. The ten scenarios were based on the previous 

assessment and on the uncertainty grid proposed during the 2021 BET Data Preparatory Meeting, 

which in summary corresponded to a continuity run based on a Fox production function and a 

Pella-Tomlinson production function from an Age-Structured Equilibrium Model (ASEM). All 

scenarios showed similar trend for the trajectories of B/BMSY
 and F/FMSY over time, with a 

stepwise decreasing trend marked by a slower decrease among two sharply decrease patterns. 

Kobe stock status plots show a typical anti-clockwise pattern with the median quantities estimated 

for the last data year in the green quadrant. However, the continuity run based on the Fox model 

was notably more pessimistic than all alternative ASEM scenarios and associated with a 

relatively higher cumulative probability of 41.3% (red and yellow quadrants) that current 

biomass levels fall below BMSY.    

 

RÉSUMÉ 

 

Des modèles bayésiens de production excédentaire d'état-espace ont été ajustés aux données de 

capture et de CPUE du thon obèse de l'Atlantique à l'aide du paquet R "JABBA". Les dix 

scénarios étaient basés sur l'évaluation précédente et sur la grille d'incertitude proposée lors de 

la réunion de préparation des données sur le thon obèse de 2021, qui correspondaient en résumé 

à un scénario de continuité basé sur une fonction de production de Fox et une fonction de 

production de Pella-Tomlinson d'un modèle d'équilibre structuré par âge (ASEM). Tous les 

scénarios ont montré une tendance similaire pour les trajectoires de B/BPME et de F/FPME au fil 

du temps, avec une tendance à la baisse progressive marquée par une diminution plus lente parmi 

deux schémas de forte diminution. Les diagrammes de l'état du stock de Kobe montrent un schéma 

typique dans le sens inverse des aiguilles d'une montre, avec la médiane des quantités estimées 

pour la dernière année de données dans le quadrant vert. Toutefois, le scénario de continuité 

basé sur le modèle de Fox était nettement plus pessimiste que tous les autres scénarios ASEM et 

associé à une probabilité cumulée relativement plus élevée de 41,3% (quadrants rouge et jaune) 

que les niveaux de biomasse actuels tombent en dessous de la BPME.    

 

RESUMEN 

 
Se ajustaron modelos bayesianos de producción excedente estado-espacio a los datos de captura 

y CPUE del patudo del Atlántico utilizando el paquete R "JABBA". Los diez escenarios se 

basaron en la evaluación anterior y en la matriz de incertidumbre propuesta durante la reunión 

de preparación de datos de patudo de 2021, que en resumen correspondían a un ensayo de 

continuidad basado en una función de producción de Fox y una función de producción de Pella-

Tomlinson de un modelo en equilibrio estructurado por edad (ASEM). Todos los escenarios 

mostraron una tendencia similar para las trayectorias de B/BRMS y F/FRMS a lo largo del tiempo, 

con una tendencia decreciente gradual marcada por una disminución más lenta entre dos 

patrones de disminución pronunciada. Los diagramas del estado del stock de Kobe muestran un 

patrón típico en sentido contrario a las agujas del reloj, con la mediana de las cantidades 

estimadas para el último año de datos en el cuadrante verde. Sin embargo, el ensayo de 
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continuidad basado en el modelo de Fox fue notablemente más pesimista que todos los escenarios 

alternativos de ASEM y se asoció con una probabilidad acumulada relativamente más alta del 

41,3% (cuadrantes rojo y amarillo) de que los niveles actuales de biomasa se sitúen por debajo 

de BRMS.    
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1. Introduction 

 

The bigeye tuna (Thunnus obesus) is one of the largest tuna species. It is widely distributed in the tropical and 

subtropical waters of the Atlantic, Indian and Pacific Oceans (ICCAT, 2007). The species has habitat preferences 

for an epipelagic and mesopelagic realm generally inhabiting open waters with optimum temperature range varying 

between 17 ºC and 22 ºC (ICCAT, 2007). As a function of its wide distribution, bigeye tuna has been intensively 

exploited by various fisheries around the world (ICCAT, 2007). For management purposes, the International 

Commission for the Conservation of Atlantic Tunas (ICCAT) considers a single stock for the entire Atlantic based 

on molecular markers analysis, fish movements and migration patterns (ICCAT, 2007). The Atlantic bigeye tuna 

stock is mainly exploited by two general fleets, the longliners (45.27% in 2019) and the purse seiners (37.26% in 

2019). Together, these two fleets are responsible for more than 83% of the total catches in the past 14 years.  

