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SUMMARY

Surplus-preduction modeling has often assumed equilibrium conditions, “although
stocks are rarely thought to be in equilibrium. This paper describes a simple non-equilibrinm
approach (ASPIC) to fitting a logistic production model to catch and effort data. From such
data, ASPIC provides estimates of the two logistic parameters r and K, catchability ¢, and
the stock biomass By in the firsi year of the time series. From these four quantities, estimates
can be made of MSY, stock size at MSY, optimal effort at MSY, optimal fishing martality
at MSY, and the time series of stock biomass levels, surplus production levels, and fishing
mortality levels. The general optimization approach is similar to that used by Pella and
Tomlinson in their GENPROD computer program; however ASPIC uses an analytical solu-
tion of the yield equation, a revised loss function, and incorporates several other refinements
including bootstrap estimates of variability. The method handles missing data (years with
no fishery) correctly without modification and is extremely tlexible in handling different
patterns of fishing, such as (i) two or more simultaneaus fisheries with different types of
gear, (i) a fishery that ends and then resumes with a different type of gear, (iii) density-
dependent catchability; and (iv) time trends in catchability. The model can be adapted easily
10 use awaliary information (e.g., external estimates of popﬁlau'on biomass) to tune the
model. The major advantages of the ASPIC model are as follows; it is a true non-solution
of the productian equations; it retains true population persistence; it eliminates the need
to use catch-per-unit-effort as an index of abundance, a practice that has been criticized on
statistical grounds; and it can be modified easily. The paper describes the structure of the
model and its performance on several simulated and real data sets.

RESUME

La modélisation de la production excédentaire a souvent postulé des conditions

- d’équilibre, bien que les stocks soient rarement jugés étre en équilibre. Le présent

document décrit une méthode sirple ne postulant pas de conditions d’équilibre (ASPIC)
pour ajuster un modele de production logistique aux données de prise et d'effort. A partir
de ces données, ' ASPIC fournit des estimations de deux paramétres logistiques r et X, de
fa capturabilité g, et de la biomasse du stock B, pendant la premiére année de la série
temporelle. A partir de ces quatre chiffres, il est possible d’estimer la PME, la taille du
stack au niveau de la PME, Ueffort optimum a la PME, la mortalité par péche optimale 2
la PME, et la série temporelle de niveaux de biomasse du stock, de production excédentaire
et de mortalité par péche. La méthode générale d'optimisation est semblable & celle de
Pella et Tomlinson dans leur programme informatique GENPROD; cependant, 'ASPIC
utilise une solution analytique de I'équation de production, une fonction révisée de pertes,
et comprend plusieurs autres nuances, dont des estimations "bootstrap" de la martalité. La
méthode traite les données manquantes (années sans péche) de fagon correcte sans
modification, et est extrémement flexible au moment de traiter différents modes de pdche,
tels que (1) deux pécheries ou plus travaillant simultanément avec des engins différents, (i)
une pécherie qui cesse, puis reprend avec un différent type d'engin, (iif) une capturabilité

fonction de la densité, et (iv) des tendances temporelles de la capturabilitd. Le modele

peut étre facilement adapté pour utiliser une information auxiliaire (par exemple, des
estimations externes de la biomasse de la population) pour ajuster le modeéle. Les
principaux avantages du modéle ASPIC sont les suivants: il s’agit d’un modéle ne postulant
vraiment aucune condition d’équilibre et qui rend compte correctement des prises; il est de
conception simple, et utilise une solution analytique de I'équation de production; il
maintient la véritable continuité de la population; il élimine 1a nécessité d’utiliser la CPUE
comme indice de I'abondance, méthode qui a été critiquée du point de vuc'statistique; et
il peut étre aisément modifi€. Le document décrit la structure du modéle et ses

performances avec plusicurs jeux de données simulés et réels.



