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SUMMARY 

 

We provide a summary of various data that have been collected which may be used to describe 

alternative hypotheses for fishing and population dynamics of Atlantic bluefin tuna. When 

formalized in operating models these alternative hypotheses may be used in Management 

Strategy Evaluation to provide management advice. In this paper we discuss the roles of these 

data in informing operating models and priorities for obtaining data.  

 

RÉSUMÉ 

 

Nous fournissons un résumé des différentes données qui ont été collectées et qui peuvent être 

utilisées pour décrire des hypothèses alternatives pour la dynamique de la pêcherie et de la 

population de thon rouge de l'Atlantique. Une fois formalisées dans des modèles opérationnels, 

ces hypothèses alternatives peuvent servir dans l'évaluation de la stratégie de gestion pour 

fournir des avis de gestion. Nous discutons dans ce document des rôles de ces données pour 

apporter des éléments informatifs aux modèles opérationnels ainsi que des priorités pour 

l'obtention de données.  

 

RESUMEN 

 

Proporcionamos un resumen de diversos datos que han sido recopilados y que podrían 

utilizarse para describir hipótesis alternativas para la dinámica pesquera y de población del 

atún rojo. Cuando se formalicen en modelos operativos, estas hipótesis alternativas podrían 

usarse en evaluaciones de la estrategia de ordenación con el fin de proporcionar 

asesoramiento en materia de ordenación. En este documento se discuten los papeles de estos 

datos a la hora de aportar información a los modelos operativos y prioridades para obtener 

datos.  
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1 Introduction 

 

A Management Strategy Evaluation (MSE, Butterworth 1999, Cochrane 1998, Punt et al. 2014) approach has 

been proposed for Atlantic bluefin tuna (Anon. 2014) as a suitable framework for providing robust management 

advice consistent with the precautionary approach (GBYP 2014). A principal task in the construction of an MSE 

framework is the development of operating models which represent credible hypotheses for population and 

fishery dynamics. 

 

Operating models are typically fitted to data to ensure that model assumptions and estimated parameters are 

empirically credible (Punt et al. 2014, e.g. CCSBT 2011). Data for Atlantic bluefin tuna are numerous, vary 

widely in their information content, may be interpreted in various ways (e.g. exploitation rate, growth, 
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movement) and often various data types provide contrasting information about fleet and population dynamics. 

For example, size composition data and catch rate indices may provide different inferences regarding stock 

depletion. A range of operating models may be developed based on the types of data used to fit the model and 

the way in which the model interprets these data. A precursor to discussions about how data should be used by 

operating models is a metadata summary that outlines the types of data that have been collected for Atlantic 

bluefin tuna. In this paper we summarize these data and describe their potential role in the development of 

operating models. We also describe an interim solution to operating model development in which a preliminary 

operating model is established rapidly from data that are freely available, after which the model may be refined 

as additional data become available. 

 

Since operating models for Atlantic bluefin tuna must be able to represent hypotheses regarding spatio-temporal 

distribution and stock mixing (Kell et al. 2011, Arrizabalaga et al. 2014, Fromentin and Lopuszanski 2014) a 

suitable operating model must include spatial and seasonal structure. The 2015 bluefin tuna data preparatory 

meeting identified eight large marine areas for disaggregation of bluefin tuna data that may be used to model 

spatial dynamics (Figure 1, ICCAT 2015a). Concerns have been expressed about the appropriateness of these 

spatial definitions for calculating standardized CPUE indices for the Japanese longline fleet however (Kimoto et 

al. 2015). We also identify four subyear temporal definitions that may approximate the spatial distribution of 

bluefin tuna within model years:  

 

(subyear 1) 1st January – 15th March,  

(subyear 2) 16th March – 15th May,  

(subyear 3) 16th May – 15th July, 

(subyear 4) 16th July – 31st December.  

 

In the remainder of this document we refer to this spatial and temporal structure by ‘area’ and ‘subyear’. A 

preliminary operating model (Modifiable Multi-stock Model, or ‘M3’) is under development (presented in 

Carruthers et al. (2016, in press) which is to be fitted to the various data discussed in this paper. From herein we 

refer to this as the ‘operating model’.  

 

 

2 Data and their role in preliminary operating models 

 

A coarse description of Metadata to support bluefin tuna operating model development is presented in Table 1.  

