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SUMMARY 
 
Standardized catch rates were calculated for the Brazilian fleet using a zero inflated mixture 
model based on poisson distribution. The database contains information on the longline sets 
carried out by national and chartered vessels from 1978 to 2010. Models were fit to a pooled 
dataset with the flag as explanatory factor and to datasets split according to flag. The catch in 
number of fish was the response variable. Effort was considered as offset. The year and number 
of hooks per basket were the more important explanatory variables. The standardized catch 
rates showed symptoms that suggest they may be useless as relative abundance indices. In 
order to gather appropriate indices, other factors than those considered in this paper should be 
included in the models. 

 
RÉSUMÉ 

 
Les taux de capture standardisés ont été calculés pour la flottille brésilienne à l'aide d'un 
modèle mixte modifié en zéro basé sur la distribution de Poisson. La base de données contient 
des informations sur les opérations palangrières réalisées par des navires nationaux et affrétés 
de 1978 à 2010. Les modèles ont été ajustés à un jeu de données regroupées, le pavillon étant le 
facteur explicatif, et à des jeux de données divisés en fonction du pavillon. La prise en nombre 
de poissons était la variable réponse. L'effort a été considéré comme compensation. L'année et 
le nombre d'hameçons par panier étaient les variables explicatives les plus importantes. Les 
taux de capture standardisés font apparaître des symptômes suggérant qu'ils pourraient être 
inutiles comme indices d'abondance relative. Afin de rassembler des indices appropriés, des 
facteurs autres que ceux examinés dans le présent document devraient être inclus dans les 
modèles. 
 
 

RESUMEN 
 
Se calcularon las tasas de capturas estandarizadas utilizando un modelo mixto de ceros 
aumentados basado en la distribución Poisson para la flota brasileña. La base de datos 
contiene información acerca de los lances de palangre llevados a cabo por buques nacionales y 
fletados entre 1978 y 2010. Los modelos se ajustaron a un conjunto de datos agrupado, siendo 
el pabellón el factor explicativo, y a un conjunto de datos separado en función del pabellón. La 
captura en número de los peces era la variable de respuesta. El esfuerzo se consideró como 
compensación. El año y el número de anzuelos por cesta eran las variables explicativas más 
importantes. Las tasas de captura estandarizadas mostraban síntomas que sugieren que 
podrían no ser útiles como índices de abundancia relativa. Para reunir índices apropiados, 
deberían incluirse en los modelos otros factores que no sean los considerados en este 
documento. 
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1. Introduction 
 
Estimations of relative abundance indices are input data for several stock assessment models. The simple linear 
model often used to describe the relationship between abundance (ܰ) and the relative abundance indice (ܫ) in ݐ௧௛ 
year is ܫ௧ ൌ ௧ݍ ௧ܰ. In this case ܰ is the abundance in number of fish but biomass could be used as well. If 
catchability coefficient ݍ௧ changes across the years, ܫ is not an acceptable relative abundance indice.  
 
Catchability coefficient (ݍ௧) can change due to several factors related to environment, fishermen behavior, 
fishing strategy and fishing gears (Cooke and Beddington, 1984; Hilborn and Walters, 1992). For example, if in 
a given year most of effort is concentrated in a given area, overall ݍ in that year will be different from those of 
the years in which the effort was concentrated in another area. In that case usefulness of ܫ as relative abundance 
indice is debatable unless methods used in the analyzes of data allow for removing or, at least, minimizing the 
effect of factor “area”.  
 
Catch-per-unit-effort (CPUE) of fishing fleets and catch rates of scientific surveys have been often used to 
estimate relative abundance indices. Scientific surveys may result in less biased estimations because the 
experimental design may be enough to cope with some of the factors affecting q. In opposition, CPUE of fishing 
fleet are more biased in the sense they reflect changes in abundance (N ) but also changes of fishing strategies 
and gears aiming at increase catch rate of target species (e.g. valuable species). Although catch rates (or CPUE) 
of fishing fleets are not ideal they are often used because in some circumstances, they are the only information 
available. That is true for albacore (Thunnus alalunga) caught by Brazilian longline fleet, which is the case 
studied in this work.  
 
There are several approaches to analyze catch rate and CPUE data in order to calculate indices affected mainly 
by changes of the biomass than by changes of other factors. Those indices are usually denominated 
“standardized catch rates”. Generalized linear models (GLM) have been often used to “standardize” commercial 
catch rates (CPUE) and, will be also used in this paper. In the GLM framework a response variable (catch or 
catch rate) is assumed to follow a probability distribution of the exponential family. One function (monotonous 
and differentiable) links the response variable to explanatory variables in an additive linear structure. That is the 
link function. Explanatory variables may be qualitative (factors) or quantitative (covariates). Details about GLM 
theory and applications may be found in McCullagh and Nelder (1989) and Dobson (2002) and, one review of 
approaches using GLM is in Maunder and Punt (2004). 
 
If the species of interest is also valuable for fishermen few longline sets will result in catches equal to zero (null 
catches). Nevertheless, if the species is not the target or, the abundance is not high or, the catchability is low, a 
large amount of null catches will occur. Albacore was probably the target of some of the longline chartered 
vessels based in Brazilian ports during some years in 1990s but most of Brazilian national and chartered vessels 
have been fishing swordfish, yellowfin, blue shark and bigeye tuna (Hsu and Chang, 1993; Arfelli, 1996; 
Meneses de Lima et al., 2000). Hence, a large amount of null catches is expected for albacore. 
 