RESUMEN

Al aplicar el modelo de produccién excedente, con frecuencia se asumen condiciones
de equilibrio, aunque de hecho rara vez se supone que el stock se encuentra en esas
condiciohes, Eite documemo ‘describé in sencillo enfoque de no equilibrio (ASPIC) para
ajustar un mddelo'dc producmén logistico a los datos de captura y esfuerzo. Partiendo de
estos datos, ASPIC facilita estimaciones de los dos parimetros logisticos r y K,
capturabilidad g y la biomasa del stock By en el primer afio de la serie -tcmpora]. Partiendo
de estas cuatro.cantidades, se pueden hacer estimaciones del RMS, tamafo del stock con
RMS, esfuerzo 6ptimo con RMS, mortalidad por pesca 6ptima con RMS, y la serie
temporal de niveles de biomasa del stock, niveles de producci6n excedente y niveles de
mortatidad por pesca. El enfoque general de optimizacién es similar al aplicado por Pella

.y~ Tomlinson en su programa de ardenador GENPROD); sin embargo, ASPIC empiea una

solucién analitica de Ja ecuaci6u de rendimiento, una funcidn de pérdidas revisada e
incorpora varios refinamientos més que incluyen estimaciones de variabilidad. El método
aplica correctamente datos que faltan (afios sin pesqueria) sin modificacién y es
extraordinariamente flexible para el manejo de los diferentes esquemas de pesca, tales
como (i) dos o més pesquerias simultineas con diferentes tipos de arte, (i) una pesqueria

-que termina y se reanuda con artes diferentes, (iii) capturabilidad dependiente de la

densidad y (iv) las tendencias temporales en la capturabilidad. El modelo es facilmente
adaptable para vsar informacién auxiliar (por ejemplo, estimaciones externas de la biomasa

. de poblaci6n) en el ajuste del modelo. Las principales ventajas del modelo ASPIC son: se

trata de un auténtico modelo en condiciones de no equilibrio que tiene en cuenta las
capturas de forma correcta; su concepto es séncillo, empleando una sclucién analitica de
la ecuacién de produccién; mantiene una auténtica persistencia de la poblaci6n; elimina la
necesidad de emplear la captura por unidad de esfuerzo como indice de abundancis,

Nprécuca que ha sido criticada desde el punto de vista estadistico; puede modificarse

facilmente. El documento describe la estructura del modelo y su funcionamiento con varios
conjuntos de datos, auténticos y simulados.
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INTRODUCTION

Surplus-production modeling has ofien assumed equilibrium conditions, although stocks
are rarely thought o be in equilibium. This paper describes a simple approach. ietmed ASPIC,
to fitting a non-equilibrium surplus-production model. Other non-cquilibrium production madels

have preceded this one (c.g.. Pella and Tomlinson 1969, Schnutc 1977 Fletcher 1978) but the
present treatment has the benefits of simplicity and ex!cmlblhty m: general algorithm used by
ASPIC s similar thm of Pellz and Tomlinson (1969). a forward soiuuon of the modcl
However, ASPIC uses an analyuca_ solution of the ﬂcld eqwmon, a mvxsed loss ﬁmcuon and
mcorporatcs scvcral other mﬁncmcnts mcludmg boo(smxp estimates of vambdxty Another
difference is that ASPIC is based on the Gmham—deacfcr logistic production model (Gmham
1956; Schaefer 1954, 1957). The ASPIC framework couid be applied to the Pella- T\}mlmson
(1969) or Fox (1970) surplus-yield models equally well, but the logasuc madel hxs mc dcs:rablc
property of being solvable in closed form for the yield in a glvcn year.

REVIEW OF PRODUCTION MODELS

In all production models, a quantity termed swrplus produciion characterizes population
dynamics at different levels of population size, usually measured in biomass. Surplus production
is a lumped quantity that incorporates three major forces: recruitment, growth, and natural
monahty The mathematics of the ASPIC model begins with a logistic (Schaefer) production
model under the condition that no fishing mortality occurs. Under those dynamics, the following
differential equation (Lotks 1924} describes e raie of change of the stock biomass B, due
surplus productit

08 r o2
W - =BT B,

This equation uscs the perameterization of population ecology, in which X is the maximum
possible: population size, or canrying:capacity. and r is the stock’s intrinsic rate of increase (the
limit of an individual's rate of increase as the population size approaches 2er0). Both quantities

1 The adjective “surplus” refers” 0 the surplus of recruitment and growth over natural
monrtality: i.e.. the net production. In this paper, surplus production is often be tenmed simply
“production.”
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are assumed constant over time. Other parameterizations could be used equally well; e.g.. o= r
and f = r/K.