 

The last Atlantic bigeye tuna stock assessment was carried out in 2018 (ICCAT, 2018) and included outputs from 

three distinct models, (a) Biomass Dynamic Model using mpb approach (Merino et al., 2018; Kell, 2016); (b) 

Bayesian State-Space Surplus Production Model using JABBA framework (Winker et al., 2018a; Winker et al., 

2018b), and; (c) Integrated Age-Structured Model using Stock Synthesis 3 (Walter et al., 2018; Method and 

Wetzel, 2013). Those models showed consistent results in terms of stock status (ICCAT, 2018). All models 

indicated that the Atlantic bigeye tuna stock was overfished and experiencing overfishing. Reference points among 

those models were also similar, with MSY varying between 76,232 and 80,359 metric tons, F2017/FMSY  at 1.21 and 

1.63 and B2017/BMSY ranging from 0.59 to 0.82 (ICCAT, 2018). 

 

Here, we present the 2021 preliminary stock assessment results for Atlantic bigeye tuna stock based on the 

Bayesian State-Space Surplus Production Model framework, JABBA (Just Another Bayesian Biomass 

Assessment; https://github.com/jabbamodel/JABBA; Winker et al., 2018). The JABBA model is a fully 

documented, open-source R package (https://github.com/JABBAmodel) that has been formally included in the 

ICCAT stock catalogue (https://github.com/ICCAT/software/wiki/2.8-JABBA) and has been widely applied in a 

number of recent ICCAT stock assessments, including: South Atlantic blue shark (ICCAT, 2016b), Mediterranean 

albacore (ICCAT, 2017c), South Atlantic swordfish (ICCAT, 2017a; Winker et al., 2018), Atlantic shortfin mako 

shark stocks (south and north) (ICCAT, 2017d; Winker et al., 2017, 2019a), Atlantic blue marlin (Mourato et al., 

2019), Atlantic bigeye tuna (Winker et al., 2019b), Atlantic white marlin (Mourato et al., 2020), Atlantic yellowfin 

tuna (Sant’Ana et al., 2020), Mediterranean swordfish (Winker et al. 2020; ICCAT, 2017b) and South Atlantic 

albacore (Winker et al., 2020b). 

 

This preliminary assessment of the Atlantic bigeye tuna stock is guided by the 2020 SCRS work plan (ICCAT, 

2020). A grid scenario was built based on the discussions and recommendations that raised during the 2021 Bigeye 

Data Preparatory Meeting and 2021 Bigeye Stock Assessment Meeting. In this way, extensive model diagnostics, 

retrospective pattern analysis and model prediction skillness were provided to evaluate the fitted models. In 

addition, this document explores the sensitivity of the base case scenarios to the inclusion of alternative and 

additional standardized CPUE indices that have been made available for this assessment. 

 

 

2. Material and Methods 

 

2.1. JABBA inputs 

 

This stock assessment is implemented using the Bayesian state-space surplus production model framework called 

JABBA (Winker et al., 2018), which is now available as ‘R package’ that can be installed from 

github.com/jabbamodel/JABBA. JABBA’s inbuilt options include: (1) automatic fitting of multiple CPUE time 

series and associated standard errors; (2) estimating or fixing the process variance, (3) optional estimation of 

additional observation variance for individual or grouped CPUE time series, and (4) specifying a Fox, Schaefer or 

https://github.com/jabbamodel/JABBA
https://github.com/JABBAmodel
https://github.com/ICCAT/software/wiki/2.8-JABBA
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Pella-Tomlinson production function by setting the inflection point BMSY/K and converting this ratio into a shape 

parameter m, (5) extensive diagnostic procedures and associated plots (e.g. residual run tests) and (6) a routine to 

conduct retrospective analysis. A full JABBA model description, including formulation and state-space 

implementation, prior specification options and diagnostic tools is available in Winker et al. (2018). 

 

2.2. Fishery data 

 

The ICCAT Secretariat provided fishery catch data for Atlantic bigeye tuna from 1950 to 2019 (Figure 1). Relative 

abundance indices were made available, principally, in the form of joint standardized CPUE time series. These 

indices cover various periods and represent the main longline fleets operating in the Atlantic Ocean (e.g. Chinese-

Taipei fleet, Japanese fleet and Korean fleet).  A summary of the available indices is described below: 

 

− Early Joint Index (1959 – 1978) used in the 2018 assessment; 

− Joint Index – provided for the 2021 assessment (1979 – 2019); 

− Joint Index – used in the 2018 assessment (1979 – 2017). 

 

The CV's for all indices were scaled to an 0.2 average. In addition, the analysis included a comparison between 

the old joint index used in the last BET assessment and the new one. The general idea with this comparative 

analysis was to evaluate the possible effects of the differences in methodologies adopted to standardize both 

indices. 

