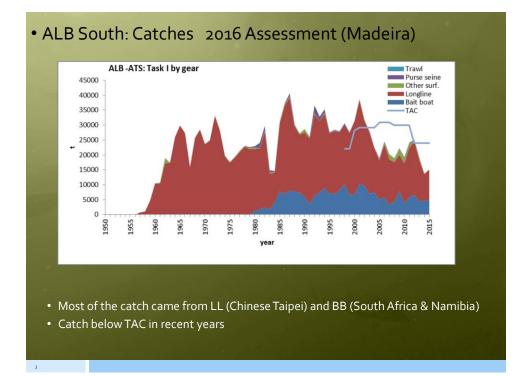
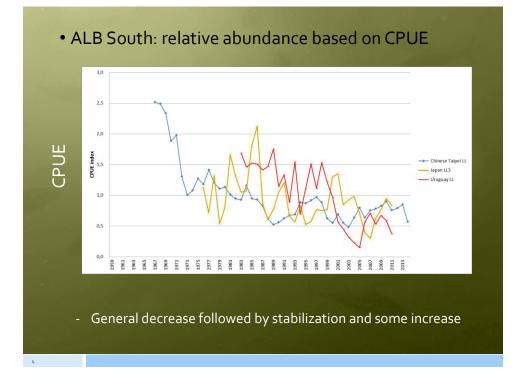
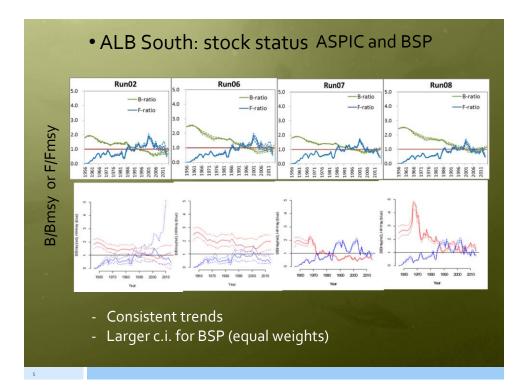
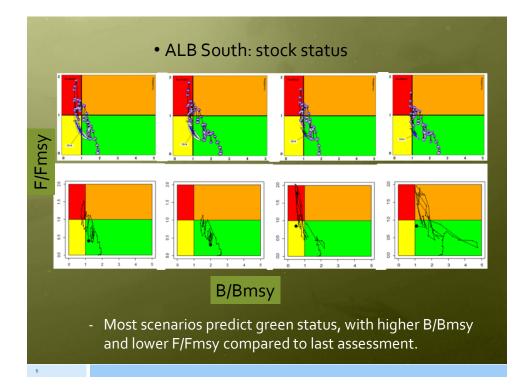
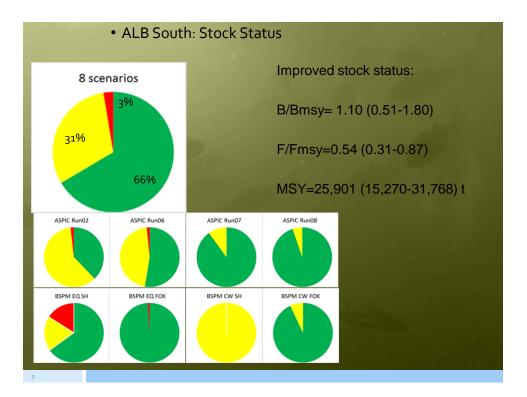

2016 **ICCATSCRS** Report Panel 3 Temperate tunas South


Nov 2016 ICCAT Commission Vila Moura






ISSF. 2016. ISSF Tuna Stock Status Update, 2016: Status of the world fisherir Technical Report 2016-05A. International Seafood Sustainability Foundation D.C., USA.