When all catches are positive or when null catches are rare, models for positive data only may be used to 
estimate standardized indices. Also, null catches are allowed in some probability distributions like poisson for 
counting data. However, if the amount of zeros is large, the data is overdispersed (variance is larger than 
expected for that distribution of probability). Mixed or hurdle models may be used to model overdispersed 
counting data (e.g. Mullahy, 1986; Ridout et al., 1998). The approach used to cope with zeros in hurdle models 
is to use Bernoulli or binomial distributions to model the proportion of positive catches, while some probability 
distribution truncated at zero like (e.g. truncated Poisson) is used to model positive catches. In the mixed models 
zero catch may arise from two distributions. The model for part of zero catches and for all positive catches is a 
Poisson or any other distribution for counting data. Bernoulli is then used to model the excess of zeros. Models 
used to cope with overdispersion caused by excess of zeros are often called zero-inflated models, specially the 
mixed ones.  
 
After fitting the model and checking the fit, estimations of the coefficients and of the variance-covariance matrix 
are used to calculate values that hopefully are useful as relative abundance indices. Those calculations are based 
in the idea that variations of q due to changes in fishing grounds, technology and other factors will be 
represented by coefficients calculated for factors like “area”, “type of gear”, and so on. Coefficients calculated 
for the factor “year” are then expected to represent the effect of changes of abundance (in annual scale) on the 
indices (Maunder and Punt, 2004). This may be the case if all important factors affecting q are included in the 
model and coefficients for “year” arise as filtered signal of changes in biomass across years. 
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In this paper data from Brazilian longline fishing fleet is analyzed in an attempt to estimate standardized catch 
rates for albacore using a zero inflated generalized linear model. As mentioned above the factor “year” is 
assumed to represents the impact of annual changes in abundance on catches and catch rates. Because Brazilian 
fleet includes national vessels but also vessels chartered from several countries, comments about if “flag” of 
vessels should be included as factor or if, each database should be analyzed separated, are warranted.  
 
 
2. Data and analysis 
 
2.1 Database 
 
Database analyzed is the “Banco Nacional de Dados de Atuns e Afins” (BNDA) mantained by the “Subcomitê 
Científico de Atuns e Afins” (SC-Atuns) that is part of “Comitê Permanente de Gestão de Atuns e Afins” (CPG) 
of the Ministry of Fisheries and Aquaculture of Brazil. That database contains information about longline sets 
carried out by Brazilian fleet (national plus chartered vessels) since 1978. It is not a complete database in the 
sense BNDA does not contain information about all sets but, the sample size is large and I have assumed it is 
enough to make inferences about catch rates. 
 
Variables available in database are flag of the vessel, date, location and time when the longline was set into the 
water, number of hooks, number of hooks per basket and time when longline was retrieved. Soak time was 
calculated based on the difference between the time at the end of longline setting and the time at the end of 
longline retrieval. Time expended while setting the longline in the water was calculated as the difference 
between time at start and at end of longline setting operation. 
 
Some of the chartered vessels have been fishing for few years. In this paper only data of national and chartered 
fleets that fished during a large number of years is considered (Table 1). Notice that most of information before 
1990 are about Brazilian national fleet and vessels chartered from Japan. After 1990 several vessels were 
chartered from other countries but, since 2008 only Brazilian national vessels and vessels chartered from Spain 
were reported. Overall sample sizes are not balanced for factors year and flag in the sense the number of 
observations area quite different for each of the crossing levels. In opposition, the number of observations is 
balanced for factors quarter and flag except for vessels chartered from Saint Vincent that fished mainly in the 
first and fourth quarters (Table 2). Nevertheless total number observations in the four levels of factor quarter are 
similar. 
 
One of explanatory variables considered in the generalized linear models was “area” with three levels as showed 
in Figure 1. Number of longline sets by crossing levels of factors area, flag and quarter are showed in Table 3. 
Motivations for selecting those three areas are the balance of design matrix as well as patterns found when 
analyzing spatial distribution of catch rate (see results section).  
 
Total number of fishing sets is higher in north than in the other two areas where the number of observations were 
similar (Table 3). In north and east areas most of fishing sets were carried out in the austral summer (first 
quarter) and spring (fourth quarter) while in the south area most of fishing sets were carried out in austral autumn 
(second quarter) and winter (third quarter). 
 
Most of fleets have fished mainly in the north area, except the one composed by vessels chartered from Japan 
that fished mainly in south area (Table 3). Among fleets that fished mainly in north area, BRA, BRA-HND and 
BRA-TAI fished more in the south than in the east area, while the opposite pattern is found for BRA-ESP, BRA- 
PAN and BRA-PRT.  
 
2.2 Models 
 
In the mixed models used in this paper the response variable (ܻ) has a zero-inflated Poisson (ZIP) distribution 
given by  
 

ሺ1ሻ                                                Prሺܻ ൌ ሻݕ ൌ ൜
߱ ൅ ሺ1 െ ߱ሻ expሺെߣሻ ݕ             ൌ 0
ሺ1 െ ߱ሻ expሺെߣሻ ௬ߣ ⁄!ݕ ݕ           ൐ 0 

 

 
In the above equation the response variable (ܻ) is the albacore catch (number of fish) in each of the fishing sets. 
Catches equal to zero are assumed to arise with probability ߱ plus probability ሺ1 െ ߱ሻexp ሺെߣሻ. The parameter 
 is the mean of Poisson distribution. In this model the excess of zeros with respect to Poisson distribution is ߣ
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represented by the parameter ߱. According to Ridout et al. (1998) the expectation for those mixed zero inflated 
Poisson models are 
 