 

2.3. Model specifications 

 

The model specifications were based on two structures: (i) the first aimed to provide a continuity run with the same 

priors and model structure defined and used in the 2018 Atlantic bigeye tuna stock assessment (ICCAT, 2018), 

and; (ii) the second was based in the discussions and recommendations agreed during the 2021 BET Data 

Preparatory Meeting and includes a uncertainty grid for maximum age, natural mortality and steepness (Table 1).  

Consistent with  the 2018 Bigeye assessment, , the Fox surplus production function was assumed for the continuity 

scenario.. The priors of K and r were kept uninformative to convey minimal prior information on the parameters 

estimates. For K and r, a lognormal distribution was implemented using JABBA “range” option. For K, lower and 

upper values ranged from 500,000 t to 5,000,000 t, which resulted in an approximated mean value of 1,581,138 t 

and a CV of 172%. For r, the range was set from 0.05 to 0.5, which resulted in an approximated mean of r = 0.12 

and an associated CV of 166% (Table 1). For the scenarios based on uncertainty grid proposed during the 2021 

BET Data Preparatory Meeting, we developed an alternative r prior distribution with an associated shape parameter 

of a Pella-Tomlinson production function from an Age-Structured Equilibrium Model (ASEM) approach with 

Monte-Carlo simulations (Winker et al., 2019b). The stock parameters used as inputs for the ASEM models 

included the following configuration: (a) Maximum age equal to 17, 20 and 25 years with the corresponding natural 

mortality values, and; (b) steepness values equal to 0.7, 0.8 and 0.9. This approach resulted in more informative 

priors to r following a lognormal distribution (Table 1; Figure 2) and the shape parameter m directly derived from 

the ASEM output of EBMSY/EB0 (Table 1; see details in Winker et al., 2019). Table 1 provide a summary of the 

five scenarios initially tested.  

 

For all scenarios, the same initial depletion prior (φ= B1950/K) was defined by a beta distribution with mean = 0.93 

and CV of 5%. All catchability parameters were formulated as uninformative uniform priors. Even as, the process 

error of log(By) in year y for all scenarios were defined by an inverse-gamma distribution with shape parameter 

equal to 9.606 and rate parameter equal to 0.03 as used by Winker et al. (2018b) in the 2018 Atlantic bigeye stock 

assessment. 

 

JABBA is implemented in R (R Development Core Team, https://www.r-project.org/) with JAGS interface 

(Plummer, 2003) to estimate the Bayesian posterior distributions of all quantities of interest by means of a Markov 

Chains Monte Carlo (MCMC) simulation. The JAGS model is executed from R using the wrapper function jags() 

from the library r2jags (Su and Yajima, 2012), which depends on rjags R package. In this study, three MCMC 

chains were used. Each model was run for 30,000 iterations, sampled with a burn-in period of 5,000 for each chain 

and thinning rate of five iterations. Basic diagnostics of model convergence included visualization of the MCMC 

chains using MCMC trace-plots as well as Heidelberger and Welch (1992), Geweke (1992), and Gelman and 

Rubin (1992) diagnostics as implemented in the coda package (Plummer et al., 2006). 
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2.4. Model diagnostics and sensitivity runs 

 

To evaluate CPUE fits, the model predicted CPUE indices were compared to the observed CPUE. JABBA-residual 

plots were used to examine (1) colour-coded lognormal residuals of observed versus predicted CPUE indices for 

all fleet together with (2) boxplots indicating the median and quantiles of all residuals available for any given year; 

the area of each box indicates the strength of the discrepancy between CPUE series (larger box means higher 

degree of conflicting information), and (3) a loess smoother through all residuals aids to detect the presence 

systematic residual patterns. In addition, it depicts the root-mean-squared-error (RMSE) as a goodness-of-fit 

statistic. We conducted a runs test to quantitatively evaluate the randomness of residuals (Carvalho et al., 2017). 

The runs test diagnostic was applied to residuals of the CPUE fit on log-scale using the function runs.test in the R 

package tseries, considering the 2-sided p-value of the Wald-Wolfowitz runs test. The runs test results can be 

visualized within JABBA using a specifically designed plot function that illustrates which time series passed or 

failed the runs test and highlights individual data points that fall outside the three-sigma limits (e.g. Anhøj and 

Olesen, 2014). 

