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SUMMARY 

 

Previous stock assessment advice for Atlantic bigeye tuna (Thunnus obesus) originated from a 

combination of ‘A Stock Production Model Incorporating Covariates’ (ASPIC) and Stock 

Synthesis (ss3). This contribution aims to extend the assessment toolbox for this stock by the 

Bayesian State-Space Surplus Production Model software ‘JABBA’. While Bayesian priors for 

the key parameters are kept uninformative, we specifically focus on developing an informative 

prior for approximating the expected process error from a stochastic age-structured simulation 

model. The model diagnostics provided ample support for use of the newly developed split, 

Joint-Research CPUE index in the reference case. Based on multi-model inference from JABBA 

runs over a small uncertainty grid, we predict with 85.5% probability that the stock remains 

overfished. Whereas JABBA appears sufficiently robust for inference about the stock status, we 

caution against the use of JABBA projections for specific quota recommendations in the case of 

bigeye tuna, because the relative impact of the different fleets can currently not be explicitly 

accounted for with (aggregated) biomass dynamic models. 

  

RÉSUMÉ 

 

Un précédent avis découlant de l’évaluation du stock de thon obèse de l'Atlantique (Thunnus 

obesus) était fondé sur la combinaison d’un modèle de production de stocks incorporant des 

covariables (ASPIC) et de Stock Synthesis (SS3). Cette contribution vise à étendre la boîte à 

outils d’évaluation de ce stock au moyen du logiciel « JABBA », le modèle de production 

excédentaire état-espace de type bayésien. Bien que les priors bayésiens pour les paramètres 

clés restent non informatifs, nous nous sommes concentrés spécifiquement sur la mise au point 

d'un prior informatif permettant d'estimer l'erreur de processus escomptée à partir d'un modèle 

de simulation stochastique structuré par âge. Les diagnostics du modèle viennent appuyer 

l'utilisation de la nouvelle division de l’indice de CPUE, fruit de la recherche conjointe, dans le 

cas de référence. Sur la base de l'inférence multimodèle des scénarios JABBA sur une petite 

grille d'incertitude, nous prédisons avec une probabilité de 85,5% que le stock reste 

surexploité. Alors que JABBA semble suffisamment robuste pour pouvoir déduire l’état du 

stock, nous recommandons de ne pas utiliser les projections de JABBA pour des 

recommandations de quota spécifiques dans le cas du thon obèse, car l’impact relatif des 

différentes flottilles ne peut actuellement pas être explicitement reflété (valeur agrégée) avec 

des modèles de dynamique de la biomasse.  

 

RESUMEN 

 

El asesoramiento de la evaluación de stock anterior para el patudo del Atlántico (Thunnus 

obesus) se generó a partir de una combinación de "un modelo de producción de stock que 

incorpora covariables" (ASPIC) y de Stock Synthesis (ss3). Esta contribución tiene como 

objetivo ampliar la herramienta de evaluación para este stock mediante un software de modelo 

de producción excedente bayesiano estado espacio "JABBA". Mientras que las distribuciones 

previas bayesianas para los parámetros clave se mantuvieron como no informativas, la 

atención se centró específicamente en el desarrollo de una distribución previa informativa para 
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realizar una aproximación del error de proceso previsto a partir de un modelo de simulación 

estocástico estructurado por edad. Los diagnósticos del modelo  facilitaron un amplio respaldo 

para el uso del desglose recientemente desarrollado del índice de CPUE de investigación 

conjunta en el caso de referencia. Basándose en la inferencia de modelos múltiples a partir de 

ensayos de JABBA sobre una pequeña matriz de incertidumbre, se predijo con una 

probabilidad del 85,5% que el stock sigue estando sobrepescado. Mientras que JABBA parece 

suficientemente robusto para la inferencia sobre el estado del stock, desaconsejamos el uso de 

las proyecciones de JABBA para recomendaciones de cuota específicas en el caso del patudo, 

debido a que el impacto relativo de las diferentes flotas  no pude tenerse explícitamente en 

cuenta actualmente en los modelos de dinámica de biomasa (agregada).  
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1. Introduction 

 

In 2015, the International Commission for the Conservation of Atlantic Tunas (ICCAT) carried out the last stock 

assessment for Atlantic bigeye tuna (Thunnus obesus) based on data for the period 1950-2014. During this 

assessment several analysis approaches were explored to estimate the stock status, including catch curve 

analysis, (2) fitting surplus production models (SPMs), (3) Virtual Population Analysis (VPA) and (4) Integrated 

Assessment models. The scientific advice on the stock status was based of three alternative surplus production 

model runs using the open source software ‘A Stock Production Model Incorporating Covariates’ (ASPIC; 

Prager, 1994) and twelve alternative scenarios based on Integrated Assessments using Stock Synthesis (ss3; 

Methot and Wetzel, 2013).                 

 

ASPIC implements a generalized Pella and Tomlinson (1969) production function, which can be fitted to 

individual or multiple indices of abundance and conditions the stock population dynamics on either catch or 

effort. Fitting to data is done using negative maximum log-likelihood minimization and uncertainty in ASPIC 

can be evaluated with bootstrapping and sensitivity tests. The more recent release of the open-source mpb 

package (Kell 2016; https://github.com/laurieKell/mpb)  for fitting surplus production models has been shown to 

be an efficient tool for reproducing ASPIC results (Kell et al., 2017; Merino et al., 2018a) and provides the 

additional option to estimate parameter posteriors using Monte Carlo Markov Chain (MCMC) simulations. 

Together with FLR libraries (Kell et al., 2007a; Merino et al., 2018b), mpb can be used to produce a variety of 

diagnostics and quality checks for the assessment (Kell et al., 2017). Perhaps the greatest shortcoming of both 

ASPIC and mpb is their inability to estimate process error, thus providing reference point estimates wholly 

reliant on deterministic population dynamics to fit abundance trends based on observation errors alone (Ono et 

al., 2012; Punt, 2003; Thorson and Minto, 2015). During the 2015 bigeye tuna assessment, three ASPIC runs 

based on separate fits to standardized abundance indices for Japanese, Taiwanese and US longline were selected 

to provide advice on stock status, biomass levels, and harvest rate.  