2.5

• ALB South: Outlook

8

	Catch (t)	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
	12,000	74%	80%	94%	95%	95%	96%	96%	96%	96%	96%	96%	96%	96%
	14,000	74%	78%	93%	94%	95%	95%	95%	96%	96%	96%	96%	96%	96%
	16,000	73%	77%	90%	93%	94%	94%	95%	95%	95%	95%	95%	95%	95%
	18,000	68%	72%	83%	89%	91%	92%	92%	93%	93%	93%	93%	94%	94%
	20,000	63%	65%	71%	81%	83%	84%	84%	85%	86%	86%	86%	87%	87%
	22,000	62%	63%	65%	73%	78%	79%	79%	79%	80%	80%	80%	80%	80%
TAC	24,000	61%	60%	60%	63%	69%	72%	72%	72%	71%	71%	70%	70%	<u>69</u> %
IAC	26,000	55%	54%	53%	52%	52%	55%	56%	57%	56%	55%	54%	53%	52%
	28,000	48%	45%	42%	40%	37%	35%	35%	35%	35%	35%	35%	35%	35%
	30,000	39%	35%	33%	30%	28%	26%	24%	23%	21%	20%	19%	18%	18%
	32,000	32%	29%	26%	24%	22%	19%	17%	16%	14%	13%	12%	11%	11%
	34,000	28%	25%	22%	19%	15%	13%	11%	9%	8%	7%	7%	6%	6%

- Maximum catch that enables green zone in 2020 with probability >60%:

Model	Run	Catch
ASPIC	Run2	26,000
	Run6	24,000
	Run7	26,000
	Run8	26,000
BSPM	EQ SH	30,000
	EQ FOX	34,000
	CW SH	22,000
	CW FOX	18,000
Average	•	25,750
Median		26,000

- ALB South: Management recommendations
- Projections at a level consistent with the 2016 TAC (24,000 t) showed that probabilities of being in the green quadrant of the Kobe plot across all scenarios would increase to 63% by 2020.
- Further reductions in TAC would increase the probability of being in the green zone in those timeframes.
- On the other hand, catches above 26,000 t will not permit maintaining the stock in the green area with at least 60% probability by 2020.

- ALB: Recommendations on Research and Statistics
- Albacore Research Program (1.2 M Euros over 4 years)
- Increase participation by scientists of countries with important albacore fisheries
- CPUEs:
 - Try new indices: French MWT, Spain LL, Portugal LL, Korea LL
 - Recover Japanese LL historical period
 - Joint analyses of LL and SURF fisheries
- T2 data: document changes for France MWT and submit Chinese Taipei LL data.
- CPCs with major Mediterranean fleets: revise and submit T1 and T2 data.

Research aim	Year 1	Year 2	Year 3	Year 4
Biology and Ecology				
Reproductive biology (spawning area, season, maturity, fecundity)	х	x	x	
Environmental influence on NE Atlantic surface CPUE	х	x		
Distribution throughout the Atlantic (e-	х	x	x	х
Population structure: contingents	х	х	х	x
Monitoring stock status				
Joint Atlantic longline CPUE	х	x		
Joint NE Atlantic surface CPUE	х	x		
Feasibility of fisheries independent survey		x	x	х
Management Strategy Evaluation				
Observation error: CPUE error structures and age classes	х			
Management Procedure: delay difference nodels	х			
Operating models: regime shifts	х			
Management Procedure: HCRs with bounded TACs	х	x		
Observation error: changes in catchability over time		x	х	
Implementation error		x	x	
Operating models: changes in selectivity		х	х	
Operating models: autocorrelated recruitment		x	x	
Operating models: broader scenarios using MFCL or SS			x	x
Communication: performance indicators	x	x	x	x

Executive Summary Table

	South Atlantic
Maximum	
Sustainable Yield	25,901 t (15,270-31,768) ²
Current (2016) TAC	24,000 t
Current (2015) Yield	15,144 t
Yield in last year	
of assessment (2014)	13,677 t
Yield in last year	
of assessment (2010)	
B _{MSY}	120,465 t (71,312-208,438) ²
Fmsy	0.202 (0.119-0.373) ²
B2015/BMSY	1.10 (0.51-1.80) ²
B ₂₀₁₅ /B _{Lim} ³	
F2014/Fmsy	0.54 (0.31-0.87) ²
F_{2011}/F_{MSY}	
Stock Status	Overfished: NO
	Overfishing: NO
Management measures in	[Rec. 13-06]: TAC of
effect:	24,000 t for 2014-2016