To make the model more realistic, a term is often added to equation (1) to represent the
change in biomass due to fishing mortality, Assume the common formulation that fishing
mortality rate  is proportional to the fishing effort rate f with proportionality constant g; i.e., that
F = gf. Then the model including fishing is

a8
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Model Solutions that Incorporate Catch

To compute the change in biomass from one point in time to another, during which period
f; remains constani?, we integrate equation (1). Let the time period of interest begin at ¢ = 0,
when the stock biomass is By, and end at time ¢ = £, when the biomass is 8,. The solution in this
very general case is

~BoK(gf-rye

?» B .
Y Byre ™ L r(K-By) - gfK

Whereas equation (2) merely dcscnbed lhe rate of change of the population biomass, equation (3)
describes the dynamics of the biomass mmugh time. By adopting the common assumption that
£, is constant within each year (or quarter, month, etc.) but may change from year to year, we can
modify equation (3) slightly t0 express B,,, in terms of 8. The modified equation is

-B.K(gf,-ne’ "
Bre" Y 4 r(K-B,) - ¢f X

4 B‘ o™

2 Other conditions are treated by dividing time into shorter periods during which fis constant
and applying equation (3) to each period separately.

Where f, is the value of /; during the period of time from f = 110 ¢ = 1 + 1. The model structure
also defines the yicld expected during a time periad. We designate the expected vield during the
same period as )’,. From the definition of yield and equation (3),

T+ - Tl N ; ri-qfit
. B K(qf,~ne *
©) fo - J‘qf,B,dl = qu‘ r1-qfel dr .
t t Bere +r(K-B)-qf K

The solution of equation (5) may be new. to fishery science. It is

©® g . WK Bore" i grk vKr-B,r
r Kr-qf,K

The estimated production P, of the stock during the period can be computed by mass balance:

M Py o= By -ByY,

T+l

FITTING THE MODEL: THE ASPIC APPROACH

The time-trajectory aspect of production models is ofien negiected by assuming that the
stock is in equilibrium and treating cach year's data as independent. Under this assumption, B,,
= B,, and therefore production in each year is assumed 10 equal yield. In such a treatment, the
observations of biomass (or its index, Y/f) and yield are fitted by least squares, frequently with
some form of smoothing added o the observations on fishing effort. One view is that this
mooﬂungscwummomthepomhnonpemﬂcmcmmsbecnmmvodfmmﬂxemodclby
antificially imposing equilibrium conditions. In any case, smoothing aiso requires dropping the
first few years' data, which reduces the effective size of the data set (Gulland 1961; Mohn 1980).

The ASPIC model avoids the equilibrium assumption by fitting a series of equations (4)

and (6) o the data directly, using standard optimization techniques. The data required are yield

Y (harvest in weight) and fishing effort f for T periods (years) ¢ = {1, 2, .... T}, where T> 4. Also



required are starting estimates of the four parameters that are directly estimated, B,, r, X, and q.
To perform the estimation, the following algorithm is used:

1. Obtain starting estimates of the four parameters. The optimization method suggested
below is quite insensitive to the choice of starting values.

2 Set iteration counter to 1.

3. Starting with the current estimate of Bl'. simulate the population through time according
to equation (4). For each year of the simulation, compute estimated yield from equation
(6) and, if desired, estimated production from equation (7).

4, During the simulation, accumulate a loss function to be minimized. The choice of a loss
function is discussed below. An obvious choice is some function of the sum of squares

L 2
of the residuals of yield, (1,7},
. 1=l
5. If the iteration counter > | and convergence has been achieved, end. Otherwise, adjust

the parameter estimates. increment the iteration counter, and go to step 3.