 

To check for systematic bias in the stock status estimates, we also performed a retrospective analysis for the two 

production function scenarios (Base Case: Fox 2021 and ASEM M=17 | h=0.7: Pella m), by sequentially removing 

one year of data at a time over a period of eight years (n = 8), refitting the model after each data removal and 

comparing quantities of interest (i.e. biomass, fishing mortality, B/BMSY, F/FMSY, B/B0 and MSY) to the reference 

model that is fitted to full data time series. To compare retrospective bias between the models, we computed 

Mohn’s (1999) rho (ρ) statistic, specifically the commonly used formulation defined by Hurtado-Ferro et al. (2014). 

 

Although the above model diagnostics are important to evaluate the goodness of fit to the data and the consistency 

of benchmarking retrospectively, providing scientific advice should also involve checking that the model has 

prediction skill of future states under alternative management scenarios. To do this, the model-free hindcasting 

cross-validation (HCXval) technique by Kell et al. (2016) was applied, where observations are compared to their 

predicted future values. The HCXval algorithm has in common with retrospective analysis that requires the same 

two routine procedures of sequential removal the observations and re-fitting the model to the so truncated data 

series, but HCXval involves the additional steps of projecting ahead over the missing years and then cross-

validating these forecasts against observations to assess the model’s prediction skill. A robust statistic for 

evaluating prediction skill is the Mean Absolute Scaled Error (MASE) proposed by Hyndman and Koehler (2006), 

which scales the mean absolute error of prediction residuals to a naïve baseline prediction, where a ‘prediction’ is 

said to have ‘skill’ if it improves the model forecast when compared to the naïve baseline. A widely used baseline 

forecast for time series is the ‘persistence algorithm’ that takes the value at the previous time step to predict the 

expected outcome at the next time step as a naïve in-sample prediction, e.g., tomorrow’s weather will be the same 

as today’s. The MASE score scales the mean absolute error of the prediction residuals to the mean absolute error 

of a naïve in-sample prediction. A MASE score higher than one can then be interpreted such that the average 

model forecasts are no better than a random walk. Conversely, a MASE score of 0.5 indicates that the model 

forecasts twice as accurately as a naïve baseline prediction; thus, the model has prediction skill. 

 

Finally, to examine the sensitivity of the updated stock assessment results to the inclusion of the alternative Joint 

index used in the last assessment, a direct comparison of the trajectories management quantities estimated by the 

addiction of the old Joint index aside from the indices used in the continuity model structured for this assessment 

was conducted (Table 2). This sensitivity run was derived from the discussions that raised during the 2021 Bigeye 

Stock Assessment Meeting as a form to evaluate the impact of the changes adopted in the assumptions of the 

methodology used to build the standardization of the joint CPUE index in 2021. It is important to refer here, that 

these changes were made necessary as an adequation to the cooperative work between CPC's during the pandemic 

of COVID-19. 

 

 

3. Results and Discussion  

 

The MCMC convergence tests by Heidelberger and Welch (1992), Geweke (1992), and Gelman and Rubin (1992) 

were passed by all estimable key parameters for all models. Adequate convergence of the MCMC chains was also 

corroborated by visual inspection of trace plots (results available on request), which showed good mixing in 

general (i.e., moving around the parameter space). 

 

The model fits to each of the two standardized joint CPUE longline indices (Early Joint Index 1959 – 1978 and 

Joint Index 1979 – 2019) are shown in Figure 3 for each of the ten scenarios. All scenarios appeared to fit 

reasonably well to the both joint indices (i.e. early and late joint indices), with few large deviations for some 
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particular years. The results of the log-residuals runs tests for each CPUE and each scenario are shown in Figure 

4. Green panels indicate CPUE indices that passed the runs test with no evidence of a non-random residual pattern 

(p > 0.05) and red panels indicating a failed runs test. In addition, the inner shaded area shows 3-sigma limits 

around the overall mean as proposed by Anhøj and Olesen (2014) and the red circles identify each specific year 

where the residuals are larger than the threshold limit. In the scenarios S01, S02, S04, S05, S07 and S09 was 

observed a failed behavior in the runs test diagnostic procedure, in general for the early joint CPUE only. The 

other four scenarios have passed completely in this diagnostic (Figure 4). The goodness-of-fit were comparable 

among all scenarios, in general, the RMSE statistics were consistent ranging from 11.9% to 12.1% (Figure 5). 

The annual process error deviation estimated for all scenarios shown a similar stochastic pattern with a constant 

average centered around the zero and 95% credibility intervals always covering the zero value (Figure 6), which 

suggest no evidence of structural model misspecifications.    

