REPORT OF THE 2008 ICCAT YELLOWFIN AND SKIPJACK STOCK ASSESSMENTS MEETING

(Florianópolis, Brazil – July 21 to 29, 2008)

SUMMARY

The Meeting was held in Florianopolis Island, Brazil, from July 21 to 29, 2008. The meeting responded to the recommendation made by the Tropical Species Group to simultaneously hold an assessment of the yellowfin and skipjack tuna stocks in 2008. The Group was particularly concerned with the declining trend of some fishery indicators such as total catch, standardized CPUE and average weight in recent years. Regarding skipjack, the fact that the last assessment had been carried out in 1999, and few studies were made on this species since then widely justified the assessment. Multifan-CL was applied to assess both yellowfin and skipjack stocks.

RÉSUMÉ

La réunion a été tenue à Florianopolis Island, Brésil, du 21 au 29 juillet 2008. Elle fait suite à une requête du Groupe d'espèces de thonidés tropicaux, visant à tenir simultanément une évaluation des stocks d'albacore et de listao en 2008. Le Groupe s'est notamment montré préoccupé par la tendance descendante de certains indicateurs des pêcheries d'albacore, tels que la prise totale, la CPUE standardisée et le poids moyen, ces dernières années. La tenue d'une évaluation sur le listao était pleinement justifiée par le fait que la dernière évaluation remontait à 1999, et que très peu d'études avaient été consacrées à cette espèce depuis lors. Multifan-CL a été appliqué pour évaluer les stocks d'albacore et de listao.

RESUMEN

La reunión se celebró en la isla de Florianópolis, Brasil, del 21 al 29 de julio de 2008. La reunión respondía a una recomendación del Grupo de especies tropicales de celebrar simultáneamente una evaluación de los stocks de rabil y listado en 2008. En particular para el rabil, la tendencia descendente de algunos indicadores de la pesquería como la captura total, la CPUE estandarizada y el peso medio en años recientes eran fuente de inquietud para el Grupo. Respecto al listado, el hecho de que la última evaluación se llevó a cabo en 1999, y que se han realizado desde entonces pocos estudios sobre esta especie, justifica plenamente la evaluación. Se aplicó Multifan-CL para evaluar ambos stocks, de rabil y listado.

KEYWORDS

Yellowfin, skipjack, assessment

1. Opening, adoption of Agenda and meeting arrangements

The meeting was opened by Mr. Papa Kebe on behalf of Mr. Driss Meski, ICCAT Executive Secretary. Mr. Kebe thanked the Brazilian government for hosting the meeting and providing all the logistical arrangements. Dr. Joao G. Pereira, General Rapporteur of the Tropical Species Group chaired the meeting.

The Agenda (**Appendix 1**) was adopted with minor modifications. The List of Participants is included in **Appendix 2**. The List of Documents presented at the meeting is attached as **Appendix 3**. The following served as rapporteurs:

D D-11
P. Pallares
H. Murua, L.V. González-Ania, P. Kebe, G. Scott
A. Delgado de Molina, J. Ariz, P. Bannerman, E. Chassot
H. A. Andrade, K. Ramírez
S. Cass-Calay, K. Satoh
V. Restrepo, P. De Bruyn, J. Walters, E. Chassot
G. Scott and G. Díaz

2. Review of biological information

2.1 Yellowfin

Yellowfin tuna is a tropical and subtropical species distributed mainly in the epipelagic oceanic waters of the three oceans. The sizes exploited range from 30 cm to over 170 cm; maturity occurs at about 100 cm. Smaller fish (juveniles) form mixed schools with skipjack and juvenile bigeye, and are mainly limited to surface waters, while larger fish form schools in surface and sub-surface waters. Reproductive output among females has been shown to be highly variable. The main spawning ground is the equatorial zone of the Gulf of Guinea, with spawning primarily occurring from January to April. Juveniles are generally found in coastal waters off Africa. In addition, spawning occurs in the Gulf of Mexico, in the southeastern Caribbean Sea, and off Cape Verde, although the relative importance of these spawning grounds is unknown. Although such separate spawning areas might imply separate stocks or substantial heterogeneity in the distribution of yellowfin tuna, a single stock for the entire Atlantic is assumed as a working hypothesis, taking into account data that indicates yellowfin are distributed continuously throughout the entire tropical Atlantic Ocean and west to east recovery of tags on a regular base. Males are predominant in the catches of larger sized fish.

Natural mortality is assumed to be higher for juveniles than for adults as showed from tagging studies in other oceans. The natural mortality rates have been showed to be size-dependant in bigeye, skipjack and yellowfin tuna in the western tropical Pacific Ocean using tagging data (Hampton, 2000). In summary, this work demonstrated that M was an order of magnitude higher in the smallest size-class in comparison to fish of midsized. Moreover, it showed that mortality changed from high to low around 40 cm FL, approximately the size at which the three species recruit to the PS fishery in the western Pacific. The results of this work underline the importance of accounting for size- or age-specific natural mortality rates. In that sense, variable mortality for yellowfin was discussed by the group and it was agreed to continue using variable M in the assessment.

Growth rates have been described as relatively slow initially, increasing at the time the fish leave the nursery grounds. Nevertheless, questions remain concerning the most appropriate growth model for Atlantic yellowfin tuna. A recent study (Shuford *et al.*, 2007) developed a new growth curve using daily growth increment counts from otoliths. The results of this study, along with other recent hard part analyses, did not support the concept of the two-stanza growth model (initial slow growth) which is currently used for ICCAT yellowfin tuna stock assessments. This discrepancy can be addressed in future analyses. However, various background documents pertaining to biological information for tropical tunas were distributed with very valuable information about the growth, ecology and behavior of skipjack. These documents were basically peer-reviewed articles and working documents presented to the IOTC Working Party on Tagging Data Analysis and they contained new data in relation to tagging and growth studies of yellowfin. Papers made available from the IOTC Working Party on Tagging Data Analysis were mainly focused on skipjack and yellowfin growth curves in the Indian Ocean. Although the papers were not presented during the meeting, they provided a valuable source of information to compare growth rates between areas and other methods in use. For example, most of the papers considered that yellowfin has a two- or multiple-stanza growth whereas skipjack growth does not present such a pattern.

A document was presented to the Group (SCRS/2008/111) with new information for the western South Atlantic on sizes, sex ratio, and catch rates of yellowfin, collected by the Uruguayan Longline Tuna Fleet Observer Program during 1998-2007. Geographic and seasonal patterns in the proportion of subadults and adults were analyzed, as well as the relationship with sea surface temperature (SST). The highest catches were recorded in Uruguayan territorial waters, associated with the continental slope, especially sub-adult class fish (<100 cm). Higher CPUE occurred in southern latitudes between 35°S and 37°S for both adults and sub-adults, with a maximum at 36°S (1.6 and 4.7 fish/1000 hooks for sub-adults and adults, respectively). The higher CPUE values were also associated to SST between 19° and 21°C, with the maximum at 21°C (2.0 and 7.1 fishes/1000 hooks for subadults and adults, respectively) and the minimum for both classes at SST higher than 25°C. Sex composition was 1.3 males per female. Mean fork length for the whole period was 111.2 ± 16.7 cm (range: 52-180 cm), with minor differences between males (116.9 \pm 15.4 cm; range: 65-180 cm) and females (117.1 \pm 14.0 cm; range: 65-162 cm). Lower sizes were recorded between May and August, with a minimum in August (99.0 \pm 14.7 cm) and a maximum in December $(144.5 \pm 12.9 \text{ cm})$. Changes in mean weight or length of fish landed in the fishery can be useful indicators of patterns of exploitation. However, much in the same way that nominal CPUE can be a misleading indicator of stock abundance due to changes in catchability, changes in nominal mean weight may not necessarily be an indicator of population-level changes in the mean weight. Standardization methods similar to those used for CPUE datasets should be considered to separate population-level changes in mean weight from changes in fishing location, timing or selectivity.

2.2 Skipjack

Skipjack tuna is a gregarious species that is found in schools in the tropical and subtropical waters of the three oceans. Skipjack is a species showing an early maturity (around the first or second year of life), high fecundity and spawns opportunistically throughout the year in warm waters above 25°C (Cayré and Farrugio, 1986). Skipjack is also thought to be a faster-maturing and shorter lived species than yellowfin tuna (Maunder, 2001). Moreover, some works have shown that its growth varies according to latitude (Gaertner *et al.*, 2008 in press).

Skipjack is the predominant species aggregated to FADs where it is caught in association with juvenile yellowfin tuna, bigeye tuna and with other species of epipelagic fauna. The increasing use of fish aggregation devices (FADs) since the early 1990s may have changed the behavior of the tuna schools. In this sense, Fonteneau (2000) noted that the free schools of mixed species were considerably more common prior to the introduction of FADs. Furthermore, the association with FADs may also have acted as an "ecological trap" which, in turn, affected negatively the growth, plumpness of skipjack tuna and may change the movement patterns of this species (Hallier and Gaertner, 2008).

No documents containing new biological information for skipjack were presented at the meeting.

Gaertner *et al.* 2008 (in press) investigated latitudinal variability in growth rates of eastern Atlantic skipjack tuna. They reanalyzed conventional tagging data collected by ICCAT since the 1960s. The results of this study suggest that the growth parameters of skipjack tuna vary with latitude. The estimated L_{∞} for skipjack tagged and recovered north of 10°N was lower than the L_{∞} estimated for skipjack tagged and recovered south of 10°N (89.4 cm vs. 112.3 cm, respectively), whereas the estimated growth rate coefficient was greater in the northern region of the eastern Atlantic Ocean than in the equatorial areas (K = 0.376 and 0.135, respectively). The growth parameters estimated during this study are consistent with the range of growth estimates obtained in the Atlantic Ocean and in other oceans. However, the estimates of L_{∞} and K in the Senegalese region in the 1980s within the framework of the Skipjack Year Program, and traditionally applied in ICCAT assessments, are not supported by this study.

The latitudinal variability in the growth rates would complicate age-structured assessment techniques because the size-at-age would be dependent on geographic location and movement patterns. These authors suggested possible alternatives to standard age-structured models including the use of catch-at-size models and growth-transition matrices by large geographic areas. The Group considered the implications of these results into the assessment. Taking into account the uncertainties associated to the growth curves, the variability in growth between areas and fish movements, no age slicing was performed during this meeting using the available growth curves. It was concluded that a better understanding of skipjack growth patterns is a high priority.

The Group was concerned about the low number of working papers presented during the meeting pertaining to biological information both for yellowfin and skipjack. Moreover, the Group underlined the importance of conducting biological (growth, maturation, reproduction, etc.) and ecological studies for the tropical tuna species for which this information is considered to be poor. This, apart from allowing a more comprehensive knowledge of the processes occurring in the population, will allow using more updated information in the assessment of the tropical tuna species.

The table below summarizes the biological parameters adopted by the SCRS and used in the 2008 Atlantic yellowfin and skipjack (East & West) assessments.

Parameter	Yellowfin
Natural mortality	Assumed to be 0.8 for ages 0 and 1, and 0.6 for ages 2+
Assumed "birth date" of age 0 fish Plus group	February 14 (approximate mid-point of the peak spawning season). Age 5+
Growth rates	Length at age was calculated from the Gascuel <i>et al.</i> (1992) equation: FL (cm) = $37.8 + 8.93 * t + (137.0 - 8.93 * t) * [1 - exp(-0.808 * t)]^{7.49}$
Weights -at-age	Average weights-at-age were based on the Gascuel <i>et al.</i> (1992) growth equation and the Caverivière (1976) length-weight relationship:
	$W(kg) = 2.1527 \text{ x } 10^{-5} \text{ * } L(cm)^{2.976}$
Maturity schedule	Assumed to be knife-edge at the beginning of age 3.

Partial recruitment	Based on output from age-structured VPA (see section addressing yield-per-recruit).
	Skipjack (East & West)
Natural mortality	Assumed to be 0.8 for all ages
Assumed "birth date" of age 0 fish	February 14 (approximate mid-point of the peak spawning season)
Plus group	Age 5+
Growth rates	L(cm) = 94.9 * [1 - exp(-0.340 * t)] (West) - Pagavino and Gaertner (1995)
	L(cm) = 97.258 * [1 - exp(-0.251 * t)] (East) - Hallier and Gaertner (2006)
Weights -at-age	$W(kg) = 7.480 \times 10^{-6} * FL (cm)^{3.253}$ (Entire Atlantic)
Maturity schedule	Assumed to be knife-edge at the beginning of age 2.

3. Review of fishery statistics: Effort, and catch data, including size frequencies and fisheries trends

3.1 Description of fisheries

Yellowfin tuna are caught in the entire tropical Atlantic between 45°N and 40°S by surface gears (purse seine, baitboat and handline) and by longline (**Figure 1**). **Table 1** presents the yellowfin landings by flag and gear.

Skipjack are caught almost exclusively by surface gears throughout the Atlantic, although some minor catches are made by longline as by-catch (Figure 2). Table 2 presents the skipjack landings by flag and gear.

3.1.1 Baitboat

In the East Atlantic, the baitboat fisheries exploit concentrations of juvenile yellowfin in schools mixed with bigeye and skipjack. There are several baitboat fisheries that operate along the African coast.

The most important, in terms of catch, is the Ghanaian baitboat fishery based at Tema. This fleet began to use Fads (fish aggregating device/floating object, which can be natural or artificial) in the early 1990's to enhance the capture of the species together with other tunas. Over 70-80% of these catches in the past five years are off FADs; the mean weight of the captured fishes has remained relatively stable at around 2 kg (mode around 48 cm).

There is another baitboat fishery based in Dakar that began operation in 1956 in the coastal areas off Senegal and Mauritania. Other baitboat fisheries operate in the various archipelagos in the Atlantic (Azores, Madeira, Canary Islands and Cape Verde), which target different species of tuna, including yellowfin and skipjack, according to the season. The average weight of yellowfin tuna taken by these fleets is highly variable (between 7 and 30 kg); lengths range from 38 cm to 80 cm with the mode around 48 cm. The average weight of skipjack taken by Dakar and Canary Island baitboat is 2.5 kg and 3 kg, respectively, with lengths ranging from 35 to 70 cm (mode near 45cm) for Dakar baitboat and from 38 cm to 72 cm (mode at 57 cm) for the Canary Island baitboat fleet. Since the early 1990s, the fleets in Dakar and the Canary Islands have operated using a different method, using the boat itself as a FAD, under which various species of tuna accumulate, including yellowfin tuna. These changes have resulted in an increase in the exploitable biomass of the skipjack stock (due to the expansion of the fishing area) and of its catchability.

In the West Atlantic, Venezuelan and Brazilian baitboats target yellowfin together with skipjack and other small tuna. The sizes for Venezuelan yellowfin are between 45cm and 175 cm and for Brazil between 45 to 115, with the mode at 65 cm.

3.1.2 Purse seine

The East Atlantic purse seine fisheries began in 1963 and developed rapidly in the mid-1970s. They initially operated in coastal areas and gradually extended to the high seas. Purse seiners catch large yellowfin in the equatorial region in the first quarter of the year, coinciding with the spawning season and area. They also catch small yellowfin in association with skipjack and bigeye. Since the early 1990s, several purse seine fleets (France, Spain and NEI) have operated fisheries using objects, with between 45 and 55% of the total catch being taken by

this method, whilst before this the proportion of the catch taken by this fishing method was 15% of the total. The Ghanaian purse seine fleet predominantly fishes off floating objects (80%-85%). Frequently, FADs with accumulations of fish are first located by baitboats, who call in a purse seiner to make the set if the accumulation is large. In this situation, the catch is shared between the purse seiner and the baitboat.

Fishing with floating objects takes place mainly in the first and fourth quarters of the year, with skipjack as the dominant species together with lesser quantities of yellowfin and bigeye. The species composition of the schools associated with floating objects is very different from that of free schools. Yellowfin catches from floating objects comprised between 15% and 26% of the total catch in the years between 1991 and 2006 (22% in 2006 for the French, Spanish and NEI fleets) and between 52% and 86% for skipjack for the same period (86% in 2006 for the French, Spanish and NEI fleets).

The East Atlantic purse seine fishery shows a bimodal distribution in the size classes for yellowfin, with modes near 50 cm and 150 cm but with very few intermediate sizes and a high proportion of large fish (more than 160 cm). The average weight of yellowfin tuna caught by the European and NEI purse seine fleets was 13.4 kg in 2006 (4.2 kg with FADs and 30.5 kg unassociated fish). The sizes of yellowfin caught by the Ghanaian purse seiners have ranged around 48-52 cm for the past decade. The average weight of skipjack caught by the European and NEI purse seine fleets was 2.5 kg in 2006 (2.0 kg on FADs and 2.5 kg on free schools), with sizes between 30 cm and 65 cm, with the mode around 45 cm.

The Task I catch series available for these stock assessments includes, for the first time, catches of "*faux poisson*" (fish sold in the local markets of the landing ports, which are not reported in the logbooks). The "*faux poisson*" catches made by the European purse seine fleets have been calculated since 1981.

Between 1997 and 2004, new developments in the purse seine fishery which affect yellowfin catches arose from the establishment of a closed season/area for fishing with artificial FADs, for a period of three months in a wide area of the equatorial Atlantic. Starting in 2005, those restrictions were discontinued, and instead a new closed season/area was established with a smaller area (Piccolo) and only for one month (November).

In the West Atlantic, the purse seine fisheries, which were sporadic between 1970 and 1980, have operated in coastal areas since 1980 to the North of the Venezuelan coast and in the south of Brazil. Sizes are in a smaller range than that of fish taken in the east (from 40 to 140 cm), with the majority being of intermediate size. Yellowfin is not the target species of these fleets.

Purse seine skipjack fisheries, with much lower catches than the baitboat fleets, are only operated by Venezuela and Brazil. The sizes of fish from those fisheries are between 35 cm and 65 cm with the mode around 55 cm for Venezuela, and between 35 cm and 75 cm with a mode around 40 cm for Brazil.

3.1.3 Longline

The longline fishery began in the late 1950s and soon became important, with significant catches being taken by the early 1960s. Since then, the catches have gradually decreased. Longline fisheries capturing yellowfin tuna are found throughout the Atlantic (**Figure 1**). The degree of targeting yellowfin varies across the longline fleets. In the Gulf of Mexico, both U.S. and Mexican longline vessels target yellowfin (the average weight of yellowfin has remained between 32 and 39 kg during the period from 1994 to 2006). Venezuelan vessels also target yellowfin, at least seasonally. In contrast, Japanese and Chinese Taipei vessels began in the early 1980s to shift targeting away from albacore and yellowfin toward bigeye tuna through the use of deep longline. Uruguayan longliners also catch yellowfin in the Southwest Atlantic, together with other target species. Yellowfin FL sizes ranged from 52 to 180 cm with a mode of 110 cm. (SCRS/2008/111).

3.2 Catch

3.2.1 Yellowfin

Table 1 and **Figure 3** show the development of yellowfin catches in the East Atlantic, West Atlantic and total Atlantic. Total yellowfin catches in 2006 amounted to 108,623 t. Task I catches for 2007 shown are informative only, since they are preliminary and incomplete (important fleets are missing) figures.