In the computer program currently used to implement ASPIC; adjustment of the parameter
estimates to minimize the loss function is performed with the simplex or “polytope™ algorithm
(Nelder and Mead 1965: Press et al. 1986). A quicker method such as that of Marquardt (1963)
might work, but has not been tried in this appllcatjorm3 The optimization provides direct
estimates of the four parameters B,, r, K. and g, and indirect estimates of the stock biomass levels
B,. B, ..., By and the stock’s production during each period of time. Given logistic dynamics,
the estimate of maximum sustainable yietd (MSY) is Kr/4, which is attained at stock size K/2: the
instantaneous fishing mortality rate to generate MSY is r/2, and the corresponding rate of fishing
effort is r/2q (Schaefer 1954).

Loss Function

The cholce of loss function is central to all optimization problems and can strongly
influence the results of modeling. Perhaps the simplest loss function for this model is the sum
of squared residuals in yield,

T
®  toss = Y (1,-7F -
=l

3However, Marquardt’s algorithm was used in a similar application by Rivard and Bledsoe
(1978).
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This loss function was used by Petla and Tomlinson (1969) in their generalized production model,
but was criticized by Fox (1971), who pointed out that it implics infinitely great variability in
poputation size as the population size approaches zero. Fox (1971) then performed a Monte Carlo
simulation to evaluate three possible loss functions for the Pella-Tomlinson model. and obtained

the best results by using the inverse of the observed yield in each year as a2 weight, ie.,
minimizing ’

z Yl-fl

® loss =
: ()] Y !

This additive proportional loss function has subsequently been used by others, including Rivard
and Bledsoe (1968). In either case, if the residuals [the quantities in parentheses in (8) or (9)] are
independent and normally distributed with constant variance, the results will be maximum-
likelihood estimates. Both loss functions are available in the ASPIC computer program, 50 that
the analyst can examine the residuals of either procedure.

Logistic production theory implies that the stock biomass, should always be less than X.
In fitting centain data sets, however, I have found that the estimate of B, can be much larger than
K and also much larger than the biomass estimates in following years. This can occur because
the loss functions (8) and (9) are relatively insensitive to the estimate of B1. Such unrealistic
results can be avoided by introducing an additional penalty term into the loss function. For the
additive proportional error structure, the loss function then becomes

2
T ) B
0 o = E[_____Y'yy’] + dwy 22‘ K
1

=] *K

where d = 1 if B,>K and d w 0if B, <K, and wy determines the effect of the penalty relative
to the residuals in yield. When wp = 1, the penalty term has the same weight as any other
tesidual. This approach (with wp = 1) has been quite effective in constraining the estimate of &,
while causing insignificant changes in the total joss function of the remaining parameter estimates.

Because catch and effort data are usually autocorrelated, the errors—whether computed
by equation (8), (9), or (10)—may also be autbcorrelated. A matter of statistical concem is
whether a method of fitting that takes the autocorrelation into account (sugh as one based on time-



series analysis sensu Box and Jenkins) might be more appropriate. Some results relevant to this
question were obtained by Ludwig ef al. (1988) in a study that fit production models to simulated
data with two loss functions. The first was a total-least-squares loss function, which did not take
autocorrelation into account; the second, an approximate-likelihood loss function, which did.
Ludwig er al. found that the two methods produced very similar estimates, and concluded that the
added complexity of the approximate likelihood method was probably not warranted. In addition,
the approximate likelihood method frequently failed 10 converge when poor starting values were
supplied.

Bootstrap Estimates of Variability

Estimates of variability in the estimated quantities can be made using the bootstrap method
with resampled residuals (Efron and Tibshirani 1986). This has been implemented in the cumrent
ASPIC computer program, with the result that standard errors and confidence intervals can be
obtained for each directly estimated parameter, for the indirectly estimated parameters (such as
MSY and optimum effort at MSY), and for the retrospective estimates of biomass in any year.