 

The medians of the marginal posteriors for K ranged between 1,259,079 t (S04: ASEM M = 17 | h = 0.9: Pella m) 

and 1,542,554 t (S01: Continuity run: Fox 2021) (Table 3). The relatively small posterior to prior median (PPMR) 

and (PPVR) variance ratios observed to K parameter can be an evidence that the posteriors estimates of K were 

largely informed by the data (Figure 7). The estimated median of the marginal posteriors for r were very similar 

between the distinct scenarios, ranged from 0.129 to 0.166 (Table 3; Figure 7). The initial depletion (φ= B1950/K) 

marginal posteriors for each scenario were also similar and largely informed by the priors distributions. 

 

The range of MSY median estimates were narrow between all ten scenarios, reaching the lower value in the S01 

scenario (79,325 metric tons) and the higher value in the S10 scenario (83,946 metric tons) (Table 3). Furthermore, 

the marginal posterior medians for BMSY varied between 371,518 (S10: ASEM M = 25 | h = 0.9: Pella m) and 

567,757 (S01: Continuity run: Fox 2021) metric tons, and estimates of FMSY were also similar among all scenarios 

with median values varying from 0.140 (S01: Continuity run: Fox 2021) to 0.227 (ASEM M = 25 | h = 0.9: Pella 

m) (Table 3).   

 

In general, all scenarios showed similar trend for the trajectories of B/BMSY and F/FMSY over time (Figure 8). The 

trajectory of B/BMSY shown a stepwise decrease trend marked by a slower decrease among two periods stronger 

decreases in all scenarios. The first sharp decrease moment can be observed between the years 1965 and 1975, the 

second one between the years 1990 and 2000, and the soft decrease among both (1975 – 1990). The F/FMSY 

trajectory show a gradually increasing trend from the beginning of the time series until late 1980s, followed by a 

sharply increase, crossing the reference level (F/FMSY = 1) at the middle 1990s to all scenarios, except for the 

scenarios at maximum age 25 years (Figure 8). For all scenarios, except for the S01, the overfishing period was 

short and the fishing mortality declined below and/or close to the reference level (F/FMSY = 1) after the middle of 

2000’s (Figure 8). In general, Fox model scenario presented a more conservative stock status when compared to 

the ASEM scenarios (Figure 8). This distinction could be explained by the different model assumptions with 

respect to the productivity of the stock and the associated life history input parameters to the ASEM model 

scenarios.  

 

The results of an eight year retrospective analysis applied to scenarios S01 and S06 are depicted in Figures 9 and 

10, respectively. In general, both scenarios show a negligible retrospective pattern. However, for the S01 scenario, 

a slightly retrospective pattern was notable for F/FMSY for the 2011 and 2012 retrospective models, but within of 

95% Credibility Intervals (CRIs) of the reference model (Figure 9). The estimated Mohn’s rho for all stock 

quantities fell within the acceptable range of -0.15 and 0.20 (Hurtado-Ferro et al., 2014; Carvalho et al., 2017) and 

these results confirm the absence of an undesirable retrospective pattern (Table 4). The hindcasting cross-

validation results for joint CPUE index 1979 – 2019 show predictions within limits of the 95% CRI’s suggesting 

a good prediction skills for both scenarios or model-types (Figure 11). However, the mean absolute scaled error 

(MASE) estimated for both scenarios (S01 = 1.207; S06 = 1.117) were slightly above of the reference level (MASE 

> 1), which indicates that the average model forecasts are not better than a naïve baseline prediction – like a random 

walk process (Carvalho et al., 2021). Nonetheless, for the index with a flat trend with low variation at the end of 

the time series is expected that the MASE estimation will be close to reference level one.  

 

The sensitivity analysis of model fits and log-residuals runs tests for the S01: Continuity run: Fox 2021 scenario 

and in the face of the inclusion of the joint index used in the last assessment (Table 2) are shown in Figure 12. 

The two scenarios show a distinct difference in the stock status trajectories as a result of the adding the joint index 

used in 2018 stock assessment (Figure 12). In general, and considering only the central tendencies, the addition 

of the 2018 joint index show more pessimistic stock trajectories for all management quantities estimated (e.g. 

Biomass, B/BMSY, F/FMSY) (Figure 12).  

 



 

504 

The surplus production phase plots show a similar behavior for the updated scenarios to 2019 with the last year 

observed in a green area (Figure 13). The Kobe biplots for all scenarios were shown in the Figure 14. The 

continuity run (S01) shows a typical anti-clockwise pattern with the median quantity estimated for the last year 

observed in a green quadrant. However, the continuity run based on the Fox model was notably more pessimistic 

than all alternative ASEM scenarios with a relatively higher cumulative probability of 41.3% (red and yellow 

quandrants) that current biomass levels fall below BMSY. On the other hand, the ASEM scenarios show more 

optimistic status with the cumulative probabilities of green and orange quadrants always above of 80% (Figure 

14). In the case of F/FMSY, all updated scenarios to 2019 shown a cumulative probabilities of red and orange regions 

always below of 37% (Figure 14). This pattern suggests that the fishing mortality are below the limit of the FMSY. 
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Table 1. Summary of the uncertainty grid scenarios for Atlantic bigeye tuna. 

