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SUMMARY 

 

A preliminary spatial, multi-stock statistical catch-at-length assessment model is developed as a 

basis for defining operating models for Atlantic bluefin tuna. The modifiable multi-stock model 

(M3) aims to improve upon previous multi-stock models such as MAST (Taylor et al. 2011) in 

three core areas. The first iteration of the model: (1) makes use of indices of abundance specific 

to time-area strata (e.g. for a given ocean area and month of the year), (2) does not use 

conventional tagging data to inform exploitation rates, (3) is fitted to samples of length 

composition data and therefore avoids established problems related to ageing individuals 

based on a growth curve and length data only. 

 

In this paper we provide a full account of preliminary M3 model equations and discuss the 

results of simulation evaluations of model estimation performance. Limitations of the current 

approach and future areas for model development are also discussed.  

 

RÉSUMÉ 

 

Un modèle d'évaluation préliminaire, spatial, statistique, multi-stock, de prise par taille est 

développé comme base pour définir des modèles opérationnels pour le thon rouge de 

l’Atlantique. Le modèle multi-stocks modifiable (M3) vise à perfectionner les modèles multi-

stocks précédents, tels que MAST (Taylor et al. 2011) dans trois domaines principaux. La 

première itération du modèle: (1) utilise des indices d'abondance spécifiques aux strates 

spatiotemporelles (par exemple pour une zone océanique donnée et un mois de l'année), (2) 

n'utilise pas les données du marquage conventionnel pour apporter des informations aux taux 

d'exploitation, (3) est ajustée à des échantillons de données de composition par taille et évite 

donc les problèmes établis liés au vieillissement des spécimens sur la base uniquement d'une 

courbe de croissance et de données de taille. 

 

Dans ce document, nous fournissons un compte rendu complet des équations préliminaires du 

modèle M3 et discutons des résultats des évaluations de simulation des performances 

d’estimation du modèle. Sont également discutées les limitations de l'approche actuelle et les 

futurs domaines de développement du modèle.  

 

RESUMEN 

 

Se desarrolla un modelo de evaluación preliminar espacial, multistock, estadístico de captura 

por talla como base para definir modelos operativos para el atún rojo del Atlántico. El modelo 

multistock modificable (M3) tiene como objetivo mejorar modelos previos multistock como el 

MAST (Taylor et al. 2011) en tres aspectos principales. La primera iteración del modelo: (1) 

utiliza índices de abundancia específicos de los estratos espacio-temporales (por ejemplo, para 

una determinada zona oceánica y mes del año), (2) no utiliza datos de marcado convencional 

para aportar información a las tasas de explotación, (3) está ajustado a muestras de datos de 

composición por tallas y por tanto evita problemas establecidos relacionados con la 

determinación de la edad de ejemplares basándose solo en una curva de crecimiento y en datos 

de tallas. 
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En este documento se proporciona una descripción total de ecuaciones preliminares del 

modelo M3 y se discuten los resultados de las evaluaciones de simulación del rendimiento de 

estimación del modelo. Se discuten también las limitaciones del enfoque actual y campos 

futuros de desarrollo del modelo.  
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1 Introduction 

 

The Atlantic-Wide Research Programme on Bluefin Tuna (GBYP) aims to develop a new scientific management 

framework by improving data collection, knowledge of key biological and ecological processes, assessment 

models and management. A critical component of the GBYP is the construction of a robust advice framework 

consistent with the precautionary approach (GBYP 2014). A Management Strategy Evaluation (MSE, Cochrane 

1998, Butterworth 1999, Kell et al. 2014, Punt et al. 2014) approach has been proposed to address this goal 

(Anon. 2014b). MSE establishes operating models that represent credible hypotheses for population and fishery 

dynamics which are used to quantify the efficacy of various management procedures. These management 

procedures may encompass a wide range of complexity from conventional stock assessments linked to harvest 

control rules (Hilborn 2003) through to simple empirical management procedures that calculate catch limits 

directly from resource monitoring data indices (Geromont and Butterworth 2014a;b, Kell et al. 2015). 

 

MSE applications generally develop operating models from stock assessments that are fitted to data in order to 

ensure that model assumptions and estimated parameters are empirically credible (Punt et al. 2014, e.g. CCSBT 

2011). In the case of Atlantic bluefin tuna, such a model requires enough complexity to capture the core 

uncertainties regarding Atlantic bluefin tuna dynamics (Fromentin et al. 2014, Leach et al. 2014). These include 

stock structure (Kell et al. 2012), stock mixing, migration (Fromentin and Lopuszanski 2014) and biases in 

observed data (e.g. annual catch data). Additionally the model should be able to accommodate the wide range of 

data that have been collected for Atlantic bluefin tuna including catch rate indices (Abid et al. 2015, Hanke et al. 

2015, Kimoto et al. 2015, Lauretta and Brown 2015, Santiago et al. 2015, and Walter 2015), aerial surveys 

(Bonhommeau et al. 2010), length composition data, larval surveys (Ingram et al. 2015), electronic tagging data 

(Block et al. 2005) and stock of origin data (Rooker et al. 2014).  

 

In this paper we document a preliminary version of a spatial, multi-stock, statistical catch-at-length assessment 

model which we refer to as the modifiable multi-stock model or M3 (v1.03)(referred to as ‘the model’ herein). 

The most notable multi-stock model previously applied to Atlantic bluefin tuna was MAST (Taylor et al. 2011). 

In the development of M3 we aimed to address a number of central weaknesses of MAST and produce a 

credible, robust and faster assessment tool that can be applied to evaluate alternative hypotheses for Atlantic 

bluefin tuna rapidly. The purpose of this paper is to provide a full description of an early version of the model in 

order to illicit feedback from a wider group of scientists and stakeholders. This model version provides the basic 

model structure and anticipated data inputs in order to demonstrate a proof of concept and serve as a basis for 

discussing possible model improvements and features.  