2.1 CPUE indices 

 

The operating model for Atlantic bluefin tuna is intended to be fitted to standardized catch rate data at the 

resolution of area and subyear. Providing relative abundance data at this resolution anchors the estimation of 

movement to only those scenarios that maintain a credible spatial distribution of vulnerable biomass. Models that 

include only annual indices have no such constraint and can predict movement and spatial distribution from 

tagging data that are not credible given fishery catch rate data (for example an absence of fish where observed 

seasonal catch rates are substantial).  

 

It follows that when fitting spatial models, the value of relative abundance indices at the same resolution as 

estimated movements can be very high. Previous simulation evaluations have shown that reliable estimation of 

spatial distribution can be obtained from only spatial catch rate data and characterizing this reliably is a primary 

concern for the estimation of variables of management interest such as stock depletion and MSY reference points 

(Carruthers et al. 2011b). The same spatial catch rate data can also provide additional information about age- or 

size-specific movement if fleets have varying size selectivities. Since these indices constrain movement 

estimation to observed spatial distributions, the information content of electronic tagging can be used to explore 

additional characteristics of movement such as temporal variability or different movement of juvenile and 

mature fish. Since commercial catch rate data are generally reported at a sufficient temporal and spatial 

resolution to produce these indices at the scale of area and subyear, a relatively large quantity of information 

about spatial distribution is provided to the operating model with no additional data collection requirements. 

 

The Japanese longline and US longline are important standardized indices for fitting operating models due to 

their relatively wide spatial and temporal coverage in mixing areas of the North Atlantic.  A proposed US-

Canadian combined longline index may provide additional continuity over a wider spatial range that covers the 

range of the population in the West Atlantic Ocean (Lauretta et al. 2015, SCRS-2015-171). In the 

Mediterranean, Moroccan, Portuguese, Spanish and Italian trap catch rate data may be used to provide indices 

for eastern and western areas. While these indices are a priority for operating model development, the calculation 
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and testing of standardizing catch rates can be time intensive. We propose an interim solution in which freely 

available data, requested and organized by ICCAT, are used in preliminary operating models which are later 

updated with standardized indices. The most relevant data in this regard are the nominal (non-standardized) Task 

II catch and effort data, much of which is available at the temporal resolution of day and spatial resolution of 5x5 

degree ocean square (ICCAT 2015b) consistent with the defined areas. These data do not include covariates that 

can be used to account for shifts in fishing practices that are typically included in catch rate standardization. 

Effects of spatial expansion and contraction may still be accounted for (e.g. Ahrens and Walters 2005; 

Carruthers et al. 2011a).  

 

For a number of reasons, catch rate indices may not be linearly related to true changes in vulnerable biomass and 

may decline faster (hyperdepletion) or slower (hyperstability) than vulnerable biomass. Scenarios that 

incorporate hyperstability and hyperdepletion may be important for fitting operating models to historical relative 

abundance indices and also proposing observation models for MSE.  

2.2 Larval indices 

 

Recent papers have suggested that indices derived from larval surveys may be closely correlated with stock 

assessment predictions of spawning stock biomass (SCRS/2015/035). Larval surveys have been carried out in the 

Gulf of Mexico (1977-2013) and more recently the western Mediterranean (2001-2005, 2012-2013). It is 

possible that the operating model could be fitted to these indices under the assumption they are representative of 

trends in spawning stock biomass in spawning areas. If used in this way, these indices can be expected to 

strongly influence model predictions of trends in spawning stock biomass (since their interpretation is not 

contingent on estimates of selectivity and movement). Adding indices of spawning stock biomass may also 

indirectly inform age-based movement, maturity and selectivity of fishing in spawning areas.  

2.3 Catches 

 

The operating model predicts exploitation rate at the scale of subyear and area. It follows that catches are 

required at this scale and a fleet must be assigned to all catches (this may be an umbrella ‘other’ fleet of general 

size selectivity). In order to meet custom subyear definitions above it may be necessary to manually raise Task II 

catches for subyears and areas to sum to total reported landings.  

 

Catch data are generally the only source of scale in stock assessments: if catches are reported in kilograms the 

estimates of MSY, catch recommendations and the estimate of current biomass will be a number 1000 times 

larger than the same catches reported in metric tonnes. It follows that consistent bias in catches across a time 

series (for example consistent 25% underreporting of  catches) has no effect on estimates of stock depletion and 

fishing mortality rate and therefore is ignorable when specifying operating models (for which scale is not 

important unless a specific catch recommendation is to be considered). However temporal patterns in bias in 

catches can be significant (for example significant reductions in illegal, unreported and unregulated fishing of 

the eastern stock after 2008, ICCAT 2014b) and may provide contrasting view of historical stock trends and 

exploitation rate (e.g. Carruthers et al. 2015a). It follows that scenarios for catch underreporting (and related 

quantities such as dead discarding) could be used as alternative hypotheses that may be represented by operating 

models.  