ሺ2ሻ                                                                            ܧሺܻሻ ൌ ሺ1 െ ߱ሻߣ 
 
while the variance is 
 

ሺ3ሻ                                                      ܸܽݎሺܻሻ ൌ ሺ1 െ ߱ሻߣ ൅ ቀ
߱

1 െ ߱
ቁ ሾሺ1 െ ߱ሻߣሿଶ 

 
Regression models based in ZIP distributions have been used since mid 1980s (e.g. Mullahy, 1986). Lambert 
(1992) have used models as 
 

ሺ4ሻ                                                      logሺߣሻ ൌ ݃݋݈                           ߚܺ ቀ
߱

1 െ ߱
ቁ ൌ  ߛܼ

 
where ܺ and ܼ are design matrices for explanatory variables while ߚ and ߛ are vectors of parameters. The two 
sets of covariates may or may not be the same. Alternative models can be generated by using different link 
functions for ߣ or ߱ other than log and logit. Welsh et al. (1996) provided solutions to calculate expections and 
variance for expectations based on information matrices of Poisson and Bernoulli models. Another alternative is 
to assume that the parameters estimations follows multivariate normal sample distribution, hence Monte Carlo 
approach can be used to calculate variance and confidence intervals for the expectations. That numerical 
approach was the one used in this paper.  
 
The explanatory variables I have considered were: 

  ;(factor) ݎܽ݁ݕ •

• ݂݈ܽ݃ (factor);  

  ;Number of hooks per basket ֜ (covariate) ܾ݌݄ •

  ;(factor) ݎ݁ݐݎܽݑݍ •

  ;Three levels as showed in Figure 1 ֜ (factor) ܽ݁ݎܽ •

  Soak time as calculated by the difference between time at the end of longline setting and ֜ (covariate) ݇ܽ݋ݏ •

at the end of longline retrieval;  

  Time expended when setting the longline as calculated by the difference between time at ֜ (covariate) ݐ݁ݏ݀ •

start and time at end of longline setting operation; and  

  Period of the day when the longline set started. There are two levels: N (night) – before ֜ (factor) ݐ݁ݏ݌ •
9:00 or after 17:00 and D (day).  
 
Three comments are warranted about the structure of the models I have considered: a) Besides main effects I 
have also considered first order interactions between all possible combinations between two of the explanatory 
variables; b) I have used two approaches to cope with the multiple fleets. In the first I have fitted models to 
complete data set including flag of vessels as explanatory variable. In the second approach the dataset was split 
by flag and then I have fitted eight different models; and c) The logarithm of number of hooks was included in 
the model as offset in the Poisson model. 
 
In order to estimate the parameters I have used function ݈݂݊݅݋ݎ݁ݖሺ ሻ of the package pscl developed by Zeileis et 
al (2008) to run using R software (R Development Core Team, 2011). Estimations are by maximum likelihood 
using ݉݅ݐ݌݋ሺ ሻ (function of R). Variance-covariance matrix as standard errors are derived numerically using the 
Hessian matrix returned by ݉݅ݐ݌݋ሺ ሻ.  
 
2.3 Selection of variables and models 
 
One alternative to select variables and models is to start with a simple model and, to increase the complexity by 
adding one term (an explanatory variable or an interaction). Thus some criterion like Akaike Information 
Criterion (AIC) (Akaike, 1974) or Bayesian Information Criterion (BIC) (Schwarz, 1978) is used to assess if the 
inclusion of the new term resulted in model improvement. For example, BIC and AIC criteria can point out 
which is the more parsimonious model based on the tradeoff between bias and variance (Burnham and Anderson, 
2002). Nevertheless, because the data is not balanced, design matrix is not orthogonal and the estimations of 
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parameters may be strongly correlated. Therefore the order the parameters enter the model affect the results as 
calculated based on those criteria. In order to cope with that issue I have started by assessing main effects using 
the following procedure:  
 

i. Fit several simple models each of them including once at a time the main effect of each explanatory 
variable;  

ii. Calculate the criterion of selection (BIC in this paper) for each of the simple models and select the more 
parsimonious among them as the “base” model; 

iii. Fit several more complex models by adding each at a time the explanatory variables not included in the 
base model;  

iv. Calculate the criterion of selection (BIC) for models fitted in the previous step; 

v. If the minimum BIC is the one of the base model, stop the calculations and the base model is selected. 
Otherwise the new base model is the model with minimum BIC; 

vi. Repeat steps iii, iv and v until achieving the stop condition or, until all explanatory variables have been 
included in the base model. The remaining model is the base model for main effects. 

 
The procedure to cope with interactions is similar to those I have used for main effects:  
 

i. Fit several models by adding each at a time all possible first order interactions between two of the 
variables included in the base model for main effects; 

ii. Calculate BIC for each of the fitted models;  
iii. If the minimum BIC is the one of the base model, stop the calculations and the base model is selected. 

Otherwise the new base model is the model with minimum BIC;  
iv. Fit several models by adding each at a time all possible first order interactions between two of the 

variables included in the base model, except interactions already included in the base model; 
v. Calculate BIC for each of the fitted models; 

vi. If the minimum BIC is the one of the base model, stop the calculations and the base model is selected. 
Otherwise the new base model is the model with minimum BIC; 

vii. Repeat steps iv, v and vi until achieving the stop condition or, until all possible first order interactions 
have been included in the base model. The remaining model is the base model for main effects.  