 

 

2 Methods 

 

The model is based on conventional age-structured accounting (e.g. Quinn and Deriso 1999, Chapter 8) which is 

common to stock assessment models such as Stock Synthesis 3 (Methot and Wetzel 2013), CASAL (Bull et al. 

2012), Multifan-CL (Fournier et al. 1998) and iSCAM (Martell 2015). Similar to these assessment packages, M3 

is developed using ADMB (Fournier et al. 2012) for its rapid and robust non-linear estimation performance for 

problems with relatively large numbers of parameters (i.e. more than 100 parameters). The more challenging 

aspects of developing a multi-stock spatial model relate to the modelling of movement and initializing the model.  
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2.1 Estimated parameters 

 

The majority of parameters estimated by the model relate to movement probabilities and annual recruitment 

deviations (Table 1). The number of estimated parameters can be reduced substantially by limiting estimation to 

only those movements that have been recorded or are considered credible. For example, given a quarterly time 

step (e.g. Jan-Mar, April-Jun etc.) and the spatial definitions of the 2015 data preparatory meeting (Anon. 2015, 

Figure 1), an evaluation of conventional tagging for Atlantic bluefin tuna data reveals that less than 80 

parameters of the 224 possible are required to characterize all of the possible movements recorded by these 

tagging data.  

2.2 Transition equations 

 

The standard age-structured equations are complicated somewhat by the subyear temporal structure in which 

ageing and recruitment occur in a particular subyear. In this version of the model, spawning occurs for all stocks 

in a subyear ms, after subyear 1 (this is also likely to be the case in any final model fitted to bluefin tuna data 

since spawning in the Mediterranean and Gulf of Mexico is thought to occur after a period of movement early in 

the year). 

 

Numbers of individuals N, for stock s, in a model year y, in the first subyear m=1, age class a, and area r are 

calculated from individuals that have moved 𝑁⃗⃗ , in the previous year, final subyear nm, of the same age class 

subject to combined natural and fishing mortality rate Z: 

 

1) 𝑁𝑠,𝑦,𝑚=1,𝑎,𝑟 = 𝑁⃗⃗ 𝑠,𝑦−1,𝑛𝑚,𝑎,𝑟 ∙  𝑒−𝑍𝑠,𝑦−1,𝑛𝑚,𝑎,𝑟 

 

where total mortality rate is calculated from annual natural mortality rate M, divided by the fraction of the year 

represented by the subyear tm, and fishing mortality rate F, summed over all fleets f.  

 

2) 𝑍𝑠,𝑦,𝑚,𝑎,𝑟 =
𝑀𝑠,𝑎

𝑡𝑚
∑ 𝐹𝑦,𝑚,𝑎,𝑟,𝑓𝑓  

Fishing mortality rate at age is derived from fishing mortality rate by length class FL and the conditional 

probability of fish being in length class l, given age a (an inverse age-length key, LAK).: 

 

3) 𝐹𝑦,𝑚,𝑎,𝑟,𝑓 = ∑ 𝐹𝐿𝑦,𝑚,𝑙,𝑟,𝑓𝑙 ∙ 𝐿𝐴𝐾𝑠,𝑦,𝑎,𝑙 

 

The fishing mortality rate at length is calculated from an index of fishing mortality rate I, an estimated 

catchability coefficient q and a length selectivity ogive s, by fleet: 

 

4) 𝐹𝐿𝑦,𝑚,𝑙,𝑟,𝑓 = 𝑞𝑓 ∙ 𝐼𝑦,𝑓 ∙ 𝑠𝑓,𝑙 

 

Selectivity is calculated by the Thompson (1994) ogive and an estimate of mean length L of an age class l: 

     

5) 𝑠𝑓,𝑙 =
1

1−𝑠𝑑𝑜𝑚𝑒
∙ (

(1−𝑠𝑑𝑜𝑚𝑒)

𝑠𝑑𝑜𝑚𝑒
)
𝑠𝑑𝑜𝑚𝑒

∙ 𝑒𝑠𝑝𝑟𝑒𝑐∙𝑠𝑑𝑜𝑚𝑒∙(𝑠𝑚𝑜𝑑𝑒−𝐿𝑙) ∙
1

1+𝑒𝑠𝑝𝑟𝑒𝑐∙(𝑠𝑚𝑜𝑑𝑒−𝐿𝑙)
 

 

In the spawning subyear ms, aging and recruitment occur: 

 

6) 𝑁𝑠,𝑦,𝑚𝑠,𝑎,𝑟 = 𝑁⃗⃗ 𝑠,𝑦,𝑚𝑠−1,𝑎−1,𝑟 ∙  𝑒−𝑍𝑠,𝑦,𝑚𝑠−1,𝑎−1,𝑟 

Recruitment is currently assumed to occur in user-specified spawning area for each stock rs. Recruitment is 

assumed to follow a Beverton-Holt function of spawning stock biomass SSB in the defined spawning areas rs 

relative to unfished spawning stock biomass SSB0 and is subject to annual recruitment deviations R, for each 

stock.  