In overall, the total Atlantic Task I yellowfin catches have imperceptibly changed since the 2007 SCRS. Although, minor updates have been made to the historical Task I nominal catch series that will slightly change the catch composition of both, Atlantic East and West Atlantic management units. The revisions made were:

- "Unclassified" Atlantic (not split by eastern and western management units) longline catch series of Chinese Taipei (1962-1965), NEI (Flags related) (1983-2003), Panama (1986-1999) and EC. Spain (2005-2006), was split into eastern and western geographic units using the corresponding geographical information of Task II catch and effort (except the NEI fleets and Panama for which Chinese Taipei was used). Details are shown in Table 3.
- The historical Task I catch series of Sao Tomé & Principe (1988-2003), disaggregated by species (those catches existed in Task I as tuna unclassified since 1970), were presented and discussed at the end of the 2007 SCRS meeting and incorporated into the Task I catches.
- Cape Verde carryovers from 2004 onwards were replaced by official catch statistics reported before the current meeting.
- An estimate of the "*faux poisson*" caught by the European purse seine fleets (1981-2007) was presented during the meeting by French scientists and consequently incorporated into Task I as "Mix.FR+ES" fleet.

Yellowfin catches increased from the 1950s to reach an average of 150,000 t in the 1980s, and in 1990 reached their highest value (193,448 t). Since then, the catches had shown a gradual decline, and in recent years are at a similar level to those in the early 1970s.

Baitboat: Total catch by this gear for the whole Atlantic was 13,129 t in 2006 although in 1993 the catch was nearly 25,000 t (**Figure 4**). The development is different for the various fisheries.

In the East Atlantic, boats from Angola, Cape Verde and Japan, which took significant catches in the early period of the fishery, have decreased their catches, while other fisheries have increased theirs. In 2006 the catch was 10,434 t (**Figure 5**), with a record catch in 1968 of 22,135 t. Documents SCRS/2008/105, SCRS/2008/106 and SCRS/2008/124 show the various statistical data for the Spanish tropical, Canary Islands and total European and NEI fisheries, respectively.

In the West Atlantic (**Figure 6**) baitboat catches started in 1974, increasing regularly from 1,300 t. in 1974 to 7,000 t in 1994, and later decreasing to about 2,695 t in 2006.

Purse seine: Yellowfin catches by this fleet reached 62,761 t for the entire Atlantic in 2006. In the East Atlantic, catches increased spectacularly in the early years of the fishery (**Figure 4**), from 10,000 t in the 1960s to 100,000 t in 1980, stabilizing at this level until 1983 before decreasing by half in 1984. This occurred as a result of the drastic decrease in effort which took place following the drop in yield of large sized yellowfin, mainly due to the French, Spanish and NEI purse seine fleets abandoning the fishery. Catches later increased again, with a record catch in 1990 of over 129,000 t, followed by a decreasing trend in subsequent years, reaching 58,319 t in 2006. Documents SCRS/2008/105 and SCRS/2008/124 present statistical data for the Spanish and European and NEI purse seine fisheries. For the *"faux poisson"*, the estimates corresponding to yellowfin show that the highest figure was 2,750 t in 1993, with 1,063 t in 2006.

Estimates of discards and by-catch in the French purse seine fishery of the eastern Atlantic Ocean were derived from observer trips conducted during 2005-2008 (SCRS/2008/117). Results showed that there were almost no discards observed on free schools during this period and that skipjack and little tunny (Euthynnus alletteratus) composed the bulk of the discards that were essentially made under fishing aggregating devices (FADs). In 2007, the average discard rates of skipjack and yellowfin tunas under FADs were estimated at 42.9 kg and 1.3 kg per ton landed, respectively. Data samples on size of "faux poisson" collected at the fishing port of Abidjan showed that there was no significant difference between discard and "faux poisson" size distributions for skipjack, yellowfin, and bigeye tunas. Small skipjack have dominated the "faux poisson" tuna landings in Abidjan since the early 1980s and the annual average landings on the local market during 2004-2007 were higher than 9,500 kg while the total landings in Abidjan for the canneries were about 40,000 t each year during the same period. Hence, the average rate of "faux poisson" in recent years was about 235 kg per ton of skipjack landed. For yellowfin, the annual average biomass of "faux poisson" landed was about 1,900 t during 2004-2007 compared to 37,000 t of commercial landings in Abidjan. The average rate of "faux poisson" was then of about 50 kg per ton of yellowfin landed for the canneries. Quantities of juvenile tunas sold as "faux poisson" could then largely exceed discards for skipjack, emphasizing the need to improve sampling of "faux poisson" that are currently missing from official statistics and not included in stock assessment models.

In the West Atlantic (**Figure 6**) catches increased since the beginning of the fishery in the early 1960s to 1983, when they reached 25,000 t. Catches in the following years showed considerable variation as a part of this fleet shifted its fishery to the Pacific Ocean. Caches in 2006 were 4,442 t. The most important catches in the West Atlantic are taken by the Venezuelan purse seine fishery (in some years being 100% of the total catch).

Longline: After a maximum of over 50,000 t reached in the 1959-1961 period, longline catches decreased to a level of around 30,000 t in the early 1970s and to about 25,000 t in the 1990s. Longline catches in 2006 reached 22,238 t. The main fisheries are those of Brazil, Chinese Taipei, Japan, Mexico and the United States. The appearance of important catches, beginning in 1985, by NEI fleets in unknown areas is of concern as it is uncertain to what extent these catches actually occurred in the Atlantic. Document SCRS/2008/125 presents statistical data for the longline Mexicon fishery in the Gulf of Mexico.

3.2.2. Skipjack

Table 2 and **Figure 7** (catch by area) show the development of skipjack catches in the East Atlantic, West Atlantic and total Atlantic. Total skipjack catches in 2006 amounted about 142,200 t (about 115,700 t in the East and about 26,500 in the West). This catch level has remained relatively stable in the last 11 years, although it is notably lower than that of 1991 and 1993 when the highest level in catches of this species was reached (approximately 200,000 t). Task I catches shown for 2007 shown are informative only as they are preliminary and incomplete (important fleets are missing).

As for yellowfin, minor revisions have been made to the skipjack Task I historical catches since the 2007 SCRS. Nevertheless, this only affects the eastern stock. The revisions made were:

- The historical Task I catch series of S. Tomé e Principe (1988-2003) disaggregated by species (those catches existed in Task I as "Tuna Unclassified" since 1970) presented and discussed at the 2007 SCRS meeting incorporated into the Task I catches.
- Cape Verde carryovers from 2004 onwards were replaced by official catch statistics reported before the current meeting.
- An estimate of the "faux poisson" caught by the European purse seine fleets (1981-1907) was presented during the meeting by French scientists and consequently incorporated into Task I as "Mix.FR+ES" fleet.

The breakdown of "unclassified" Atlantic catches into East and West stocks was already made during the 2007 Inter-sessional Meeting of Tropical Tunas (Recife, Brazil, April 11 to 16, 2007) (Anon. 2008).

In the East Atlantic (**Figure 8**), currently the most important fisheries are those of the purse seine fleets, mainly those of France, Ghana, the NEI fleet (Belize, Guinea, Netherlands Antilles, Panama, Malta, Morocco, St. Vincent and Vanuatu), and Spain followed by the baitboat fleets of France, Ghana, Portugal and Spain.

In the West Atlantic (Figure 9), the most important fisheries are the Brazilian and Venezuelan baitboat fisheries.

Baitboat: Total catch by this gear for the whole Atlantic was 64,924 t in 2006.

In the East Atlantic, the most important baitboat fleets are the Ghanaian, Senegal and North Islands (Canarias, Madeira and Azores). In 2006 the catches reached 41,175 t, the same level from the end of 1980s. Documents SCRS/2008/105, SCRS/2008/106 and SCRS/2008/124 show the various statistical data for the Spanish tropical, Canary Island and total European and NEI fisheries, respectively.

In the West Atlantic, baitboat catches reached 20,000 t in 1982 and from then remain at the same level, between 18,000 t and 28,000 t (**Figure 9**). In 2006 the catches in these fisheries reached 23,749 t. The most important fishery is the Brazilian baitboat fishery, the target species of which is only skipjack. Cuban and Venezuelan baitboats have also participated in the fishery.

Purse seine: Total catch by this gear for the whole Atlantic was 71,215 t in 2006.

In the East Atlantic, the purse seine fishery was developed in the 1960s, originally as a coastal fishery, but eventually, became more high seas orientated. In the early 1970s the catches of skipjack reached 50,000 t (**Figure 8**). At the beginning of the 1980s, the catches reached 70,000 t. In 1985, there was a considerable decline in the catches of purse seiners, due to the displacement of a large part of the French and Spanish fleets to the Indian Ocean. This situation changed in the years immediately following, skipjack catches then reaching 142,000 t in 1991. From this time there was a marked decline in catches, which dropped to 66,819 t in 2002 and in 2006 reached 69,170 t.

Documents SCRS/2008/105 and SCRS/2008/124 present statistical data for the Spanish and European and NEI

purse seine fisheries.

For the *"faux poisson*", the estimates corresponding to skipjack (the main species of tunas inside this group) show that the highest figure was 13,750 t in 1993, reaching 5,313 t in 2006.

In the West Atlantic, the purse seine fisheries that developed in the 1960s (USA fleet) had much lower catches than the baitboat fleets; currently, the only purse seine operations are conducted by Venezuela and Brazil. By the end of the 1970s, annual catches reached 3,000 t, and in the 1980s they soon reached 18,000 t (1984), with catches fluctuating in the 1990s between 12,800 t (1993) and 2,100 t (1995). Catches in 2006 were 2,045 t. The most important catches in the West Atlantic are taken by the Venezuelan purse seine fishery (in some years being 100% of the total catch).

3.3 Fishing effort

In general, the fisheries that target tropical tunas are fisheries where it is extremely difficult to discriminate the effective fishing effort by species. However, exceptions do exist among those are several longline fisheries that target yellowfin and the Brazilian baitboat fishery that has skipjack as a target species.

Beginning in the 1990s, important changes have taken place in the East Atlantic main surface fisheries that further complicate the estimation of effective effort, including the greatly increased use of floating objects by purse seiners and baitboats, as well as the use of baitboats as FADs in Dakar and other baitboat fisheries.

As indicators of the nominal effort in the East Atlantic, the carrying capacity of the purse seiner and baitboat fleets has traditionally been used. **Figure 10** shows the development of the carrying capacity of the surface fleets in the East Atlantic for the 1972-2006 period. The baitboat carrying capacity has remained stable since the late 1970s at around 10,000 t. The carrying capacity of the purse seine fleet, on the other hand, has undergone significant changes during the whole period being reviewed, with a constant increase from the start of the fishery until 1983, when carrying capacity exceeded 70,000 t. After that, until 1990, the carrying capacity decreased considerably to 37,000 t, due to part of the fleet abandoning this fishery. There was a slight recuperation in the following two years (1991 and 1992) followed since then by a progressive decline, with capacity at around 29,700 t in the last year (2006).

Document SCRS/2008/124 shows the development of both nominal fishing effort measures for EC and NEI purse seiners: the number of 1x1 rectangles explored and the number with effort greater than 1 fishing day, and total purse seiners fishing days (1991-2007). It can be observed that, while the searching area remains at the same level during these periods, the number of fishing days has diminished considerably.

For the West Atlantic, there have been substantial recent changes in the amount and distribution of fishing effort in the Brazilian longline fishery. Until 1995, sharks were the primary target species (58% of the total catches). However, since 1993, the proportion of sharks has declined, being replaced by swordfish as the dominant species in this fishery (swordfish now represent 48% of the total catches). Effort in the Venezuelan surface fisheries has been high since 1992 (more than 8,000 t vessel carrying capacity). Effort in the U.S. longline fishery, which is active in the northwestern Atlantic and in the Gulf of Mexico, has declined somewhat in the last few years. Japanese longline effort for yellowfin tuna has also declined in recent years. This fleet mainly targets other species (bigeye and bluefin).

Venezuelan and Mexican longline effort for yellowfin tuna has increased in recent years.

3.4 Task II size frequencies

The updated catalogues of Task II size frequencies available in the ICCAT database (observed samples and extrapolated size frequencies reported), for both yellowfin and skipjack, are shown in **Tables 4** and **5**, respectively. They contain a set of metadata information (time and space stratification, number of fish in the dataset, type of size frequencies, etc.) which allows having a clear picture of the level of heterogeneity in the size data.

When comparing the current catalogues with the ones published for revision on the ICCAT web (May 2008) one can verify that:

 Revisions before 2006, were only reported by Japan (2003-05, size and catch-at-size data) for yellowfin only, and Chinese Taipei (2005 size samples) for both species. New size information (2006 onwards) has been reported by various countries: Canada (2007); Chinese Taipei (2006-2007); Japan (2006); USA (2006-2007); EC-Spain (2007, tropical and Canary based fleets); EC-France (2007, tropical fleet); EC-Portugal (2007); Cape Verde (2007); and Ghana (2007);

Details about the species covered and type of size frequencies can be obtained on the corresponding tables.

3.5 Catch-at-size and catch-at-age

At the beginning of the meeting the Secretariat presented, the updated catch-at-size (CAS) data sets for yellowfin (1970-2007) and skipjack (1969-2007), together with their corresponding substitution tables. The substitution rules, as also the size datasets used in the estimations were revised by the Group, and updated accordingly. Year 2007 was discarded for both species due to the lack of size information (and Task I catches) of important fisheries.

3.5.1 Yellowfin

The yellowfin CAS includes the complete rebuild of 2005 (considerably incomplete in previous estimations) and 2006. The historical CAS series (1970-2004) was left exactly the same as in previous assessment. After revising the substitution tables, the Group decided to include the following in the revised CAS:

- the new "faux poissons" series (1981-2006) estimated by the European purse seine fleet (a reference file with samples from April 2007 to February 2008, stored in the ICCAT-DB as being from EC-France an EC-Spain);
- the carryover (from 2005) figures for Task I to 2006 for Colombia, Cuba, Dominican Republic, EC-Latvia, Gabon, and Libya.

No changes have been made to the substitution criteria.

A problem identified later by Japan had to do with discrepancies between reported Japanese CAS revision (2003-2004) which has not been included in the historical CAS, and also, a discrepancy in the number of fish found in 2005 (only 65% of the size information has been incorporated in ICCAT database, due to a problem of incompleteness in the ICCAT Form-5 reported, and a corresponding weakness on the code that automatically reads the forms and omits these possibilities). At the same time, Japan also presented a complete (all quarters) CAS revision for 2006. The Group considered that, it was too late to change the revised CAS again and decided to keep the incomplete CAS series of 2006 (first quarter only). The Group determined that these updates should be made before the next SCRS meeting.

The Secretariat also informed about the inconsistencies (small for the overall Atlantic CAS) existent between Task I and CAS at the fleet/gear discrimination level in the period 1975-1983, which could have implications when selecting various fleet related indexes for VPA analyses. During that period CAS has various fleet catches aggregated (longline, baitboat and purse seine fisheries) without a strait correspondence with Task I figures. The Group considered that this revision of historical CAS should be made for the next assessment.

After the creation of a revised CAS version, the corresponding CAA matrices have been obtained by the Secretariat (overall and also fishery based matrices).

A comparison between Task I and CAS is shown in **Figure 11**. Catch-at-age distribution is shown in **Figure 12**. **Tables 6** and **9** show the overall CAS and CAA matrices.

The details of the final yellowfin CAS estimations shall be recollected in a SCRS document (SCRS/2008/128) and presented at the SCRS by the Secretariat.

3.5.2 Skipjack

The skipjack CAS includes the complete rebuilt of 2005 (incomplete in previous estimations) and 2006. The historical CAS series (1969-2004) has been slightly adjusted with the inclusion of Sao Tomé and Cape Verde. After revising the substitution tables, the Group decided to include the following in the revised CAS:

- the new "faux poissons" series (1981-2006) estimated by the European purse seine fleet (a reference file with samples from April 2007 to February 2008, stored in the ICCAT-DB as being from EC-France and Spain);
- the carryover (from 2005) figures for Task I to 2006 for Cape Verde and EC-Ireland.

No changes to the criteria of substitution have been made.

A comparison between Task I and CAS is shown in **Figure 13**. **Tables 7** and **8** show the CAS matrix for the eastern and western stocks.

The details of the final skipjack CAS estimations shall be recollected in a SCRS document (SCRS/2008/126) and presented at the SCRS by the Secretariat.

3.5.2 Catch at age

The yellowfin catch at size data in ICCAT variable format was used to create catch at age following the cohort slicing parameters (**Table 10**) by length class used in a previous assessment. The catch at age in number of fish for selected fisheries and the total amount was presented by the Secretariat and used further in the assessment (**Figure 13** and **Table 9**). The catch at age in weight for the same fisheries was also created using the same cohort slicing and the following length weight relationship:

- 1) Kevin Davis (1991) (RWT = 0.000000089 * FL**2.88) where RWT is in pounds and fork length in mm.
- 2) Gaertner et al. (1992) RWT = 0.00006611 * FL**2.7148 and;
- 3) Caverivière (1976) RWT =0.00002153*FL**2.976

A new cohort slicing from Shuford *et al.* (2007) was also raised and the group felt that further investigation should be carried out to test possible discrepancies with earlier calculations.

3.6 Multifan data preparations

Prior to the assessment session, it was agreed to attempt to conduct Multifan-CL (MFCL) analyses of skipjack and yellowfin at the 2008 assessment meeting, in order to better incorporate spatial and fishery dynamics related to these species throughout the Atlantic.

For skipjack, the preliminary fishery definitions are given in **Table 11** and those for yellowfin in **Table 12**. In the inter-sessional period, the Secretariat prepared catch data through 2006 by area (5x5) and quarter as well as the available Task II size and catch/effort information. National scientists prepared CPUE indices for specific fisheries by quarter (see Section 4), and the ICCAT Task II data were examined to produce catch rate indicators for the remaining fisheries.

The temporal time-step agreed for the MFCL applications was quarterly. As such, catch and effort and size frequency information by fishery and quarter were compiled from the ICCAT CATDIS, and Task II size and catch effort information. Quarterly effort data by fishery were estimated from the Task II data applying Generalized Linear Models accounting for Fleet, Gear Type, and Effort Type within each Fishery Definition recorded in the Task II database. **Appendix 4** documents the procedures used to generate the time-series CPUE, which was then divided into the fishery specific catch information to estimate effort patterns for MFCL. In all cases, where detailed, standardized CPUE was available from National Scientists or based on work conducted by the Group at the assessment meeting, those CPUE patterns were used to compute quarterly effort patterns for use in MFCL. The resulting catch and effort time-series by fishery are shown in **Figures 14** and **15** and in **Appendix 4**.

Size frequency data held in the ICCAT Task II data set were also organized by MFCL fishery definition and quarter for skipjack and yellowfin tunas. A criterion of at least 50 size observations per fishery/quarter was used to filter the data for use (**Figures 16** and **17**). The SAS code used for summarizing the data are given in **Appendix 4**.

In support of the MFCL data preparations, for the European and associated purse seine fleet annual skipjack standardized CPUEs, for both FAD and free school fishing modes, were obtained using GLM (see Section 4 for more details). In order to incorporate these indices to the MFCL runs, some adjustments were needed to obtain quarterly standardized CPUEs. During the meeting, it was not possible to obtain new standardized indices by quarter. Therefore, a procedure was established to split the annual standardized CPUE by quarter. In the case of the skipjack free school CPUE the partial residuals corresponding to the factor quarter were used as criteria to split CPUEs. From the graphic of partial residuals by quarter, a multiplier was obtained relative to the average value. Then, quarterly CPUE were obtained multiplying the annual value by these multipliers. In the case of the skipjack FAD standardized CPUE, partial residuals were not available; hence, the same annual value was considered for each of the four quarters.

Yellowfin

Using CPUE data for the European and associated purse seine fleet, standardized CPUE was estimated with GLMs (see Section 4 for more details) for: (a) small (<10 kg) yellowfin using FAD fishing modes, and (b) spawners (> 30 kg) using first quarter catch rates. The information available on the index of small yellowfin, and skipjack, did not allow establishing any criteria to split the index by quarter. Therefore, the same annual value was considered for all quarters.