 

In contrast to surplus production models, statistical age-structured models, such as ss3, allow separating between 

spawning-biomass (SB) and fleet specific exploitable biomass (EB), where SB is the biomass fraction of mature 

fish (or females) in the population, and EB is the exploitable (vulnerable) biomass fraction of the total biomass 

that is selected by each fleet. Age-structured models therefore explicitly account for the lag-effect of the biomass 

response of SB and EB, where the latter is related to the observed abundance index and can be informed by size 

or age composition data. In the case of the 2015 bigeye tuna assessment, catch, standardized catch-per-unit-effort 

(CPUE) indices and size composition data were assigned to 15 ‘fleets’ related to Purse Seine (PS), Longline 

(LL) and Baitboat (BB) fleets operating in different areas. Each fleet is characterized by a selectivity function. 

This approach comes with the trade-off of a large number of stock parameters to model the population dynamics. 

Density-dependent processes are typically limited to a spawner-recruitment relationship (SRR) while natural 

mortality (M) is mostly treated as time invariant (Thorson et al., 2012). The form and steepness (h) of the SRR 

and estimates of M are highly uncertain, yet these parameters have a large effect on the outcome of statistical 

age-structured modelassessments. Because it is often not possible to estimate h and M from the data, scientists 

commonly explore alternative fixed values for one or both (Lee et al., 2012; Mangel et al., 2013). The substantial 

complexity inherent to multi-fleet ss3 models poses challenges during time constrained assessment meetings 

when it comes to adequately capturing the uncertainty around model structure related to confounding effects 

among growth, selectivity, natural mortality and recruitment. 

https://github.com/laurieKell/mpb
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The objective of this contribution is to extend the assessment toolbox for Atlantic bigeye tuna by the Bayesian 

State-Space Surplus Production Model software ‘JABBA’ (Winker et al. 2018; Just Another Bayesian Biomass 

Assessment). JABBA is implemented as a flexible, user-friendly open-source tool that is hosted on GitHub 

(https://github.com/jabbamodel). The fairly fast convergence properties for a Bayesian model allows for 

extensive use of model run permutations as required for diagnostics such as retrospective analysis, simulation 

testing or ‘grid’ runs for evaluation of uncertainty of model structure. As for SPMs in general, somatic growth, 

reproduction, natural mortality and associated density-dependent processes are inseparably captured within the 

surplus production function, which is governed by the intrinsic growth rate r, unfished biomass K and the shape 

parameter m. Due to these minimal parameter requirements, JABBA offers a parsimonious ‘control’ for the more 

parameter demanding ss3 assessment model. In contrast to ASPIC, the Bayesian state-space formulation for 

JABBA provides the potential for a more accurate representation of uncertainty by accounting for both process 

and observation error (Ono et al., 2012). An additional advantage appears to be the superior convergence 

properties of Bayesian state-space implementations in the presence of conflicting CPUE indices or stochasticity 

in the biomass dynamics. This has been evidenced by recent assessments of, for example, South Atlantic 

swordfish (ICCAT, 2017) or Atlantic blue marlin (ICCAT, 2018a). 

 
Here, we apply JABBA to four initial scenarios based on alterative sets of CPUE indices, which we evaluate 

using a variety of model diagnostics. While priors for the key parameters r and K are kept purposefully 

uninformative, we specifically focus on developing an informative prior for approximating the expected range of 

process error for year-to-year biomass variation using a stochastic age-structured simulation model. We explore 

the structural model uncertainty of the reference case by implementing a small, one-dimensional grid of BMSY/K 

values as function of the shape m being the only fixed input parameter. To facilitate comparability between 

JABBA and ss3 results, the range of BMSY/K was chosen based on the equivalent ss3 output ratios of SBMSY to 

unfished spawning biomass (SB0), which can be directly related to alternative steepness values considered in 

2015 and 2018 assessment. The results are discussed in the context of model robustness and multi-model 

inference for Atlantic bigeye stock assessment advice.  

 

 

2. Material and Methods 

 

2.1 Fishery input data  

 

In addition to the ICCAT’s Task I total catch time series (Figure 1), the following CPUE time series were 

considered for this analysis: two options for a standardized joint fleet CPUE index from the collaborative study 

(JR2), a new CPUE index from the Dakar baitboat (DAK_BB) fisheries and three longline CPUE indices 

provided by Japan (JP_LL), Taiwan (TW_LL) and the US (US_LL) (Table 1). Index CVs for the JR2 CPUEs 

and DAK_BB were scaled so that they averaged 0.2, while preserving the inter-annual variability. The index 

CPUEs for JP_LL, TW_LL and US_LL were fixed at 0.2 for all years.   

 

We considered four initial scenarios based on alterative sets of CPUE indices (Table 1). Following the 

recommendations from the 2018 ICCAT bigeye tuna data preparatory meeting (ICCAT, 2018b), the JR2_early 

and JR2_late CPUE indices were selected for the reference case S1 (Figure 2). Scenario S2 was fitted to the 

long (combined) JR2_long CPUE and S3 represent a variation of S1 by including the DAK_BB CPUE index 

(Figure 2). Considering that JP_LL, TW_LL and US_LL were probably the most influential CPUE indices in 

the 2015 assessments, we formulated a fourth, additional scenario S4 by fitting all three indices simultaneously 

(Figure 2).  

 

2.2 JABBA stock assessment model  

 

This Atlantic bigeye tuna stock assessment is implemented using the Bayesian state-space surplus production 

model framework JABBA (Winker et al., 2018a). JABBA implements the generalized three-parameter Pella-

Tomlinson surplus production function of the form: 
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where r is the intrinsic rate of population increase at time t, K is the unfished biomass at equilibrium and m is a 

shape parameter that determines at which the B/K ratio maximum surplus production is attained. If 0 < m < 2, SP 

attains MSY at biomass levels smaller than K/2 (Schaefer); the converse applies for values of m greater than 2. 

In line with previous surplus production model based bigeye tuna assessments, we initially assumed a Fox 

production function by setting m = 1.0001, so that maximum surplus production is predicted at ~ 0.37K.  

https://github.com/jabbamodel
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In principle, JABBA follows the Bayesian state-space estimation framework proposed by Meyer and Millar 

(1999). The biomass By in year y is expressed as a proportion of K (i.e. Py = By /K) to improve the efficiency of 

the estimation algorithm. The model is formulated to accommodate multiple CPUE series i. The initial biomass 

in the first year of the time series is scaled by introducing model parameter   to estimate the ratio of the spawning 

biomass in the first year to K (Carvalho et al., 2014). The stochastic form of the process equation is given by:
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where 𝐶𝑓,𝑦 is the catch in year y by fishery f and 𝜂𝑦 is the process error, with 𝜂𝑦~𝑁(0, 𝜎𝑝𝑟𝑜𝑐
2 ), where the process 

variance 𝜎𝑝𝑟𝑜𝑐
2  can be either fixed or estimated using inverse-gamma distributions.   .  