Unusual Cases and Model Extensions

A great strength of the ASPIC method is the ease with which it can be used with different
pigfems of fishing or data collection. This is a consequence of using a forward solution of the
production equations, which can be changed nearly as casily as a simulation model.* Adapting
ASPIC 1o fisheries divided by space, lime, or gear lype is relatively simple, because the
underlying population model can be changed even though the basic algorithm remains the same.
Some realistic cases would include analysis of data series that include years of zero effort, as
would occur during a closure; analysis of data series with years of missing or highly uncenain
effort data; modeling a stock exploited by two or more types of gear, or incorporating changes
in caichability at a certain times within the data series, perhaps after periods of closure or
following regulatory changes.

Years with effort and yield equal 10 zero are treated correctly by the unmodified ASPIC
algorithm as described above. Because the loss function is based on yield, it is zero for such
years, which therefore do not influence parameter estimation directly. However, the model
population persists through such years, obeying the dynamics of logistic growth. Thus the time
lag during the years of closure carries information that is incorporated in fitting the model.

4For the same reasons, Methot (1989, 1990) has found a forward solution fruitful to use in
his stock-synthesis model, an age-structured population model similar to a tuned VPA.
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A slightly more difficult problem is the correct treaument of years in which effort and
yicld arc known to have existed, but for which the data arc missing or highly uncerain. In such
a case, the ASPIC framework can be used to estimate, simultancously with the other parameters,
the effort levels for a limited number of years within the series. One would use the basic
algorithm described above, except that one or more additional parameters (the missing values of
effort) would be subject 1o estimation. If yield data were also missing for those years, they would
not conisibute to the loss function, but the information from the surrounding years would
nonetheless pravide a reasonable basis for estimating the missing values of effort. As in any
estimation scheme, the total number of parameters should be kept reasonably small in comparison
to the number of years of nonzero data.

The ability to estimate effort in this way suggests two additional types of analysis that
could be performed in the ASPIC framework. First, one could examine the goodness of fit of
each year's data to the model. To do this, one would use a jackknife-like procedure in which
each year’s effort data in tum was estimated by ASPIC. The absolute or relative magnitude of
the residual for each year would indicate the agreement of that datum with the logistic model and
the rest of the data series. Second, one might use the residuals so derived in exploratory studies
of extemal (e.g.. environmental) effects on production or yield. This would allow one 10
incorporate external effects naturally into the framework of a surplus—production model.

Another simple extension of the basic ASPIC framework is analysis of stocks fished by
two or more different gear types, either in the same years or serially. This would be most useful
when it is desired to estimate g separately for each fishery, and thus avoid the need to standardize
gears. For convenience. I refer to this situation as different fisheries on the same stock. In cach
year, suppose there are J different fisheries, indexed by j = {1, 2, ... J}. The effont applied by
fishery j is f;, the catchability cocfficient of that fishery is qj and the yield is Y, Note that,
although ¢ is assumed time-invariant, fishery-specific effort and yield cach carry an implicit
subscript denoting time period. The total instantaneous fishing monrtality in year 1 is

J
S
i

By a simple modification of equation (6), the yield in that year is
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For parameter estimation in such a case, one would substitute F, from equation (11) for ¢f; in
equation (5) and substitute equations (12) and (13) for equation (6) 10 model the population and
estimaxei the loss function during optimization. A residual is obtained for each fishery having
nonzero effort in a year. The loss function is composed of the sum of the squared residuals from
a1l fisheries. The identical formulation could be used to estimate different catchability coefficients
for segments of a single time series, as might be desired when a change in gear is introduced
abruptly with no chance to perform standardization. In this case, the time segments would be
treated as Separate ﬁshén‘es. each having nonzero catch and effort data only during its respective
time period. .

Catchability is often thought to vary in more subtle ways (e.g.. Paloheimo and Dickie
1964; Gulland 1975; Peterman and Steer 1981; Winters and Wheeler 1985), and one could
incorporate any number of catchability models into the ASPIC framework. For example, it would
be straightforward to model a linear rend (increase or decrease) in catchability with time. A
simple method of parameterizing this model would be 1o estimate the first and last years® values
of g, and 10 generate intermediate years® values by interpolation during the simulation process.
This would add only one parameter 1o the estimation process. Altematively, the parameters of
a density-dependent catchability model could be estimated simulwne{usly with r, X, and 8.