Appendix 4 contains the preliminary FRQ files prepared for skipjack and yellowfin and are available at the Secretariat on request.

4. Relative abundance indices and other fishery indicators

4.1 Skipjack

4.1.1 Fishery indicators

Eastern Atlantic

The Group examined several general indicators of the purse seine and baitboat fisheries. The carrying capacity of EU purse seiners and the number of baitboats has decreased (**Figure 10**). However, in the Dakar-based fisheries the carrying capacity increased, while the number of baitboats decreased (**Figure 18**). The total number of sets and the percentage of successful sets by fishing mode (**Figure 19**) and total areas visited and fished (**Figures 20** and 21) were also used as indicators of effort.

Catch-at-size data of eastern Atlantic skipjack were used in document SCRS/2008/114 to estimate changes in total mortality and in selectivity patterns for two surface fisheries (the pole and line fishery operating from Dakar, Senegal and the purse seine fleets, omitting Ghanaian vessels) from 1971 to 2005. The general pattern depicted by Z (**Figure 22**) is in agreement with previous knowledge on this fishery: a state at, or close to, full exploitation during the 1990s, followed by a decrease since the mid-1990s, likely due to a combined result of the decrease in purse seine nominal fishing effort, and the adoption of the seasonal moratorium for fishing under FADs. Even if the total selectivity pattern remains relatively stable over the years, the decreasing trend in selectivity observed for purse seiners since the early 1990s suggests that these fleets have shifted from targeting small fish. This is in agreement with the development of the FADs fishing operations since the same period.

Regarding the European baitboats based in Dakar (Senegal), the nominal catch rates of skipjack have increased regularly over the entire time series. When analyzing these data it must be kept in mind that since the beginning of the 1990s these baitboats have developed a fishing technique (mainly for targeting bigeye) in which the baitboat is used as the floating object, fixing the school (comprised of bigeye, yellowfin and skipjack) during the entire fishing season in waters off Senegal and Mauritania. As a consequence, it makes sense to assume that the adoption of this fishing technique has increased the overall catchability of tunas. Note, however, that the pattern described for skipjack contrasts with the decreasing trends in CPUEs observed for the other two tropical tuna species.

4.1.2 Catch rates

During the Group's Meeting held in Séte (France) in 2006 (Anon. 2007), it was recommended that analyses of the CPUE trends for fisheries along the limits of species distribution be conducted by scientists from various Contracting Parties. The results of the standardization of the CPUEs for the Azorean baitboats were presented and discussed during the Species Group. As expected, due to the location of this fishing area with respect to the distribution range of skipjack, the standardized index showed high variability, but without significant trend (**Figure 23**).

The Group stressed the importance of updating the catch rates of the main fisheries reporting catches of skipjack. It must be stressed that skipjack tuna are often a secondary species, depending on the price differential and on the catchability of other target species. Consequently, estimation of the effective effort exerted on skipjack (e.g. effort proportional to fishing mortality) remains problematic and catch rates may sometimes depict a different trend than abundance.

For purse seiners, fishing alternatively on free schools and on FADs, it was considered that search time may be the best measure of basic effort on free schools. It was also suggested that the analysis data set might be further restricted to effort associated with free school sets by assuming that vessels that travel longer distances overnight are moving between FADs, as they cannot be searching for free schools at night. However, this approach would

likely require further study, including the incorporation of VMS data, to determine if it is both feasible and appropriate. A new EU-funded CEDER Project (Catch, Effort and Discards Estimates in Real Time), which started in 2006, will deal in part with this question. The basic objective developed within the framework of this project is to analyze the individual trajectory of purse seiners in order to characterize fishing behavior reflecting searching time for un-associated schools or moving towards FADs previously detected by radio range beacon (bearing in mind, however, that whatever the fishing mode researched, every tuna school detected by chance can be set on). Other factors which might be considered include the changes over time, which have resulted in a reduction of the time necessary to make sets and to offload catches (increasing efficiency of fishing effort over time).

For continuity with the previous assessment the catch rates of the European purse seine fleet (France and Spain), obtained after standardizing nominal fishing effort to category 5 (450-750 TRB) FIS purse seiners and assuming a 3% annual increase in fishing efficiency of the fleet from 1981, were updated. The objective of incorporating an increase in efficiency was to take account of the changes that have occurred in the purse seine fleet during these years. The estimate of a 3% annual increase in efficiency is derived from a study by Gascuel *et al.* (1993). The Group discussed the convenience of maintaining this assumption when the vessels fishing in the Atlantic are old (on average more than 20 years old) and their skippers and crews have a low profile compared with those fishing in other oceans (e.g. Indian Ocean). Considering that the estimate of the 3% increase was made 15 years ago, the Group decided to conduct a new estimate of changes in catchability of purse seiners. These new estimates showed a higher increase in efficiency of the fleet, an average annual increase of about a 5% (all three species combined). Nevertheless, the Group decided to use the index estimated with a 3% increase for continuity with the last two assessments.

Standardized indices for juvenile yellowfin and skipjack for the European and associated purse seine fleets fishing on FADs were presented to the Group (SCRS/2008/116). Logbook set by set on FADs data as well as fleet characteristics were used. Indices were developed using a delta-lognormal model. In this case, the model was formulated different to the general use to take into account the problem related with the species composition of the purse seine catch of small fish (<10 kg). These catches are estimated from sampling to correct the bias detected in the logbook data. Therefore, the model included two distinct generalized linear models: a lognormal model which describes the variability in the non-zero catch of species less than 10 kg, and a data and binomial model which describes the proportion of each of the three species in the catch. The results of this approach are different, depending on the species, and the skipjack catch rates showed a U shape with a minimum in 1998 during the whole period.

In addition, a standardized index for skipjack for the Spanish fleet, fishing on free schools, was presented (SCRS/2008/118). This index corresponds to the seasonal fishery on free schools developed by the Spanish fleet offshore Senegal mainly during the second and third quarters of the year. This fishery mainly targets skipjack. Logbook set by set data as well as fleet characteristics were used. In this model, only the free school sets were included for the period (1991-2006) during which the extension of the FADs fishery started and information on fishing mode exists. For the historical period it was assumed that free school was the fishing mode. Data were also limited to the off Senegal area. An index was developed using a delta-lognormal model. The variables considered were *year*, *quarter* and *vessel category* (volume of wells). The series covered the period 1980 to 2006. Also a threshold of 120 fishing days by vessel and year was established. The standardized catch rates showed an increasing trend in the 1980s, followed by a decrease in the early 1990s and high variability since then. The Group considered that the availability of skipjack in this area could be related to environmental factors and that this index would be more representative of changes in catchability than in abundance.

All the standardized catch rates estimated by the Group for the east stock are shown in **Figure 24**. Some of the data series are not complete. For example, there are no estimations for Ghana baitboat after 1992. Estimations that were not used in assessment analyses (purse seine on free schools-EC) are not included in the figure. Estimations as calculated for the Portugal and Canada database showed large variations with several peaks and plunges. Estimations of standardized catch rates of Dakar purse seines increased until the early-1990s but there is no clear time trend since 1992.

Western Atlantic

In contrast with the large fishing areas observed in the eastern part of the Atlantic Ocean, the fishing grounds in the western Atlantic are generally more coastal. Most of skipjack landed in the west have been caught by Brazilian baitboats. Currently, skipjack is the main target species in this case. Note that the catch rates reported for this fishery are higher than the CPUEs observed in all the eastern baitboat fisheries. For the Venezuelan purse seiners fishing mainly in the Caribbean Sea, no new information has been provided since the 2007 SCRS meeting.

Standardized catch rates were calculated for west stock. In most of the papers, Generalized Linear Model and Delta-lognormal distribution were used to calculate the relative abundance indices. Generalized Linear Mixed models were used to analyze catch and effort data from the U.S. Marine Recreational Fisheries Statistical Survey (MFRSS) of the Atlantic coast and Gulf of Mexico (SCRS/2008/122). Positive data were modeled using a lognormal model, while the proportion of positive catches was modeled with a binomial distribution. Geographic area, season and fishing mode (charter or private fishing boat) were the factors considered in the model. Standardized catch rates calculated using the delta-lognormal model varied annually showing no clear trend.

Standardized catch rates of skipjack caught by U.S. pelagic longline fleets in the Gulf of Mexico calculated using GLM were presented in SCRS/2008/121. Response variables considered for skipjack were the CPUEs for the period 1992-2007. In the analysis, the delta-lognormal models with the following explanatory variables were used: year, area, season, gear characteristics and fishing characteristics. Overall, there appears to be an increasing trend in skipjack catch rates in 2006 and 2007 though this may be explained by increasing rates of observer coverage. Currently, skipjack tuna is not a target species for the U.S. longline fleet and there are few reports of positive sets in logbooks.

Most of skipjack landed in the West Atlantic are caught by the Brazilian baitboat fleet. In order to obtain standardized catch rates per year and quarter two approaches were used (SCRS/2008/113). In the first, catches equal to zero were discarded and a model (lognormal) was selected to analyze the positive dataset. In the second approach, the zero catches (< 2% of the total database) were also considered and a delta-lognormal model was used to estimate standardized catch rates. Indices showed large variations across the years but there was no trend.

All the standardized catch rates used in the assessment analyses are in **Figure 25**. Estimations gathered in the analysis of Brazilian and U.S. datasets showed no trend. Estimations calculated for the Venezuelan database showed dropped abruptly in the early-1980s but showed a slight decreasing trend since 1983.

4.1.3 Fishery-specific patterns for skipjack

The fishery definitions used are shown in the following table and generally follow the definitions used for MULTIFAN CL assessment modeling of bigeye tuna.

Stock	Fishery	Flags	Gear	Period
Atlantic East	1E	EC-France, EC-Spain and Others	PS	1969-1979
Atlantic East	2E	EC-France, EC-Spain and Others	PS	1980-1990
Atlantic East	3E	EC-France, EC-Spain and Others-Free School	PS	1991-2005
Atlantic East	4E	EC-France, EC-Spain and Others-FADs	PS	1991-2005
Atlantic East	5E	Ghana	PS & BB	1973-2005
Atlantic East	6E	EC-France, EC-Spain (Dakar Based), Senegal	BB	1965-1983
Atlantic East	7E	EC-France, EC-Spain (Dakar Based), Senegal	BB	1984-2005
Atlantic East	8E	Azores, Madeira, Canaries	BB	1965-2005
Atlantic East	9E	Others	BB	1965-2005
Atlantic East	10E	Others	Others	1965-2005
Atlantic West	1W	Brazil	BB	1965-2005
Atlantic West	2W	Venezuela	PS+BB	1965-2005
Atlantic West	3W	All	Others	1965-2005

Fishery definitions proposed for use in further analysis for skipjack:

Selection of the abundance indices for skipjack

To select among the candidate fisheries the most appropriate series of CPUEs in terms of representativeness of changes in the abundance of skipjack in both parts of the Atlantic Ocean, attention has been paid to criteria such as the average total catch, the surface of the fishing grounds and the size of the time series.

In the eastern Atlantic, the baitboat fisheries depicting changes over time of the abundance of different size classes of skipjack were selected as follows:

- Portuguese-Azorean fleet (standardized index after omitting the smallest boats fishing in coastal Azorean waters): 1970-2006;
- Spanish Canary Islands vessels (a non-standardized series, divided for periods of time, prior to and following the adoption of the associated school fishing technique in 1992): 1980-1991; 1992-2006;

- Baitboat fleets (EC-France, EC-Spain, FIS, Senegal) operating from Dakar (Senegal), (standardized for the whole time series, then broken down prior to and following the adoption of the associated school fishing technique in 1984): 1969-1983; 1984-2006; and
- Ghanaian vessels (non-standardized CPUE); from 1969 to 1982 (Wise 1986).

Two purse seine series were used:

- The Spanish and associated purse seiners, targeting free schools of skipjack off Senegal during the second quarter of the year from 1980 to 2006. The advantage of using purse seine CPUE in this region is the possibility to calculate an index of apparent abundance for school fishing operations only, which is not the case in other areas.
- The EC-purse seiners fishing on FADs mainly in equatorial areas: 1991-2006.

For the western stock, three indices of catch rates were used:

- The Brazilian baitboat fishery, known to target specifically skipjack (standardized index): 1981-2006;
- The Venezuelan purse seiners, operating in general with the assistance of the bait boats (non standardized index, corrected by accounting for a moderate annual 1% increase in efficiency): 1982-2005; and
- The U.S. recreational fishery (standardized series): 1986-2006.

4.1.4 Average weight

Figure 26 shows average weight of skipjack for the eastern and western Atlantic. The average weight of fish landed showed no trend in the most recent period. Since the early 1980s the average weight of fish landed in the western part doubled the weight of fish landed in the East Atlantic.

4.2 Yellowfin

4.2.1 Average weight

The average weight of yellowfin showed some variability but a decreasing trend is evident since the early 1970s (**Figure 27**). When analyzing the information separated by gear it is apparent that the decreasing trend is mainly due to longline and purse seine.

4.2.2 Catch rates

Purse seine

Standardized catch rates for adult yellowfin caught by purse seiners fishing during the period 1980-2006 in the tropical Atlantic Ocean were presented in SCRS/2008/115. Two approaches were used to obtain the indices from the results of the generalized linear model: (a) least-square means; and (b) average of the fitted values. Estimations of variance made with the second approach were lower. Nevertheless, standardized catch rates did not show a trend.

In document SCRS/2008/116 information on logbook set by set on FADs was also analyzed in order to obtain standardized catch rates for juvenile yellowfin. A delta-lognormal model and GLM were used to estimate the indices. Explanatory variables included in the model were *year*, *region*, *quarter* and *vessel category*. Standardized catch rates for yellowfin showed a flat trend during the period 1991-2006.

Catch rates available in this meeting were contradictory (**Figure 29**). Estimates calculated for Venezuelan indices showed three peaks but a decreasing trend. Nevertheless, tropical purse seine indices peaked in 1989 but did not show many changes after 1992. Standardized catch rates as calculated for the EC database appear flat in the period 1991-2005.

Baitboat

Nominal catch rates for the Canary Islands fleet show several peaks and plunges (**Figure 30**). Estimated values gathered with the Brazilian database dropped abruptly from 1981 to 1982 and then showed a slightly decreasing trend. The nominal catch rates of Dakar peaked in 1993 and then showed a decreasing trend.

Recreational fisheries

Generalized Linear Mixed and delta-lognormal distribution were used to analyze the catch rates of yellowfin caught in the Atlantic and Gulf of Mexico as reported in the U.S. Marine Recreational Fisheries Statistical Survey (MFRSS) database (SCRS/2008/122). Geographic area, season and fishing mode (charter or private fishing boat) were the factors considered in the model. Standardized catch rates vary annually but without trend (**Figure 31**). There were some peaks in 1984, 1994 and 1999, as well as plunges at the end of the 1980s and in the mid-1990s. A decreasing trend is apparent after 1999.

Longline

Several CPUE indices were presented at the meeting from fisheries other than purse seine. All the indices were standardized using GLM, differing in the assumption of the error distribution (log-normal or Poisson). They had the same basic factors in common, such as year, season and area, along with other factors particular to each case.

Standardized catch rates for yellowfin tuna caught by Japanese longline fleet from 1965 to 2006 were estimated using a generalized linear model (GLM) (SCRS/2008/108). Factors considered in the model were year, quarter, SST (sea surface temperature), number of hooks between floats and kind of main and branch lines. Main effects and interactions were included in the analysis. Catch rates were modeled using a lognormal density distribution and a positive constant were added to catch rate in order to deal with catches equal to zero. Standardized catch rates as estimated based on year and quarter decreased through the mid-1970s. Estimations were close to 1.7 (fish/1000 hooks) until the early 1990s when they dropped to 0.6 (fish/1000 hooks). After that decrease, variations in standardized catch rates showed not trends. Variations of standardized indices as calculated in weight were similar to those gathered in calculations based in number of fish. Nominal catch rates for the 1960s and the early 1970s as reported for Japanese as well as for all other longline fleets were considered doubtful in an earlier meeting. Therefore, the Group decided not to use the estimations for the very early years.

In the southwest Atlantic, yellowfin tuna are caught mainly by the fleets operating drifting pelagic longline. SCRS/2008/109 presented the CPUE of yellowfin tuna caught by the longline fleets of Brazil and Uruguay in the Atlantic Ocean for the period 1980-2006 standardized using General Linear Models with a Delta Lognormal approximation. There number of analyzed hauls was 76,521, with a total effort of 136,947,483 hooks between 7°N-45°S and 57°-20°W. The response variables considered in the model were CPUE and a nominal CPUE weighted by total catch (CPUEp). There were considered as explanatory variables for the models the year, quarter, area, water surface temperature and type of fishing gear. Both CPUE and standardized CPUEp show oscillations along all the period with a downward trend in the last seven years and a moderate peak in 2005. Standardized catch rates showed large variations all across the years with a decrease from 2000 to 2006. In a companion paper, only the Uruguayan database was considered (SCRS/2008/110). The results were similar to those mentioned above.

A GLM was also used to analyze the CPUE of yellowfin caught by the Brazilian longline fleet but the catch rate (number of fish/100 hooks) was assumed to follow Poisson and Tweedie densities distributions (SCRS/2008/112). The four factors considered when analyzing data from 1986 to 2007 were year, area, quarter and target. Cluster analysis of species compositions caught in the fishing sets was used to define the levels of the "target" factor. Estimations gathered with Poisson and Tweedie models were similar. Standardized catch rates were large between 1988 and 1990, decreased through 1993 and did not show any trends at the end of the time series.

For the Mexican and U.S. longline fishery in the Gulf of Mexico (1992-2006) a combined index was presented (SCRS/2008/119), based on available observer data. The variables included were year, quarter, fleet, set, temperature, and bait type.

In document SCRS/2008/120 yellowfin CPUE were in weight and number for the period 1987-2007. Standardized catch rates for yellowfin have declined since 1987 but appear to be increasing since 2003. Overall the standardized indices show a decrease since 1986 but a rather flat trend since 1992. The proportion of positive catches and the catch rate of positive datasets for yellowfin showed contradictory trends in some of the fishing grounds. That issue was discussed but there were no agreement on the explanation for those contradictory patterns.

For this assessment, datasets from Japan, Brazil, Uruguay, United States and a combined index between Mexico and United States were used. Most of the standardized catch rate time series showed a continuous decreasing trend (Figure 32). The exceptions were the indices calculated for Chinese Taipei and for the Uruguayan databases. Estimations for Chinese Taipei data dropped in the early 1970s and appeared flat after 1974, while estimations for Uruguayan data showed large variability but no trend.

Indices used in the analysis

After evaluating all catch rate indices available during the meeting the Group decided to use some of them for virtual population analysis but not for production models. Some of the indices showed unreliable time trends. Catch rate indices selected for the assessment analysis are included in **Appendix 7**.

Combined indexes

Combined indexes were estimated for both species using a GLM approach (see **Appendix 5**). For yellowfin, the model included the Japanese longline, the combined Mexico and U.S. longline in the Gulf of Mexico, U.S. rod and reel, Brazilian longline, Chinese Taipei longline, Canadian baitboat, Venezuelan purse seine, Brazilian baitboat, EC Dakar-based baitboat, Venezuelan longline, and EC purse seine assuming a constant annual increase in catchability of 3%. The estimated unweighted and weighted combined indices are presented in **Table 13** and **Figure 33**. Both the unweighted index showed similar trends with a sharp decrease in the late 1960s followed by a relatively stable period until about 1990. From 1990 onward both indexes showed a continuous declining trend.