 

In terms of MSE results and selection of management procedures, a potentially more important issue is the level 

of bias in future observations of catches that is simulated in the management strategy evaluation. Carruthers et 

al. (2015b) found bias in catches to be amongst the most influential of observation processes determining the 

performance of management procedures. In their study, catch observation bias was often much stronger 

determinant of MP performance than current stock depletion or historical trend in exploitation rate (estimated by 

the fitted operating models potentially arising from historical biases in catches). It is therefore important to 

carefully consider plausible scenarios for biases in reported catches in the future.  

2.4 Catch compositions 

 

Currently the operating model is intended to be fitted to length sample data provided to ICCAT (Task II size). 

The majority of these data are reported at a sufficiently fine spatial and temporal resolution to be aggregated to 

the subyear and area definitions of the operating model. These data are the primary source of information 

regarding the size-selectivity of fishing. The representativeness of these data, their spatial-temporal coverage and 

the contribution to exploitation of the associated fleets is likely to determine how fleets are defined in the 

operating model.  
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A fleet in the operating model represents a distinct size selectivity of substantial exploitation rate. The purpose of 

including fleet heterogeneity in the operating model is to accurately characterize patterns in the exploitation of 

size classes in order to best estimate quantities of interest such as stock status and fishing mortality rate at 

maximum sustainable yield. Each fleet in the operating model must have paired observations of catch and an 

index of fishing mortality rate I (catch divided by a standardized index of abundance) by area and subyear. Each 

fleet must also have some size composition data. The catches of fleets that do not have both composition data 

and a standardized index of fishing mortality rate must be aggregated with catches of a fleet of similar size 

selectivity (that does have both composition data and an index of fishing mortality rate). This relatively strict 

constraint ensures that the model does not require the estimation of a very large number of fishing mortality rate 

parameters (e.g. up to 12,480 free F parameters estimated for an eight area model, with four subyears, 65 

historical years of exploitation and 6 fleets). By including an index of fishing mortality rate, just one catchability 

parameter q is estimated per fleet: F=qI (e.g. 6 q parameters as opposed to 12,480 F parameters) 

 

Due to the computational overhead, it is not possible to model the large number of flag and gear combinations 

recorded by ICCAT which have caught bluefin tuna historically. However it is relatively straightforward to 

aggregate fleets of similar size selectivity for model fitting and then predict expected individual catch rates post-

hoc. This allows for parsimonious operating models (avoid including many fleets) while retaining predictive 

capacity for catch rates of individual fleets which may be a critical component of stakeholder utility.  

 

A persistent issue in the fitting of integrated stock assessment models is the correct weighting of various sources 

of data (Candy 2008, Francis 2011, Maunder and Punt 2013). This is particularly applicable to size composition 

data that can often dominate the global objective function due to the number of observations and likelihood 

functions that are typically assumed for these data (e.g. a multinomial observation model). By fitting to length-

composition data we bypass many of the issues associated with deriving age of fish from length data but do not 

avoid problems associated with overweighting composition data due to incorrectly accounting for non-

independence among observations. For example bluefin tuna are observed to school in size mono-specific groups 

and hence multiple observations of length from a fishing set may in fact represent a single independent length 

observation. It may be the case that operating model results are sensitive to specification of this ‘effective sample 

size’. It follows that various scenarios for fleet aggregation and effective sample size may be considered as 

alternative hypotheses to be represented by operating models in future MSEs.  

2.5 Conventional tagging data 

 

Conventional tagging data provide valuable information about the range of movements that are possible for 

Atlantic bluefin tuna and provide a basis for formulating alternative hypotheses about movement. Conventional 

tagging data have been used in previous bluefin tuna assessment models to estimate fishing mortality rates (and 

hence abundance) by quarter and area (MAST, Taylor et al. 2011). These approaches have assumed a prior for 

reporting rate that is constant over time, space and among fleets. There is however evidence that reporting rates 

vary in time, space and among fleets by factors as great as 500 (Carruthers et al. 2011, Carruthers and McAllister 

2010, Hillary et al. 2008). Similarly large disparities between predicted catches and tag recapture probabilities 

can be expected if these variable reporting rates are not accounted for.  