 

Scenario Model r BMSY/K (m) 

S01 Continuity run: Fox 2021 Range (0.05, 0.5)  

S02 ASEM M=17 | h=0.7: Pella m Lognormal (0.230, 0.349) 0.330 

S03 ASEM M=17 | h=0.8: Pella m Lognormal (0.251, 0.389) 0.330 

S04 ASEM M=17 | h=0.9: Pella m Lognormal (0.272, 0.413) 0.340 

S05 ASEM M=20 | h=0.7: Pella m Lognormal (0.186, 0.288) 0.320 

S06 ASEM M=20 | h=0.8: Pella m Lognormal (0.198, 0.331) 0.310 

S07 ASEM M=20 | h=0.8: Pella m Lognormal (0.211, 0.369) 0.300 

S08 ASEM M=25 | h=0.7: Pella m Lognormal (0.149, 0.239) 0.310 

S09 ASEM M=25 | h=0.8: Pella m Lognormal (0.155, 0.260) 0.290 

S10 ASEM M=25 | h=0.9: Pella m Lognormal (0.161, 0.293) 0.270 

 

 

Table 2. Summary of sensitivity analysis runs for Atlantic bigeye tuna (Thunnus obesus). 

Scenario Model Type Indices 

S01 Fox Continuity run 
• Joint LL index (1959-1978);  

• Joint LL index (1979-2019). 

S01 + Joint Index 2018 Fox Continuity run 

• Joint LL index (1959-1978); 

• Joint LL index (1979-2019); 

• Joint LL index – Last assessment. 
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Table 3. Summary of posterior quantiles presented in the form of marginal posterior medians and associated the 

95% credibility intervals of parameters for the Bayesian state-space surplus production models for Atlantic bigeye 

tuna. 

S01: Continuity run: Fox 2021 S02: ASEM M=17 | h=0.7: Pella m 

Estimates Median 
LCI 

(2.50%) 

UCI 

(97.50%) 
Estimates Median 

LCI 

(2.50%) 

UCI 

(97.50%) 

K  1,542,554   957,894   2,902,892  K 1,299,585  914,940 1,967,796 

r 0.140 0.066 0.238 r 0.157 0.100 0.232 

ψ(psi) 0.963 0.818 0.999 ψ(psi) 0.963 0.821 0.999 

σproc 0.053 0.041 0.072 σproc 0.054 0.041 0.073 

FMSY 0.140 0.066 0.237 FMSY 0.193 0.123 0.286 

BMSY  567,757   352,565   1,068,448  BMSY  428,976   302,010   649,544 

MSY  79,325   63,209   95,205  MSY  82,687   71,483  97,663  

B1950/K 0.368 0.368 0.368 B1950/K 0.330 0.330 0.330 

B2018/K 0.953 0.794 1.076 B2019/K 0.953 0.796 1.081 

B2018/BMSY 0.383 0.277 0.524 B2019/BMSY 0.386 0.286 0.518 

F2018/FMSY 1.039 0.754 1.424 F2019/FMSY 1.168 0.866 1.570 

S03: ASEM M=17 | h=0.8: Pella m S04: ASEM M=17 | h=0.9: Pella m 

Estimates Median 
LCI 

(2.50%) 

UCI 

(97.50%) 
Estimates Median 

LCI 

(2.50%) 

UCI 

(97.50%) 

K  1,295,431   915,770   1,976,656  K  1,259,079   880,690   1,931,649  

r 0.157 0.100 0.230 r 0.166 0.105 0.246 

ψ(psi) 0.963 0.825 0.999 ψ(psi) 0.963 0.821 0.999 

σproc 0.054 0.041 0.074 σproc 0.054 0.042 0.073 

FMSY 0.194 0.124 0.283 FMSY 0.194 0.123 0.287 

BMSY  427,605   302,284   652,469  BMSY  428,207   299,519   656,945  

MSY  82,652   71,518   99,916  MSY  82,828   71,417   98,781  

B1950/K 0.330 0.330 0.330 B1950/K 0.340 0.340 0.340 

B2019/K 0.953 0.802 1.082 B2019/K 0.952 0.793 1.082 

B2019/BMSY 0.385 0.291 0.538 B2019/BMSY 0.391 0.286 0.537 

F2019/FMSY 1.166 0.881 1.629 F2019/FMSY 1.150 0.842 1.580 

S05: ASEM M=20 | h=0.7: Pella m S06: ASEM M=20 | h=0.8: Pella m 

Estimates Median 
LCI 

(2.50%) 