 

The corresponding biomass for year y is: 

 

  KPB yy =            (3) 

 

The observation equation is given by: 

 

iyeBqI yiyi
,

,


=            (4) 

 

where qi is the estimable catchability coefficient associated with the abundance index i, and  is iy , the 

observation error, with 𝜂𝑦~𝑁(0, 𝜎𝜀𝑖,𝑦
2 ),  where 𝜎𝜀𝑖,𝑦

2  is the observation variance in year y for index i. A full 

JABBA model description, including variance and prior specification options is available in Winker et al (2018). 

 

2.3 Priors 

 

Priors for 𝑟 and K were kept uninformative to convey minimal prior information on the parameter estimates. For 

K, a lognormal was implemented using the JABBA ‘range’ option to set lower and upper 95% CI’s located at 

500,000 t and 5,000,000 t, respectively, which resulted in a mean value of 1,581,138.8 t and a CV of 172.7% 

(Figure 3). Similarly, we set the lower and upper 95% CI’s of an assumed lognormal distribution for r to 0.05 

and 5, respectively, which resulted in a mean of r = 0.5 and an associated CV of 166% (Figure 3). As for 

previous ASPIC runs, we assumed an initial B1950/K ratio of 0.95 but admitted some uncertainty by assigning a 

lognormal prior with a CV of 5% (Figure 3). Uninformative, uniform priors were specified for all CPUE 

specific catchability parameters qi. Process error variance was assumed to follow inverse-gamma distribution 

(Brodziak and Ishimura, 2012; Meyer and Millar, 1999; Winker et al., 2018a). The approach for the deriving the 

shape and rate parameter for specifying the inverse-gamma prior for the process error variance is described in the 

next section.  

 

2.4 Developing a process variance prior from age-structured simulations  

 

To derive an informative prior for approximating expected process variance of the sampled biomass for Atlantic 

bigeye tuna, we developed a simple age-structured population model to simulate stochastic biomass dynamics in 

the absence of fishing. For this purpose, we assume that the natural stochasticity in biomass dynamics is mostly 

driven by variations in (1) recruitment (Thorson et al., in press) and (2) time-varying age-dependent natural 

mortality (Millar and Meyer, 2000a). To account for recruitment variation, we generated random deviates of 

lognormal recruitment standard deviations  𝜎𝑅 from a lognormal with a mean of log(0.55) and a CV of 20%  to 

cover the spectrum of plausible values (𝜎𝑅= 0.4 – 0.8; Figure 4a) for bony fishes (Mertz and Myers, 1996; Rose 

et al., 2001). For natural mortality, we allowed for additional year-to-year deviations from the deterministic age-
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dependent natural mortality Ma by assuming a lognormal error with a CV of 15% (Figure 4b). We note, 

however, that despite including time-varying natural mortality as additional source of variation, the resulting 

process noise on the biomass may still represent a conservative approximation for low biomass levels as our 

approach based on unfished biomass simulations does not account for the juvenescent effect on heavily fished, 

age-truncated populations.      

 

The stock parameters used for this simulation experiment were sourced from the 2015 ICCAT bigeye assessment 

results and the report of the 2018 data preparatory session (Table 2). Assuming unfished, stochastic population 

dynamics, the numbers at age a for year y, yaN , , are given by: 
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where yR the number of recruits (age = 0) in year y, ayM ,   is the age-specific instantaneous rate of natural 

mortality for year y, and  maxa denotes the maximum age that is treated here as a plus group.  

 

In the absence of fishing, we can ignore the existence of the spawning recruitment relationship, by assuming that 

annual recruitment is a lognormally distributed random variable with an expected value given by the mean 

unfished recruitment R0 , such that: 
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where R0 can be set to an arbitrary value (here R0 = 1000) without loss of generality. For the initial year, we 

assume that abundance at age (excluding the plus group) is function of variation in recruitment from previous 

years, such that: 
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where aN
~

 denotes the deterministic numbers at age at for an unfished equilibrium recruitment R0.  

 

The sampled (exploitable) biomass EBy of interest is given as a function of Na,y, weight-at-age (wa), selectivity-

at-age (sa), so that:  

 

=
a

yaaay NswEB ,  (8) 

 

Weight-at-age is described as function of the weight to length conversion parameters ω and δ and length-at-age 

aL  (Figure 4c), such that  

 


 aa Lw =            (9) 

 

The corresponding La was calculated based on the Bertalanffy growth function parameters as: 
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where L  is the asymptotic length,  is the growth coefficient and 0a  is the theoretical age at zero length for 

sex s, respectively (Figure 4d). Selectivity-at-age was calculated as a function of length-at-age, La, using a two 

parameter logistic model of the form (Figured 3e): 

 

sa LL
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=            (11) 

 

where as  is the proportion of fish selected in the age a,
50sL  is the length at which 50% of the fish are retained 

and δS is the inverse slope of the logistic ogive. The parameters  and δS were chosen to approximate the 

estimated logistic selectivity functions for the Japanese long-line fishery based on the 2015 ss3 reference model 

run (Figure 4f).  

 

The expected lognormal process error deviation for the natural variation of the (sampled) biomass can then be 

calculated as the standard deviation of the year-to-year change in the stochastic log(EB): 
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where ny is the number of years.  

 

For this simulation experiment, we simulated the stochastic bigeye tuna biomass dynamics over a period of 68 

years (Figure 5), which corresponds to the currently available catch time series (1950-2018). We conducted a 

total of 10,000 Monte-Carlo simulation runs and noted proc after each iteration. To obtain the shape and rate 

for the desired inverse-gamma prior for the process variance 2
proc , we fitted a gamma distribution to the 

inverse of the simulated process variance vector, such that 2/1 proc  ~ gamma(shape, rate), which produced the 

maximum likelihood estimates of shape = 0.9381 and rate = 0.03 (Figure 5). The corresponding mean and CV 

of proc  are 0.06 and 0.174, respectively.  