 

A fleet specific prior for reporting rate may be prescribed (e.g. Carruthers and McAllister 2010). The principal 

problem with this approach is that these reporting rate estimates are generally sensitive to alternative 

assumptions and can be as much as 1/3 or 3 times base-case estimates. While the difference between a reporting 

rate prior mean of 1/1000 or 3/1000 may not seem large, in relative terms this is highly uncertain and consistent 

with predictions of catches and abundance that differ by a factor of 3.  

 

It is possible to estimate reporting rates by fleet inside the operating model but since these are confounded with 

recapture probability these data may only weakly inform abundance. This would not be a serious problem if the 

computational overhead associated with conventional tagging data was small. However it can be as large as 10 

times the total number of other calculations slowing estimation speed by a similar margin (more so if reporting 

rates are estimated). An operating model of 4 subyears, 65 historical years, 8 areas and 6 fleets requires the 

calculation of approximately ~14M recapture probabilities in addition to the likelihood calculation for recaptured 

tags.  

 

Many tags have been recaptured by observer programs for which it may be assumed that reporting rates are 

100%. In order to retain information regarding recapture probability (and hence abundance) it is possible to fit to 

only observer tag recapture data and provide post-hoc estimates of reporting rates (also observed versus 

predicted recaptures) for the various commercial fleets.   
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The preliminary version of the operating model is designed to use conventional tagging data to identify the range 

of possible bluefin tuna movements and also provide information about possible shifts in growth rate of bluefin 

tuna. The latter is a novel use of conventional tagging data in the context of integrated stock assessment. It has 

been hypothesized that as exploitation rates increase there should be a shift in the size composition of the 

modelled population due to the attrition of faster growing individuals (Walters and Martell 2004). Traditional 

length-based assessments (e.g. MULTIFAN-CL, Fournier et al. 1998) have not accounted for this phenomenon 

and instead, renew the distribution of growth types in each cohort as it ages, irrespective of the level of 

exploitation. In contrast, a cohort may start with a normal distribution of maximum length among individuals 

which becomes strongly positively skewed as larger fish are preferentially removed from a cohort (perhaps at 

high exploitation rates, older fish would belong to the very lower tail of the unfished distribution of maximum 

length). Simulation studies indicate that estimates of fishing mortality rates from models that do not account for 

this phenomenon could be strongly positively biased (as much as 3 times that of true fishing mortality rate, C. 

Walters and A. Hordyk, personal communication).  

 

The operating models under development include a dynamic inverse age-length key that accounts for attrition of 

faster/larger growth type groups in order to investigate this potentially important source of model mis-

specification (SCRS/2015/179). Conventional tagging data could provide a valuable empirical validation of 

shifts in growth rate predicted by the model since each observation of a release and recapture provides an 

estimate of the growth parameters (e.g. Walters and Essington 2010). Given it may strongly impact estimates of 

stock status and productivity, growth type attrition may be considered an important alternative hypothesis to be 

captured in Atlantic bluefin tuna operating models.  

2.6 Surgically implanted archival tags 

 

Surgically implanted archival tags (SI tags, e.g. Walli et al. 2009, LPRC 2015) provide detailed tag track 

information and have been included in previous spatial population models to predict both movement and 

exploitation rates (Taylor et al. 2011). While reporting rates of archival tags are generally much higher than 

conventional tags (due to larger rewards for reporting archival tags), uncertainty over reporting rates and post-

release mortality rate still complicates their use in the estimation of exploitation rate. SI tags could be used (1) to 

estimate exploitation rate and abundance with some assumption about reporting rate, (2) to estimate only 

recapture probabilities of tags reported by fleets of known reporting rate (e.g. observer fleets), (3) to estimate 

only movement assuming that releases and recaptures are independent of fishing (similarly to PSAT tags).  

2.7 Pop-off Satellite Archival Tags (PSATs) 

 

The primary source of information regarding movements from model areas to model areas among subyears 

comes from PSAT tags (Block et al. 2005, Lutcavage et al. 2012, Cermeno et al. 2015). The operating model 

includes these data formatted into separate subyear segments (i.e. has the fields ‘year-from’, ‘area-from’, ‘area-

to’, ‘subyear-from’, ‘age-from’).  