For skipjack, the fisheries used to estimate the combined index for the ATE stock were the EU-Dakar and EU-FAD purse seine fisheries and the Ghana, Canary Islands, Portugal and EC Dakar-based baitboat fisheries. In the case of the western Atlantic skipjack stock they were the Venezuelan purse seine, the U.S. rod and reel and the Brazilian baitboat. The combined index for the eastern Atlantic skipjack stock showed a variable but constant increasing trend from the beginning of the time series in 1965 to the end in 2006. The western Atlantic stock series started in 1981 and also showed a series with highly variable values but with a relatively constant trend. Values of the estimated combined indexes for each stocks and matrices of weighting factors are shown in **Table 13** and **Figure 33**.

5. Methods and other data relevant to the assessment

5.1 Methods – Yellowfin

5.1.1 ADAPT-VPA

The parameter specifications used in the 2008 VPA base model were generally the same as those used in the 2003 base-case VPA model (Mérida, Mexico, July 2003) (Anon. 2004). A summary of the model control settings and parameters appears below and in **Tables 14** (Control Settings) and **15** (Parameters).

VPA models require the estimation or assumption of terminal year fishing mortality rates (F). Like the previous assessment, the 2008 base cases (Runs 5 and 8) allowed terminal F values to be estimated for Ages 0-4. The oldest age class represents a plus group (ages 5 and older) and the corresponding terminal fishing mortality rate is specified as the product of $F_{age 4}$ and an estimated 'F-ratio' parameter that represents the ratio of F $_{age 5}$ to F $_{age 4}$. For Runs 5 and 10 the initial F-Ratio (1970) was estimated as a frequentist parameter, and then allowed to vary annually using a random walk with a standard deviation equal to 0.2 and an expected value of the prior distribution equal to the previous annual estimate.

The indices of abundance were fitted assuming a lognormal error structure and equal weighting (i.e., the coefficient of variation was represented by a single estimated parameter for all years and indices). The catchability (scaling) coefficients for each index were assumed constant over the duration of that index and estimated by the corresponding concentrated likelihood formula.

The natural mortality rate was assumed to be age-dependent (Ages 0 and $1 = 0.8 \text{ yr}^{-1}$; Ages $2+=0.6 \text{ yr}^{-1}$) as in previous assessments.

Description of model runs

The indices used during the various model runs are summarized in **Table 16**. Methods used to estimate index selectivities are described in **Table 17**. A general description of the model runs follows.

- Continuity Run: The "continuity run" was performed to determine the 2008 stock status using model settings and structure identical to the 2003 base assessment (i.e. identical parameter settings, constraints and indices of abundance). It is intended to facilitate comparison of the 2008 and 2003 assessment results. Indices of abundance and catch data were updated and extended through 2008.
- **Runs 5** and **10** were chosen as "base runs" and were combined to develop management advice.

- **Run 5:** Run 5 differs from the "continuity" and 2003 model runs in that:
 - 1) All indices recommend by the 2008 assessment working group were used.
 - 2) A penalty was applied to restrict deviations in vulnerability-at-age (Penalty applied to 2004-2006, Ages 0-5+, Standard Deviation = 0.4)
 - 3) The peak of the spawning season was set at February 14. Weight-at-age of spawners was also calculated from the growth curve using that date.
- Run 10: This run is identical to Run 5 except that the LONGLINE and TROP_PS indices were assumed to
 have fixed "flat-topped" selectivity patterns rather than the steeply "dome-shaped" patterns estimated by
 Run 5. To accommodate this assumption, the selectivity patterns estimated during RUN 5 were used until
 full selectivity was reached. Then, full selection (1.0) was retained for older ages.

5.1.2 ASPIC

The yellowfin stock was also assessed with a Surplus Production Model (ASPIC v. 5.16) using landings for the period 1950-2006. Three different sets of fisheries were considered in the runs:

- A combined fleet with a combined index for the period 1965-2007. This case used a weighted combined index (see Section 4) for the Japanese longline, the combined Mexico and U.S. longline in the Gulf of Mexico, the US rod and reel, the Brazilian longline, the Chinese Taipei longline, the Canary Islands baitboat, the Venezuelan purse seine, the Brazilian baitboat, the EC Dakar-based baitboat, the Venezuelan longline, and the EC-purse seine assuming a constant annual increase of 3% in catchability.
- 2) Ten separate fleets with indexes that cover some portions of the period 1965-2007. This case used separate landings and indexes of abundance for the Japanese longline, the U.S. rod and reel, the Brazilian longline, the U.S. longline, the Uruguayan longline, the Venezuelan purse seine, the Brazilian baitboat, and the EU-Dakar baitboat fleets. A tenth fleet included all other landings and it did not have a corresponding index of abundance.
- 3) A combined fleet with a combined index for the period 1956-2006. This case used 1965 to 2006 combined index extended back to 1956 using Task II data.

Table 18 shows the indexes of abundance used in each case while Table 19 provides de catches. These three scenarios tested different combinations of different model forms (logistic vs. Generalized), weighted or unweighted indexes, and fix or estimated value of B_1/K . A total of ten initial cases were considered which are summarized in Table 20.

5.2 Methods - Skipjack

5.2.1 Catch-only model

The catch-only model combines a Schaefer biomass dynamics model with a logistic exploitation dynamics model (Vasconcellos and Cochrane, 2005). The model assumes that the fisheries harvest follows a logistic curve that depends on two parameters. The model predicts the total catches, which are fitted to the observed catches using Bayesian methods (Gelman *et al.*, 2004). The fits are done using a Bayesian framework in order to allow the use of prior information, which could boost the information extraction from catches. Preliminary simulation testing (Minte-Vera *et al.* in prep) showed that, for artificial data sets, catch data combined with informative priors on some parameters could produce acceptable management quantities.

Catch only model is given by:

$$C_{t+1} = P_t \left[1 + x \left(\frac{B_t}{aK} - 1 \right) \right] \left[B_t + rB_t \left(1 - \frac{B_t}{K} \right) - C_t \right]$$

where:

 C_{t+1} is catch at time t+1;

 P_t is the proportion of biomass caught at time t;

 B_t is the population biomass at time t;

K is the carrying capacity, or biomass at which the growth of the population is zero;

r is the intrinsic rate of population biomass change;

x is a multiplier that defines the increase in fishing mortality over time; $a (0 \le a \le 1)$ is the bio-economic equilibrium as a proportion of *K*.

In this model, four parameters are estimated: *r*, *K*, *a* and *x*. The population was assumed to be lightly fished at the beginning of the time-series (so $B_0 = K$), and that the first catch (C_0) was measured without error (so $P_0 = C_0/B_0$).

The parameters were estimated using Bayesian techniques. Several combinations of priors were used. For the Western stock, priors for K were set as $K \sim U(100000, 1000000)$, $\ln(K) \sim U(\ln(100000))$, $\ln(1000000)$) or a lognormal distribution with mean 350,000 t and CV=0.5. For the eastern stock, priors for K were set as $K \sim U(200000, 2000000)$, $\ln(K) \sim U(\ln(200000))$, $\ln(2000000)$) or a lognormal distribution with mean 700,000 t and CV=0.5. Priors for *r* were set as $r \sim U(0.4, 2.0)$ or a prior based on demographic methods (see **Appendix 6**, McAllister *et al* 2001). The priors for *a* were set as uniform on the possible range of the parameter $a \sim U(0,1)$. Sensitivity for the priors for *x* were done, because some combinations of *a* and *x* values may generate unrealistic oscilations on the harvest rate and consequently on the biomass. Initially, priors on x were set as $x \sim U(0,10)$, then the range was restricted to $x \sim U(0,1)$ or $x \sim U(0,1.1)$ for the eastern and western stocks, respectively.

The observed catches were assumed to follow a log-normal likelihood function (Casella and Berger 2002) with expected value equal to the catches predicted by the models:

$$L(\phi \mid w) = \prod_{t=1}^{n} \frac{1}{\sigma C_t \sqrt{2\pi}} \exp \left[-\frac{1}{2\sigma^2} \left(\ln C_t - \mu \right)^2 \right]$$

Where:

$$\mu = \ln E(C_t) - \frac{\sigma^2}{2}$$

n is the length of the catch time-series

 C_t is the observed catch in year t

 \hat{C}_t is the expected catch for year t predicted by the model

 σ is the variability parameter assumed known and equal to 0.4.

The parameters were estimated using SIR-Sampling Importance Resampling (McAllister *et al.* 1994; Gelman *et al.* 2004). The importance function was equal to the joint prior function, and thus the importance ratio is equal to the likelihood. One million parameter vectors were randomly sampled from the joint prior distribution; of those 20 000 samples were taken with replacement, with probability proportional to the importance ratio. Punt and Hilborn (1997) found that resampling needs to be done until no vector is assigned more than 1% of the posterior probability (MSD-maximum single density). In our case, the MSD was monitored and no vector occurred in more than 1% of the resamples. Other diagnostics for convergence were also used such as the coefficient of variation in the average importance weight (McAllister and Kirchner, 2002) and the maximum importance ratio (McAllister and Pikitch, 1997).

The data used in the first set of runs were the time series of total catches from 1950 to 2006 for the eastern stock and 1976 to 2006 for the western stock. Although, the catches for the western skipjack stock start at 1953, they stay very low until mid-1970s. Preliminary runs using the whole catch series would not run because the model was unable to find a combination of parameters that would produce a trajectory with a small harvest rate for almost 30 years. For the second set of runs, the model was fit to a restricted catch series for the eastern stock in order to have only catches coming from a more homogeneous fishery (see section 3.2). The series was divided in two periods, from 1965 to 1984 and from 1985 to 2006. *5.2.2 PROCEAN*

The PROCEAN (Production Catch/Effort ANalysis) model is a multi-fleet surplus production model developed in a Bayesian framework to conduct stock assessments based on catch and effort time series data (Maury, 2001; Maury and Chassot, 2001). PROCEAN is a biomass dynamics model based on the generalized surplus production model (Pella and Tomlinson, 1969) that includes process error for fishing fleet catchability, stock carrying capacity, and a robust process error on fishing mortality.

The eight independent time series of abundance indices defined during the Working Group were used as well as the combined abundance index weighted by fishing area (see Section 4).

Preliminary runs showed that there was not enough information in the data to estimate the shape parameter (m) regarding the typical one-way trip of the eastern Atlantic skipjack fishery so it was fixed when running the model. The initial biomass of the stock in 1969 (B0) was also difficult to estimate and assumed equal to a fixed proportion

of the carrying capacity (K). Informative prior distributions were considered for the growth rate parameter (r) and the maximum sustainable yield (MSY). Normal distributions with mean 1.17 (sd = 0.26) and 150,000 (sd = 20,000) were assumed for the intrinsic growth rate (Section 5.3.2) and MSY, respectively. A sensitivity analysis was conducted to account for uncertainty in some input parameters and to assess the impact of the prior distributions on posterior estimates (see Section 6.2.4).

5.2.3 Bayesian Surplus Production Model methods

The Bayesian Surplus Production model (McAllister *et al.* 2001) is a non-equilibrium surplus production model that allows prior distributions on intrinsic rate of population increase (r), carrying capacity (K), biomass in the first modeled year defined as a ratio (*alpha.b0*) of K, average annual catch before data were recorded as well as variance, the shape parameter (n) for a Fletcher/Schaefer model and catchability parameters for each time series. The model uses a sampling importance resampling algorithm (SIR, McAllister and Kirkwood 1998) and can fit either a Schaefer or a Fletcher/Schaefer type production model. The BSP model has been accepted into the ICCAT catalog and has been applied to several previous ICCAT species (white marlin, bluefin tuna, billfishes, bigeye tuna). However, this is the first time that the model has been applied to skipjack tuna.

In this application we use the logistic Schaefer formulation of the model and estimate r and k and alpha.b0 using prior distributions. A lognormal(mean= 1, sd=0.01) prior distribution for alpha.b0 was assumed on the basis that biomass in the first year of the model year (1950 for eastern skipjack and 1952 for western skipjack) was at or close to carrying capacity. Prior distributions for r were determined on the basis of demographic modeling described in Section 5.3.2. Priors for K were initially estimated to be uniform on either K or log K with maximum bounds equal to 10 times the maximum observed catch and minimum bounds equal to the maximum observed catch but were subsequently decreased to ~ 5 times the maximum catch. In this formulation of the BSP model we input prior distributions for the parameters r and K and assumed that K was equal to the biomass at the starting point for each of recorded catch for each model.

Initial model fitting and parameterization was necessarily to find suitable starting values for the input parameters r and K to get the model to estimate modal values which are either the maximum likelihood estimates for the non-Bayesian parameters or the mode of the posterior for the Bayesian parameters. This is performed during the "estimate mode" component of the model fit procedure and often different starting values where necessary for different runs. Starting values for the various parameters are given in **Tables 21** and **22** for western and eastern skipjack, respectively. Indices used for western skipjack are given in **Table 23** and for eastern skipjack in **Tables 24** and **25**.

For each model run, the convergence diagnostics were examined during the 'importance sample' stage of modeling according to the methodology described in McAllister and Kirkwood (1998). Further, given the non-informative or contradictory nature of many of the input indices, examination of the diagnostics was particularly critical because of the potential bias that the importance function can impart on the posterior modes. It is recommended that the CV of the weights CV(wts) of the importance draws should be less than the CV of the likelihood times the priors CV(L*P) for the same draws. As a diagnostic of convergence for the SIR algorithm, the we used the ratio of the CV(wts)/CV(L*P) assumed that ratios greater than 2 were unacceptable, ratios between 1 and 2 were marginal, and ratios less than 1 were acceptable.

5.3 Other methods

5.3.1 Estimation of potential trends in catchability in the European purse seine fleet

The Group noted than in various past analyses it has been assumed that the catchability associated with the EC tropical purse seine fleet has increased about 3% per year since 1980. The Group conducted additional analyses to determine if perhaps changes in catchability have not occurred at a constant rate since 1980.

The data used, see **Figures 34** and **35** (for the three tropical species separately and combined) were: 1950-2006 total catch; 1969-2006 catch and nominal effort (fishing days) of the EC and associated purse seine fleets. No attempt was made to separate FAD and free school sets. The 1983 and 1984 effort values seemed anomalously high and were excluded from the analyses.

The approach used can be summarized as follows: Conditional on the total catches, biomass trajectories were computed based on a deterministic Fox production model with assumed parameter values (these are explained below). From these biomass values and the total and purse seine catches and fishing effort, it is possible to derive values of fishing mortality and catchability by purse seine fleet. The trends in the resulting catchability values were then examined. The following equations explain the method used:

1) Assume values for MSY and K.

2) Assume that Space = K

3) Project the population forward using Fletcher's parameterization of the Fox model given the above values and the time series of known total catches:

$$B_{r+1} = B_r - e^1 MSY \frac{B_t}{K} ln \left(\frac{B_t}{K}\right) - TC_r$$

4) Estimate total fishing mortality:

$$F_L = \frac{C_0}{(D_0 + D_{0+4})/2}$$

5) Estimate purse seine fishing mortality based on the ratio of purse seine catch (P) to total catch:

6) Estimate purse seine catchability using the nominal effort:

$$q_0 = \frac{p_{p_0}}{f_0}$$

The values assumed for MSY for bigeye and yellowfin were 90,000 t and 150,000 t, as estimated from the previous assessments. An MSY of 150,000 t was assumed for skipjack in the eastern Atlantic. When the three stocks were analyzed together, the overall MSY used was 390,000 t.

The values of *K* for bigeye and yellowfin were calculated such that the projected B_{2006}/B_{MSY} ratios were 0.9 and 1.0, respectively. The value of *K* for skipjack was fixed arbitrarily to 700,000 t, which is similar in magnitude to the values calculated for yellowfin and bigeye. The value of *K* for the analyses of the three species combined was the sum of the three individual *K* values.

The group calculated average percent changes in catchability by regressing $\ln(q_t)$ against time for different time periods. These were 1969-1979, 1980-1990 and 1991-2006, i.e. the same periods being considered to split the series for the Multifan analyses. In addition, the time period 2002-2006 was examined to investigate more recent trends.

Results

The projected biomass trends are shown in **Figure 36**. The models show steeper declines for bigeye and yellowfin than they do for skipjack or for the three species combined.

Table 26 provides the assumed population dynamics parameters and the resulting slopes of the regression of $\ln(q)$ against time for different time periods. The values of $\ln(q)$ for the entire time period are shown in **Figure 37**. These results suggest that during some time periods, catchability may have changed by more than 10% per year. This is evident primarily in the 1970s and 1980s. For the more recent five years, these analyses suggest that catchability continues to increase rapidly for skipjack, is decreasing for yellowfin, and is increasing slowly for bigeye.

Figure 38 and **39** show the input (nominal) fishing effort as well as the effort adjusted by the catchability estimates by species. Note that the largest impact of adjusting effort by catchability is for bigeye tuna, followed by skipjack and then yellowfin.

Figure 39 compares the nominal effort series with two adjusted series for yellowfin tuna. The blue line is adjusted using the catchability changes estimated in the present analyses. The red line was obtained following the same approach that was applied during the yellowfin session held in Cumana, Venezuela in 2000 (Anon. 2001), which assumes a 3% annual increase in q after 1980. (Note that the input effort series used for both analyses are different). The two adjusted series are similar in magnitude, although in some years the adjusted effort from the current analysis can be up to 60% higher than the effort adjusted by the 3% annual change in q.

In discussing the results obtained, the Group agreed that the approach used to calculate changes in q has strengths and weaknesses. One strength is that the rate at which q changes over time is not fixed. Another strength is that it is linked to a population dynamics model. In terms of weaknesses, the deterministic nature of the Fox model used is rather inflexible. A more flexible approach would be, for instance, to estimate catchability changes as random walks within a stock assessment framework such as Multifan-CL. Finally, the group did not examine in detail the effect that changes in assumed values of *MSY* and *K* would have on the results, although limited runs suggested that the trends in q were relatively insensitive to these.

For the stock assessment analyses, the Group concluded that both the effort series adjusted for a 3% increase in q per year, as well as adjusted by the catchability changes estimated in these analyses, should be used (see **Table 27**).

6. Stock status results

6.1 Stock status – Yellowfin

6.1.1 VPA Results

This section summarizes the results from VPA analyses explained in Section 5.1. The report file output of the VPA-2BOX software for the base VPA models (Runs 5 and 10) is included as **Appendix 7** This appendix contains a complete description of the VPA results, including the matrix of estimated fishing mortality rates, abundance at age, stock biomass, recruitment, fits to indices, estimated index selectivities, F-ratios and Terminal Fs-at-age.

Diagnostics

Fits to the CPUE series for the VPA continuity and base models are summarized in **Figures 40** and **41**. The fits to the base models (Runs 5 and 10) are very similar, and show a substantial lack of fit to many indices (**Figure 41**).

Retrospectives

A retrospective analysis was completed by sequentially removing inputs of catch and abundance indices from the 2008 base case model, back to 2003. **Figure 42** shows the trends of spawning biomass and recruits for the base cases. SSB trends were scaled to the maximum value of the series to facilitate comparison. The SSB trends are sensitive to the sequential removal of data and show no convergence back in time. Instead, some series indicate a steeper decline in biomass. The estimated recruitment is fairly insensitive to the retrospective removal of data. In recent years, the recruitment estimates fluctuate with no obvious pattern.