 

2.5 Model fitting and Diagnostics 

 

JABBA is implemented in R (R Development Core Team, https://www.r-project.org/) with JAGS interface 

(Plummer, 2003) to estimate the Bayesian posterior distributions of all quantities of interest by means of a 

Markov Chains Monte Carlo (MCMC) simulation. The JAGS model is executed from R using the wrapper 

function jags() from the library r2jags (Su and Yajima, 2012), which depends on rjags. In this study, two MCMC 

chains were used. Each model was run for 30,000 iterations, sampled with a burn-in period of 5,000 for each 

chain and thinning rate of five iterations. Basic diagnostics of model convergence included visualization of the 

MCMC chains using MCMC trace-plots as well as Heidelberger and Welch (Heidelberger and Welch, 1992) and 

(Geweke, 1992) and Gelman and Rubin (1992) diagnostics as implemented in the coda package. 

 

To evaluate CPUE fits, JABBA provides three types of plots. The first is referred to as “JABBA-residual plot” 

which includes: (1) colour-coded lognormal residuals of observed versus predicted CPUE indices by fleet, (2) 

boxplots indicating the median and quantiles of all residuals available for any given year; the area of each box 

indicates the strength of the discrepancy between CPUE series (larger box means higher degree of conflicting 

information), (3) a loess smoother through all residuals which highlights systematically auto-correlated residual 

patterns and (4) the Root-Mean-Squared-Error (RMSE) to quantitatively evaluate the randomness of model 

residuals. The second type of plot is similar to those obtained from the Stock Synthesis output (Methot and 

Wetzel, 2013) using the program r4ss (Taylor et al., 2013) and shows the observed and predicted CPUE values 

in log scale, as well as the 95% credibility interval (CI). A third plot type shows observed CPUE and the model 

predicted mean CPUE and associated 95% confidence intervals over the entire catch time series.     

 

 

 

50sL
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Parameter posteriors relative to their priors were inspected visually. Here we focused specifically on prior and 

posterior distributions for the process variance. For this purpose, we assumed that an inflated process variance 

posteriors relative to the expected prior (Section 2.4) would point towards model misspecification for the given 

set of fitted CPUE indices. In addition, we provide process error plots for 𝜂𝑦 (Eq. 2) to explore systematic 

patterns in process deviations of the predicted biomass over the assessment period.     

 

To evaluate the robustness of important stock status quantities (biomass, surplus production, B/BMSY and F/FMSY) 

for use in projections, we conducted a retrospective analysis (Cadigan and Farrell, 2005; Hurtado-Ferro et al., 

2014; Mohn, 1999) for the reference case S1 by sequentially removing the most the recent year and refitting the 

model over a period of ten years (i.e. 2017 back to 2007). To further address the model sensitivity to the trend in 

the JR2_early CPUE, we proceeded by a sequentially removing the earliest CPUE observations of the JR2_early 

starting in 1959 and ending in 1978, which we subsequently refer to as ‘progressive pattern analysis’.    

 
2.6 Evaluating structural model uncertainty with reference to age structured models 

 

First recall that for SPMs structural and biological uncertainty is represented in the form of K, r and the shape m 

of the production function, where Schaefer and Fox formulations with fixed values of m being probably the most 

common choices. The shape parameter m is directly related to the inflection point of the surplus curve at BMSY/K 

by:   
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Given that r and K are estimated with uninformative priors, we assumed that the main source of structural 

uncertainty of the model can be attributed to the choice of m. To capture this uncertainty, we fitted the JABBA 

reference case model over a range of fixed BMSY/K input values.  

 

We noted that, by assuming a Fox model, the choice m = 1.001 (BMSY/K~0.37) may not necessarily be 

comparable with the ss3 reference case steepness value of h = 0.8 agreed for 2015 and 2018 bigeye tuna 

assessments. Similar to m, h is a strong determinant for SBMSY/SB0 (Mangel et al., 2013). The linear relationship 

between h and SBMSY/SB0 is illustrated by the regression of the three runs from the 2018 ss3 assessment (Figure 

6). To facilitate comparability between JABBA and ss3 results, we therefore chose the range of BMSY/K values 

from the equivalent ss3 averages of SBMSY/SB0 ratios for each the respective steepness values (h = 0.9, 0.8, 0.7). 

However, because BMSY/K < 0.37 (Fox) is not defined for either mpb or ASPIC, we also present the stock status 

results for the initial Fox model for comparison with mpb (Merino et al., 2018b).    

 

 

3. Results 

 

3.1 Model diagnostics   

 

The visual inspection of trace plots for the key model parameters showed adequate mixing of the two chains (i.e., 

moving around the parameter space), which is indicative for convergence of the MCMC chains (Appendix: 

Figure A1). All key parameter MCMC chains passed both Heidelberger and Welch (Heidelberger and Welch, 

1992) and Gelman and Rubin (1992) test diagnostics further providing evidence for adequate model 

convergence.  

 

Model residuals for S1 and S2 showed only minor systematic residual pattern and indicated overall good fits to 

the JR2 indices (Figure 7). This changed for S3, where major discrepancies were evident between the JR2_late 

and DAK_BB CPUE index. By comparison, there was again fairly little conflict evident among the JP_LL, 

TW_LL and US_LL CPUEs (Figure 7). Judging by the RMSE, as a goodness-of-fit criterion, the reference case 

S1 produced the best fit (RMSE = 0.123), followed by S2 (RMSE = 0.127).  The inclusion of the DAK_BB 

CPUE severely deteriorated the fit (RSME = 0.385), whereas S4 fitted the three independent longline indices 

comparably well (RSME = 0.170). In general, all individual fits to individual CPUE indices, shown on log-scale, 

appear adequate (Figures 8-11), except for DAK_CPUE that showed a poor fit in the case of S3 (Figure 10). 

Additional figures illustrating the fits of the untransformed observed and predicted CPUE are provided in 

Appendix A (Figures A2-A5).        
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The estimates of the absolute quantities K, MSY, BMSY and FMSY alternated notably across the four scenarios 

(Figure 12). The reference case S1 produced the lowest K and BMSY and the highest F, while the MSY estimate 

closely approximated mean MSY across all four scenarios. The posterior medians for the stock status estimates 

were all located below B2017/BMSY and above F2017/FMSY, with S2 representing the most optimistic scenario, and 

S1 and S4 producing the most similar estimates. Perhaps noteworthy is that the reference case S1 estimates were 

associated with substantially higher precision than the three other scenarios, which can be inferred from the 

narrower boxplots (Figure 12). In general, absolute biomass estimates, such as K and BMSY were estimated with 

poor precision, whereas the MSY estimate was reasonably precise, especially in S1.  