UCI 

(97.50%) 
Estimates Median 

LCI 

(2.50%) 

UCI 

(97.50%) 

K  1,284,136   939,889   1,874,208  K  1,313,070   940,614   1,999,410  

r 0.153 0.101 0.216 r 0.148 0.095 0.214 

ψ(psi) 0.964 0.822 0.999 ψ(psi) 0.963 0.824 0.999 

σproc 0.054 0.041 0.073 σproc 0.054 0.042 0.073 

FMSY 0.200 0.132 0.282 FMSY 0.204 0.131 0.296 

BMSY  411,019   300,835   599,886  BMSY  407,157   291,666   619,977  

MSY  82,104   71,621   96,483  MSY  82,852   71,853   100,966  

B1950/K 0.320 0.320 0.320 B1950/K 0.310 0.310 0.310 

B2019/K 0.952 0.799 1.080 B2019/K 0.953 0.796 1.080 

B2019/BMSY 0.370 0.273 0.502 B2019/BMSY 0.378 0.279 0.523 

F2019/FMSY 1.155 0.853 1.568 F2019/FMSY 1.220 0.898 1.687 

Continues on the next page… 
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Table 3. Continued from the previous page. 

S07: ASEM M=20 | h=0.9: Pella m S08: ASEM M=25 | h=0.7: Pella m 

Estimates Median 
LCI 

(2.50%) 

UCI 

(97.50%) 
Estimates Median 

LCI 

(2.50%) 

UCI 

(97.50%) 

K  1,313,276   929,370   2,010,445  K  1,420,759   1,027,115   2,033,436  

r 0.144 0.090 0.211 r 0.135 0.093 0.190 

ψ(psi) 0.962 0.823 0.999 ψ(psi) 0.963 0.820 0.999 

σproc 0.054 0.042 0.073 σproc 0.053 0.041 0.072 

FMSY 0.211 0.132 0.310 FMSY 0.187 0.129 0.263 

BMSY  393,828   278,701   602,896  BMSY  440,549   318,488   630,528  

MSY  83,096   71,644   98,521  MSY  82,056   71,204   99,655  

B1950/K 0.300 0.300 0.300 B1950/K 0.310 0.310 0.310 

B2019/K 0.951 0.797 1.079 B2019/K 0.953 0.795 1.081 

B2019/BMSY 0.376 0.279 0.506 B2019/BMSY 0.378 0.285 0.520 

F2019/FMSY 1.254 0.929 1.687 F2019/FMSY 1.220 0.919 1.675 

S09: ASEM M=25 | h=0.8: Pella m S10: ASEM M=25 | h=0.9: Pella m 

Estimates Median 
LCI 

(2.50%) 

UCI 

(97.50%) 
Estimates Median 

LCI 

(2.50%) 

UCI 

(97.50%) 

K  1,353,754   1,002,481   1,982,140  K  1,375,997   989,492   2,046,832  

r 0.135 0.090 0.191 r 0.129 0.084 0.185 

ψ(psi) 0.962 0.816 0.999 ψ(psi) 0.964 0.820 0.999 

σproc 0.054 0.041 0.072 σproc 0.054 0.041 0.072 

FMSY 0.211 0.141 0.297 FMSY 0.227 0.148 0.326 

BMSY  392,580   290,713   574,808  BMSY  371,518   267,162   552,642  

MSY  82,761   71,837   98,111  MSY  83,946   72,435   101,152  

B1950/K 0.290 0.290 0.290 B1950/K 0.270 0.270 0.270 

B2019/K 0.951 0.793 1.079 B2019/K 0.954 0.798 1.080 

B2019/BMSY 0.370 0.278 0.496 B2019/BMSY 0.373 0.275 0.508 

F2019/FMSY 1.275 0.957 1.712 F2019/FMSY 1.381 1.020 1.882 

 

 

Table 4. Summary Mohn’s rho statistic computed for a retrospective evaluation period of eight years for two of 

the five scenarios fitted to the Atlantic bigeye tuna stock assessment 2021. The scenarios used in retrospective 

analysis were the S01: Continuity run: Fox 2021 and S06: ASEM M = 20 | h = 0.8: Pella m models. The more the 

values diverge from the zero, the stronger is the retrospective bias. Values falling between -0.15 and 0.2 are widely 

deemed as acceptable retrospective bias (Huerto et al., 2014). 