Retrospective patterns in fishing mortality-at-age (FAA) and numbers-at-age (NAA) are summarized in **Figure 43** and **44**, respectively. Some substantial retrospective pattern in FAA is noted, particularly for Ages 4 and 5+ between 1990 and 2006. Retrospective pattern in NAA are less apparent. The model results are generally convergent until the most recent years, and then vary without obvious pattern.

Comparison of 2003 and 2008 VPA base models

The 2008 continuity run was constructed to examine the implications of adding recent years (2002-2006) to the VPA model without changing the indices used or the model settings. Trends in apical fishing mortality, spawning stock biomass (SSB), abundance (Ages 0-5+), recruitment (Age 0) and the annual F-ratio (F5+/F4) for the 2003 base and 2008 continuity models are shown in **Figure 45**. The 2003 base and 2008 continuity stock assessment results are similar, but some differences are evident in the recruitment, abundance and fishing mortality estimates, particularly between 1999 and 2001. These inconsistencies are likely to be caused by differences in the estimated F-Ratios during those years. The SSB estimates are quite similar throughout the time series.

VPA Base Models

Two models (Runs 5 and 10) were chosen by the working group to provide management advice. Annual trends in yield, total biomass, apical fishing mortality, recruits (Age 0), spawning stock biomass (SSB) and SSB relative to SSB at F_{MAX} are shown in **Figure 46** (Run 5) and **Figure 47** (Run 10). Uncertainty in the annual values was estimated using 500 bootstraps runs of the index residuals.

The two runs are very similar, although run 10 estimates a slightly more optimistic stock status in 2006.

Sensitivity Runs

Several sensitivity runs were conducted to examine model sensitivity to:

- 1) The application/removal of penalties on deviations in recent recruitment.
- 2) The application/removal of penalties on deviations in recent estimates of vulnerability at age.
- 3) Changes in the timing applied to indices of abundance.
- 4) Various assumptions about the catch-at-age of the Japanese longline in 2006.
- 5) Estimating a single F-ratio for all years (1970-2006).
- 6) Fixing the F-ratio for all years at various values.

The Group considered these models during the development of the base run, but ultimately decided that these runs would not be used to develop management advice.

Stock status

The Working Group could not choose between the two VPA base cases, and since the model results were so similar (**Figures 46** and **47**), the Group recommended combining the model results into a single joint distribution. This joint distribution was used to determine stock status and develop management advice. Management references were calculated using the medians of the joint distribution, and assuming constant recruitment equal to the mean of the observed recruitments during 1970-2006. All management benchmarks and reference points are summarized in **Table 28**.

The trajectory of stock status during the time series is summarized in **Figure 48**. According to the joint distribution of the 2008 base models, yellow fin tuna have never been overfished, although overfishing has occurred (**Figure 48**; yellow symbols). Current stock status was estimated using SSB_{2006}/SSB_{MAX} and $F_{Current}/F_{MAX}$. According to the results of the joint distribution, the stock is not currently overfished ($SSB_{2006}/SSB_{MAX} = 1.09$) or undergoing overfishing ($F_{Current}/F_{MAX} = 0.84$) (**Figure 49**). Uncertainty in the stock status was estimated by bootstrapping the index residuals. 500 bootstraps were run from each VPA base model (**Figure 49**) Histograms of the bootstrap estimates of 2006 stock status from the joint distribution were constructed to examine the normality of the distribution. There is no evidence of a strong bias in the results (**Figure 50**).

The conclusions of this assessment do not capture the full degree of uncertainty in the assessments and projections. An important factor contributing to uncertainty is the accuracy of the growth curve and the age-slicing procedure. Age-slicing procedures are sensitive to small changes in slicing limits. Improved methods to estimate catch-at-age (e.g. stochastic approaches and/or directly observed age composition) have the potential to improve the reliability of age-structured models. Another important source of uncertainty is recruitment, both in terms of recent levels (which estimated with low precision in the assessment), and potential future levels. These models assumed recruitment would continue at the level observed during 1970-2006. It is possible that changes in fishing pressure or environment could invalidate this assumption.

6.1.2 ASPIC

Table 29 shows the initial results of the 10 runs. Estimated trajectories of relative biomass and relative fishing mortality for each of the 10 cases are presented in **Figure 51**. In the case of relative biomass, cases 1, 3, 7, and 9 showed very different trends compared to the other cases. For relative fishing mortality, cases 1, 3, 9, and 10 clearly showed trajectories with different trends. After initial examination of the results, the Group decided to run bootstraps for cases 2, 4, 6, and 8. The estimated deterministic trajectories for the 4 bootstrap cases are shown in **Figure 52**. The four cases showed the same trends with an increase in fishing mortality and a reduction of biomass that resulted in a period where the stock was overfished and undergoing overfishing, followed for a period of recovery. The present condition of the 4 bootstrap runs (500 bootstraps) for year 2006 (i.e., current condition). **Figures 54** and **55** show the relative biomass and relative F trajectories and the 80% CI estimated from 500 bootstraps. Results of bootstraps runs for cases 2, 4, 6, and 8 are summarized in **Table 30**.

6.2 Stock status – Skipjack

6.2.1 Multifan-CL model

The Group attempted several analyses of the eastern and western stocks combined. All of these showed very poor convergence, as expected because the tagging data were not judged to be very informative on ocean wide spatial scale. Subsequently, the Group made separate analyses for the eastern and western stocks. These are described below.

6.2.1.1 Eastern Atlantic

The eastern model included 10 separate fisheries (see Section 4.1.3), was divided into yearly and quarterly time frames and assumed four recruitment events, each occurring at the beginning of each quarter. Natural mortality was fixed at 0.2.quarter⁻¹. The options for the base case eastern model which included all catch data from 1950 to 2006, were similar to those for the base case model simulated for the western region The major differences however, were that the model for the eastern region included a cubic spline selectivity function with three nodes (later increased to 5) and the penalties for the effort deviations were set to be the same for all the fisheries.

The model had great difficulty estimating the biomass at the beginning of the fishing period (**Figure 56**). The model estimate of biomass fluctuated greatly for the initial model years, repeatedly reducing to zero. The estimates of MSY and F_{MSY} were consequently nonsensical (**Figures 57** and **58**). As a result of the poor model estimation, another model run was carried out including data only from 1970-2006. The model was set to estimate the initial population age structure based on Z averaged over the last 20 time periods (quarters in this case). Also, the cubic spline selectivity option was removed and instead selectivity was set to be length dependant for all fisheries. Although these changes removed the occurrence of biomass reducing to zero in the initial years of the model run, it still resulted in an increase in biomass over time (**Figure 59**). MSY and F_{MSY} estimates (**Figures 60 and 61**) were superficially more plausible than the previous model run, but clearly unrealistic due to the strange biomass estimates.

Although several ad hoc variations and model options were simulated for this stock in order to improve the model outputs, they all resulted in similar unrealistic patterns for biomass. As a result, further analysis was discontinued. It is clear that at this stage, the data for the eastern region were unsuitable for Multifan-CL simulation within the time limitations of the working group meeting. Further modeling should be carried out inter-sessionally and possibly include tagging data once fully verified.

6.2.1.2 Western Atlantic

The basic run for the western stock used data from 1952 to 2006 for three fisheries (1=Brazil BB, 2= Venezuela BB+PS, and 3=Others) and the following assumptions/constraints:

- Assume starting population at equilibrium based on M
- Assume M=0.2 per quarter
- Estimate 4 annual recruitment events
- Allow higher variability in effort deviations for fisheries 2 and 3 (weights = 10, 3 and 3)
- Divide length frequencies by 10 (fishery 1) or 20 (fisheries 2 and 3)
- Estimate separate selectivities by fishery; assume constant selectivity after age 14 (quarters)
- Estimate the growth curve, starting from the one assumed by ICCAT (see Manual)
- Allow for random walks in the catchabilities of the 3 fisheries
- Fit a stock-recruitment relationship to estimate MSY-related statistics (steepness prior mean = 0.9)

An additional sensitivity run was made estimating natural mortality.

Summary fit diagnostics are plotted in **Figure 62**. The estimated selectivity patterns are shown in **Figure 63** and the recruitment and SSB trajectories are shown in **Figure 64**. Overall the model estimates dome-shaped selectivity patterns and substantial fluctuations in recruitment and spawning biomass. The model fit was imprecise. It was not possible to obtain variance estimates of all quantities of interest. Approximate 90% confidence intervals for recruitment and SSB are given in **Figure 65**.

In terms of benchmarks, the model estimated an MSY of 30,660 t per year, and current (2006) ratios of $B/B_{MSY}=2.04$ and $F/F_{MSY}=0.51$. A plot of relative B and relative F is given in **Figure 66**. When the sensitivity run estimating M was made (M was estimated at 0.32 per quarter), the benchmarks were estimated as follows: MSY=35,960 t, $B/B_{MSY}=2.31$, $F/F_{MSY}=0.47$.

The group was encouraged by these preliminary results and recommended that more work be undertaken in the future to refine the Multifan-CL model analyses for the stock.

6.2.2 Bayesian Surplus Production model results

6.2.2.1 Western skipjack

The indices used for the western Atlantic skipjack production model assessment gave quite contradictory information, particularly the sharp decline of the Venezuelan purse seine index (Figure 67) and the high fluctuations in the Brazilian baitboat and U.S. rod and reel index. There is little spatial overlap in the coverage of these indices and given the high viscosity of skipjack, these indices may reflect more local conditions rather than the overall western stock. It is, therefore, not unlikely that these indices could show contradictory trends.

Likely due to these contradictory trends, the BSP model runs for the western Atlantic stock of skipjack had initial problems with convergence indicated by very high CV of the weights of the importance draws relative to the CV of the likelihood times the priors cv(wts)/cv(lp). Such a situation can occur when the input indices either are contradictory or uninformative as occurred in several shark stock assessments (McAllister and Kirkwood 1998), resulting in a very narrow importance function. As a remedy, McAllister recommended increasing the width importance function to allow for greater sampling variability with the parameter setting *expand.imp* or by decreasing the degrees of freedom for the multivariate t importance function (the importance function used for these models). The Group explored a series of runs (5-9) either expanding the importance function or increasing the degrees of freedom where each successive expansion improved the convergence criteria cv(wts)/cv(lp) and widened the posterior for *r* (**Figure 68**). It is highly likely that runs 1-6 are unreasonable given the lack of achieving the convergence criteria. Runs 1-8 also were run with a very wide prior for r (sd=.5) rather than the originally desired 0.25. To correct this an additional run 9 with the correctly specified prior N(1.17, 0.25) was conducted.

The results of Runs 7 and 8 both achieve reasonable, but not great, convergence criteria $(cv(wts)/cv(lp) \sim 1.6)$ (**Table 31**). Runs 1-8 also were run with a very wide prior for r (sd=.5) rather than the originally desired 0.25. To correct this an additional Run 9 with the correctly specified prior N(1.17, 0.25) was conducted. However, it should be noted that the posterior for r was very wide (**Figure 68**). The fit to the indices for Run 9 was rather poor and not unexpected given the different trajectories of the indices (**Figure 69**) and the equal weighting given to them. The intrinsic rate of population increase, *r*, for Run 9 was estimated to be slightly lower than the prior mean and at a value of 1.159 with a standard deviation of 0.278.

Figure 70 shows the biomass, B/B_{MSY} , F, and F/F_{MSY} trajectory with projections of 25,000 t starting in 2007 for Run 9 showing the initial steep increase in fishing mortality with the creation of the fisheries and a current status assessment of B above B_{MSY} and F below F_{MSY} . It is important to note that expanding the importance function tends to let the model estimate a lower K and higher fishing mortality rates so that if there is a bias introduced by the lack of convergence of the earlier runs, it tends to give more optimistic results for this particular model set up (**Table 31**).

6.2.2.2 Eastern skipjack

The BSP model for the eastern Atlantic skipjack assessment used eight indices (Figure 71, Table 24). Despite the rather contradictory nature of some of the indices the BSP model runs for the eastern Atlantic stock of skipjack showed more acceptable convergence criteria than for western Atlantic skipjack.

Nineteen (19) runs were made using various combinations of indices, bounds on K, and with standard deviations for the priors for r (**Tables 32** and **33**). Many of the runs used the same data and should actually be considered as "ranging" runs to determine appropriate boundary conditions for the further models. There was a strong effect of the bounds on the uniform prior for K (**Figure 72**). Decreasing the upper bound from 2 million metric tons (t) to 1 million metric tons (a value similar to 5 times the maximum observed catch) reduced the K values from approximately 1.2-1.3 million metric tons to values around 720-790 thousand metric tons. Given the extremely high K values predicted by using the higher bound on K (1.3 million t) it is likely more plausible to use a bound close to commonly used bounds such as 5 times the maximum observed catch.

Note that the prior distributions for *r* were originally run with a variance of 0.09 where N~(mean=1.17, sd=0.3). This was slightly different from the demographic analysis standard deviation which estimated an sd of 0.25, however the results are likely very comparable to using a N~(1.17, sd=0.3) prior. An input of the standard deviation rather than the variance as the mean for the prior distribution facilitated an impromptu sensitivity analysis of the effects of using a narrow (sd=0.25) or wide (sd=0.5) prior for r. This set of runs indicated that there was little effect on the posterior modes (**Tables 32** and **33**) resulting in little actual affect on the status results for each run. The resulting posterior distributions were, however, much broader with the wide or uninformative prior, resulting in wider coefficients of variation around the mode of the posterior distributions for status results (**Tables 32** and **33**).

In addition, the higher r values of the posterior suggest that freeing the prior on r allows the model to estimate a higher posterior value for r (\sim 1.3-1.7) than for the informative priors. Based on earlier demographic modeling (section 5.3.2) these higher values seem unlikely for skipjack tuna.

As such, RUN5BZ with using a uniform (250000, 1000000) prior on ln K, a N~(1.17, 0.3) prior on r and all indices weighted equally may be considered the best model incorporating all of the data, though the fits to the indices were generally poor (**Figure 73**). Trajectories of Biomass, B/B_{MSY}, F, and F/F_{MSY} with projections of 100,000 t starting in 2007 for SKJE-RUN5BZ (**Figure 74**), indicate the relatively high B/B_{MSY} status and low F/F_{MSY} status predicted by the model.

6.2.3 Catch-only model

Western skipjack

Two sets of runs were conducted for the western stock (**Table 34**). For both sets, the catch series used ranged from the year 1976 to 2006, in order to include the years when the catches start to increase (see **Figure 7**). For the first set (A), the prior on x was set as wide values $x \sim U(0,10)$. Explorations of the behavior of the model for combinations of *a*, *x* parameters showed that for high *x* and low *a*, the model predictions for biomass and harvest had wide unrealistic oscillations. A second set (B) of runs with a narrow prior on *x* was also conducted. When narrower prior on *x* were assumed, the model was able to gain more information from the catches than for a wider prior on *x*. **Figure 75** has the results only for run 1 of the two sets, which were similar for the other runs within each set (see **Appendix 8** for full results).

The estimations were sensitive to the prior on x. The first set of runs (A) included less information from the catches as suggested by the wider posteriors when compared to the priors (**Figures 75** and **76**). For the first set of runs the median of the posterior for MSY ranged from 54,000 to 83,000 t. The second set of runs (B) were able to incorporate more information from the catches that the first set of runs, as suggested by narrower posteriors on the parameters and derived quantities, when compared to the priors (**Figure 75**), and were selected for inference. For the second set of runs, the median of the posteriors for MSY were around 30,000 t.

Eastern skipjack

For the eastern stock of skipjack, three sets of runs were performed (**Table 35**). For first set (A) the catch series of 1950 to 2006 was used as well as a wider prior on x. The catch series showed a decline in the mid 1980 when there was displacement of a large part of the French and Spanish purse seiners fleets to the Indian Ocean. The catch-only model assumes that the harvest rate increases and levels off following a logistic curve. It was suggested by the Group to run the model only with the catches from 1985 to 2006, in order to fulfill the assumptions of the catch-only model. Two other sets of runs were conducted. Set B included runs fit to the catches from 1985 to 2006. For those two sets the prior on x was narrower (**Table 35**).

Similarly to the SKJ-W, the results appear sensitive to priors on x, and the first set of runs (A) included less information from the catches than the set C as suggested by the wider posteriors (**Figure 77**). The set C of runs was considered the best fit because no posterior concentrated towards the bounds as for set A and B (**Figure 77** and see **Appendix 8**). For the set A of runs, the medians of the posterior distributions for MSY ranged from 200,000 t to 275,000 t. For the set C of runs, the medians of the posterior distributions for MSY ranged from 143,000 t to 156,000 t.

6.2.4 PROCEAN

6.2.4.1 Eastern skipjack

The model generally fitted well the data for the different runs although European and Senegalese baitboat fisheries and European purse seiners based in Dakar showed increasing trends in the residuals. In all runs, it was shown that informative priors were required for convergence of the model. Maximum posterior estimates of MSY were in the range 154,000-185,000 t and appeared quite sensitive to the mean of the MSY prior (**Table 36**). F_{MSY} appeared robust to the changes made in input parameters and prior distributions, the value of 0.48 for m = 2 being related to the shape of the production curve and leading to a value of F/F_{MSY} in 2006 close to the other runs.

For the standard run, catches observed and predicted were close to the equilibrium production curve (**Figure 78**). This might be due to the relatively short time span of the skipjack that are mainly caught before age 4 and to their high growth rate. The stock appeared underexploited in 2006 with the fishing mortality below the fishing mortality at MSY, i.e. $F/F_{MSY} = 0.32$ in 2006, and the biomass above the biomass at MSY, i.e. $B/B_{MSY} = 1.79$.

The model run conducted with the combined abundance index led to similar results in terms of diagnostic of the stock, although the MSY was estimated about 10,000 t lower than in the standard run (**Table 36**). The quality of the fit was however quite poor and results showed an increasing trend in the residuals, indicating that the data did not conform to the assumption of lognormal error. The inclusion of process error on catchability for the standard run parameter settings improved the fit of the model by removing trend in the residuals and allowed tracking the changes in catchability through time (**Figure 79**).

In particular, results suggested that the catchability of baitboat fishing fleets based in Dakar would have continuously increased by about 4% each year since the 1970s. This could be related in the 1980s to the introduction and development of associated school fishing (Fonteneau and Diouf, 1994). Despite the 3% increase already accounted for in the abundance indices, the European purse seine fishing fleet based in Dakar fishing on free schools showed a step increase in catchability around 1990 followed by a relative stability (**Figure 79**). This would suggest that technological improvements in the late 1980s and early 1990s would have led to a larger increase in catchability than generally assumed (see section 5.3.1).

7. Projections

7.1 Projections – Yellowfin

7.1.1 VPA model projections

Specifications

The projections for yellowfin tuna (Runs 5 and 10) were based on the bootstrap replicates of the fishing mortalityat-age and numbers-at-age matrices produced by the VPA-2BOX software. The Group agreed that projections and benchmarks should be computed using a resampling of observed recruitments during 1970-2006. This resulted in an essentially constant recruitment at the mean value of the time series. This is in contrast with the approach used during the 2003 assessment which used a fixed Beverton and Holt S-R relationship estimated externally to the model. The extent of recruitment variability, σ_R , for each bootstrap replicate was modeled using a standard deviation of 0.5 with no autocorrelation.