 

3. Results 
 
3.1 Catch, effort and catch rate 
 
Total effort, catch and median of catch rate were calculated for aggregated data (all years and flags) by quarter 
(Figure 2). Although the data is pooled, some seasonal patterns are evident. Effort was concentrated in “north” 
(A in Figure 2) in spring and austral summer. Nevertheless there is a fishing spot in “south” (C in Figure 2) 
close to coast. Effort was concentrated in that fishing ground mainly in autumn and austral winter. Effort in 
“east” (B in Figure 2) was lower than in other areas. 
 
Overall catch distribution reflects spatial distribution of effort but there are exceptions. Though effort was not 
concentrated in the area close to South American coast between 5o S and 25o S, the catches are somewhat high 
resulting in high catch rates in that region. That pattern is more evident in the first and fourth quarter. In addition, 
effort was not concentrated far from coast in the south area but the catches there were relatively high and, 
consequently the catch rates were also high. That pattern is more evident in the first quarter. Catch rates were 
also high in some spots in the east area where the effort is low. 
 
 
Those three fishing areas were selected as they appear in Figure 1 in an attempt to achieve some balance in the 
design matrix used in the models but, catch rates distribution was also a motivation. The fishing spot with high 
catch rates in south coast of South America is inside the “south” area while the large fishing spot close to coast 
in central coast of South America is inside the “north” area. and, The spreaded small spots with high catch rates 
in the mid of Atlantic Ocean are in “east” area. The pattern described above is especially evident in the top panel 
at most right column of Figure 2. 
 
Most of the catch rates since 1978 were lower than 10 fish/1000 hooks except in the 1990s when catch rates 
were very high (Figure 3). Variability was also high in 1990s. In opposition, catch rates and its variation were 
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especially low in the last ten years. Finally, most of boxplots indicate positive skewness of catch rate 
distributions. The pattern described above is consistent in the sense it appears for most of flags. Most of boxes as 
calculated for different flags in a given year are superposed. Hence catch rates are not quite different for most of 
fleets (national or chartered vessels).  
 
3.2 Models 
 
Large models with all explanatory variables were selected in all studied cases (pooled or split data). The order 
the exploratory variables were included in each of the selected models are in Table 4. In most of the cases the 
explanatory variables ݎܽ݁ݕ and ݄ܾ݌ ranked first and second. Interactions were not showed to not clutter the 
table. Further description of the selected models is in Table 5. Results for models fitted to datasets of chartered 
vessels from Portugal and Saint Vincent are not in that table because the numeric algorithm did not converge.  
 
All interactions and also the main effect ݄ܾ݌ appearing in Table 5 were discarded because the iterative 
numerical procedure used did not converge when they were included in the models. Notice that all interactions 
involving year were discarded. Interactions other than those involving ݎܽ݁ݕ were only dropped from models 
fitted to pooled dataset and to datasets of vessels chartered from Honduras and Panama. 
 
The numbers of parameters are high in all models. The ratio between the number of estimations (݇) and the 
number of observations (݊) are close to or smaller than 0.01 in most of the cases. The model fitted to BRA-HND 
database is an exception. Although the number of parameters for BRA-HND case is the lowest, the ratio 
݇ ݊⁄ ؆ 0.06 is the highest. Those ratio calculations are not an objective criterion but they may be used to point 
for potentially overparameterized models. 
 
Standard diagnostic plots of residuals are in Figure 4. All the smooth lines in dispersion diagrams of fitted 
versus residuals were close to zero (dashed lines in Figure 4). That is evidence that the models are not biased in 
the sense the expectation for residuals is close to zero whatever the fitted value. Exceptions arise in the analyses 
of BRA-ESP and BRA-HND (third and fourth row of panels in Figure 4) in which there were very large fitted 
values related to quite negative residuals. Nevertheless those large values driving smooth line far from zero were 
rare. 
 
Distributions of residuals are not normal, but showed positive skewness because right tails of distributions are 
very heavy (Figure 4). That pattern is consistent in the sense it was evident in calculations for the seven 
databases. Distribution of residuals for database about vessels chartered from Panama (sixth row of panels from 
top to bottom – Figure 4) was the one more close to normal distribution.  
 
3.2 Standardized catch rates 
 
Standardized catch rates showed in Figure 5 are scaled to the more often fishing scenario for each of the fleets. 
For example, BRA-JPN fleet has more often fished in second quarter, in “south” area, with effort close to 2300 
hooks and so on; hence the standardized catch rates for that fleet are scaled to show the expected number of fish 
per longline set for that scenario. Solutions for any other scenarios would show similar profiles in the sense the 
only change would be the scale in the y-axis. 
 
Overall standardized catch rates trend across the years were similar to those showed by nominal catch rates. 
High values appear in 1990s whatever the model and the database considered (Figure 5). The message ones get 
by looking at nominal or at standardized catch rates are the same. Other remarkable issue is the very large range 
of the confidence intervals for expectation of standardized catch rates for BRA-HND in 1997 and for BRA-JPN 
in 1993. As matter of fact those confidence intervals point that the data do not carry information about those two 
situations. Notice also the skewness of confidence intervals for the years 2009 and 2010. The expectation of 
standardized catch rates for those years are very close to the upper limit of the confidence interval in the 
calculations carried out with pooled database and with database of BRA and BRA-ESP fleets. 
 