 

7) 𝑁𝑠,𝑦,𝑚𝑠,1,𝑟𝑠 = 𝑅𝑠,𝑦 ∙
0.8∙𝑅0𝑠∙ℎ𝑠∙𝑆𝑆𝐵𝑠,𝑦

0.2∙𝑆𝑆𝐵0𝑠,𝑦∙(1−ℎ𝑠)+(ℎ𝑠−0.2)∙𝑆𝑆𝐵𝑠,𝑦
 

 

where h is the steepness parameter (fraction of unfished recruitment at 1/5 unfished spawning stock biomass) 

and spawning stock biomass is calculated from moved stock numbers in the subyear prior to spawning subyear 

ms, in spawning area rs, weight of individuals at age w, and the fraction of individuals mature at age mat:  
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8) 𝑆𝑆𝐵𝑠,𝑦 = ∑ ∑ 𝑁⃗⃗ 𝑠,𝑦,𝑚𝑠−1,𝑎,𝑟𝑠 ∙  𝑒−𝑍𝑠,𝑦,𝑚𝑠−1,𝑎,𝑟𝑠
𝑟𝑎 ∙ 𝑤𝑠,𝑎 ∙ 𝑚𝑎𝑡𝑠,𝑎 

 

where weight is calculated from length at age l:  

 

9) 𝑤𝑠,𝑎 = 𝛼𝑠 ∙ 𝑙𝑠,𝑎
𝛽𝑠  

 

and fraction mature at age is assumed to be a logistic function of age with parameters for the age at 50% maturity 

γ, and slope ϑ: 

 

10) 𝑚𝑎𝑡𝑠,𝑎 = 1 (1 + 𝑒(𝛾𝑠−𝑎) 𝜗𝑠⁄ )⁄  

 

Stock numbers for subyears that are not the first subyear of the year and are not the spawning subyear are 

calculated: 

 

11) 𝑁𝑠,𝑦,𝑚,𝑎,𝑟 = 𝑁⃗⃗ 𝑠,𝑦,𝑚−1,𝑎,𝑟 ∙  𝑒−𝑍𝑠,𝑦,𝑚−1,𝑎,𝑟 

 

In each subyear, after mortality and recruitment, fish are moved according to a Markov transition matrix mov 

that represents the probability of a fish moving from area k to area r at the end of the subyear m: 

 

12) 𝑁⃗⃗ 𝑠,𝑦,𝑚,𝑎,𝑟 = ∑ 𝑁𝑠,𝑦,𝑚,𝑎,𝑘 ∙ 𝑚𝑜𝑣𝑠,𝑚,𝑘,𝑟𝑘  

 

The movement matrix is calculated from a log-space matrix lnmov and a logit model to ensure each row k, sums 

to 1: 

 

13) 𝑚𝑜𝑣𝑠,𝑚,𝑘,𝑟 = 𝑒𝑙𝑛𝑚𝑜𝑣𝑠,𝑚,𝑘,𝑟 ∑ 𝑒𝑙𝑛𝑚𝑜𝑣𝑠,𝑚,𝑘,𝑟
𝑟⁄  

 

Movements from an area k to an area r that are considered not to be credible (e.g. from the Eastern 

Mediterranean to the Gulf of Mexico) are assigned a large negative number (essentially zero movement). For 

each area k, from which individuals can move, the first possible value is assigned a value of zero; subsequent 

possible movements are assigned an estimated parameter ψ (since rows must sum to 1 there is one less degree of 

freedom): 

 

14) 𝑙𝑛𝑚𝑜𝑣𝑠,𝑚,𝑘,𝑟 = {

−1𝐸10
0

𝛹𝑠,𝑚,𝑘,𝑟

      

𝑛𝑜 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑘 𝑡𝑜 𝑟
𝑓𝑖𝑟𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑘 𝑡𝑜 𝑟
𝑜𝑡ℎ𝑒𝑟 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝑘 𝑡𝑜 𝑟

 

 

This movement formulation limits estimation to only those movements that are possible given the data (e.g. 

consistent with observed tagging data).  

2.3 Initializing the model  

 

Compared with spatially aggregated models, initialization is more complex for spatial models, particularly those 

that may need to accommodate movement by age and include regional spawning and recruitment. The solution 

used here is to iterate the transition equations above (Equations 1, 6, 7, 11, 12) given zero fishing mortality until 

the spatial distribution of stock numbers converges for each of the subyears.  

 

Prior to this iterative process an initial guess at the spatial and age structure of stock numbers 𝑁̂ is made using 

the estimated movement matrix and natural mortality rate at age M:  

 

15) 𝑁̂𝑠,𝑚,𝑎,𝑟 = 𝑅0𝑠 ∙ e−∑ 𝑀𝑠,𝑎
𝑎
1 ∙ ∑

1

𝑛𝑟
∙ 𝑚𝑜𝑣𝑠,𝑚,𝑘,𝑟𝑘  

 

It typically takes between 50 and 100 iteration years of unfished conditions for stock numbers to converge to 

within 1/10 of a percent of the previous iteration. To ensure stability of the estimation, a fixed number of 

iterations is defined by the user.    
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2.4 Predicting data  
 
For each fleet f, total predicted catches in weight 𝐶̂, are calculated from the Baranov equation: 
 
16) 𝐶̂𝑦,𝑚,𝑟,𝑓 = ∑ ∑ 𝑤𝑠,𝑎 ∙ 𝑁𝑠,𝑦,𝑚,𝑎,𝑟𝑎 ∙ (1 − 𝑒−𝑍𝑠,𝑦,𝑚,𝑎,𝑟) ∙ (

𝐹𝑦,𝑚,𝑎,𝑟,𝑓

𝑍𝑠,𝑦,𝑚,𝑎,𝑟
)𝑠  

 
Similarly predicted catches in numbers at age CAA, is given by: 
 
17) 𝐶𝐴𝐴̂𝑠,𝑦,𝑚,𝑎,𝑟,𝑓 = 𝑁𝑠,𝑦,𝑚,𝑎,𝑟 ∙ (1 − 𝑒−𝑍𝑠,𝑦,𝑚,𝑎,𝑟) ∙ (

𝐹𝑦,𝑚,𝑎,𝑟,𝑓

𝑍𝑠,𝑦,𝑚,𝑎,𝑟
) 