Because no management changes occurred during 2007 and 2008 (projected by the VPA model because data is not yet available), these years were projected at F Current¹. Projections were made at various levels of constant catch or constant F, including:

1) Catch = $50,000 \text{ t}$	2009-2016
2) Catch = $70,000 \text{ t}$	2009-2016
3) Catch = $90,000 \text{ t}$	2009-2016
4) Catch = $110,000 \text{ t}$	2009-2016
5) Catch = $130,000 \text{ t}$	2009-2016
6) Catch = $150,000 \text{ t}$	2009-2016
7) Fishing mortality = $F_{0.1}$	2009-2016
8) Fishing mortality = F_{MAX}	2009-2016
9) Fishing mortality = $F_{Current}$	2009-2016
10) Fishing mortality = F_{1992}	2009-2016

Projections that used various levels of constant catch employed a restriction that the fully-selected F was constrained not to exceed 3 yr⁻¹.

Results

The Working Group recommended that management advice be constructed using the joint distribution of VPA runs 5 and 10. Therefore, the projections reflect the median outcome of both base runs.

Projection of total biomass, yield, fishing mortality, SSB and recruitment are shown in **Figures 80** and **81** SSB and F are also plotted relative to the management benchmarks (SSB @ F_{MAX} and the corresponding equilibrium SSB). Projections of constant catch (**Figure 81**) indicate that catches of 130,000 t or less are sustainable during the projection interval. Catches in excess of 130,000 t cause an overfished and overfishing condition during the

¹ F current was calculated as the maximum value (apical) of the geometric mean F-at-age. The geometric mean was calculated for the years 2003-2006.

projection interval. Projections of constant fishing mortality (**Figure 81**) indicate that current (2003-2006) fishing mortality levels allow the spawning biomass to gradually increase during the projection interval. Increasing fishing pressure to 1992 levels causes the stock status to deteriorate to an overfished and overfishing condition during the projection interval.

7.1.2 ASPIC

ASPIC projections (**Figure 82**) for each of the 4 cases were run for the following catch scenarios: 108,263 t (2006 catch level), 80,000 t, 100,000 t, 120,000 t, 140,000 t, and 160,000 t. All runs indicated that catch levels of 120,000 t or less will recover the stock from the overfished condition. A catch level of 140,000 t will not recover the stock according to the results of the case 6, but it will recover it for the other three cases. All 4 cases showed that the stock will not recover if the catch levels are 160,000 t or more.

8. Recommendations

- The Group agreed that the level of landings of "*faux poisons*" in Abidjan (on the order of 10,000 t for skipjack) and the small size of the fish landed was important enough to potentially affect the results of stock assessments. Therefore, the Group recommends the development and implementation of sampling protocols to collect detailed information on the amounts of landings, the species composition and the size composition of landing of false fish.
- As it has been already implemented by other RFMOs, carefully design extensive conventional tagging studies should be implemented by ICCAT to complement the use of fishery dependent data used to estimate indexes of abundance.
- Although there have been improvements, the Group agrees there is a need to increase efforts towards biological studies of the three tropical tuna species: yellowfin, skipjack and bigeye.
- The Group was encouraged by the preliminary results obtained for the western skipjack stock and recommended that more work be undertaken in the future to refine the Multifan-CL model analyses for this stock. Regarding the eastern stock, the Group recommended to carry out further modeling inter-sessionally and possibly include tagging data once fully verified.
- The Secretariat needs sufficient resources to prepare available data files (table of substitutions, catch-at-size, catch-at-age, tagging) at least two weeks before the meeting and National Scientists need to devote sufficient resources to review those files before the start of the meeting and request any necessary modifications, if applicable. Note that this issue should be addressed to the Sub-Committee on Statistics and revised in the SCRS plenary and the use of modern web conferencing techniques should be considered.

9. Other matters

The Group reviewed the 2007 Report of Panel 1, which included as part of the discussions, the suggestion that *the SCRS analyze and present a range of options to the Commission in time for consideration at the 2008 Special Meeting to increase the yield per recruit and MSY of bigeye tuna by reducing mortality on small bigeye tuna through the use of closed areas (i.e. total closure of all surface fisheries) and moratoriums on the use of fish aggregating devices (FADs).* In addition it was also suggested that the SCRS *analyze the impacts of such measures on the catches of yellowfin tuna and skipjack tuna as well* (ICCAT 2008). The Group considered that the Panel suggestion was addressed to the analyses conducted in 2005, which included a wide range of management scenarios as well as different approaches to assess the effect of the time-area closure established by [Rec. 04-01], because at the time of the 2005 meeting there were no observation data to conduct such analyses, since the Recommendation had only recently been agreed at that time. However, these analyses could not be conducted at the assessment meeting as the main thrust of the assessment meeting was to update the evaluations of the status of the skipjack and yellowfin stocks. Discussions were held to plan analyses to be conducted between the assessment meeting and the Species Group discussions in September, 2008.

As for previous analyses, the Group discussed which period of reference to consider in the analyses. Taking into account that the compliance during the first time-area closure was only partial, considering the period prior to 2004 as reference would likely lead to an overestimate of the effects of the current time-area closure. On the other hand, considering years prior (1993-1996) to the first moratorium would make it difficult to separate the effect of the continuous decrease of effort by the European and associated fleets since this period. As an alternative, the Group decided to limit the analyses to the European and associated fleets assuming that these fleets have fully implemented the different time-area closures.

In addition to these analyses, the Group considered that some general scenarios of reduction in effort for different fleet components, as suggested by Panel 1, and its effects on yield per recruit, could be carried out. These analyses could provide the range of options requested by Panel 1.

In order to facilitate the work of the Group in September, during the Species Group meeting, it was suggested that scientists conduct these analyses in advance to the Species Group meeting and present the results as SCRS documents.

The results of the analyses conducted prior and during the Species Group meeting are included as Appendix 9.

10. Report adoption and closure

The Chairman again thanked the local hosts for the organization of the meeting. The report was adopted and the meeting adjourned.

References

- Anon., 1984. Report of the Juvenile Tropical Tuna Working Group (Brest, France, July 12-21, 1984). Collect. Vol. Sci. Pap., 21(1): 1-289.
- Anon., 2001. Report of the ICCAT SCRS Atlantic Yellowfin tuna Stock Assessment Session (Cumaná, Venezuela, July 10-15, 2000). Collect. Vol. Sci. Pap. ICCAT, 52(1): 1-148.
- Anon., 2004. 2003 ICCAT Atlantic Yellowfin Tuna Stock Assessment Session (Mérida, Mexico, July 21-26, 2003). Collect. Vol. Sci. Pap. ICCAT, 56(2): 443-527.
- Anon., 2007. Report of the 2006 ICCAT Inter-sessional Meeting of the Tropical Species Working Group (Séte, France, April 24-28, 2006). Collect. Vol. Sci. Pap. ICCAT, 60(1): 1-90.
- Anon., 2008. Report of the 2007 Inter-sessional Meeting of the Tropical Tunas Species Group. (Recife, Brazil, April 11-16, 2007). Collect. Vol. Sci. Pap. ICCAT, 62(1): 1-96.
- Butterworth, D.S. and Geromont, H.F., 1999. Some aspects of ADAPT VPA as applied to North Atlantic bluefin tuna. Collect. Vol. Sci. Pap. ICCAT, 49(2): 233-241.
- Cass-Calay, S.L., 2008. Evaluating the impact of changes in fishing pressure on Atlantic tropical tunas using yieldper-recruit and spawner-per-recruit analyses. SCRS/2008/170.
- Casella, G. and Berger, R., 2002. Statistical Inference (2nd ed.). Pacific Grove, CA: Duxbury Press.
- Casella, G. and Berger, R. 2007. Statistical Inference (7th ed.). Pacific Grove, CA: Duxbury Press.
- Caverivière, A., 1976. Longueur prédorsale, longueur a la fourche et poids des albacores (*Thunnus albacares*) de l'Atlantique. Cah. ORSTOM, ser. Océanogr., 14 (3): 201-208.
- Cayré, P. and Farrugio, H., 1986. Biologie de la reproduction du listao (Katsuwonus pelamis) de l'Océan Atlantique. In Proceedings of the ICCAT Conference on the International Skipjack Year Program. Symons, P.E.K., Miyake, P.M. and Sakagawa. G.T. (eds.), p. 252-272.
- Cayré, P. and Laloê, F., 1986. Relation poids-longueur du listao (*Katsuwonus pelamis*) de l'Ocean Atlantique. *In* Proceedings of the ICCAT Conference on the International Skipjack Year Program. Symons, P.E.K., Miyake, P.M. and Sakagawa, G.T. (eds.), p. 335-340.
- Davis, K., 1991. Length-Weight relationships for western North Atlantic yellowfin tuna. Collect. Vol. Sci. Pap. ICCAT, 36: 280-288.
- Fonteneau, A., 2000. Comparison of the species composition of tuna schools taken on logs and on free schools in the eastern Atlantic, before and after the deployment of FAD fisheries. Tuna Fishing and Fish Aggregating Devices (Symposium Caribbean-Martinique, 15-19 October 1999). Pêche thoniere et dispositifs de concentration de poissons (Colloque Caraibe-Martinique, 15-19 octobre 1999). No. 28, P. 678. Actes de colloques. Institut français de Récherche pour l'Exploitation de la Mer. Brest [Actes Colloq. IFREMER].
- Fonteneau, A. and Diouf, T., 1994. An efficient way of bait-fishing for tunas recently developed in Senegal. Aquatic Living Resources, 7: 139-151.
- Gaertner, D., Salazar, H., Rodriguez, O., Astudillo, L. and Castillo, C., 1992. Relacion longitud-peso para el atún aleta amarilla en el Atlantico Oeste. Collect. Vol. Sci. Pap. ICCAT, 38: 262-265.
- Gaertner, D., Delgado de Molina, A., Ariz, J., Pianet, R., Hallier, J.P., 2008. Variabilité de la croissance du listao (*Katsuwonus pelamis*) entre les secteurs de l'Atlantique Est: utilisation de données de marquage-recapture dans un contexte de méta-analyse. *Aquatic Living Resources*, Vol. 21, No. 4, pp. 349-356.

- Gascuel, D., Fonteneau, A., Capisano, A., 1992. A two-stanza growth model for the yellowfin tuna (*Thunnus albacares*) in the eastern Atlantic. *Aquatic Living Resources*, Vol. 5, No. 3, pp. 155-172.
- Gascuel, D., Fonteneau, A., Foucher, E., 1993. Analysis of fishing power evolution using Virtual Population Analysis: the case of purse seiners exploiting yellowfin (*Thunnus albacares*) in the eastern Atlantic. Aquatic Living Resources, Vol. 6, No. 1, pp. 15-30.
- Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2004. Bayesian Data Analysis. Chapman & Hall/CRC, Boca Raton.
- Gotelli, N.J. and Ellison, A.M., 2001. A Primer in Ecology. 3rd edition. Sinauer Associates, Inc. Sunderland, MA.
- Hallier, J.P. and Gaertner, D., 2006. Estimated growth of the skipjcak tuna (*Katsuwonus pelamis*) from tagging surveys conducted in the Senegalese area (1996-1999) within a meta-analysis framework. Collect. Vol. Sci. Pap. ICCAT, 59(2): 411-420.
- Hampton, J., 2000. Natural mortality rates in tropical tunas: size really does matter. Canadian Journal of Fisheries and Aquatic Sciences [Can. J. Fish. Aquat. Sci./J. Can. Sci. Halieut. Aquat.]. Vol. 57, No. 5, pp. 1002-1010.
- Hampton, J., 2002. Stock assessment of yellowfin tuna in the western and central Pacific Ocean. SCTB15 Working Paper.
- ICCAT, 2008. Report of the Meeting of Panel 1. In Report for Biennial Period, 2006-07, Part II (2007) Vol. 1 COM, pp. 191.
- Langley, A.M., Ogura, M. and Hampton, J., 2003. Stock assessment of skipjack tuna in the western and central Pacific Ocean SCTB16 Working Paper.
- Lessa, R. and Duarte-Neto, P., 2004. Age and growth of yellowfin tuna (*Thunnus albacares*) in the western Equatorial Atlantic, using dorsal fin spines. *Fisheries Research*, 69: 157-170.
- Lotka, A.J., 1907. Relation between birth rates and death rates. Science. 1907. 26:21.
- Maury, O., 2001. PROCEAN: A production catch/effort analysis framework to estimate catchability trends and fishery dynamics in a Bayesian context. IOTC Proceedings, 4: 228-231.
- Maury, O. and Chassot, E., 2001. A simulation framework for testing the PROCEAN model and developing Bayesian priors. IOTC Proceedings 4: 544-554.
- McAllister, M.K., Pikitch, E.K., Punt, A.E., Hilborn, R., 1994. A Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm. Can. J. Fish. Aquat. Sci. 51: 2673-2687.
- McAllister, M.K., and Kirkwood, G.P., 1998. Using Bayesian decision analysis to help achieve a precautionary approach to managing newly developing fisheries. Can. J. Fish. Aquat. Sci. 55: 2642–2661.
- McAllister, M.K., Kirkwood, G.P., 1999. Applying multivariate conjugate priors in fishery-management system evaluation: how much quicker is it and does it bias the ranking of management options? ICES Journal of Marine Science [ICES J. Mar. Sci.]. Vol. 56, No. 6, pp. 448-899. Dec. 1999.
- McAllister, M.K., Pikitch, E.K. and Babcock, E., 2001. Using demographic methods to construct Bayesian priors for the intrinsic rate of increase in the Schaefer model and implications for stock rebuilding. Can. J. Fish. Aquat. Sci. 58: 1871-1890.
- McAllister, M.K., Kirchner, C., 2002. Accounting for structural uncertainty to facilitate precautionary fishery management: illustration with Namibian orange roughy. Bull. Mar. Sci. 70:499-540.
- McAllister, M. and Carruthers, T., 2008. 2007 stock assessment projections for western Atlantic bluefin tuna using a BSP and other SRA methodology. Collect. Vol. Sci. Pap., ICCAT, 62(4): 1206-1270.
- Minte-Vera, C.V., Vasconcellos, M., Cochrane, K. [in prep] Fisheries dynamics models for data-poor situations.
- Pagavino, M. and Gaertner, D., 1995. Fitting a growth curve to size frequencies of the skipjack tuna (*Katsuwonus pelamis*) caught in the southeastern Caribbean. Collect. Vol. Sci. Pap. ICCAT, 44(2): 303-309.
- Pella, J.J. and Tomlinson, P.K., 1969. A generalized stock production model. Bull. Inter. Am. Trop. Tuna. Com 13: 420-496.
- Punt, A.E. and Hilborn, R., 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Rev. Fish. Biol. Fisher. 7: 35-63.
- Rikhter, V.A. and Efanov, V.N., 1976. On one of the approaches to estimation of natural mortality of fish populations. ICNAF Res. Doc., 76/VI/8:1-12.
- Shuford, R.L., Dean, J.M., Stéquert, B., Morize, M., 2007. Age and growth of yellowfin tuna in the Atlantic Ocean, 2007. Collect. Vol. Sci. Pap. ICCAT, 60(1): 3330-341.

- Vasconcellos, M. and Cochrane, K., 2005. Overview of world status of data-limited fisheries: inferences from landings statistics. *In:* Kruse, G.H., Gallucci, V.F., Hay, D.E., Perry, R.I., Peterman, R.M., Shirley, T.C., Spencer, P.D. Wilson, B., Woodby, D. (Eds.) Fisheries Assessment and Management in Data-Limited Situations. Alaska Sea Grant College Program, Anchorage.
- Vilela, M.J. and Castello, J.P., 1993. Dinámica poblacional del barrilete (*Katsuwonus pelamis*) explotado en la región sudeste-sur del Brasil en el periodo 1980-1986. Frente Marítimo, Montevideo, 14:111-124.
- Wise, J., 1986. The baitboat fishery for skipjack in the Gulf of Guinea, 1969-82. *In* Proceedings of the ICCAT Conference on the International Skipjack Year Program. P.E.K. Symons, P.M. Miyake and G.T. Sakagawa (eds.), p. 111-117.

RAPPORT DE LA RÉUNION 2008 D'ÉVALUATION DES STOCKS D'ALBACORE ET DE LISTAO DE L'ICCAT

(Florianópolis, Brésil – du 21 au 29 juillet 2008)

1. Ouverture, adoption de l'ordre du jour et organisation des sessions

La réunion a été ouverte par M. Papa Kebe, au nom de M. Driss Meski, Secrétaire exécutif de l'ICCAT. M. Kebe a remercié le Gouvernement brésilien d'accueillir la réunion et d'assurer toute la logistique. Le Dr Joan G. Pereira, Rapporteur général du Groupe d'espèces tropicales, a présidé la réunion.

L'ordre du jour (**Appendice 1**) a été adopté avec de légères modifications. La liste des participants se trouve à l'**Appendice 2**. La liste des documents présentés à la réunion est jointe à l'**Appendice 3**. Les personnes suivantes ont assumé les fonctions de rapporteurs :

Points 1, 9 et 10	P. Pallarés
Point 2	H. Murua, L.V. González-Ania, P. Kebe, G. Scott
Point 3	A. Delgado de Molina, J. Ariz, P. Bannerman, E. Chassot
Point 4	H. A. Andrade, K. Ramírez
Points 5.1, 6.1 et 7.1	S. Cass-Calay, K. Satoh
Points 5.2, 6.2 et 7.2	V. Restrepo, P. De Bruyn, J. Walters, E. Chassot
Point 8	G. Scott and G. Díaz

2. Examen des informations biologiques

2.1 Albacore

L'albacore est une espèce tropicale et subtropicale qui est surtout répartie dans les eaux océaniques épipélagiques des trois océans. Les tailles exploitées vont de 30 cm à 170 cm; la maturité est atteinte à environ 100 cm. Les petits poissons (juvéniles) forment des bancs associés à des listaos et à des juvéniles de thon obèse, et ne se trouvent que dans les eaux proches de la surface, tandis que les grands poissons forment des bancs dans les eaux de surface comme de subsurface. La reproduction chez les femelles s'est avérée très variable. La principale zone de frai se trouve dans la zone équatoriale du Golfe de Guinée et la reproduction a surtout lieu de janvier à avril. Les juvéniles se trouvent généralement dans les zones côtières du continent africain. Par ailleurs, la reproduction intervient dans le Golfe du Mexique, dans le sud-est de la mer des Caraïbes et au large du Cap-Vert. On ne connaît pas toutefois l'importance relative de ces zones de frai. Même si, de par leur localisation si distincte, ces zones de frai pourraient impliquer des stocks distincts ou une répartition sensiblement hétérogène de l'albacore, on postule l'existence d'un stock unique pour tout l'Atlantique comme hypothèse de travail, compte tenu des données indiquant que les albacores sont répartis sans discontinuité dans tout l'Atlantique tropical et de la récupération de marques d'ouest vers l'est sur une base régulière. Les mâles prédominent les prises de grands poissons.

La mortalité naturelle est supposée être plus élevée pour les juvéniles que pour les adultes, comme l'indiquent les études de marquage réalisées dans d'autres océans. Les données de marquage ont signalé que les taux de mortalité naturelle sont tributaires de la taille pour le thon obèse, le listao et l'albacore dans l'océan Pacifique tropical occidental (Hampton, 2000). En résumé, ces travaux ont démontré que l'ampleur de M était plus élevée dans les classes de taille les plus petites par rapport aux poissons de taille moyenne. En outre, il est apparu que la mortalité changeait, passant d'élevée à faible, à environ 40 cm FL, approximativement la taille à laquelle les trois espèces sont recrutées dans la pêcherie de senneurs du Pacifique occidental. Les résultats de ces travaux soulignent l'importance de tenir compte des taux de mortalité naturelle spécifique à la taille ou à l'âge. Dans ce sens, le Groupe a discuté de la mortalité variable de l'albacore et a décidé de continuer à utiliser la M variable dans l'évaluation.