Standardized catch rates for vessels chartered from China-Taipei (BRA-TAI) are usually higher than those 
calculated for the other fleets (Figure 5). In opposition standardized catch rates as calculated for vessels 
chartered from Spain (BRA-ESP), Honduras (BRA-HND) and Panama (BRA-PAN) are low. One remarkable 
issue concerning the calculations is the large variability of the standardized indices. Whatever the database 
analyzed values for some years were two or three times higher than those calculated for nearby years. That is 
remarkable because those values should be relative abundance indices and it is very improbable that a fish 
populations experience such biomass variations. 
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Standardized indices calculated for pooled data seem to be a kind of “average” index because it show an 
intermediate time trend pattern if compared to those calculated for the split databases. If one relies in the 
standardized catch rates for pooled data as relative abundance indices, the conclusion would be that the biomass 
have increased from early 1980s until the end of 1990s and then, there were a sharp decrease in mid 2000s 
(Figure 5). Biomass did not recover since then though there was a small increasing trend after 2008. Once again 
it is important to stress that the validity of the above conclusion depends on the reliability of the standardized 
catch rates as relative abundance indices. Discussion on that issue is warranted in the next section. 
 
Coefficients of correlation as calculated for standardized catch rates for pooled data and for database split by flag 
were all positive (Figure 6). Coefficients are high for BRA-JPN and BRA fleets while it is low for BRA-TAI. 
Hence the time trend showed by standardized catch rates calculated for pooled data reflects the time trend of 
values calculated for data of national vessels and of vessels chartered from Japan but not of vessels chartered 
from China-Taipei. As a matter of fact, standardized catch rates as calculated for vessels chartered from Taipei 
did not show any consistent time trend (Figure 5). 
 
Coefficients of correlation were indeed high for BRA and BRA-JPN that have been fishing for a large amount of 
years (more than 20). In spite that result points for the conclusion that coefficients of correlations are high when 
the number of observations are high, that relationship is not so strong, because analyses for BRA-ESP and for 
BRA-PAN resulted in relatively high coefficients if compared to that calculated for BRA-TAI and, the number 
of observations are similar for those three fleets.  
 
 
4. Discussion 
 
Usefulness of standardized catch rates depends on the ability of being able to separate the impact of changes of 
abundance on catch rates from the impact of factors other than abundance. Ideally the impact of changes in 
abundance is represented by the coefficients calculated for levels of factor ݎܽ݁ݕ. Nevertheless, if “year” is 
considered in interactions with other factors, extracting those separated “year” effects may be cumbersome 
and/or may require some subjective weighting the coefficients (Maunder and Punt, 2004). In this work that 
difficulty did not arise because iterative algorithm did not converge when considering ݎܽ݁ݕ in interactions. That 
convergence failure was probably due to the large number of parameters to be estimated because ݎܽ݁ݕ has many 
levels and, consequently, likelihood function may be flat in that situation. 
 
Difficulties concerning convergence avoided several interactions to be included in the models. Models lacking 
factors and interactions could be biased if those terms are important to explain the variability of the response 
variable. Nevertheless, even though all those interactions were not included in the models, a couple of simple 
analyses of residuals pointed out the models are not biased. Further detailed analyses of residuals are required for 
sound conclusions but, the preliminary results gathered in this paper provide some evidence that those terms not 
included in models are not so relevant in the sense the models lacking them are not strongly biased. 
 
The strong positive asymmetries of residuals are not of concern because, as a matter of fact, the assumed Poisson 
distribution may show asymmetry as well. Nevertheless, due to the Central Limit Theorem (CLT) residuals 
distribution should follow normal distribution approximately. Deviation from normal distribution may be signal 
that the overdispersion of catch data may be due not only to the large amount of zeros but also, due to a heavy 
right tail of distribution caused by some large catch observations. That issue should be investigated in the future 
in order to improve standardization models. 
 
Both nominal catch rates and standardized catch rates scaled for the typical fishing scene for each fleet make 
evident that vessels chartered from China-Taipei catch albacore more efficiently. Indeed China-Taipei fishermen 
targeted albacore in the 1990s (Arfelli, 1996). In opposition, although albacore is a valuable tuna species, it was 
considered as a kind of “by-catch” by fisherman of the other fleets. Hence, there are two kind of standardized 
catch rates series, those from fleets that do not target albacore and one from the BRA-TAI fleet. Data of the 
BRA-TAI fleet are not a “random sample” in the sense that those vessels probably fished more often in scenarios 
in which the density or catchability of albacore were expected to be high. In opposition, other fleets were not 
aiming at albacore; hence in this sense those samples are expected to represent several situations and not only the 
ones in which albacore abundance or vulnerability are high. If both standardized series (BRA-TAI and all the 
others) showed similar time trends, that issue would be not of concern because the conclusion would be the same 
whatever the “sampler” fleet. Nevertheless, while standardized catch rates as calculated based on BRA-TAI data 
suggest any consistent time trend, overall, most of the other series suggest an increasing trend until the mid- 
1990s and then a sharp decreasing trend. The results gathered do not shed light on the discussion about which 
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“sampler” generate more reliable data to calculate standardized indices, the fleet aiming at albacore or the fleets 
aiming at other species. As a matter of fact, both are biased and the quality of data is lower than those gathered 
in scientific surveys. Nevertheless, in some circumstances there is only information on commercial catch rate; 
hence they might be considered in the analyses. It should be stressed that different results may arise depending 
on the type of commercial data used in the analysis. Comparative studies on the reliability of standardized 
indices as calculated from “targeting sampler” (e.g. BRA-TAI fleet) and “by-catch sampler” (e.g. fleet not 
aiming at albacore) would be very useful. 
 