If an auxiliary szries of population biomass estimates is available, it could be incorporated

into an ASPIC analysis in a procedure analogous to tuning a cobort analysis. - The extemal

estimates would be compared to the population estimates derived within ASPEC and the residuals

incorporated in computation of the loss function (Rivard and Bledsoe 1978). An ineresting aspect -

of this approach is that the exiemal biomass series need not be continuous, but could contain
missing values; the loss function would not be incremented for such years. An external index of
biomass could be used similarly, perhaps by nomalizing it to the same mean abundance as the
ASPIC estimates and then proceeding as with a series of biomass estimates. As weil a5

contributing 10 the loss function. biomass estimates or indexes might be used to correct for process
error within the ASPIC simulation. as described in Prager and MacCall (1990), aithough this is
a more difficult problem than implementing a tuning procedure.

APPLICAYION TO SIMULATED AND REAL POPULATIONS

Two simulated populations and onc real population were analyzed to psovide examples
of resuits from ASPIC. Each analysis used the additive-proportional loss function with added
penalty term (equation 10). As only a few data sets were analyzed, the results do not constitute
conclusive evidence about the properties of the ASPIC inodel. but are intended fo serve as
examples only. e

The first sitnulated dati séfepresents 4 fishery following logistic dynamics, but with 13%

added according 16U additive: propaitional tiodel: The ‘quantity in parentheses in equation 9
was distributed normally with mean 0’ and staddard ‘deviation 0.15°) The second simulated data
set was identical, except that 15% proportional-nojse was also added to the observed values of
effort. To examine the effects of the added penalty term in the loss function, each model was fit
by ASPIC twice, once with Wy = 1 and once with Wy = 0. The true pararneter values and the
ASPIC estimates for these two exampies are shown in Table 1. The results demonstrate that
ASPIC can provide good parameter estimates, and that the introduction of the penalty term into
the loss function (equation 10) constrained the estimate of B, to more reasonable values but did
not degrade the other parameter estimates. [f one may draw even tentative conclusions from Table
1. it appears that the estimates of MSY and effort at MSY are quiite robust to erors in the data.
All estimates of MSY were within a few percent of the true value. as were the estimates of effort
at MSY. This is a reasonable resuit. Yield and effort are the two quantities directly represented
in the data, so it is not surprising that they should be estimated the best.

Standard errors of the parameter estimates for these simulated populations were computed
by bootstrapping with 300 trials. In practice, it would be better to use more trials (perhaps 1000),
but 300 should suffice 1o demonstrate the results. The estimated standard errors and coefficients
of variation for simulated population 2 are given in Table 2. Results for simulated population 1
(not shown) were quite similar. “Tablc 2 illustrates that of all parameters, B, is known the least
precisely. As mengioned above, this occurs because the loss functions are inserisitive 10’ the
estimate of B, which affects maily the first féw years' results. 1t is possible that 8 would be
more precisely estimated from a population: with larger yields in the first few years of the catch-
effort history. 1t is worth noting that fishing effort at MSY is much more precisely estimated than
fishing mortality at MSY.



The ability of the model to track the simulated data is shown in Figures {-4. which
summarize results of the second simulated population. Results for the first population are similar

but show smaller errors. Even in the presence of substantial errors in both catch and effort, the ‘

model’s estimate of the population trajectory is quite close to the simudated population from which
the catch and effort data were simulated (Figure 1). The trends of the two curves differ moest in
the first few years of the series. when the estimates have not converged as supqgly"as they do
later. The estimated fishing mortality rate also mimics the unknown patiern of fishing mortality;
it seems probable that the residuals are (o 2 large degree a function of the emrors included in the
simulated effort data (Figure 2). The predicted and observed yield trajectories are shown in Figure
3. The larger errors during periods of high yicld are to be expected. as a consequence of the
assumed additive-proportional error structure.  The estimated surplus production of the stock,
shown in Figure 4, is useful in determining whether, in a given year, the catch or the production
is larger: in other words, whether the population is getting larger or smaller.  As with the
estimates of population biomass, some lack of fit is seen in the first few years. '