 

The majority of PSAT tags do not have a definite stock of origin (SOO) (they were not tagged in a spawning 

area or ocean area specific to a single stock). In such cases it is not clear how to weight these data such that 

information about movement can be correctly attributed to stock. Determining SOO (or SOO weights) may be 

undertaken prior to model fitting based on other SOO data. Alternatively this calculation can occur inside the 

model using the relative likelihood of SOO based on either (1) the model predicted composition of stocks in the 

areas of a tag track (as in MAST, Taylor et al. 2011) or (2) the predicted likelihood of tag track movements 

given estimated movement parameters of stocks. Both methods that occur inside the model can be expected to be 

unreliable since they are likely to lead to estimated movements that best divide the tags of unknown SOO (i.e. 

they can be expected to underestimate stock mixing simply due to the likelihood weighting). This potential 

source of bias should be simulation tested. The way in which SOO is assigned to PSAT tags may impact 

estimates of spatial distribution and movement and hence management reference points, and could be considered 

as alternative scenarios for operating models.  

  

It may be possible to estimate spatial distribution of bluefin tuna in the absence of PSAT data using simplified 

spatial models that do not attempt to characterize the full range of movement among areas (e.g. the gravity 

models of Carruthers et al. (2011) and MAST Taylor et al. (2011)). However PSAT data contain vital 

information for evaluating alternative movement hypotheses such as age-based movement and temporally 

variable movement and their collection is a priority for operating model development.  
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2.8 Otolith microchemistry 

 

It is generally not possible to estimate stock size and mixing using a multi-stock model without external data 

regarding stock of origin: without these data the magnitudes of the various stocks are confounded. Previous 

multi-stock models such as MAST have used otolith microchemistry data as the primary source of information 

regarding stock of origin (e.g. Rooker et al. 2008, Rooker et al. 2014). The challenge is processing 

microchemistry data at the resolution of subyear and area. While these data have been gathered in all of the areas 

of the operating model, they have not been processed at this resolution and only exist from 2005 onwards (i.e. 

Rooker et al. 2008) 

 

Given that ICCAT data are already freely available that can be used to characterize trends in abundance, catch 

compositions and spatial distribution, data that provide information about stock of origin are arguably the most 

important for fitting a preliminary bluefin tuna operating model (after which other data sources can be refined).  

2.9 Otolith shape analysis 

 

Otolith shape analysis is an alternative approach for characterizing stock mixing which is both cheaper than 

micro-chemical analysis and also non-destructive. The method has been compared with traditional micro-

chemical analysis and shows promise, achieving similar accuracy (SCRS/P/2015/004). Further detail on the 

approach is summarized in the report of the 2015 data preparatory meeting (ICCAT 2015a). Similar to other data 

that provide information regarding stock of origin, these data are particularly valuable in the early stage of 

operating model development.  

2.10 Single nucleotide polymorphism (SNP) 

 

SNP data provide another basis for assigning individuals to stock of origin and have been collected for both 

mixing areas in the Atlantic and spawning areas in the Gulf of Mexico and Mediterranean. The most recent SNP 

analyses (e.g. SCRS/2015/048) have made use of a larger number of genetic markers and have demonstrated an 

ability to accurately determine sub-stock structure such as spawning area (e.g. Gulf of Mexico, Balearic Sea, 

Strait of Sicily and Levantine Sea). It follows that SNP data could provide the necessary empirical basis for 

formalizing hypotheses that have been proposed for sub stock structure (e.g. Kell et al. 2011, Fromentin and 

Lopuszanski 2014), particularly for the Eastern stock that is thought to have spawning areas in western, central 

and eastern Mediterranean. 

 

An ongoing challenge for operating model development is generating model datasets that can inform a model 

with more than one Mediterranean sub-stock. In principle this is possible if SNP data can be used to quantify 

fractions of individuals in each sub-stock in sub-areas of the Mediterranean and there are sufficient electronic 

tags (that can be assigned to each Mediterranean sub-stock) to estimate movement. Such data would still have to 

be provided at the resolution of subyear and area after which they may be too sparse to be considered a reliable 

characterization of sub-stock structure.  

2.11 Other genetics data 

 
Coupled with electronic tagging data, older genetic studies based on microsatellites (Carlsson et al. 2007) and 
mitochondrial DNA (Boustany et al. 2008) provided early confirmation of the broad east-west stock structure. It 
is not clear whether these data could be processed at the level of subyear and area in order to inform operating 
models. However this may be worth pursuing since these data broaden the temporal range of data on SOO.  
 
Another potential for obtaining abundance information is close-kin analysis to estimate the spawning stock 
abundance (Bravington et al. 2013). This provides the potential for genetic mark recapture experiments to 
estimate absolute abundance, mortality rates or migration, addressing directly some of the key uncertainties in 
BFT assessments. In particular the close-kin analysis could provide a fishery-independent estimate of spawning 
stock numbers, particularly for Western Atlantic Bluefin. 