One could argument that the solution is to put all data together and use ݂݈ܽ݃ as factor in order to calculate 
standardized indices that convey all the available information. Nevertheless that is equivalent to assume that all 
databases are equally trustful. Maybe one of them (e.g. “targeting sampler” data) is less biased than the others 
and, to equally weight all databases would be a mistake. Moreover, put all together using ݂݈ܽ݃ as factor will 
result in an intermediated standardized catch rates but, more similar to those catch rates of the largest database, 
which is not necessarily the more reliable one. 
 
Hopefully the standardization calculations should result in values that reflect only the changes of biomass. 
Hence, time trend of standardized indices should be similar whatever the database used, unless, some important 
factors were not included in the models and, consequently, their impact on catch rate were not eliminated. 
Moreover, time trend of standardized catch rates should be biologically meaningful. For example, sharp 
increasing trends in a small amount of time, are very unlikely for some fish populations. Hence, when peaks 
show up, one should be concerned about the model because it is probably lacking factors that explain the 
variability of response variable. Finally, it is important to remember that the motivation to calculate standardized 
catch rates is the thought that nominal catch rate is biased. Hence, if the calculations were successful, the time 
trend of standardized catch rate series should be different from that of nominal catch rates. Overall, that was not 
the case for albacore caught by the Brazilian fleet. The standardized catch rates calculations showed the three 
symptoms mentioned above: (a) time trend differences related to the flag of the vessel; (b) doubtful biological 
meaning; and (c) time trend similar to those of nominal catch rate. Therefore, usefulness of those standardized 
catch rates as relative abundance indices should be carefully considered. The conclusion is that, in order to 
gather appropriate indices, other factors than those considered in this paper should be included in the models.  
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Table 1. Number of longline sets by year and flag as reported in database “Banco Nacional de Dados de Atuns e 
Afins” (BNDA). BRA stands for national vessels while other columns contain information about vessels 
chartered from Spain (BRA-ESP), Honduras (BRA-HND), Japan (BRA-JPN), Panama (BRA-PAN), Portugal 
(BRA-PRT), China-Taipei (BRA-TAI) and Saint Vincent (BRA-VCT).  

 Flag  

Year BRA BRA-ESP BRA-HND BRA-JPN BRA-PAN BRA-PRT BRA-TAI BRA-VCT Total 

1978 0 0 0 492 0 0 0 0 492 

1979 16 0 0 464 0 0 0 0 480 

1980 155 0 0 427 0 0 0 0 582 

1981 160 0 0 305 0 0 0 0 465 

1982 226 0 0 664 0 0 0 0 890 

1983 179 0 0 439 0 0 0 0 618 

1984 192 0 0 403 0 0 120 0 715 

1985 173 0 0 297 0 0 0 0 470 

1986 361 0 0 628 0 0 0 0 989 

1987 506 0 0 421 0 0 0 0 927 

1988 334 0 0 885 0 0 0 0 1219 

1989 281 0 0 749 0 0 0 0 1030 

1990 261 0 0 29 0 0 0 0 290 

1991 135 75 0 289 0 0 491 0 990 

1992 178 0 0 58 0 0 980 0 1216 

1993 162 0 0 9 0 0 86 0 257 

1994 173 0 0 333 0 0 257 112 875 

1995 247 0 0 248 0 0 866 167 1528 

1996 348 50 0 0 0 0 0 0 398 

1997 473 481 3 0 0 0 0 137 1094 

1998 465 734 43 24 0 0 124 657 2047 

1999 685 1166 272 0 0 171 630 1584 4508 

2000 1139 2611 291 34 246 323 782 1738 7164 

2001 671 3124 253 13 126 88 887 2005 7167 

2002 1396 1013 448 0 396 222 607 1158 5240 

2003 501 1457 159 0 119 143 0 0 2379 

2004 2384 1332 268 0 1755 36 0 0 5775 

2005 2352 1426 355 0 2221 64 0 2 6420 

2006 1689 1427 209 0 846 164 0 0 4335 

2007 2213 658 168 0 178 0 0 0 3217 

2008 181 6 3 0 0 0 0 0 190 

2009 285 601 0 0 0 0 0 0 886 

2010 146 193 0 0 0 0 0 0 339 

Total 18667 16354 2472 7211 5887 1211 5830 7560 65192 
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Table 2. Number of longline sets by year and flag as reported in database “Banco Nacional de Dados de Atuns e 
Afins” (BNDA). BRA stands for national vessels while other columns contain information about vessels 
chartered from Spain (BRA-ESP), Honduras (BRA-HND), Japan (BRA-JPN), Panama (BRA-PAN), Portugal 
(BRA-PRT), China-Taipei (BRA-TAI) and Saint Vincent (BRA-VCT).  

 Flag  

Quarter BRA BRA-ESP BRA-HND BRA-JPN BRA-PAN BRA-PRT BRA-TAI BRA-VCT Total 

1 4593 4319 690 1337 1692 269 1723 3280 17903 

2 4627 4726 632 2358 1068 345 845 749 15350 

3 4557 3624 518 2130 1534 363 1104 788 14618 

4 4890 3685 632 1386 1593 234 2158 2743 17321 

Total 18667 16354 2472 7211 5887 1211 5830 7560 65192 

 
 
Table 3. Number of longline sets by area, quarter and flag as reported in database “Banco Nacional de Dados de 
Atuns e Afins” (BNDA). BRA stands for national vessels while other columns contain information about vessels 
chartered from Spain (BRA-ESP), Honduras (BRA-HND), Japan (BRA-JPN), Panama (BRA-PAN), Portugal 
(BRA-PRT), China-Taipei (BRA-TAI) and Saint Vincent (BRA-VCT).  