Scenario 

Stock Quantity 

B F B/BMSY F/FMSY B/K MSY 

S01 -0.0363 0.0380 -0.0236 0.0414 -0.0236 -0.0123 

S06 0.001 -0.0002 0.0064 -0.0093 0.0064 0.0067 
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Figure 1. Catch time series in metric tons (t) between 1950 and 2019 for Atlantic bigeye tuna. 

 

 

 

 
Figure 2. Comparison between r priors distributions derived from Age-Structured Equilibrium Models (ASEM) 

approach. 
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Figure 3. Time series of observed (circle) with error 95% Cis (error bars) and predicted (solid line) CPUE of 

Atlantic bigeye tuna for the Bayesian state-space surplus production model JABBA for each scenario fitted. Dark 

shaded grey areas show 95% credibility intervals of the expected mean CPUE and light shaded grey areas denote 

the 95% posterior predictive distribution intervals. 
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Figure 4. Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals for each 

scenario fitted for the Atlantic bigeye tuna. Green panels indicate no evidence of lack of randomness of time-series 

residuals (p>0.05) while red panels indicate the opposite. The inner shaded area shows three standard errors from 

the overall mean and red circles identify a specific year with residuals greater than this threshold value (3x sigma 

rule). 
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Figure 5. JABBA residual diagnostic plots for alternative sets of CPUE indices examined for each scenario fitted 

for the Atlantic bigeye tuna. Boxplots indicate the median and quantiles of all residuals available for any given 

year, and solid black lines indicate a loess smoother through all residuals. 



 

514 

 
Figure 6. JABBA residual diagnostic plots for alternative sets of CPUE indices examined for each scenario fitted 

for the Atlantic bigeye tuna. Process error deviates (median: solid line) with shaded grey area indicating 95% 

credibility intervals. 
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Figure 7. Prior and posterior distributions of various model and management parameters for the Bayesian state-

space surplus production fitted for the Atlantic bigeye tuna. PPRM: Posterior to Prior Ratio of Medians; PPRV: 

Posterior to Prior Ratio of Variances. 
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Figure 8. Trends in biomass relative to BMSY (B/BMSY), fishing mortality relative to FMSY (F/FMSY) and surplus 

production curve (bottom panels) for each scenario from the Bayesian state-space surplus production JABBA 

model fits to Atlantic bigeye tuna. 
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Figure 9. Retrospective analysis conducted for scenario S01: Continuity run: Fox 2021 for Atlantic bigeye tuna, 

by removing one year at a time sequentially (n=8) and predicting the trends in biomass and fishing mortality (upper 

panels), biomass relative to BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) and 

biomass relative to K (B/K) and surplus production curve (bottom panels) from the Bayesian state-space surplus 

production model fits. 
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Figure 10. Retrospective analysis conducted for scenario ASEM M = 20 | h = 0.8: Pella m for Atlantic bigeye 

tuna, by removing one year at a time sequentially (n=8) and predicting the trends in biomass and fishing mortality 

(upper panels), biomass relative to BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) 

and biomass relative to K (B/K) and surplus production curve (bottom panels) from the Bayesian state-space 

surplus production model fits. 
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Figure 11. Hindcasting cross-validation results (HCxval) for the two scenarios S01: Continuity run: Fox 2021 and 

ASEM M = 20 | h = 0.8: Pella m for Atlantic bigeye tuna, showing one-year-ahead forecasts of CPUE values 

(2011-2019), performed with eight hindcast model runs relative to the expected CPUE. The CPUE observations, 

used for cross-validation, are highlighted as color-coded solid circles with associated light-grey shaded 95% 

confidence interval. The model reference year refers to the end points of each one-year-ahead forecast and the 

corresponding observation (i.e. year of peel + 1). 
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Figure 12. Sensitivity analysis performed for scenarios S01: Continuity run: Fox 2021 and S01: Continuity run: 

Fox 2021 including the joint index used in the last BET stock assessment showing the trends in biomass and fishing 

mortality (upper panels), biomass relative to BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle 

panels) and biomass relative to K (B/K) and surplus production curve (bottom panels) for the Atlantic bigeye tuna. 
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Figure 13. JABBA surplus production phase plot for the Bayesian state-space surplus production for each scenario 

showing trajectories of the catches in relation to BMSY and MSY for the Atlantic bigeye tuna. 
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Figure 14. Kobe phase plot showing estimated trajectories (1950-2019) of B/BMSY and F/FMSY for the Bayesian 

state-space surplus production model for the Atlantic bigeye tuna. Different grey shaded areas denote the 50%, 

80%, and 95% credibility interval for the terminal assessment year. The probability of terminal year points falling 

within each quadrant is indicated in the figure legend.  