 
This can be converted to a prediction of total catches in numbers by length class CAL using a stock specific 
inverse age-length key, LAK:  
 
18) 𝐶𝐴𝐿̂𝑦,𝑚,𝑙,𝑟,𝑓 = ∑ ∑ 𝐶𝐴𝐴̂𝑠,𝑦,𝑚,𝑎,𝑟,𝑓 ∙ 𝐿𝐴𝐾𝑠,𝑦,𝑎,𝑙𝑎𝑠  
 
The model predicts spawning stock biomass indices 𝐼𝑠𝑠𝑏̂, that are standardized to have a mean of 1 for each 
stock over the total number of years ny: 
 
19) 𝐼𝑠𝑠𝑏̂𝑠,𝑦 = 𝑛𝑦 ∙ 𝑆𝑆𝐵𝑠,𝑦 ∑ 𝑆𝑆𝐵𝑠,𝑦𝑦⁄  
 
The model predicts vulnerable biomass indices 𝐼, by fleet that are standardized to have a mean of 1 for each 
fleet: 
 

20) 𝐼𝑦,𝑚,𝑟,𝑓 = 𝑛𝑦 ∙ 𝑛𝑚 ∙ 𝑛𝑟 ∙ 𝑉𝑦,𝑚,𝑟,𝑓 ∑ ∑ ∑ 𝑉𝑦,𝑚,𝑟,𝑓𝑟𝑚𝑦⁄  

 

Where vulnerable biomass V is calculated: 

 

21) 𝑉𝑦,𝑚,𝑟,𝑓 = ∑ (𝑠𝑓,𝑙 ∙ ∑ ∑ (𝑁𝑠,𝑦,𝑚,𝑎,𝑟,𝑓 ∙ 𝐴𝐿𝐾𝑠,𝑦,𝑎,𝑙 ∙ 𝑤𝑠,𝑎)𝑎𝑠 )𝑙  

 

The model predicts stock of origin composition of catches 𝑆𝑂𝑂̂, from predicted catch numbers at age: 

 

22) 𝑆𝑂𝑂̂𝑠,𝑦,𝑚,𝑟,𝑓 = ∑ 𝐶𝐴𝐴̂𝑠,𝑦,𝑚,𝑎,𝑟,𝑓𝑎 ∑ ∑ 𝐶𝐴𝐴̂𝑠,𝑦,𝑚,𝑎,𝑟,𝑓𝑎𝑠⁄  

 

2.5 Likelihood functions, priors and the global objective function 

 

Table 2, summarizes the likelihood functions for the various data types. A log-normal likelihood function was 

assumed for total catches by fleet. The log-likelihood was calculated:   

 

23) 𝑂𝐵𝐽𝑐 = ∑ ∑ ∑ ∑
𝑙𝑜𝑔(𝜎𝑐𝑎𝑡𝑐ℎ)+(log (𝐶̂𝑦,𝑚,𝑟,𝑓)−log(𝐶𝑦,𝑚,𝑟,𝑓))

2

2∙𝜎𝑐𝑎𝑡𝑐ℎ
2𝑓𝑟𝑚𝑦  

 

Similarly the log-likelihood component for indices of vulnerable biomass and spawning stock biomass were 

calculated:  

 

24) 𝑂𝐵𝐽𝑖 = ∑ ∑ ∑ ∑
𝑙𝑜𝑔(𝜎𝑖𝑛𝑑𝑒𝑥)+(𝑙𝑜𝑔(𝐼𝑦,𝑚,𝑟,𝑓)−𝑙𝑜𝑔(𝐼𝑦,𝑚,𝑟,𝑓))

2

2∙𝜎𝑖𝑛𝑑𝑒𝑥
2𝑓𝑟𝑚𝑦  

 

25) 𝑂𝐵𝐽𝑆𝑆𝐵 = ∑ ∑
𝑙𝑜𝑔(𝜎𝑆𝑆𝐵)+(𝑙𝑜𝑔(𝐼𝑠𝑠𝑏̂𝑠,𝑦)−𝑙𝑜𝑔(𝐼𝑠𝑠𝑏𝑠,𝑦))

2

2∙𝜎𝑆𝑆𝐵
2𝑦𝑠  

 
The length composition data are assumed to be distributed multinomially. In traditional stock assessment settings 
catch composition data may often dominate the likelihood function due to the large number of observations. This 
is exacerbated by a failure to account for non-independence in size composition samples. There are two possible 
solutions: (1) manually specify the effective sample size (ESS) of length-composition samples or (2) use a 
multinomial likelihood function that includes the conditional maximum likelihood estimate of the ESS (perhaps 
even a freely estimated ESS, S. Martell personal communication). In this version of the code, ESS is user-
specified.  
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The log-likelihood component for length composition data is calculated: 
 

26) 𝑂𝐵𝐽𝐶𝐴𝐿 = −∑ ∑ ∑ ∑ ∑ 𝐶𝐴𝐿𝑦,𝑚,𝑙,𝑟,𝑓 ∙ 𝑙𝑜𝑔(𝑝̂𝑦,𝑚,𝑙,𝑟,𝑓)/𝐸𝑆𝑆𝑓𝑓𝑟𝑙𝑚𝑦  

 

Where the model predicted fraction of catch numbers in each length class p, is calculated: 

 

27) 𝑝̂𝑦,𝑚,𝑙,𝑟,𝑓 = 𝐶𝐴𝐿̂𝑦,𝑚,𝑙,𝑟,𝑓 ∑ 𝐶𝐴𝐿̂𝑦,𝑚,𝑙,𝑟,𝑓𝑙⁄  

 