Les taux de croissance ont été décrits comme étant relativement lents initialement, augmentant au moment où les poissons abandonnent les zones de nourricerie. Néanmoins, des questions demeurent en ce qui concerne le modèle de croissance le plus approprié pour l'albacore de l'Atlantique. Une étude récente (Shuford et al., 2007) a mis en place une nouvelle courbe de croissance utilisant le calcul de l'augmentation quotidienne de la croissance à partir des otolithes. Les résultats de cette étude, ainsi que d'autres analyses récentes de pièces dures, n'ont pas appuyé le concept du modèle de croissance à deux stances (croissance initiale lente) qui est

actuellement utilisé pour les évaluations du stock d'albacore de l'ICCAT. Cette divergence pourra être solutionnée dans les prochaines analyses. Or, on a distribué divers documents de référence relatifs aux données biologiques sur les thonidés tropicaux qui contenaient des informations très intéressantes sur la croissance, l'écologie et le comportement du listao. Il s'agissait fondamentalement d'articles ayant fait l'objet d'examens par des pairs et de documents de travail présentés au Groupe de travail de la CTOI sur l'analyse des données de marquage qui contiennent de nouvelles données relatives aux études de marquage et de croissance de l'albacore. Les documents diffusés par le Groupe de travail de la CTOI sur l'analyse des données de marquage se sont principalement centrés sur les courbes de croissance du listao et de l'albacore dans l'océan Indien. Bien que les documents n'aient pas été présentés pendant la réunion, ils ont néanmoins fourni une source précieuse d'informations afin de comparer les taux de croissance entre les zones et les autres méthodes employées. A titre d'exemple, la plupart des documents estimaient que l'albacore a une croissance en deux stances ou en plusieurs stances tandis que la croissance du listao ne présente pas le même schéma.

Le Groupe de travail a été saisi d'un document (SCRS/2008/111) qui contenait de nouvelles informations pour l'Atlantique Sud-Ouest sur les tailles, le sex-ratio et les taux de capture de l'albacore, lesquelles ont été recueillies dans le cadre du programme d'observateurs mené par la flottille de thoniers palangriers uruguayens entre 1998 et 2007. Les schémas géographiques et saisonniers de la proportion de sub-adultes et d'adultes ont été analysés ainsi que les relations avec la température à la surface de l'eau (SST). Les plus fortes captures ont été signalées dans les eaux territoriales de l'Uruguay, associées au plateau continental; celles-ci comprenaient notamment des poissons de classe sub-adulte (<100 cm). On trouvait la CPUE plus élevée dans les latitudes méridionales entre 35° S et 37° S à la fois pour les adultes et les sub-adultes, avec un maximum à 36° S (1,6 et 4,7 poissons/1.000 hameçons pour les sub-adultes et les adultes respectivement). Les valeurs de CPUE plus élevées étaient également associées à la SST entre 19° et 21° C, avec un maximum à 21°C (2,0 et 7,1 poissons/1.000 poissons pour les sub-adultes et les adultes, respectivement) et un minimum pour les deux classes à SST supérieure à 25°C. La composition des sexes était de 1,3 mâle par femelle. La longueur moyenne à la fourche pour toute la période s'élevait à $111,2\pm16,7$ cm (gamme : 52-180 cm), avec de légères différences entre les mâles (116,9 ±15.4 cm; gamme : 65-180 cm) et les femelles (117,1 ±14,0 cm; gamme : 65-162 cm). Des tailles inférieures ont été enregistrées entre mai et août, avec un minimum en août (99,0 \pm 14,7 cm) et un maximum en décembre (144,5 \pm 12,9 cm). Les changements de la moyenne du poids ou de la longueur des poissons débarqués dans la pêcherie peuvent servir d'indicateurs utiles des schémas d'exploitation. Or, de la même façon que la CPUE nominale peut être un indicateur trompeur de l'abondance du stock en raison des changements de capturabilité, les changements du poids moyen nominal peuvent ne pas être nécessairement un indicateur des changements du poids moyen au niveau de la population. Il conviendrait d'envisager des méthodes de standardisation similaires à celles utilisées pour les jeux de données de CPUE afin de séparer les changements du poids moyen au niveau de la population des changements du lieu de pêche, de l'époque ou de la sélectivité.

2.2 Listao

Le listao est une espèce grégaire que l'on trouve en bancs dans les eaux tropicales et subtropicales des trois océans. Le listao connaît une maturité précoce (environ à la première ou deuxième année de vie), une forte fécondité et il se reproduit de façon opportuniste tout au long de l'année dans les eaux tempérées de plus de 25°C (Cayré et Farrugio, 1986). On pense que la maturité du listao est plus rapide et que sa durée de vie plus courte que celle de l'albacore (Maunder, 2001). En outre, certains travaux ont montré que sa croissance varie en fonction de la latitude (Gaertner et al., sous presse).

Le listao est l'espèce dominante capturée sous DCP, où il est capturé en association avec des juvéniles d'albacore, de thon obèse et avec d'autres espèces de la faune épipélagique. L'utilisation croissante, au début des années 1990, des dispositifs de concentration de poissons (DCP) pourrait avoir modifié le comportement des bancs de thons. Dans ce sens, Fonteneau (2000) a constaté que les bancs libres d'espèces mixtes étaient nettement plus fréquents avant l'introduction des DCP. De plus, l'association aux DCP pourrait également avoir eu un effet de « piège écologique » qui, à son tour, a eu un impact négatif sur la croissance et sur l'embonpoint des listaos et pourrait modifier les schémas de déplacement de cette espèce (Hallier et Gaertner, 2008).

Aucun document contenant de nouvelles informations biologiques sur le listao n'a été présenté à la réunion.

Gaertner *et al.* (2008) (sous presse) a réalisé des recherches sur la variabilité latitudinale des taux de croissance du listao de l'Atlantique Est. Ils ont ré-analysé les données de marquage conventionnel recueillies par l'ICCAT depuis les années 1960. Les résultats de cette étude suggèrent que les paramètres de croissance du listao varient en fonction de la latitude. La L_{∞} estimée du listao marqué et récupéré au nord de 10°N était inférieure à la L_{∞}

estimée du listao marqué et récupéré au sud de 10°N (89,4 cm contre 112,3 cm, respectivement) ; tandis que le coefficient du taux de croissance estimé était plus élevé dans la zone septentrionale de l'Atlantique Est que dans les zones équatoriales (K = 0,376 et 0,135, respectivement). Les paramètres de croissance estimés au cours de cette étude coïncident avec la gamme des estimations de croissance obtenues dans l'océan Atlantique et dans d'autres océans. Toutefois, la présente étude n'appuie pas les estimations de L_∞ et de K réalisées dans la région sénégalaise dans les années 1980 dans le cadre du Programme d'Année Listao, et traditionnellement appliquées dans les évaluations de l'ICCAT.

La variabilité latitudinale des taux de croissance compliquerait les techniques d'évaluation structurée par âge parce que la taille par âge dépendrait de l'emplacement géographique et des schémas de déplacement. Ces auteurs ont suggéré d'éventuelles alternatives aux modèles standard structurés par âge, y compris le recours à des modèles de prise par taille et de matrices de transition de la croissance par grandes zones géographiques. Le Groupe a tenu compte des implications de ces résultats dans l'évaluation. Compte tenu des incertitudes associées aux courbes de croissance, de la variabilité de la croissance entre les zones et des déplacements des poissons, on n'a procédé à aucun découpage des âges à la présente réunion à l'aide des courbes de croissance disponibles. Il a été conclu qu'il fallait accorder la plus grande priorité à une meilleure compréhension des schémas de croissance du listao.

Le Groupe s'est montré préoccupé devant le faible nombre de documents de travail présentés à la réunion relatifs aux informations biologiques sur l'albacore et le listao. En outre, le Groupe a souligné l'importance de réaliser des études biologiques (croissance, maturité, reproduction, etc.) ainsi que des études écologiques pour les espèces de thonidés tropicaux pour lesquelles ces informations sont estimées insuffisantes. Outre le fait de permettre d'acquérir des connaissances plus exhaustives des processus se déroulant au sein de la population, cela permettra aussi de recourir à des informations plus actualisées dans l'évaluation des espèces de thonidés tropicaux.

Paramètre	Albacore
Mortalité naturelle	Postulée être de 0,8 pour les âges 0 et 1, et de 0,6 pour les âges 2+
v Date de harssance » posturee des poissons d'âge 0	14 levrier (environ le mineu de la saison lone de reproduction).
Groupe plus	Age 5+
Taux de croissance	Longueur à l'âge calculée d'après l'équation de Gascuel et al. (1992) :
Poids à l'âge	FL (cm) = $37.8 + 8.93 * t + (137.0 - 8.93 * t) * [1 - exp(-0.808 * t)]^{7.49}$ La moyenne des poids à l'âge s'est basée sur l'équation de croissance de Gascuel <i>et al.</i> (1992) et sur la relation longueur-poids de Caveriviere (1976) : W(kg) = 2,1527 x 10 ⁻⁵ * L(cm) ^{2.976}
Calendrier de maturité Recrutement partiel	Postulée être en arête vive au début de l'âge 3. Basé sur les résultats de la VPA structurée par âge (<i>cf.</i> section abordant la production par recrutement).
	Listao (Est & Ouest)
Mortalité naturelle	Postulée être de 0,8 pour tous les âges
« Date de naissance » postulée des poissons d'âge 0	14 février (environ le milieu de la saison forte de reproduction).
Groupe plus	Age 5+
Taux de croissance	L(cm) = 94,9 * [1 - exp(-0,340 * t)] (Ouest) - Pagavino et Gaertner (1995)
Poids à l'âge	L (cm) = 97,258 * $[1 - \exp(-0.251 * t)]$ (Est) - Hallier et Gaertner (2006) W(kg) = 7,480 x 10 ⁻⁶ * FL (cm) ^{3.253} (tout l'Atlantique)
Calendrier de maturité	Postulée être en arête vive au début de l'âge 2.

Le tableau ci-dessous récapitule les paramètres biologiques adoptés par le SCRS et utilisés dans les évaluations de 2008 de l'albacore de l'Atlantique et du listao (Est et Ouest).

3. Examen des statistiques des pêcheries: données d'effort et de capture, y compris fréquences de taille et tendances des pêcheries

3.1 Description des pêcheries

L'albacore est capturé dans l'ensemble de l'Atlantique tropical, entre 45°N et 40°S, par des engins de surface (senne, canneur et ligne à main) et à la palangre (**Figure 1**). Le **Tableau 1** présente les débarquements d'albacore par pavillon et engin.

Le listao est capturé presque exclusivement par des engins de surface dans l'ensemble de l'Atlantique, bien que des captures secondaires soient réalisées à la palangre comme prises accessoires (**Figure 2**). Le **Tableau 2** présente les débarquements de listao par pavillon et engin.

3.1.1 Canneurs

Dans l'Atlantique Est, les pêcheries de canneurs exploitent les concentrations de juvéniles d'albacores dans des bancs mixtes associés au thon obèse et au listao. Plusieurs pêcheries de canneurs opèrent le long de la côte africaine.

La pêcherie de canneurs ghanéens, basée à Tema, est la plus importante en termes de capture. Cette flottille a commencé à utiliser des DCP (dispositions de concentration du poisson/objet flottant naturel ou artificiel) au début des années 1990 afin d'augmenter leurs captures de ces espèces et d'autres thonidés. Au cours de ces cinq dernières années, plus de 70-80% de ces captures ont été réalisées avec DCP ; le poids moyen des poissons capturés est demeuré relativement stable, à environ 2 kg (mode autour de 48 cm).

Une autre pêcherie de canneurs basée à Dakar a démarré ses opérations en 1956 au large des zones côtières du Sénégal et de la Mauritanie. D'autres pêcheries de canneurs opèrent dans les divers archipels de l'Atlantique (Açores, Madère, îles Canaries et Cap-Vert), qui ciblent différentes espèces de thonidés, dont l'albacore et le listao en fonction de la saison. Le poids moyen de l'albacore capturé par ces flottilles est fort variable (entre 7 et 30 kg) ; les longueurs oscillent entre 38 cm et 80 cm, le mode s'établissant aux alentours de 48 cm. Le poids moyen du listao capturé par les canneurs de Dakar et des îles Canaries s'élève à 2,5 kg et 3 kg, respectivement, les longueurs allant de 35 à 70 cm (mode proche de 45 cm) pour les canneurs de Dakar et de 38 cm à 72 cm (mode à 57 cm) pour la flottille de canneurs des îles Canaries. Depuis le début des années 1990, les flottilles de Dakar et des îles Canaries ont opéré à l'aide d'une méthode différente, utilisant le bateau comme DPC sous lequel se rassemblent diverses espèces de thonidés, dont l'albacore. Ces changements ont entraîné une augmentation de la biomasse exploitable du stock de listao (en raison de l'expansion de la zone de pêche) et de sa capturabilité.

Dans l'Atlantique Ouest, les canneurs vénézuéliens et brésiliens ciblent l'albacore avec le listao et d'autres petits thonidés. Les tailles de l'albacore vénézuélien oscillent entre 45 cm et 175 cm et pour l'albacore brésilien entre 45 cm et 115 cm, le mode s'établissant à 65 cm.

3.1.2 Senneurs

Les pêcheries de senneurs de l'Atlantique Est ont commencé à opérer en 1963, connaissant un essor rapide au milieu des années 1970. Elles opéraient initialement en zones côtières, puis leur aire d'action s'est progressivement étendue jusqu'en haute mer. Les senneurs capturent de grands albacores dans la région équatoriale au cours du premier trimestre de l'année, ce qui coïncide avec la saison et la zone de frai. Ils capturent également de petits albacores en association avec du listao et du thon obèse. Depuis le début des années 1990, plusieurs flottilles de senneurs (CE-France, CE-Espagne et NEI) opèrent des pêcheries en utilisant des objets, entre 45 et 55% de la capture totale étant réalisée avec cette méthode, alors qu'avant, la proportion de la capture effectuée avec cette méthode de pêche ne représentait que 15% du total. La flottille de senneurs ghanéens pêche principalement au moyen d'objets flottants (80%-85%). Fréquemment, le canneur repère d'abord les DCP sous lesquels se sont concentrés les poissons ; il appelle ensuite un senneur qui réalise l'opération s'il s'agit d'une grande concentration. Dans cette situation, la prise est divisée entre le senneur et le canneur.

La pêche sous objets flottants a principalement lieu au cours du premier et du quatrième trimestres de l'année, le listao constituant l'espèce dominante, l'albacore et le thon obèse venant en plus faibles quantités. La composition par espèce des bancs associés aux objets flottants est très différente de celle des bancs libres. Les prises

d'albacore réalisées avec des objets flottants représentent entre 15% et 26% de la capture totale entre 1991 et 2006 (22% en 2006 pour les flottilles de CE-France, CE-Espagne et NEI) et entre 52% et 86% pour le listao au cours de la même période (86% en 2006 pour les flottilles de CE-France, CE-Espagne et NEI).

La pêcherie de senneurs de l'Atlantique Est montre une distribution bimodale dans les classes de taille pour l'albacore, avec des modes proches de 50 cm et de 150 cm, mais avec très peu de tailles intermédiaires et une forte proportion de gros poissons (plus de 160 cm). Le poids moyen de l'albacore capturé par les flottilles de senneurs européens et NEI était de 13,4 kg en 2006 (4,2 kg sous DCP et 30,5 kg pour les poissons non-associés). Les tailles de l'albacore capturé par les senneurs ghanéens ont oscillé entre 48-52 cm au cours de la dernière décennie. Le poids moyen du listao capturé par les flottilles de senneurs européens et NEI était de 2,5 kg en 2006 (2,0 kg sous DCP et 2,5 kg sur banc libre), les tailles allant de 30 cm à 65 cm, avec un mode aux alentours de 45 cm.

Les séries de capture de la Tâche I disponibles pour ces évaluations de stocks incluent, pour la première fois, les prises de « faux poissons » (poissons vendus sur les marchés locaux des ports de débarquement, qui ne sont pas déclarés dans les livres de bord). Les prises de « faux poissons » réalisées par les flottilles de senneurs européens ont été calculées à partir de 1981.

Entre 1997 et 2004, la pêcherie de senneurs a fait l'objet d'une fermeture spatio-temporelle à la pêche avec DCP artificiel pendant une période de 3 mois dans une vaste zone de l'Atlantique équatorial, ce qui a affecté les prises d'albacore. A partir de 2005, ces restrictions ont pris fin et ont été remplacées par une nouvelle fermeture spatio-temporelle couvrant une zone plus réduite (Piccolo) et d'une durée de seulement un mois (novembre).

Dans l'Atlantique Ouest, les pêcheries de senneurs, qui étaient sporadiques entre 1970 et 1980, opèrent dans les zones côtières depuis 1980 au nord de la côte vénézuélienne et au sud du Brésil. Les tailles s'inscrivent dans une gamme plus petite que celles des prises de l'est (de 40 à 140 cm), la majorité étant de taille intermédiaire. L'albacore n'est pas l'espèce-cible de ces flottilles.

La pêcherie de senneurs pêchant le listao, enregistrant des captures bien inférieures à celles des canneurs, n'est opérée que par le Venezuela et le Brésil. Les tailles des poissons pour ces pêcheries s'établissent entre 35 cm et 65 cm, avec un mode autour de 55 cm pour le Venezuela, et pour le Brésil entre 35 cm et 75 cm, avec un mode autour de 40 cm.

3.1.3 Palangre

La pêcherie palangrière a commencé à opérer à la fin des années 1950 et est vite devenue importante, effectuant d'importantes captures au début des années 1960. Depuis lors, les captures sont progressivement en baisse. Les pêcheries palangrières capturant l'albacore se trouvent dans tout l'Atlantique (**Figure 1**). Le degré de ciblage de l'albacore varie parmi les flottilles palangrières. Dans le Golfe du Mexique, les navires palangriers des Etats-Unis et du Mexique ciblent l'albacore (le poids moyen de l'albacore est demeuré entre 32 et 39 kg au cours de la période 1994-2006). Les navires vénézuéliens ciblent aussi l'albacore, du moins de façon saisonnière. En revanche, les navires du Japon et du Taïpei chinois ont commencé, au début des années 1980, à changer de ciblage, abandonnant le ciblage du germon et de l'albacore dans l'Atlantique Sud-Ouest, avec d'autres espèces cibles. Les tailles (FL) de l'albacore ont oscillé entre 52 et 180 cm avec un mode de 110 cm (SCRS/2008/111).

3.2 Capture

3.2.1 Albacore

Le **Tableau 1** et la **Figure 3** illustrent le développement des captures d'albacore dans l'Atlantique Est, l'Atlantique Ouest et l'ensemble de l'Atlantique. En 2006, le total des prises d'albacore s'est élevé à 108.623 t. Les prises de la Tâche I au titre de 2007 sont indiquées à titre purement informatif, étant donné qu'il s'agit de chiffres préliminaires et incomplets (il manque des flottilles importantes).