 

Comparisons between prior and posterior distribution indicate that the priors for K and r conveyed minimal 

information to the parameters estimates (Figure 13). Of particular interest were the locations of process error 

variance (𝜎𝑝𝑟𝑜𝑐
2 ) posteriors relative to the informative prior, which was derived from the age-structured 

simulation experiment. Scenarios S1 and S2 resulted in 𝜎𝑝𝑟𝑜𝑐
2  posteriors that closely approximated the prior, 

which indicated that the admitted 𝜎𝑝𝑟𝑜𝑐
2  was sufficient to adequately describe the predicted population dynamics 

fitted to the JR2 CPUE indices. This was in sharp contrast to the strongly inflated 𝜎𝑝𝑟𝑜𝑐
2  relative to the prior for 

S3 as a result of the inclusion of the DAK_BB CPUE index. By comparison, S4 resulted in only moderate 

inflation of the 𝜎𝑝𝑟𝑜𝑐
2  posterior relative to the prior (Figure 13).  

 

The corresponding process error deviance (𝜂𝑦) plots are shown in Figure 14. Here, 𝜂𝑦 indicated a systematic, 

positive deviation from the zero mean over the period 1970-1989 for S2, which was less pronounced for the 

reference case S1. For S3, the sharp negative spike of 𝜂𝑦 is a clear indication of forcing the predicted biomass to 

fit the DAK_BB index (Figure 2), which also appears to retrospectively cause 𝜂𝑦 inflation over the early time 

period 1960-1930. Similarly, the notable increase in positive 𝜂𝑦 between 1965 and 1978 for S4 can be attributed 

to the increasing trend in the JP_LL CPUE (Figure 2), which appears to be in conflict with the simultaneous 

increase in total catch (Figure 1).    

    

The retrospective analysis conducted for the reference case revealed some retrospective patterns (Figure 15). 

However, the observed departures from the reference case point estimates (S1) fell mostly within the 95% 

credibility intervals of the reference case posteriors and therefore appeared to be adequately represented by the 

estimated uncertainty (Figure 15). Exceptions were the strong positive departures of F/FMSY for the years 2011-

2013 from the reference trajectory, which were associated with a steeper negative in B/BMSY. On closer 

inspections of residuals (Figures 7-8), this period is preceded by a sequence of negative CPUE residuals that 

show increasing deviations from the zero mean for the years 2008-2012.  

 

The progressive pattern analysis indicated that both stock status and MSY estimates were robust to sequential 

removal of the JR_early CPUE (Figure 16). Even complete removal of the JR_early CPUE (1959-1978) would 

not result in any meaningful changes for the current stock status estimates.   

 

3.4. Structural uncertainty and multi-model inference 

 

First, the intermediate grid run, with BMSY/K = 0.306 (h = 0.8), was used to conduct further sensitivity tests. 

Simultaneously decreasing the precision for the priors of r and K (CV 200% - 500%) did not have any notable 

influence on the parameter estimates and predictions, conforming that the priors were uninformative as intended 

(Figure A6). Similarly, sensitivity analysis showed that, in the case of the split CPUE JR2, it was possible to 

‘freely’ estimate the process variance, using an uninformative inverse-gamma prior (Jeffrey’s prior) with the 

scale and shape set to 0.001. The uninformative process variance prior resulted in even lower posteriors densities 

than predicted by the initial informative prior (Figure. A7). This had, however, no discernable effect on the 

stock status predictions, other than slightly improved precision estimates for model parameters and stock status 

quantities. As a result, the uninformative inverse-gamma prior was adopted for all final runs. A summary of the 

final JABBA-uncertainty grid model specifications is provided in Table 3.  

 

The JABBA runs over the range of fixed BMSY/K input values (0.26, 0.324 and 0.386) produced similar 

trajectories for fishing mortality (F) and biomass relative to unfished biomass (B/K) (Figure 17). Over the initial 

period 1950-1990, total biomass estimates were higher for BMSY/K = 0.278 compared to input values of 0.306 

and 0.332, but similar thereafter. Harvest rates started to exceed sustainable levels in 1994 (Figure 17) when 

catches reached their historical maximum of about 135,000 t (Figure 1) and remained above levels that can 

produce MSY (F/FMSY > 1) thereafter. Both MSY and BMSY estimates fell within close proximity to each other as 

illustrated by the location of the maxima of the surplus production curve (Figure 17; Table 4). The MSY point 

among for three grid models ranged from 77.493 – 76,768 t, whereas the Fox model run was slightly higher at 
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80,288 t (Table 4). Point estimates of B2017/K for the year 2017 ranged from 0.244-0.252, where BMSY/K = 0.278 

(high h = 0.9) resulted in the most pessimistic B2017/K. The opposite is the case for the trajectories of B/BMSY and 

F/FMSY. Here the BMSY/K = 0.278 (h = 0.9) produced the most optimistic stock status trajectories for B/BMSY and 

F/FMSY  that showed notably more contrast to runs with BMSY/K input values of 0.306 (h = 0.8) and 0.332 (h = 

0.7). This can attributed to predetermining the maximum of the surplus production curve (MSY) along the 

BMSY/K (x-)axis by the choice of the shape parameter m (and steepness h) which appears to be compensate by 

increased estimates of K as the reference point BMSY/K is decreased (Table 4). Unsurprisingly, the model results 

based on the low h = 0.7 came closest to the initial Fox model (Table 4).  

 

Degrees of stock depletion and overfishing are illustrated the three alternative BMSY/K input values and the Fox 

reference case model in the form of individual Kobe plots (Figure 18). The cumulative probability of the red and 

yellow regions suggests that current biomass levels are below BMSY with probabilities ranging between 77.4% for 

BMSY/K = 0.278 to 92.5% for BMSY/K = 0.332. The combined uncertainty about the stock status reference points 

B2017/BMSY and F2017/FMSY, for the three alternative BMSY/K (and thus m) reference case runs is presented as a 

combined Kobe posterior plot (Figure 19). The combined posteriors from the three grid runs predict with 85.5% 

probability that the stock remains overfished. 