2.12 Fishery independent surveys 
 
In addition to the fishery-independent larval surveys discussed above, aerial surveys have been suggested as 
potential source of index information. Aerial surveys (Bonhommeau et al. 2010) have been conducted in the 
Mediterranean since 2010 and may represent the longest running index of spawning biomass for the eastern 
stock. Similarly to larval indices, the aerial survey may strongly influence operating model estimates of recent 
trends in spawning biomass. Since the aerial surveys in the Mediterranean have covered areas that encapsulate 
eastern sub-stock structure, these data may also be used to inform alternative sub-stock structure hypotheses.  
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Similar aerial surveys have been proposed for the Western stock in addition to a western hydro acoustic survey 

and a hydro acoustic curtain in the Strait of Gibraltar. While such proposals may not necessarily support 

operating model development, these data may support management procedures in the future. It follows that it is 

important to characterize metadata for these types of future data collection programs.  

2.13 Growth and aging 

 

The operating model is fitted to catch-at-length data and predicts fishing mortality rate by length class for each 

fleet. The operating model therefore requires an inverse age-length key (probability of an individual being in a 

length class given it is of an age class) to convert estimates of fishing mortality rate at length to fishing mortality 

rate at age. The operating model either (1) applies a static, user-specified inverse age-length key or (2) attempts 

to generate a dynamic inverse age-length key from model predicted fishing mortality rate and user-specified 

variability in individual growths. In either case, growth must be characterized in order to develop these keys and 

also predict the weight of individuals of a given age class. Since the inverse age-length keys are a requirement of 

the operating model and are not yet available, their derivation is priority for developing a preliminary operating 

model.  

2.14 Maturity 

 

There have been numerous studies focused on bluefin tuna reproductive biology with which to characterize 

maturity at age and fecundity in general (e.g. Corriero et al. 2005, Medina et al. 2007, Diaz 2010, Aranda et al. 

2013, Knapp et al. 2014). However participants of the recent data-preparatory meeting (ICCAT 2015) concluded 

that the body of work on bluefin tuna reproduction should be reconsidered prior to the next assessment. It may 

be possible to identify a various hypotheses for bluefin tuna maturity and fecundity that are represented by 

operating models. Participants of the same meeting (ICCAT 2015) also reiterated an ongoing concern that the 

age-at-maturity estimated from fish on the spawning grounds may not be representative of reproductive 

contribution at age of the wider population. Again this source of uncertainty may be formalized in operating 

models.  

 

3 Discussion 

3.1 Strategy for operating model development and data priorities 

 

In settings where MSE has been successful it has been an iterative process (Punt et al. 2014). It is generally 

recognised that stakeholders require prior exposure to MSE concepts in order to identify operating models and 

performance metrics. In recognition of this, it is a priority to develop a working MSE framework based on 

operating models fitted to data in order to advance the GBYP MSE process. A fitted operating model also allows 

data providers to see the benefit of their contributions and allows further refinement of the broader MSE 

framework.  

 

A possible strategy for operating model development is to fit the model to ICCAT data that are freely available 

and admit more rigorous data to the model as they become available (e.g. standardized indices, PSAT tagging 

data). Catch data, relative abundance indices and length composition data are currently available as are the 

parameters to produce preliminary inverse age-length keys and maturity schedules. It follows that the most 

significant data gaps for developing a preliminary operating model are data regarding stock of origin (e.g. otolith 

microchemistry, SNP) and movement (e.g. PSAT data). If simplified gravity movement models are assumed 

tagging data are not necessary to estimate seasonal spatial distribution. As more detailed PSAT data become 

available alternative movement models can be considered such as age-based movement.  

3.2 Possible alternative operating models arising from data assumptions 

  

In this document we discuss various ways in which data can be interpreted by operating models. These may be 

considered for alternative operating model hypotheses. For example: 

 

(1) (a) inclusion /  (b) exclusion of larval indices 

(2) (a) inclusion / (b) exclusion of PSAT tags of unknown stock of origin (SOO) 

(3) (a) apriori assignment of SOO to PSATs / (b) within model assignment of SOO based on stock ratios in 

tag track areas / (c) within model assignment of SOO based on predicted movements of stocks.  

(4) (a) inclusion of all conventional tags / (b) observer recaptures only / (c) exclusion of conventional tags  

(5) fleet definitions (e.g. all fleets of gear types are aggregated) 
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(6) (a) movement by discrete age groups / (b) movement continuously changing with age / (c) age-invariant 

movement 

(7) weighting of various data regarding stock of origin (Otolith microchemistry, otolith shape, SNP, 

mtDNA) 

(8) Mediterranean sub-stock structure: (a) aggregated / (b) western-eastern / (c) western-central-eastern 

(9) historical biases in catch reporting 

(10)  future biases in catch reporting 

(11)  weighting of catch-at-length data (scenarios for effective sample size).  