Similarly the log-likelihood component for PSAT tagging data of known stock of origin (SOO), released in year 

y, subyear m, area r and recaptured in year y2, subyear m2, and area k is calculated: 

 

28) 𝑂𝐵𝐽𝑃𝑆𝐴𝑇 = −∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑃𝑆𝐴𝑇𝑠,𝑦,𝑚,𝑦2,𝑚2,𝑘 ∙ 𝑙𝑜𝑔(𝜃̂𝑠,𝑦,𝑚,𝑦2,𝑚2,𝑟,𝑘)𝑘𝑟𝑚2𝑦2𝑚𝑦𝑠  

 

where recapture probabilities θ, are calculated by repeatedly multiplying a distribution vector d, by the 

movement probability matrix mov. For example for a tag released on a fish of stock 1 in year 2, subyear 3, and 

area 4, the probability of detecting the tag in year 3, subyear 2 for the various areas is calculated: 

 

29) 𝜃̂𝑠=1,𝑦=2,𝑚=3,𝑦2=3,𝑚2=2,𝑟=4,1:𝑛𝑟
= ((𝑑 ∙ 𝑚𝑜𝑣𝑠,𝑚=3) ∙ 𝑚𝑜𝑣𝑠,𝑚=4)𝑚𝑜𝑣𝑠,𝑚=1 

 

where 

 

30) 𝑑𝑘 = {
0
1
  
𝑘 ≠ 𝑟
𝑘 = 𝑟

 

 

The log-likelihood component for PSAT tagging data of unknown stock of origin PSATu, is currently weighted 

according to the compound probability that a fish is of a particular stock given the track history for that tag. For 

example for a tag t, tracked in series of years yi, subyears mi, and regions ri, the weight w, of that tag for a 

specific stock is calculated: 

 

31) 𝑤𝑡,𝑠 =
∏ [(∑ 𝑁𝑠𝑖,𝑦𝑖,𝑚𝑖,𝑎𝑖,𝑟𝑖𝑎 ) (∑ ∑ 𝑁𝑠𝑖,𝑦𝑖,𝑚𝑖,𝑎𝑖,𝑟𝑖𝑎𝒔 )⁄ ]𝑖

∏ [1−(∑ 𝑁𝑠𝑖,𝑦𝑖,𝑚𝑖,𝑎𝑖,𝑟𝑖𝑎 ) (∑ ∑ 𝑁𝑠𝑖,𝑦𝑖,𝑚𝑖,𝑎𝑖,𝑟𝑖𝑎𝒔 )⁄ ]𝑖
 

 

This is simply the product of fractions of that stock in those time-area strata divided by the product of the 

fractions of other stocks in those time-area strata. An alternative approach would be to compare the relative 

probabilities of the observed movements among the stocks although it is unclear whether this circularity (PSAT 

data are a primary source of information regarding movement) could lead to estimation problems.  

 

The weighted likelihood function is similar to that of the stocks of known origin but includes the appropriate 

weighting term for each tag 

 

32) 𝑂𝐵𝐽𝑃𝑆𝐴𝑇𝑢 = −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑃𝑆𝐴𝑇𝑢𝑡,𝑠,𝑦,𝑚,𝑦2,𝑚2,𝑘 ∙ 𝑙𝑜𝑔(𝜃̂𝑠,𝑦,𝑚,𝑦2,𝑚2,𝑟,𝑘) ∙ 𝑤𝑡,𝑠𝑘𝑟𝑚2𝑦2𝑚𝑦𝑠𝑡  

 

The log-likelihood component for stock of origin data SOO was also calculated assuming a multinomial 

distribution:  

 

33) 𝑂𝐵𝐽𝑃𝑆𝐴𝑇𝑢 = −∑ ∑ ∑ ∑ ∑ 𝑆𝑂𝑂𝑠,𝑦,𝒎,𝒓,𝒇 ∙ 𝑙𝑜𝑔(𝑆𝑂𝑂̂𝑠,𝑦,𝑚,𝑟,𝑓)𝒇𝑟𝑚𝑦𝒔  

 

In addition to these likelihood functions for observed data, priors may be placed on the steepness parameter h, of 

the stock recruitment relationship and a factor Mfac, multiplied by the user specified natural mortality rate-at-age 

schedule Minit.  

 

34) 𝑀𝑠,𝑎 = 𝑀𝑖𝑛𝑖𝑡𝑠,𝑎 ∙ 𝑀𝑓𝑎𝑐𝑠 

 

The factor applied to the natural mortality rate-at-age schedule is assumed to be lognormally distributed 

according to user specified mean and standard deviation parameters.  

 

35) 𝑂𝐵𝐽𝑀 = ∑
𝑙𝑜𝑔(𝜎𝑀𝑠)+(𝑀𝑓𝑎𝑐𝑠−𝜇𝑀𝑠)

2

2∙𝜎𝑀𝑠
2𝑠  
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Steepness is parameterized by a logit model constrained between 0.2 and 1: 

 

36) ℎ𝑠 = 0.2 + 0.8 ∙ 𝑒ℎ̂𝑠 (1 + 𝑒ℎ̂𝑠)⁄  

 

In the logit-1 space, a normal prior is adopted for this transformed steepness ℎ̂, parameter that includes user 

specified mean 𝜇ℎ̂, and standard deviation 𝜎ℎ̂, parameters. The corresponding log-likelihood component is: 

 

37) 𝑂𝐵𝐽ℎ = ∑
𝑙𝑜𝑔(𝜎ℎ𝑠)+(ℎ̂𝑠−𝜇ℎ𝑠)