 

 

4. Discussion 

 

The presented Atlantic bigeye tuna assessment represents the first application of the Bayesian state-space surplus 

production model JABBA to a major tuna stock. We found that all scenarios convergences with two fairly short 

MCMC chains, which allowed completing a JABBA run in less than 2 minutes. This makes it possible to 

reproduce the entire presented analysis in less 40 min, including all scenarios, retrospective- and progress 

analysis, sensitivity analysis on BMSY/K, projections and figure outputs. The four considered sets CPUE indices 

fitted reasonably well with the exception of the DAK_BB CPUE. Overall, our analysis provided evidence that 

supports the choice of the split JR2 CPUE for the reference case model based on the goodness-of-fit, parameter 

precision and more desirable residual and process error patterns compared to the alternative CPUE scenarios. 

Both retrospective and progress patterns performed overall adequate. The exceptions were the fairly strong 

retrospective patterns for the years 2011-2013, which warrants closer examination. In the context of the past 

2015 and 2010 bigeye tuna assessments, the retrospective analysis showed similar MSY estimates for data fitted 

through 2014, but would have suggested a more conservative MSY estimate and more severe overfishing for 

data fitted through 2009, respectively.  

 

The approach to develop a process variance prior through stochastic age-structured simulations was originally 

inspired by a request of process error diagnostic plot during the 2017 International Fisheries Stock Assessment 

Review Workshop in Cape Town (http://www.maram.uct.ac.za/ maram/workshops/2017). The panel suggested 

that, ideally, the posterior for the process error variance should be comparable to the variation in biomass 

obtained by projecting the age-structured model forward without catches, but with process error (Cox et al., 

2017). Here, we build on this concept by directly using stochastic age-structured projection to formulate an 

informative for the process variance. Interestingly, the simulated process variance range for bigeye tuna closely 

matches the process variance prior developed for South Atlantic albacore tuna (Thunnus alalunga) by Millar and 

Meyer (2000b). Based on information on recruitment variation in age-3 fish (Myers et al., 1999) and the relative 

contribution of age-3 fish to the biomass as a function of somatic growth and natural mortality Millar and Meyer 

(2000b), predicted a process error range between 0.04 and 0.08. In general, this agrees with the typically 

considered process errors (< 0.15), where Bayesian state-space surplus models appear to perform generally well 

(Froese et al., 2017; Ono et al., 2012; Thorson et al., 2014; Winker et al., 2018a).      

 

The grid-approach covering alternative BMSY/K inputs highlights the importance of capturing the model 

uncertainty associated with the shape parameter m, which determines the position of BMSY relative to K. We 

found that MSY and biomass depletion estimates relative to K were fairly robust to the choice of BMSY/K, but that 

the reference points B/BMSY and F/FMSY essential become a ‘moving target’ if m is varied. However, the situation 

is no different for age-structured models (Figure 6), where the choice of steepness h typically predetermines the 

position of the target reference point SB/SBMSY (Mangel et al., 2013). Further, we illustrated that the Fox model 

parameterization for Atlantic bigeye tuna would be best approximated by a steepness h = 0.56 as this would 

achieve comparable values of SBMSY/SB0 and BMSY/K for ss3 and JABBA, respectively. This also suggest that the 

Fox bigeye tuna model is more directly comparable to the low steepness sensitivity run (h = 0.7) than the ss3 

reference case (h = 0.8).  

 

http://www.maram.uct.ac.za/%20maram/workshops/2017
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The implicit relationships among h, m and the functional form of the stock’s productivity curve are often ignored 

when comparing outputs from age-structured and surplus production models. Maunder (2003) highlighted issue 

by pointing out that the Schaefer model, in predicting MSY at 50% unfished biomass, rarely matches the typical 

range of steepness values of h = 0.6 – 0.95 considered in age-structured  assessments for most tuna and 

billfishes, which would imply MSY at biomass depletion levels that are notably below 50%. To facilitate 

comparability between JABBA and ss3 results, we therefore chose the range of BMSY/K (0.278, 0.306 and 0.332) 

that corresponded to the equivalent ss3 ratios of SBMSY/SB0 based on the steepness values (h = 0.9, 0.8, 0.7) 

considered in 2015 assessment. We suggest capturing the model uncertainty associated with m by combining the 

posterior from multiple JABBA runs as a means to draw multi-model inference about the stock status.      

 

The number of age-structured assessments of tuna and tuna-like species has been continuous increasing over the 

last three decades (Thorson et al., 2018), with stock synthesis having been on the forefront of this development 

in recent years. Yet, surplus production models persist as a routine assessment tool within their traditional realm 

of large pelagic tuna, billfish and shark assessments (Carvalho et al., 2014; Punt et al., 2015; Winker et al., 

2018a). Judging between the two model types is not always straight forward and will dependent on data 

available as well as fisheries dynamics. For example, in the cases of swordfish and blue marlin most of the catch 

is typically taken by long-line fleets with overall similar selectivity (ICCAT, 2017; Winker et al., 2018b) so that 

at it may sufficient describe the stock in the form of aggregated biomass dynamics. This situation is different for 

bigeye tuna where purse-seine and longline fisheries target entirely different age classes of the population. For 

Pacific bigeye tuna it has been shown the shift towards an increasing purse seine catch directly influences the 

attainable MSY and surplus production (Wang et al., 2009). Nevertheless, this initial JABBA assessment appears 

sufficiently robust for reliable inference about the stock status. However, we caution against the use of JABBA-

based projections for specific quota recommendations in the case of bigeye tuna, because the likely strong 

difference in the relative impact of the different fleets can currently not be explicitly accounted for with 

(aggregated-) biomass dynamic models. 
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Table 1. Summary of four scenarios S1-S4 that were formulated based on alternative sets of standardized CPUE 

indices for Atlantic bigeye tuna. 

 

Scenario CPUE indices and period Abbreviation 

S1 (reference case) 
Joint R2 Early no vessel id (1959-1978) JR2_early 

Joint R2 Late vessel id (1979-2017) JR2_late 

S2 Joint R2 Long term no vessel id (1959-2017) JR2_long 

S3 

Joint R2 Early no vessel id (1959-1978) JR2_early 

Joint R2 Late vessel id (1979-2017) JR2_late 

Dakar Baitboat (2005-2017) DAK_BB 

S4 

Japan Longline (1961-2017) JP_LL 

US longline (1986-2017) US_LL 

Taiwan longline (1995-2017) TW_LL 

 

 

Table 2. Stock parameters for bigeye tuna used as input for the age-structured simulation model to develop an 

informative prior for the process error variance (see text for parameter definition).  