The real data used as an example are from Fonteneau's (1989) analysis of yellowfin tuna
in the east Atlantic during recent years (Table 3). Data on fishing effort (time) and catch are
taken from Fortencau's Table 1. 1 emphasize that this is not intended as an analysis of yellowfin
in the castem Atlantic, but merely as an example of application of the ASPIC procedure. Results
are shown in Table 4. In general, the ASPIC estimates of MSY are near the lower range of those
of Fonteneau (1989). I have no definite explanation of why this should be so. Fonteneau (1989)
hypothesized that the caichability of tunas .in the period 19831984 was low because of
environmental conditions, and if his hypothesis is comrect, it would undoubted affect the results
of the ASPIC analysis. which as configured here assumes constant catchability.

DISCUSSION

The ASPIC framework provides a flexible format for production modeling. A number
of additional scenarios could be handled with it. One might model two populations with restricted
mixing bétween them, as described by Fox (1977), or adjust catch by area. as done for the
equilibrium case by Munro (1979) and Caddy and Garcia (1982), and the nonequilibrium case by
Polovina (1989). "Another modification that could easily be incorporated is the dependence of
harvest upon fished area, as introduced by Die et al. (1990).

The ASPIC framework as described here is based upon the logistic surplus-production
model. The history of this mode! was surnmarized by Kingstand (1982), who pointed out that the
model originated in the work of Verhulst (1845) and Robertson (1923), was popularized by Pearl
(1920) and was also studied by Lotka (1925). The model was introduced to fishery science by
Graham (1935) and Schacfer (1957). In modeling fish populations, ASPIC could just as easily
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incorporate the exponcntial yield mode! of Fox (1970) or 2 more general model., such as that of
Pella and Tomlinson (1969) or the aliemative formulation of Fleicher (1982), which lacks the
vaniable exponent that has been found to make unconstrained estimation troublesome (Ricker

1975, p. 326). Unforturatety, not all of those can supply an explicit formulation for yield similar

to equation (6), which means that numerical integration would have 0 be used, as it was by Pella
and Tomlinson (1969) in the GENPROD computer program.

Besides its inherent flexibility, the ASPIC approach has at least ihree strong advantages.

- First, it is a true non-equilibrium model, accounting for catches in a natural way. This avoids the
need 10 assume that a dynamic stock can be described by a_population dynamic model of

equilibrium conditions, an assumption that is may be called into question when catck rates are
changing. Second. the model retains true population persisience. This conforms to biological
reality and saves degrees of freedom at the beginning of the data set, by avoiding the need to
average the effort data. Third, the mode] does not form a regression between two quantities
(effort and CPUE) that. as one contains the reciprocal of the other. would be correlated even if
effort and caich were uncorrelated random variables. Such regressions havc been criticized by
Stsscnwme (1978) and by Roff and Fairbaim (1980),

The greatest concem in the ongoing development of ASPIC is 0 quanufy bias that may
occur from errors in effort. (Such biases would be analogous to the “‘errors-in-variables™ problem
in classical lincar regression.) Because effort is gererally known with less precision than yield,
it may prove statistically preferable to use the observed catches as given and develop a loss
function in residuals of effort, rather than residyals of yield.
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Table 1. Parameter astimaies obtained by the ASPIC procedurs for two simulated populations. Both populations

follow logistic dynamics with the parameters shown in ine table. Data for population 1 had 15% noise added to

observed yields only; population 2 had 15% noise added to observed yisids and observed etforts. The symbol Wy :

is the weighting of the penalty term in iha loss function to discourage unvealistically high astimates of B, Table 3. Data trom Fonteneau (1989) on catch and:effort of yellowlin tuna in the gastern Atlantic::