2

2∙𝜎ℎ𝑠
2𝑠  

 

The global objective function OBJT, to be minimized is the summation of the weighted , likelihood components: 

 

38) 𝑂𝐵𝐽𝑇 = 𝜔𝑐 ∙ 𝑂𝐵𝐽𝑐 + 𝜔𝑖 ∙ 𝑂𝐵𝐽𝑖 + 𝜔𝑆𝑆𝐵 ∙ 𝑂𝐵𝐽𝑆𝑆𝐵 + 𝜔𝐶𝐴𝐿 ∙ 𝑂𝐵𝐽𝐶𝐴𝐿 + 

𝜔𝑃𝑆𝐴𝑇 ∙ 𝑂𝐵𝐽𝑃𝑆𝐴𝑇 + 𝜔𝑃𝑆𝐴𝑇𝑢 ∙ 𝑂𝐵𝐽𝑃𝑆𝐴𝑇𝑢 + 𝜔𝑀 ∙ 𝑂𝐵𝐽𝑀 + 𝜔ℎ ∙ 𝑂𝐵𝐽ℎ 

 

 

3 Simulation evaluations 

 

The demonstration MSE framework previously presented to the GBYP Core Modelling Group (December 2014, 

Anon. 2014) was used to simulate data to determine whether the model could estimate quantities of interest such 

as stock depletion, current stock size and spatial distribution reliably. In this preliminary simulation evaluation, 

200 datasets were simulated with varying stock depletion, exploitation history, gear selectivity, movement and 

spatial distribution. The simulation was kept relatively simple and included only two fleet types, 4 areas, 2 sub-

years and 40 historical years of exploitation (Figure 2 illustrates the simplified mixing and spatial structure that 

borrows four areas from the spatial definitions of Anon. 2015, Figure 1). A summary of inputs and parameter 

ranges for the simulations is included in Table 3.  

 

This simulation evaluation was intended as a proof of model concept and consequently did not simulate biases in 

observed data (e.g. catch reporting, non-independence in length composition data) or evaluate model 

misspecification (e.g. incorrect aggregation of fleets, misspecification of selectivity, incorrect natural mortality 

rate at age, functional form of the stock recruitment relationship). The simulation results presented here are for a 

former version of the M3 (v1.02) model which does not include priors for steepness and natural mortality rate. In 

this simulation test these were assumed to be known perfectly without error.  

 

Simulation testing reveals that the model provides estimates of stock depletion, stock size and spatial distribution 

that are not strongly biased (Figure 3). For example, biases in estimates of stock depletion were on average 

within 2% of unbiased for both simulated stocks. The range of biases was also relatively low with standard 

deviations among simulations of 5.3% and 8.3% for stocks 1 and 2, respectively.  Estimates of current stock size 

were somewhat negatively biased (around -5% for both stocks) but not strongly so. Among stocks, biases in 

estimates of current stock size were negatively correlated. This is to be expected since an overestimate of the size 

of stock 1 is likely to be paired with an underestimate of stock size 2, as the model aims to generate a similar 

total vulnerable biomass to that simulated. Among the simulations the biases in estimates of current stock size 

could be larger for stock 2 (a standard deviation of 10%) than stock 1 (a standard deviation of 6%) which should 

be anticipated since stock 2 is estimated to be smaller than stock 1 (unfished recruitment was 1/6 that of stock 1).  

 

 

4 Discussion 

4.1 Limitations 

 

In this paper we document the first version of the M3 model which is designed primarily to outline the basic 

framework in order to initiate a dialogue with the GBYP core modelling group and wider SCRS regarding 

priorities for operating model development. In order to get a version of the model working and simulation tested, 

a number of features were omitted. One of the most important was the conventional tagging data which are not 

used to estimate exploitation rates in this preliminary M3 model.   

 

It is relatively simple to include the model code to predict the dynamics of a tagged population of bluefin tuna 

and predict capture probabilities. However there are concerns that uncertain and variable reporting rates serve to 

contaminate these data which therefore could provide a misleading picture of movement and exploitation rate 

(and hence stock size). The confounding of reporting rate and fishing mortality rate estimates is a known 
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problem in the use of conventional tagging data when no information exists to inform reporting rate estimates, as 

is currently the case for bluefin tuna. Previous spatial, multi-stock models of bluefin tuna such as MAST (Taylor 

et al. 2010) have assumed similar reporting rates among fleets. There is however evidence that reporting rates 

may vary widely among fleets, for example between 1/1000 and 1/2 (Carruthers and McAllister 2010). Thus, the 

model may be confronted with observed recapture rates and observed catch rates that differ by a factor of 500 for 

some fleets. The likely result is a poorly defined objective function, model outputs that are sensitive to initial 

values and a failure to satisfy convergence criteria.  

 

While the benefits of adding conventional tagging data are uncertain, the additional computations are likely to be 

greater than 200% for a model such as M3. It may be possible to include conventional tagging data and estimate 

the fleet-specific reporting rates but the benefits would be weak additional information regarding movements and 

exploitation rates at the cost of a much more computationally intensive model. Despite these potential drawbacks 

and the omission of these data in this first version of the model, conventional tags should still be considered as a 

source of information about exploitation rate and this should be a primary subject of discussion. There are a 

number of other ways in which conventional tagging data can be incorporated into the model such as 

characterising growth, informing estimates of fleet selectivity and vulnerability-at-age, and defining the full 

range of possible movements. Recaptures of conventional tags from observer-based programs provide one 

potential source of unbiased estimates as 100% reporting can be assumed.  For example, the pelagic longline 

observer programs in the West Atlantic may provide unbiased estimates of rates of recapture. 