(12)  hyperstability / hyperdepletion in relative abundance indices 

(13)  recruitment based on spawning stock biomass (a) in spawning area (b) stock-wide 

3.3 Opportunities 

 

The operating model has been subject to simulation testing (SCRS/2015/179) to evaluate estimation 

performance. These simulations can be broadened to establish which data are most critical in determining model 

predictions of stock status and productivity. This type of value of information analysis may provide a more 

rigorous basis for prioritising data gathering to support operating model development.   
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Table 1. Simplified summary of data to inform operating models for Atlantic bluefin tuna. Spatial range either 

refers to the areas of Figure 1 or stock (Es = eastern stock, Ws = western stock). 

 

 
 

 

 

TC CMG ICCAT ALL

1.1.  ICCAT task II CPUE 1950-2014 ∞ All Y Carlos Palma (ICCAT) Y Y Y Y Y Yes

1976-2013 ∞ Y Y N N N N Not yet

1990-2013 ∞ Y Y N N N N Not yet

1992-2014 ∞ W Y Y N N N N Not yet

1992-2004 ∞ GOM Y Y N N N N Not yet

2005-2014 ∞ GOM Y Y N N N N Not yet

1.4. USA HL standardized spatial 1980-2014 ∞ W Y Y N N N N Not yet

1.5. USA RR standardized spatial 1992-2014 ∞ W Y

1.6. USA-CAN LL standardized spatial 1992-2014 ∞ W, C Y Y N N N N Not yet

1.7. USA-CAN HL standardized spatial 1993-2014 ∞ W, C Y Y N N N N Not yet

1.8. CAN LL standardized ∞ W, GSL Y Y N N N N Not yet

1981-2014 ∞ GSL Y Y N N N N Not yet

1988-2014 ∞ W Y Y N N N N Not yet

1.10. TWN LL standardized 1960-2004 2004 W, NE,  E Y Julia Huang (NTOU) N N N N Not yet

1.11. MOR TRAP standardized 1981-2014 ∞ WM Y N. Abid N N N N Not yet

1.12. POR TRAP standardized W, WM Y N N N N Not yet

1.13. ESP TRAP standardized W, WM Y Jose Miguel de la Serna N N N N Not yet

1.14 ITA TRAP standardised CM Y Pierantonio Addis Y N N N Not yet

2. Larval indices (SSB, movement)

2.1. USA 1977-2013 ∞ GOM Y Walter Ingram (NOAA) Y N N N N Not yet

2.2 ESP 01-'05  '12-'13 2018 W Med Y Franciso Alemany (IEO) Y N N N N Not yet

3. Catches (stock size, harvest rate)

3.1. ICCAT task I non-spatial N Y Y Y Y Y Yes

3.2. ICCAT task II All Y Y Y Y Y Y Yes

3.3 GBYP 1512-1950 E, M Y Carlos Palma (ICCAT) Y Y Y Y Y Not yet

4. Catch composition (selectivity, depletion)

4.1. ICCAT catch-at-size 1950-2015 ∞ All Y Carlos Palma (ICCAT) Y Y Y Y Y Yes

4.2. Stereo video caging 2014 ended WM, EM Y Mauricio Ortiz (ICCAT) N N N N Not yet

4.3. Canadian fisheries N Alex Hanke (DFO)

4.4 GBYP Historical catches 1910-1950 = E, M Y Carlos Palma (ICCAT) Y N Y Y Y Not yet

5. Conventional tags (feasible movement, growth, GTG heterogeneity )

5.1. ICCAT 1954-2014 2015 All Y Carlos Palma (ICCAT) Y Y Y Y Y Yes

6. SI archival tags (feasible movement )

6.1. LPRC  (n=4000) 2011-2015 W Y Molly Lutcavage N N N N Not yet

7. PSAT tags (movement )

7.1. LPRC (n=423) 2005-2009 ended W Y Molly Lutcavage N N N N Not yet

7.2. DFO (n=135) 2013-2015 ∞ GSL,W,GOM Y Alex Hanke (DFO) Y N N N N Not yet

7.3. Stanford (n=1783) 1996-2010 ∞ W Y Barbara Block N N N N Not yet

7.4. GBYP (n = 103) 2012-2014 2015 E,MED Y Antonio Di Natale Y Y N N N Not yet

7.5. WWF (n = 100) Y Pablo Cermeno N N N N Not yet

7.6. SEFSC (NOAA) 2011-2013 GOM,W,GSL Y Craig Brown N N N N Not yet

7.7. Acadia (NS) GSL Y Mike Stokesbury N N N N Not yet

7.8. UCA 2011 ended W, C, WM Y Antonio Medina Y Y N N N Not yet

Available to: 
Collab

Matt Lauretta (NOAA)

Used in 

OM?
Contact

Can be by 

season?