 

Parameter Value Unit Age Ma  

L∞ 217.3 cm 0 0.72 

κ 0.18 year-1 1 0.486 

t0 -0.709 years 2 0.383 

a 0.00002396 kg 3 0.326 

b 2.9774 kg cm-1 4 0.29 

amin 0 years 5 0.265 

amax 10 years 6 0.248 

SL 107 cm 7 0.235 

S 9 cm-1 8 0.225 

Ma (CV = 0.15) Lorenzen year-1 9 0.218 

   10+ 0.212 
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Table 3. Summary JABBA uncertainty grid model specifications for Atlantic bigeye tuna. 

Quantity Specification Abbreviation 

CPUE Joint R2 Early no vessel id (1959-1978) 

Joint R2 Late vessel id (1979-2017) 

JR2_early 

JR2_late 

Unfished biomass K ~ lnorm(log(1,581139),1.726)                         

with 0.025th = 500,000 and 0.975th = 

5,000,000 

K 

Intrinsic rate of 

population increase 

r ~ lnorm(log(0.5),1.66)                                  

with 0.025th = 0.05 and 0.975th = 5 

r 

Initial biomass 

depletion (B1950/K) 
𝜑 ~ lnorm(1,0.05)  𝜑 

Biomass at MSY 

relative to the 

unfished biomass 

BMSY/K = 0.278 

BMSY/K = 0.306 

BMSY/K = 0.332 

BMSY/K 

Process variance 
𝜎𝑝𝑟𝑜𝑐
2 ~ inverse-gamma (0.001,0.001) 

𝜎𝑝𝑟𝑜𝑐
2  

catchability 

coefficient 
q ~ uniform (10-30,1000) 

q 
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Table 4. Summary of posterior quantiles denoting the median and the 95% confidence intervals of parameter 

estimates for the JABBA reference grid runs and the Fox model run for Atlantic bigeye tuna. 

 

  B/BMSY  = 0.306 (Ref: h = 0.8)   B/BMSY  = 0.332(low: h = 0.7) 

Estimates Median 2.50% 97.50%   Median 2.50% 97.50% 

K (t) 1349994 958351 2270464   1262803 899757 2018226 

r 0.132 0.07 0.199   0.154 0.088 0.229 

 (psi) 0.934 0.853 1.019   0.937 0.853 1.021 

σproc 0.032 0 0.089   0.045 0 0.084 

m 0.706 0.706 0.706   0.82 0.82 0.82 

FMSY 0.188 0.099 0.281   0.188 0.107 0.279 

BMSY (t) 413106 293261 694776   419299 298754 670128 

MSY (t) 77493 65695 86427   78608 68454 87446 

B1959/K 0.926 0.814 1.015   0.927 0.813 1.021 

B2017/K 0.252 0.185 0.338   0.257 0.191 0.339 

B2017/BMSY 0.822 0.606 1.106   0.775 0.575 1.02 

F2017/FMSY 1.214 0.848 1.738   1.272 0.923 1.792 

  B/BMSY  = 0.278 (high: h = 0.9)   Fox (BMSY/K = 0.37) 

Estimates Median 2.50% 97.50%   Median 2.50% 97.50% 

K (t) 1408989 1017500 2224121   1176284 815980 3583657 

r 0.117 0.067 0.171   0.185 0.056 0.283 

 (psi) 0.936 0.852 1.019   0.936 0.854 1.021 

σproc 0.045 0 0.084   0.045 0 0.089 

m 0.597 0.597 0.597   1.001 1.001 1.001 

FMSY 0.196 0.112 0.287   0.185 0.055 0.283 

BMSY (t) 391753 282904 618391   432947 300332 1319013 

MSY (t) 76768 66141 85521   80288 66674 89365 

B1959/K 0.927 0.811 1.017   0.925 0.808 1.018 

B2017/K 0.244 0.183 0.323   0.267 0.191 0.356 

B2017/BMSY 0.879 0.659 1.163   0.724 0.519 0.968 

F2017/FMSY 1.148 0.816 1.615   1.327 0.949 2.077 
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Figure 1. Time-series of catch in metric tons (t) for Atlantic bigeye tuna (1950-2017). 
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Figure 2. Illustrations of trends in CPUE indices according to Scenarios S1-S4 for Atlantic bigeye tuna, which 

were produced using the state-space CPUE averaging tool implemented in JABBA. The underlying abundance 

trend is treated as an unobservable state variable that follows a log-linear Markovian process, so that the current 

mean relative abundance was assumed to be a function of the mean relative abundance in the previous year, an 

underlying mean population trend and lognormal process error term. The CPUE indices are aligned with the base 

index via estimable catchability scaling parameters. 
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Figure 3. Illustration of the ‘flat’ lognormal priors for K (CV=173%) and r (CV = 166%) and the informative 

lognormal prior for the initial biomass depletion P1950 = B1950/K.   
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Figure 4. Illustrating the assumed (a) lognormal standard deviations determining the variation in recruitment 

(R) variation, (b) inter-annual variation in the natural mortality-at-age (Ma) and functional relationships of (c) 

weight-at-age (d) length-at-age, (e) selectivity-at-age and (f) selectivity-at-length used to simulated the natural 

variation in an unfished population of Atlantic bigeye tuna.       
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Figure 5. Showing simulated (exploitable) variation in biomass trajectories (top left) of an unfished population 

of Atlantic bigeye tuna over a period of 68 years; log-biomass deviations for sequential years (top right); the 

resulting distribution of 10,000 random process error deviates (bottom left); and the observed distribution for the 

process error variance (black line), with shape = 0.9381 and rate = 0.03 representing the maximum likelihood 

estimates of the fitted (red line) inverse-gamma distribution (bottom right).     

   



 

2150 

 

Figure 6. Linear relationship between steepness h in values and predicted SBMSY/SB0 ratio from the stock 

synthesis (ss3) model runs for the range of steepness values (h = 0.7-0.8) conducted during 2018 ICCAT bigeye 

tuna stock assessment.  The solid black circle denotes the predicted position of h = 0.56 that would correspond to 

B/BMSY ~ 0.37 for the Fox surplus production model.  
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Figure 7. JABBA residual diagnostic plots for alternative sets of CPUE indices examined for Scenarios S1-S4. 