Estimate, Estimata, Estimata, Estimate, Year Effort Catch
Actual population 1 population 1 population 2 population 2 -
Parameter value with Wg = 0 with Wy = 1 with Wg = 0 with Wg = 1 1967 3.7 - 5280 .
8, 2600 3035 2826 3723 2 711 1968 19.29 77
K 3000 2761 2770 2523 2 560 ' 1969 13.93 _ 80.40
’ 1.200 1.29 1.29 1.42 1.42 1970 18.62 ' 59.20
q 6.0x10% 6.43 x 10°% 6.44 x 10°® 6.86 x 10°° 6.86 x 10°° 1971 21.30 57.50
MSY S 800 .. . 8%.... 896 . . 895 905 1972 - 2148 78.20
Stock size at MSY ~ 1 500 1380 1385 i-281 it 280 1973 » 24.33 79.80
Fishing mortality ' o _ 1974 Vo272 92.20
at MSY £.600 0.647 0.647 0.710 0.708 C yers 59 108,10
Effort at MSY 10 000 10052 10 Q46 10 343 10 314 1976 443 108.30
1977 39.35 115.30
1978 55.62 15.70
1979 - - 55.29 C 11170
1980 ' 67.13 112.10
Tabla 2. Standard emors and coefficients of variation, sstimated by a bootstrap procadure, of T 8120 13480
parameter astimates for ihe second of the two simulated populations given in Table 1. Results for o ) DR s
the first population were similar. . e ... 1982 . 85.93 . .. .., 13430
: Standard T 1983 89.42 123.40
Parameter : Trug vaiue ~ Estimate Ermor CY. . 1984 57.48 75.30
8, 2 600 27141 607.4 3% . 1985 - 6086 112.60
K 3000 2 560 326.4 135% 7 1986 4483 . 106.70
r 1.200 142 0.16 11.3% 1987 - 51.32 101.10
q 6.0 x 105 686x10°  7.43x10% 10.2% 1988 41.49 100.00
MSY 900 905 69.4 8.1% e
Stock size at MSY 1500 1280 163.2 13.5%
Montality (F ) at MSY 0.600 0.708 0.0819 11.3%
Effort (f) at MSY 10 000 10 314 256 2.5%
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Table 4. Rasults of fitting the data of Fonteneau (1989) by the ASPIC method, using additive-
proportional loss function. The results of Fonteneau are included for reference, and are given as
ranges fo reflect variations of his mode! (ditfarert values of his parameters k and m ) presented
in his paper. Standard emors of ASPIC parameters are estimated with a bootstrap method using
1000 trials. (See text for discussion of differences between Fontensau's results and results from
ASPIC ) :

Forteneau's ASPIC Std. sarmor of  Coefficient of

Parameter estimate estimate estimate variation
B, - 2165 723 35.8%
K - 2107 67.5 31.4%
r - 2.25 1.036 42.2%
q - 0.0182 0.00795 40.2%
MSY 117-172 118.7 3.8 © 3.3%
Stock size at MSY - 105.3 338 . 31.4%
Fishing montality at MSY - 1.13 0.518 42.1%
Effort at MSY 62--74 619 3.18 T 5.14%
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Figure 1. ASPIC results on simulated population #2 (with 15% error in obscnfcd anta: see text
for details). True (solid line) and predicted (dashed line) population biomass at the start of each
period.

1008

Figure 2. ASPIC results on simulated population #2. True (solid line) and predicted (dashed
- line) instantancous fishing mortality for each period.
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Figure 3.- ASPIC results on simulated population #2. True (solid line) and predicted (dashed
line) yield for each period. "
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Figure 4. ASPIC results on simulated population #2. True (solid line) and: predictisd 4dashed
line) surplus production for each period.

229

A S A .
) RS2 K
" 120]
107
1001
3 wl
801
701
01
N
- 501 \/
e (AR o s ,‘9.75.\.{. PP e S S e S
G 3
Figure 5. ASPIC fit to the data of Fonteneau {1989) on yellowfin tuna in the eastemn Atlantic.
Solid line; observed yield. Short dashed line: predicted yield. ‘