Spatial 

range

1. CPUE indices (relative abundance, movement, performance at stakeholder level)

1.9. CAN HL standardized

1950-2015

1.2. Japanese LL standardized spatial

1.3. USA LL standardized spatial

Type of data (Informs ) Year range

Ai Kimoto

Til

E, NE, W, C

Carlos Palma (ICCAT)∞

M. Lauretta (NOAA) /         

A. Hanke (DFO)

Alex Hanke (DFO)
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Table 1 continued. 

  

 
 

 

 

 

 
 

Figure 1. Spatial definitions of the 2015 ICCAT bluefin tuna data preparatory meeting (ICCAT 2015). 

8. Otolith microchemistry (stock of origin )

8.1. UMCES, TAMU 2012-2013 Y David Secor Y N N N N Not yet

8.2. NOAA N N N N Not yet

8.3. EU (AZTI) 2009-2011 ended E Y Igaratza Fraile Y N N N N Not yet

8.4. DFO / UMCES 2011-2013 ∞ W, GSL Y Alex Hanke (DFO) N N N N Not yet

8.5 GBYP 2011-2015 All Y GBYP Y Y Y Not yet

9. Otolith shape analysis (stock of origin )

9.1. GBYP GMIT (n=718) 2013 2015 E, W, C, WM Y Deirdre Brophy N N N N Not yet

10. SNP (population structure, genetic structure )

10.1. Med HCMR Gianpaolo Zmpicinini N N N N Not yet

10.2. GBYP UB 2011-2015 All Gregory Puncher Y N N N N Not yet

10.3. AZTI  (n=130)

Naiara Rodriguez 

Espeleta Y N N N N Not yet

10.4 NOAA/VIMS/CSIRO 2015 GOM/MED N John Walter N N N N Not yet

10.5 GBYP Historical UB 200 BC - 1927 E, M Y Alessia Cariani Y N N N N Not yet

11. Other genetics on population structure (population structure, genetic structure )

11.1. mtDNA Barbara Block N N N N Not yet

11.2. Micro Sat/ mtDNA  (n=320 / 147) 2003 ended GOM, WM Y Carlsson N N N N Not yet

12. Fish. Ind. surveys (relative abundance, movement )

12.1. ICCAT Aerial 2010-2015 M Y Antonio Di Natale Y N N N N Not yet

12.2. USA Aerial 2015- W Y Molly Lutcavage N N N N Not yet

12.3. USA Acoustic 2015- W Y Molly Lutcavage N N N N Not yet

12.4. SOG Hydro acoustic curtain (OTN) W, WM Y Mike Stokesbury N N N N Not yet

13. Growth, aging (age-length keys, length-age keys )

13.1. Age-length keys (NOAA) Y John Walter N N N N Not yet

13.2. Age-length keys (IEO) 2010-2012 ended E, WM Y

Enrique Rodriguez-

Marin N N N N Not yet

13.3. Age-length keys (DFO) 2010-2013 ended GSL, W Y Alex Hanke (DFO) N N N N Not yet

13.4. Derived from tagging 1963-2012 ended Es, W s Y Lisa Allioud N N N N Not yet

13.5 Age-length keys (GBYP) 2011-2015 E, M Y Antonio Di Natale Y N Y Y Not yet

13.5 Ageing calibration (GBYP) 2014 E, M Y Antonio Di Natale Y N Y Y Not yet

14. Maturity (Spawning biomass )

14.1. Western (NOAA) 1975-1981 ended GOM Y Guillermo Diaz (NOAA) N N N N Not yet

14.2 Mediterranean rew M Y GBYP Y N Y Y Not yet

15. Other ecological data (spatial distribution, covariates for CPUE standardization, steepness, natural mortality rate, spawning locations etc. )

15.1. Larval ecology (IEO) ended WM Y

Diego Alvarez 

Berastegui N N N N Not yet

15.2. Habitat model Y Jean-Noel Druon N N N N Not yet

proposed