Boxplots indicate the median and quantiles of all residuals available for any given year, and solid black lines 

indicate a loess smoother through all residuals. 
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Figure 8. JABBA fits to the standardized JR2_early and JR2_late CPUE (in log scale) for the reference case 

scenario S1. The solid blue line is the model predicted value and the circles are observed data values. Vertical 

black lines represent the estimated 95% confidence intervals around the CPUE values. 

 

 

Figure 9. JABBA fits to the standardized JR2_long CPUE (in log scale) for scenario S2. The solid blue line is 

the model predicted value and the circles are observed data values. Vertical black lines represent the estimated 

95% confidence intervals around the CPUE values. 
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Figure 10. JABBA fits to the standardized JR2_early, JR2_later and DAK_BB CPUE (in log scale) for scenario 

S3. The solid blue line is the model predicted value and the circles are observed data values. Vertical black lines 

represent the estimated 95% confidence intervals around the CPUE values. 
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Figure 11. JABBA fits to the standardized JP_LL, TW_LL and US_LL (in log scale) for scenario S4. The solid 

blue line is the model predicted value and the circles are observed data values. Vertical black lines represent the 

estimated 95% confidence intervals around the CPUE values. 
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Figure 12. Boxplots summarizing the postirior distributions depicting the stock stutus for scenarios S1-S4, 

where B/BMSY and F/FMSY are presented for the final assessment year 2017. Dashed lines denote means across the 

for sceanrios.  
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Figure 13. Prior and posterior distributions of K, r and process error variance 
2
proc

 for scenarios S1-S4. 

Posteriors distributions are plotted using generic kernel densities. 

. 
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Figure 14. Process error deviation (
y
) plots, shown for scenarios S1=S4. Solid black lines denote the median 

process error 
y
 with associated 95% CIs illustrated by great shaded areas.  
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Figure 15. Retrospective analysis for stock biomass (t), surplus production function (maximum = MSY), B/BMSY 

and F/FMSY for the Atlantic bigeye tuna JABBA base case scenario S1. The label “Reference” indicates the 

reference case model fits and associated 95% CIs to the entire time series 1950-2017. The numeric year label 

indicates the retrospective results from the retrospective ‘peel’, sequentially excluding CPUE data back to 2007. 

Grey shaded areas denote the 95% CIs, which are indicated by crosshair for BMSY and MSY defining the 

maximum of the surplus production curve.  
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Figure 16. Progressive pattern analysis for stock biomass (t), surplus production function (maximum = MSY), 

B/BMSY and F/FMSY for the Atlantic bigeye tuna JABBA base case scenario S1. The label “Reference” indicates 

the reference case model fitted to the entire time series 1950-2017. The numeric year label indicates the 

retrospective results from the retrospective ‘peel’, sequentially excluding CPUE data back to 2007. Grey shaded 

areas denote the 95% CIs, which are indicated by crosshair for BMSY and MSY defining the maximum of the 

surplus production curve.  
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Figure 17. JABBA reference case model runs for three alternative BMSY/K input values showing predicted 

biomass (t), fishing mortality (F), biomass to unfished biomass (B/K), surplus production function (maximum = 

MSY), B/BMSY and F/FMSY for the Atlantic bigeye tuna JABBA base case scenario S1. The value of BMSY/K= 

0.324 corresponds a steepness of h = 0.8 assumed for the stock synthesis (s33) reference case 2015 and 2018.  
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Figure 18. Kobe phase plot showing estimated trajectories (1950-2017) of B/BMSY and F/FMSY for the three 

alternative BMSY/K input values. The value of BMSY/K= 0.306 corresponds a steepness of h = 0.8 assumed for the 

stock synthesis (s33) reference case 2015 and 2018. Different grey shaded areas denote the 50%, 80%, and 95% 

credibility interval for the terminal assessment year.  The probability of terminal year points falling within each 

quadrant is indicated in the figure legend.  

 



 

2162 

 

Figure 19. Kobe phase plot showing the combined posteriors of B/BMSY and F/FMSY  (1950-2017) from reference 

case runs for the three alternative BMSY/K input values using the ‘Kobe’ library in FLR (Kell et al., 2007b). The 

value of BMSY/K= 0.306 corresponds a steepness of h = 0.8 assumed for the stock synthesis (s33) reference case 

2018. The probability of terminal year points falling within each quadrant is indicated in the figure legend.  
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Appendix A 

 

Figure A1. Trace plots for the model (scenario S1) parameter drawn from MCMC samples in the Bayesian state-

surplus production model for the Atlantic bigeye tuna. 

 

Figure A2. Time-series of observed (circle and SE error bars) and predicted (solid line) CPUE of Atlantic 

bigeye tuna for scenario S1 (JR2 early + late). Shaded grey area indicates 95% C.I.  
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Figure A3. Time-series of observed (circle and SE error bars) and predicted (solid line) CPUE of Atlantic 

bigeye tuna for scenario S2 (JR2 long). Shaded grey area indicates 95% C.I.  
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Figure A4. Time-series of observed (circle and SE error bars) and predicted (solid line) CPUE of Atlantic 

bigeye tuna for scenario S3 (JR2 early + late, DAK_BB). Shaded grey area indicates 95% C.I.  
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Figure A5. Time-series of observed (circle and SE error bars) and predicted (solid line) CPUE of Atlantic 

bigeye tuna for scenario S4 (JP_LL, US_LL, TW_LL). Shaded grey area indicates 95% C.I. 
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Figure A6. Sensitivity analysis illustrating the effect of simultaneously increasing the prior CVs for r and K 

from 200% to 500% on the predicted biomass (t), fishing mortality (F), biomass to unfished biomass (B/K), 

surplus production function (maximum = MSY), B/BMSY and F/FMSY for Atlantic bigeye tuna. 
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Figure A7. Comparison of the “freely” estimated process variance posterior, using an uninformative prior with 

𝜎𝑝𝑟𝑜𝑐
2 ~1/gamma(0.001,0.001) and the initially developed informative prior based on age-structured simulations, 

with 𝜎𝑝𝑟𝑜𝑐
2 ~1/gamma(9.606,0.03).  

 