  Area    

Quarter North  East  South  Total 

1 11026 5006 1871 17903 

2 8397 2022 4931 15350 

3 8286 1174 5158 14618 

4 11614 3410 2297 17321 

Total 39323 11612 14257 65192 

Flag     

BRA 12884 1148 4635 18667 

BRA-ESP 9862 6090 402 16354 

BRA-HND 1375 268 829 2472 

BRA-JPN 444 955 5812 7211 

BRA-PAN 5004 858 25 5887 

BRA-PRT 770 346 95 1211 

BRA-TAI 3500 871 1459 5830 

BRA-VCT 5484 1076 1000 7560 

Total 39323 11612 14257 65192 

 
 
 
 
Table 4. Main effects of the selected models. Dots at right of equations stand for interactions.  

Database Model 

BRA ܿܽݎܽ݁ݕ~݄ܿݐ ൅ ܾ݌݄ ൅ ݐ݁ݏ݀ ൅ ݎ݁ݐݎܽݑݍ ൅ ݇ܽ݋ݏ ൅ ܽ݁ݎܽ ൅ ݐ݁ݏ݌ ൅  ڮ

BRA-ESP ܿܽݎܽ݁ݕ~݄ܿݐ ൅ ܾ݌݄ ൅ ݇ܽ݋ݏ ൅ ܽ݁ݎܽ ൅ ݐ݁ݏ݌ ൅ ݎ݁ݐݎܽݑݍ ൅ ݐ݁ݏ݀ ൅  ڮ

BRA-HND ܿܽݎܽ݁ݕ~݄ܿݐ ൅ ܾ݌݄ ൅ ݇ܽ݋ݏ ൅ ݐ݁ݏ݀ ൅ ݎ݁ݐݎܽݑݍ ൅ ܽ݁ݎܽ ൅ ݐ݁ݏ݌ ൅  ڮ

BRA-JPN ܿܽݎܽ݁ݕ~݄ܿݐ ൅ ݎ݁ݐݎܽݑݍ ൅ ܽ݁ݎܽ ൅ ܾ݌݄ ൅ ݇ܽ݋ݏ ൅ ݐ݁ݏ݀ ൅ ݐ݁ݏ݌ ൅  ڮ

BRA-PAN ܿܽݎܽ݁ݕ~݄ܿݐ ൅ ݇ܽ݋ݏ ൅ ݎ݁ݐݎܽݑݍ ൅ ݐ݁ݏ݀ ൅ ݐ݁ݏ݌ ൅ ܽ݁ݎܽ ൅ڮ 

BRA-TAI ܿܽݎܽ݁ݕ~݄ܿݐ ൅ ݎ݁ݐݎܽݑݍ ൅ ܽ݁ݎܽ ൅ ܾ݌݄ ൅ ݐ݁ݏ݌ ൅ ݐ݁ݏ݀ ൅ ݇ܽ݋ݏ ൅ڮ 

Pooled ܿܽݎܽ݁ݕ~݄ܿݐ ൅ ܾ݌݄ ൅ ݂݈ܽ݃ ൅ ݐ݁ݏ݀ ൅ ݇ܽ݋ݏ ൅ ݎ݁ݐݎܽݑݍ ൅ ݐ݁ݏ݌ ൅ ܽ݁ݎܽ ൅  ڮ
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Table 5. Selected zero inflated mixed poisson models when analyzing the pooled data and datasets split base on 
flag: national vessels (BRA), vessels chartered from Spain (BRA-ESP), Honduras (BRA-HND), Japan (BRA-
JPN) and China-Taipei (BRA-TAI). Sample size (n), number of parameter estimations (k) and Bayesian 
Information Criterion (BIC) are in the three columns at right. Explanatory variables are: year, f lag, hpb – 
Number of hooks per basket, quarter, area – north, south and east fishing grounds, soak – soak time, dset – Time 
expended when setting the longline and pset – Period of the day (day or night) when the longline was set.  

  Discarded Terms    

Dataset  Main Interactions ݊  ݇  BIC 

BRA  ݂݈ܽ݃ ݎܽ݁ݕ: ,ܾ݌݄ :ݎܽ݁ݕ ,ݐ݁ݏ݀ :ݎܽ݁ݕ ,ݎ݁ݐݎܽݑݍ :ݎܽ݁ݕ ,ݐ݁ݏ݌ :ݎܽ݁ݕ ,ܽ݁ݎܽ :ݎܽ݁ݕ ݇ܽ݋ݏ 10091 144 154703.7 

BRA-ESP    
݂݈ܽ݃ 

:ݎܽ݁ݕ ,ܾ݌݄ :ݎܽ݁ݕ ,ݐ݁ݏ݀ :ݎܽ݁ݕ ,ݎ݁ݐݎܽݑݍ :ݎܽ݁ݕ ,ݐ݁ݏ݌ :ݎܽ݁ݕ ,ܽ݁ݎܽ :ݎܽ݁ݕ  141411.6 114 11956 ݇ܽ݋ݏ