 

Currently the model does not attempt to model movement by age or length. Other approaches have aimed to 

estimate a separate set of movement parameters for juvenile and mature fish (e.g. MAST). This is a priority for 

model development. An alternative to estimating a separate movement model for certain ages or length classes 

would be to model continuous models of regional gravity or mixing rate with age (e.g. Carruthers et al. 2015). 

This has the benefit of adding the same number of parameters but having smooth transitions in movement among 

age classes rather than an abrupt shift to an alternative movement model at a particular life-stage.  

 

Similar to other statistical catch-at-age and catch-at-length models which approximate historical fishing 

dynamics according to a finite number of fleets, the M3 model requires at least one selectivity curve to be either 

user-specified or assigned a ‘flat-topped’ (e.g. logistic) selectivity curve. The aggregation of fleets should also be 

considered carefully to avoid overly complex models with redundant fleets or those that have not contributed 

substantially to the exploitation of one or more of the stocks. Alternative selectivity assumptions, aggregations of 

fleets or temporal definitions of fleets may serve as alternative hypotheses to be taken into account in the 

operating models of a future MSE. Conventional tagging data may provide information on fleet-specific 

selectivity for some fishing fleets that operate in areas where a large number of tags have been released, e.g., the 

bait boat fisheries in the Bay of Biscay or the rod-and-reel fisheries off of North America. 

4.2 Strengths and opportunities 

 

Since all of the catch composition data for bluefin tuna are in the form of length samples, statistical catch-at-age 

models require these sampled lengths to be converted to ages. The problems associated with this practice are 

well established (Allioud et al. 2014, Hilborn and Walters 1992, Kell and Kell 2011). A central strength of the 

model proposed here is that it is fitted to these length samples directly. A statistical catch-at-length approach also 

provides avenues for accounting for varying growth rates among individuals which may be informed by 

conventional tagging data.  

 

Once a range of plausible hypotheses has been identified for bluefin tuna and suitable operating models have 

been developed to represent these, there are potentially a large number of research questions that may also be 

addressed in addition to MSE. For example: to what extent is movement estimation biased by release location of 

PSAT tags? How should data be weighted in a spatial, integrated assessment model? What is a suitable 

experimental design of a genetic tagging program? When assessing populations with complex stock structure 

and highly migratory dynamics, what assessment model complexity is particularly important: space, age, both or 

neither? If explicit performance metrics are available, can suitable harvest control rules be derived? 

 

An advantage of not integrating conventional tagging into the model is that it runs relatively quickly (e.g., in less 

than a few minutes). This may allow a simplified version of the approach to be included within a management 

procedure in future MSE analyses, broadening the range of complexity in management procedures. Rapid model 

fitting also allows for extensive simulation testing which confirms that the model has been programmed correctly 

and reveals potential areas for re-parameterization or simplification. 
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A number of model features are in development to allow for alternative hypotheses for bluefin tuna dynamics. 

Once such extension is an approximation to a Growth-Type Group model (GTG) via calculation of the inverse 

age-length key. A common oversight in fisheries stock assessment models is the inability to account for 

downward shifts in the expected length composition at age which occur as larger, faster growing individuals 

experience higher exploitation rates. Preliminary simulation evaluations using models that simulate many (300+) 

growth type groups, indicates that fishing mortality rate estimates can be highly inaccurate (as much as 200% 

biased) when this phenomenon is not taken into account. The conventional approach (also considered for the 

MAST model, Taylor et al. 2011) is to model discrete groups of individual of varying growth parameters. In 

Stock Synthesis these are referred to as ‘platoons’ (Methot and Wetzel 2013). 

 

The principal problem with these approaches is that it can take many extra growth type groups (300+) or several 

platoons to generate suitably smooth predicted length compositions. This is a major problem for models such as 

M3 that are already computationally intensive as each GTG or platoon is an additional dimension, and hence the 

number of calculations is increased by a factor equal to the number of GTGs or platoons. A solution under 

investigation here is an approximation that takes percentiles of the distribution of GTGs and uses linear 

interpolation to predict the shift in the length structure given historical fishing mortality rates. This is a much 

more tractable approach as it adds no additional dimensionality to the transition calculations: additional 

calculation is limited to the construction of the inverse age-at-length key. Furthermore, conventional tagging data 

may be used as an empirical source of growth data for fitting the inverse age-length key. This additional feature 

would add around 10% more computation time per iteration.  

4.3 Priorities 

 

In this paper, simulation testing was cursory and should be much more thorough for future releases of the model. 

For example future tests should examine various types of model misspecification such as ignoring differences in 

juvenile/mature movement and misspecification of maturity. Problematic observation processes may also be 

simulated: for example persistent biases in annual catches, spatially biased length sampling and relative 

abundance indices that are non-linearly related to abundance. Model diagnostics in future simulation tests could 

also include other checks such as of the biases in MSY-related reference points.  

 

The M3 model differs from previous multi-stock model such as MAST in that it requires indices of abundance 

(e.g. standardized CPUE indices) for fleets by time-area strata (e.g. for a given ocean area and subyear). The core 

advantage of this is that the movement estimation is constrained to combinations of parameters that are 

consistent with other spatial data. Previous spatial modelling has demonstrated that these data alone are 

sufficient to estimate spatial heterogeneity reliably. This is more important than estimating specific movement 

transitions. For example to estimate MSY-related reference points reliably, it is more important to know the 

spatial distribution of the stock at a given time of year than to know exactly what fraction of individuals moved 

to and from the various areas (Carruthers et al. 2011). This means that the development of fleet-specific indices 

at the resolution of subyear and spatial area is a central priority for operating model development.  

 

In this paper we reference the spatial definitions of the 2015 data preparatory meeting (Anon. 2015, Figure 1). 