BRA-HND     
݂݈ܽ݃ 

:ݎܽ݁ݕ ,ܾ݌݄ :ݎܽ݁ݕ ,ݐ݁ݏ݀ :ݎܽ݁ݕ ,ݎ݁ݐݎܽݑݍ :ݎܽ݁ݕ ,ݐ݁ݏ݌ :ݎܽ݁ݕ ,ܽ݁ݎܽ :ݎܽ݁ݕ  11451 82 1273 ݇ܽ݋ݏ

:ݎ݁ݐݎܽݑݍ   ,ܽ݁ݎܽ :ܽ݁ݎܽ ,ݐ݁ݏ݌ :݇ܽ݋ݏ ,ݐ݁ݏ݌ :ݐ݁ݏ݀ ,ݐ݁ݏ݌ :ܾ݌݄ ݇ܽ݋ݏ    

BRA-JPN  ݂݈ܽ݃ ݎܽ݁ݕ: ,ܾ݌݄ :ݎܽ݁ݕ ,ݐ݁ݏ݀ :ݎܽ݁ݕ ,ݎ݁ݐݎܽݑݍ :ݎܽ݁ݕ ,ݐ݁ݏ݌ :ݎܽ݁ݕ ,ܽ݁ݎܽ :ݎܽ݁ݕ ݇ܽ݋ݏ 7189 124 129239.6 

BRA-PAN  ݂݈ܽ݃, ܾ݌݄ :ݎܽ݁ݕ ,ܾ݌݄ :ݎܽ݁ݕ ,ݐ݁ݏ݀ :ݎܽ݁ݕ ,ݎ݁ݐݎܽݑݍ :ݎܽ݁ݕ ,ݐ݁ݏ݌ :ݎܽ݁ݕ ,ܽ݁ݎܽ :ݎܽ݁ݕ ݇ܽ݋ݏ 5707 54 23465 

:݇ܽ݋ݏ   ,ܽ݁ݎܽ :ݎ݁ݐݎܽݑݍ ,ܽ݁ݎܽ :ݐ݁ݏ݌ ,ܽ݁ݎܽ :݇ܽ݋ݏ ,ݐ݁ݏ݀ :݇ܽ݋ݏ ,ݐ݁ݏ݌ :ݐ݁ݏ݀ ݐ݁ݏ݌    

BRA-TAI  ݂݈ܽ݃ ݎܽ݁ݕ: ,ܾ݌݄ :ݎܽ݁ݕ ,ݐ݁ݏ݀ :ݎܽ݁ݕ ,ݎ݁ݐݎܽݑݍ :ݎܽ݁ݕ ,ݐ݁ݏ݌ :ݎܽ݁ݕ ,ܽ݁ݎܽ :ݎܽ݁ݕ ݇ܽ݋ݏ 5822 104 113144.7 

Pooled   ݎܽ݁ݕ: ,ܾ݌݄ :ݎܽ݁ݕ ݂݈ܽ݃, :ݎܽ݁ݕ ,ݐ݁ݏ݀ :ݎܽ݁ݕ ,݇ܽ݋ݏ :ݎܽ݁ݕ ,ݎ݁ݐݎܽݑݍ :ݎܽ݁ݕ ݐ݁ݏ݌ 47289 278 824060.1 

:ݎܽ݁ݕ   ,ܽ݁ݎܽ :ܾ݌݄ ,݇ܽ݋ݏ :ݐ݁ݏ݀ ,݇ܽ݋ݏ :݇ܽ݋ݏ ݎ݁ݐݎܽݑݍ    

 
 
 
 

 

Figure 1. Levels of factor area used as explanatory variable in the generalized linear models. (A) north, (B) east 
and (C) south areas.  
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Figure 2. Effort (1000 hooks), catch (n) and median of catch rate (CR) (n/1000 hooks) per quarter as calculated 
for pooled data (all years and flags). Letters in the panels stand for areas denominated as north (A), east (B) and 
south (C). Panels from top to bottom stand for first to fourth quarter. Source: “Banco Nacional de Dados de 
Atuns e Afins” (BNDA). 
 
 
 
 
 
 
 



628 

 

 

 

 

Figure 3. Catch rate (n/1000 hooks) per year. All flags pooled (ALL), Brazilian vessels (BRA), vessels chartered 
from Spain (BRA-ESP), Honduras (BRA-HND), Japan (JPN), Panama (PAN), Portugal (PRT), China-Taipei 
(TAI) and Saint Vincent (VCT).  
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Figure 4. Fitted versus residuals (panels at left) and normal quantiles plots for standardized residuals. Panels 
from top to bottom show the results for models fitted to seven databases: a) all flags pooled, b) Brazilian national 
vessels, c) vessels chartered from Spain, d) vessels chartered from Honduras, e) vessels chartered from Japan, f) 
vessels chartered from Panama and g) vessels chartered from China-Taipei.  
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Figure 5. Standardized catch rate as calculated for all flags pooled (ALL.FLAGS), Brazilian vessels (BRA), 
vessels chartered from Spain (BRA-ESP), Honduras (BRA-HND), Japan (JPN), Panama (PAN) and China-
Taipei (TAI). Filled circles stand for the punctual estimation of expectation, vertical gray lines stand for 99% 
confidence intervals.  
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Figure 6. Number of observations and coefficients of correlation between standardized catch rates as calculated 
for all data pooled and standardized catch rates as calculated for national vessels (BRA), for vessels chartered 
from Honduras (BRA-HND), Japan (BRA-JPN), from Panama (BRA-PAN), from China-Taipei (BRA-TAI) and 
from Spain (BRA-ESP).  
 
 
 