Kimoto et al. (2015) recommend that the ICCAT Bluefin Working Group should carefully examine spatial 

stratifications particularly those of the northeast Atlantic, a region that is currently a main fishing area for 

Japanese longline vessels. Historical abundance indices for the Japanese longline fleet are perhaps the most 

important data for the stock assessment of Atlantic bluefin tuna and are likely to be pivotal in fitting operating 

models. Figure 1 originates from the bluefin mixing workshop in 2001 (Anon. 2002) which apart from the 

separation of the Gulf of Mexico and the Mediterranean, was not fully agreed upon by the group. Furthermore 

the reasoning behind the boundaries identified are not fully supported by knowledge accumulated over the last 

15 years. It was recommended to revise the area stratification with new and updated information collected, in the 

light of both biological and fisheries aspects. 

 

Version 1.03 of the M3 model includes user-specified priors for steepness (recruitment compensation) and the 

natural mortality rate factor Mfac (a multiplier of the user-specified natural mortality rate at age schedule). It is 

important to account for uncertainty in these parameters in operating models since these are among the least well 

known and most influential in the estimation of Atlantic bluefin tuna status and productivity. It follows that 

moving to a Bayesian version of the model using the Metropolis Hastings algorithm of ADMB is a future 

priority.  
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Table 1. The parameters estimated by the model. The example is for a possible bluefin tuna operating model of 8 

areas (Figure 1), 4 subyears, 5 fleets, 65 years and 25 age classes.  

 

Parameter Number of parameters  Example Symbol 

Unfished recruitment ns 2 R0 

Length a modal selectivity nf  5 smode 

Precision of selectivity nf 5 sprec 

Dome-shape of selectivity nf 5 sdome 

Recruitment deviations (ny + na – 1) ∙ ns 178 r 

Fleet catchability nf 5 q 

Movement  Up to: (nr-1) ∙ (nr) ∙ nm 224 ψ 

Steepness (recruitment compensation) ns 2 h 

Natural mortality rate modifier ns 2 𝑀𝑓𝑎𝑐 

 Total 428  

     

 

 

 

Table 2. Summary of the likelihood function for various data. 

 

Type of data Disaggregation Likelihood function 

Total catches (weight)  year, subyear, area, fleet Log-normal 

Index of vulnerable biomass (e.g. a CPUE index) year, subyear, area, fleet Log-normal 

Index of spawning stock biomass (e.g. a larval survey) year, stock Log-normal 

Length composition year, subyear, area Multinomial 

PSAT tag (known stock of origin) stock, year, subyear, area Multinomial 

PSAT tag (unknown stock of origin) year, subyear, area Multinomial 

Stock of origin Year, subyear, area Multinomial 
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Table 3. Simulation model specification. 

 

Parameter/variable Symbol Description  Value (range of simulated values) 

Number of stocks ns  2 

Number of fleets nf  2 

Number of areas nr  4 

Number of years ny 
Historical years of 

exploitation 

40 

Number of subyears nm  2 

Spawning subyear ms  2 

Unfished recruitment R0  
Stock 1: 225-450 

Stock 2: 37 - 75 

Natural mortality 

rate at age 
Minit 

User-specified natural 

mortality rate at age schedule 

Stock 1: 0.49, 0.24, 0.24, 0.24, 0.24, 

0.2, 0.175, 0.15, 0.125,  0.1, 0.1, 0.1, 

0.1, 0.1, 0.1. Stock 2:  0.1 (all ages) 

Natural mortality 

rate factor 
Mfac 

Multiplier of the Natural 

mortality rate at age schedule 

0.75 – 1.5 

Steepness h Recruitment compensation 0.35 – 0.65 

Inter-annual 

recruitment variation 
σR 

Log-normal standard 

deviation of recruitment 

deviations 

0.1 - 0.3 

Recruitment 

autocorrelation 
ΨR  

0.5 – 0.9 

von Bertalanffy 

maximum growth 

rate parameter 

κ  

Stock 1: 0.087- 0.091 

Stock 2: 0.091 - 0.095 

Age at maturity γ 
Age when 50% of individuals 

are mature 

Stock 1: 3.5 - 4.5 

Stock 2: 8.5 - 9.5 

Stock depletion 
SSBny/ 

SSB0 

Spawning stock biomass 

relative to unfished 

Stock 1: 0.035 - 0.2625 

Stock 2: 0.3 - 0.4 

Age at 100 

selectivity 
smode  

5 – 8 (all fleets, all stocks) 

Age at 5% 

selectivity  
 Ascending limb of sel. curve 

2 – 3 (all fleets, all stocks 

Sel. of oldest age   
Fleet 1: 1          (all stocks) 

Fleet 2: 0.5 – 1 (all stocks) 

Slope in recent 

exploitation rates 
  

(-5) – 5 % per year (all fleets, all stocks) 

 

 
 

Figure 1. Spatial definitions of the 2015 ICCAT bluefin tuna data preparatory meeting (Anon. 2015). 
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Figure 2. Spatio-temporal distribution of simulated population dynamics. In order to conduct a simplified test of 

estimation performance, only two subyears and four areas were simulated of the eight identified at the 2015 

bluefin data preparatory meeting (ICCAT 2015, Figure 1).  

 

 

 
Figure 3. Bias in estimates of simulation model quantities ((estimated value – simulated value)/simulated value). 

Current refers to the final year of the simulation (ie most recent). Frac. Spawn. in Spawn. area is the fraction of 

the spawning stock biomass predicted in the spawning area for the final year of the simulation and is included 

here to examine the ability of the model to estimate spatial distribution reliably. The vertical and horizontal 

dashed lines represent the mean bias for stocks 1 and 2 respectively. 

 