Globalement, le total des prises atlantiques d'albacore de la Tâche I a à peine changé depuis le SCRS de 2007. De légères actualisations ont été apportées aux séries historiques de capture nominale de la Tâche I qui changeront légèrement la composition de la capture des unités de gestion de l'Atlantique Est et de l'Atlantique Ouest. Les révisions effectuées étaient les suivantes :

- Les séries de capture palangrière « non-classifiée » de l'Atlantique (non séparée par les unités de gestion Est et Ouest) du Taïpei chinois (1962-65), NEI (relatifs aux pavillons) (1983-03), Panama (1986-99) et CE-Espagne (2005-2006) ont été divisées en unités géographiques Est et Ouest en utilisant l'information géographique correspondante des données de capture et d'effort de la Tâche II (sauf les flottilles NEI et du Panama pour lesquelles le Taïpei chinois avait été utilisé). Les détails sont fournis au Tableau 3.
- Les séries de capture historiques de Sao Tome & Principe (1988-1993), désagrégées par espèce (ces captures existent dans la Tâche I comme thonidés non-classifiés depuis 1970), ont été présentées et discutées à la fin de la réunion 2007 du SCRS et incorporées dans les prises de la Tâche I.
- Les reports du Cap-Vert à partir de 2004 ont été remplacés par les statistiques de capture officielles déclarées avant la réunion actuelle.
- Les scientifiques français ont présenté, pendant la réunion, une estimation des « faux poissons » capturés par les flottilles de senneurs européens (1981-1997) qu'ils ont incorporée en tant que flottille « Mix.FR+ES » dans la Tâche I.

Les prises d'albacore ont augmenté à partir des années 1950 pour atteindre une moyenne de 150.000 t dans les années 1980, et elles ont atteint en 1990 un chiffre maximum (193.448 t). Depuis lors, les prises entament une baisse graduelle, ces dernières années se situant à un niveau similaire à ceux enregistrés au début des années 1970.

Canneurs : la prise totale réalisée par cet engin pour l'ensemble de l'Atlantique s'élevait à 13.129 t en 2006, bien qu'en 1993, les prises se rapprochaient de 25.000 t (**Figure 4**). Le développement est différent pour les diverses pêcheries.

Dans l'Atlantique Est, les navires de l'Angola, du Cap-Vert et du Japon, qui réalisaient d'importantes captures au début de la pêcherie, ont diminué leur capture, tandis que d'autres pêcheries ont accru la leur. En 2006, la capture s'élevait à 10.434 t (**Figure 5**), avec une prise record en 1968 de 22.135 t. Les documents SCRS/2008/105, SCRS/2008/106 et SCRS/2008/124 montrent les diverses données statistiques correspondant aux pêcheries tropicales espagnoles, des îles Canaries, et au total de l'Europe et NEI, respectivement.

Dans l'Atlantique Ouest (**Figure 6**), les prises des canneurs ont démarré en 1974, et ont augmenté régulièrement, passant de 1.300 t en 1974 à 7.000 t en 1994, puis elles ont été ramenées à environ 2.695 t en 2006.

Senneurs : Les prises d'albacore réalisées par cette flottille ont atteint 62.761 t pour l'ensemble de l'Atlantique en 2006. Dans l'Atlantique Est, les prises ont augmenté de façon spectaculaire au début de la pêcherie (**Figure 4**), passant de 10.000 t dans les années 1960 à 100.000 t en 1980, se stabilisant à ce niveau jusqu'en 1983 avant de diminuer de moitié en 1984. Ceci est survenu à la suite de la baisse drastique de l'effort consécutive à la chute de la production des gros albacores, du fait que les flottilles de senneurs français, espagnols et NEI abandonnèrent la pêcherie. Les prises ont ensuite augmenté une fois de plus, avec une prise record de plus de 129.000 t en 1990, suivie par une tendance descendante au cours des années suivantes, atteignant 58.319 t en 2006. Les documents SCRS/2008/105 et SCRS/2008/124 présentent les données statistiques des pêcheries de senneurs espagnols, européens et NEI. Pour les « faux poissons », les estimations correspondant à l'albacore indiquent que le chiffre record de 2.750 t a été atteint en 1993, étant ramené à 1.063 t en 2006.

Les estimations des rejets et des prises accessoires dans la pêcherie de senneurs français de l'océan l'Atlantique Est ont été obtenues à partir des sorties d'observateurs réalisées entre 2005 et 2008 (SCRS/2008/117). Les résultats ont indiqué que pratiquement aucun rejet n'a été observé sur les bancs libres pendant cette période et que le listao et la thonine commune (*Euthynnus alleteratus*) avaient composé la majorité des rejets qui avaient été essentiellement réalisés sous les dispositifs de concentration du poisson (DCP). En 2007, les taux de rejet moyens du listao et de l'albacore sous DCP étaient estimés à 42,9 kg et 1,3 kg par tonne débarquée, respectivement. Les échantillons de données de taille des « faux poissons » prélevés au port de pêche d'Abidjan ont indiqué qu'il n'existait pas de différence considérable entre les distributions de taille des rejets et des « faux poissons » pour le listao, l'albacore et le thon obèse. Depuis le début des années 1980, les petits listaos dominent les débarquements thoniers de « faux poissons » à Abidjan et les débarquements moyens annuels sur le marché local entre 2004 et 2007 étaient supérieurs à 9.500 kg tandis que le total des débarquements à Abidjan pour les conserveries s'élevait à environ 40.000 t par an au cours de la même période. C'est pourquoi, le taux moyen de « faux poisson » au cours de ces dernières années était d'environ 235 kg par tonne de listao débarqué. Pour l'albacore, la biomasse moyenne annuelle de « faux poisson » débarqué se chiffrait à environ 1.900 t entre 2004
et 2007 par rapport à 37.000 t de débarquements commerciaux à Abidjan. Le taux moyen de « faux poisson » était alors d'environ 50 kg par tonne d'albacore débarqué pour les conserveries. Les quantités de thonidés juvéniles vendues comme « faux poisson » pourraient largement dépasser les rejets de listao, ce qui souligne la nécessité d'améliorer l'échantillonnage des « faux poissons » qui sont actuellement absents des statistiques officielles et ne sont pas inclus dans les modèles d'évaluation des stocks.

Dans l'Atlantique Ouest (**Figure 6**), les prises ont augmenté depuis le commencement de la pêcherie au début des années 1960 jusqu'en 1983, lorsqu'elles ont atteint 25.000 t. Les captures des années suivantes dégagent de fortes variations, étant donné qu'une partie de cette flottille a déplacé sa pêcherie vers l'océan Pacifique. En 2006, les prises s'élevaient à 4.442 t. Les captures les plus importantes de l'Atlantique Ouest sont réalisées par la pêcherie de senneurs vénézuéliens (certaines années, elles représentent l'intégralité de la capture totale).

Palangriers : Après le maximum de 50.000 t atteint entre 1959 et 1961, les prises palangrières ont été ramenées à un niveau d'environ 30.000 t au début des années 1970 et à environ 25.000 t dans les années 1990. En 2006, les prises palangrières ont atteint 22.238 t. Les principales pêcheries sont celles du Brésil, du Taïpei chinois, du Japon, du Mexique et des Etats-Unis. L'apparition, à partir de 1985, d'importantes captures réalisées par des flottilles NEI dans des zones inconnues est préoccupante car on ne sait pas au sûr dans quelle mesure ces prises ont eu réellement lieu dans l'Atlantique. Le document SCRS/2008/125 présente les données statistiques pour la pêcherie palangrière mexicaine dans le golfe du Mexique.

3.2.2 Listao

Le **Tableau 2** et la **Figure 7** (prise par zone) montrent l'essor des prises de listao dans l'Atlantique Est, l'Atlantique Ouest et l'ensemble de l'Atlantique. En 2006, le total des prises de listao s'est élevé à environ 142.200 t (environ 115.700 t dans l'Est et environ 26.500 t dans l'Ouest). Ce niveau de capture s'est maintenu relativement stable au cours des 11 dernières années, bien qu'il soit considérablement plus faible que celui des années 1991 et 1993, lorsque les captures de cette espèce ont atteint le plus haut niveau (approximativement 200.000 t). Les prises de la Tâche I présentées au titre de 2007 sont uniquement informatives étant donné qu'il s'agit de chiffres préliminaires et incomplets (il manque des flottilles importantes).

Quant à l'albacore, de légères révisions ont été faites aux prises historiques de listao de la Tâche I depuis le SCRS de 2007. Néanmoins, cela n'affecte que le stock oriental. Les révisions effectuées étaient comme suit :

- Les séries historiques de capture de la Tâche I de Sao Tome & Principe (1988-2003), désagrégées par espèce (ces captures existaient dans la Tâche I comme thonidés non classifiés depuis 1970) présentées et discutées à la fin de la réunion de 2007 du SCRS ont été incorporées dans les prises de la Tâche I.
- Les reports du Cap-Vert à partir de 2004 ont été remplacés par les statistiques de capture officielles déclarées avant la réunion actuelle.
- Des scientifiques français ont présenté une estimation des « faux poissons » capturés par les flottilles de senneurs européens (1981-2007) qui a ensuite été incorporée comme flottille « Mix. FR+ES » dans la Tâche I.

La ventilation des prises atlantiques « non classifiées » dans les stocks Est et Ouest a déjà été réalisée pendant la réunion intersession de 2007 des thonidés tropicaux (Recife (Brésil), 11-16 avril 2007) (Anon. 2008).

Dans l'Atlantique Est (**Figure 8**), les principales pêcheries sont actuellement celles des flottilles des senneurs, principalement de France, Ghana, la flottille NEI (Belize, Guinée, Antilles néerlandaises, Panama, Malte, Maroc, Saint-Vincent et Vanuatu), et d'Espagne, suivies des flottilles de canneurs de France, Ghana, Portugal et Espagne.

Dans l'Atlantique Ouest (Figure 9), les principales pêcheries sont celles des canneurs brésiliens et vénézuéliens.

Canneurs : En 2006, la prise totale réalisée par cet engin dans l'ensemble de l'Atlantique s'élevait à 64.924 t.

Dans l'Atlantique Est, les principales flottilles de canneurs sont du Ghana, du Sénégal et des îles du Nord (Canaries, Madère et Açores). En 2006, les prises ont atteint 41.175 t, la même niveau qu'à la fin des années 1980. Les documents SCRS/2008/105, SCRS/2008/106 et SCRS/2008/124 contiennent les diverses données statistiques pour les pêcheries tropicales espagnoles, des îles des Canaries, pour l'ensemble de l'Europe et pour

la catégorie NEI, respectivement.

Dans l'Atlantique Ouest, les prises des canneurs ont atteint 20.000 t en 1982 et sont demeurées à ce niveau par la suite, oscillant entre 18.000 t et 28.000 t (**Figure 9**). En 2006, les prises dans ces pêcheries se sont élevées à 23.749 t. La principale pêcherie est la pêcherie brésilienne de canneurs qui cible le listao. Les canneurs cubains et vénézuéliens ont également participé à la pêcherie.

Semeurs : En 2006, la prise totale réalisée par cet engin pour l'ensemble de l'Atlantique s'élevait à 71.215 t.

Dans l'Atlantique Est, la pêcherie de senneurs s'est développée dans les années 1960, à l'origine comme pêcherie côtière, pour s'orienter de plus en plus vers la pêche hauturière. Au début des années 1970, les prises de listao ont atteint 50.000 t (**Figure 8**). Au début des années 1980, les prises ont atteint 70.000 t. En 1985, les captures des senneurs ont connu une baisse considérable, en raison du déplacement d'une grande partie des flottilles françaises et espagnoles vers l'océan Indien. Cette situation s'est modifiée au cours des années suivantes, les prises de listao atteignant alors 142.000 t en 1991. A partir de cette époque, les prises ont connu une chute accusée, descendant jusqu'à 66.819 t en 2002, puis atteignant 69.170 t en 2006.

Les documents SCRS/2008/105 et SCRS/2008/124 présentent les données statistiques correspondant aux pêcheries de senneurs espagnols, européens et NEI.

Pour les « faux poissons », les estimations correspondant au listao (principale espèce thonière à l'intérieur de ce groupe) indiquent que le chiffre le plus élevé a été atteint en 1993, avec 13.750 t, et qu'en 2006, il s'est élevé à 5.313 t.

Dans l'Atlantique Ouest, les pêcheries de senneurs qui se sont développées dans les années 1960 (flottille étasunienne) comptaient des captures bien plus faibles que celles des pêcheries de canneurs ; actuellement, les seules opérations à la senne sont effectuées par le Venezuela et le Brésil. A la fin des années 1970, les prises annuelles ont atteint 3.000 t, et dans les années 1980, elles ont rapidement atteint 18.000 t (1984), les prises fluctuant dans les années 1990 entre 12.800 t (1993) et 2.100 t (1995). En 2006, les captures s'élevaient à 2.045t. Les principales captures de l'Atlantique Ouest sont réalisées par la pêcherie de senneurs vénézuéliens (certaines années, celles-ci représentent l'intégralité de la capture).

3.3 Effort de pêche

En général, il est extrêmement difficile de distinguer l'effort de pêche effectif par espèce au sein des pêcheries qui ciblent les thonidés tropicaux. Toutefois, des exceptions existent, à savoir que plusieurs pêcheries palangrières ciblent l'albacore et la pêcherie de canneurs brésiliens capture le listao en tant qu'espèce-cible.

A partir des années 1990, des changements importants ont eu lieu dans les principales pêcheries de surface de l'Atlantique Est qui compliquent encore davantage l'estimation de l'effort effectif, y compris l'utilisation fort accrue des objets flottants par les senneurs et les canneurs, ainsi que l'emploi des canneurs comme DCP à Dakar et dans d'autres pêcheries de canneurs.

Comme indicateurs de l'effort nominal dans l'Atlantique Est, la capacité de transport des flottilles de senneurs et de canneurs a été traditionnellement utilisée. La **Figure 10** montre le développement de la capacité de transport des flottilles de surface dans l'Atlantique Est pour la période 1972-2006. La capacité de transport des canneurs est demeurée stable depuis la fin des années 1970, autour de 10.000 t. La capacité de transport de la flottille de senneurs, en revanche, a connu d'importants changements pendant toute la période à l'étude, la pêcherie étant en constante augmentation depuis son démarrage jusqu'en 1983, lorsque la capacité de transport a dépassé les 70.000 t. Après cette époque, jusqu'en 1990, la capacité de transport a considérablement diminué, étant ramenée à 37.000 t, étant donné qu'une partie de la flottille a abandonné cette pêcherie. Une légère récupération s'est produite au cours des deux années suivantes (1991 et 1992), suivie depuis lors d'une chute progressive, la capacité s'élevant à environ 29.700 t la dernière année (2006).

Le document SCRS/2008/124 décrit le développement des mesures de l'effort de pêche nominal pour les senneurs de la CE et les senneurs NEI : le nombre de rectangles de 1°x1° explorés et le nombre avec un effort supérieur à 1 jour de pêche, et le total des jours de pêche des senneurs (1991-2007). On peut observer que, tandis que la zone de recherche demeure au même niveau pendant ces périodes, le nombre de jours de pêche a considérablement diminué.

Pour l'Atlantique Ouest, le volume et la distribution de l'effort de pêche de la pêcherie palangrière brésilienne a

récemment connu des changements considérables. Jusqu'en 1995, les requins étaient les espèces cibles principales (58% des prises totales). Toutefois, depuis 1993, la proportion des requins a chuté, et a été remplacée par l'espadon qui est devenu l'espèce dominante dans cette pêcherie (l'espadon représente désormais 48% des prises totales). L'effort dans les pêcheries de surface du Venezuela est élevé depuis 1992 (capacité de transport des navires supérieure à 8.000 t). L'effort dans la pêcherie palangrière des Etats-Unis, qui est active dans l'Atlantique Nord-Ouest et dans le Golfe du Mexique, a chuté quelque peu au cours de ces dernières années. L'effort palangrier japonais dirigé sur l'albacore a également décliné ces dernières années. Cette flottille cible essentiellement d'autres espèces (thon obèse et thon rouge).

L'effort palangrier vénézuélien et mexicain exercé sur l'albacore a diminué au cours de ces dernières années.

3.4 Fréquences de taille de la Tâche II

Les catalogues actualisés des fréquences de taille de la Tâche II disponibles dans la base de données ICCAT (échantillons observés et fréquences de taille extrapolées déclarées) à la fois pour l'albacore et le listao sont indiqués aux **Tableaux 4** et **5**, respectivement. Ils contiennent un jeu d'informations de métadonnées (stratification spatio-temporelle, nombre de poissons dans le jeu de données, type de fréquences de taille, etc.) qui permet d'avoir une image claire du niveau d'hétérogénéité dans les données de taille.

Lorsqu'on compare les catalogues actuels avec ceux publiés aux fins de révision sur le site web de l'ICCAT (mai 2008), il est possible de vérifier que :

- Les révisions antérieures à 2006 n'ont été déclarées que par le Japon (2003-2005, données de taille et de prise par taille) pour l'albacore uniquement, et le Taïpei chinois (échantillons de taille 2005) pour les deux espèces.
- De nouvelles informations de taille (à partir de 2006) ont été déclarées par divers pays : Canada (2007), Taïpei chinois (2006-07), Japon (2006), Etats-Unis (2006-07), CE-Espagne (2007, flottilles tropicales et basées aux Canaries), CE-France (2007, flottille tropicale), CE-Portugal (2007), Cap-Vert (2007), et Ghana (2007).

Des informations détaillées sur les espèces couvertes et le type de fréquences de taille peuvent être obtenues dans les tableaux correspondants.

3.5 Prise par taille et prise par âge

Au début de la réunion, le Secrétariat a présenté les jeux de données de prise par taille (CAS) pour l'albacore (1970-2007) et le listao (1969-2007), conjointement avec leurs tableaux de substitution correspondants. Les règles de substitution, ainsi que les jeux de données de taille utilisés dans les estimations ont été révisés par le Groupe et actualisés en conséquence. L'année 2007 a été rejetée pour les deux espèces en raison de l'absence d'informations sur la taille (et sur les prises de la Tâche I) d'importantes pêcheries.

3.5.1 Albacore

La prise par taille de l'albacore inclut la reconstruction complète de 2005 (considérablement incomplète dans les estimations antérieures) et de 2006. La série de prise par taille historique (1970-2004) a été laissée exactement pareille à celle de l'évaluation antérieure. Après révision des tableaux de substitution, le Groupe a décidé d'inclure dans la prise par taille révisée :

- Les nouvelles séries de « faux poissons » (1981-2006) estimées par la flottille de senneurs européens (fichier de référence avec des échantillons d'avril 2007 à février 2008), stocké dans la base de données ICCAT comme étant de CE-France et CE-Espagne).
- Les chiffres de report (de 2005) à 2006 pour la Tâche I en ce qui concerne la Colombie, Cuba, la République dominicaine, CE-Lettonie, le Gabon et la Libye.

Aucun changement n'a été apporté aux critères de substitution.

Le Japon a ultérieurement identifié un problème concernant les divergences dans la révision de la prise par taille japonaise déclarée (2003-2004) qui n'a pas été incluse dans la prise par taille historique et également une divergence dans le nombre de poissons trouvés en 2005 (seulement 65% de l'information de taille a été incorporée dans la base de données ICCAT en raison d'un problème lié au caractère incomplet du formulaire-5 ICCAT déclaré, et à une faiblesse correspondante du code qui lit automatiquement les formulaires et omet ces possibilités). Dans le même temps, le Japon a également présenté une révision de la prise par taille complète (tous les trimestres) au titre de 2006. Le Groupe a estimé qu'il était trop tard pour changer la prise par taille révisée et a décidé de conserver la série de prise par taille incomplète de 2006 (seulement le premier trimestre). Le Groupe a décidé que ces actualisations devraient être réalisées avant la prochaine réunion du SCRS.

Le Secrétariat a également fait part des incohérences (mineures pour la prise par taille de l'ensemble de l'Atlantique) existant entre la Tâche I et la prise par taille au niveau de la discrimination flottille/engin au cours de la période 1975-1983, qui pourraient avoir des implications lors de la sélection des divers indices liés aux flottilles pour les analyses de VPA. Au cours de cette période, la prise par taille a diverses prises regroupées par flottilles (pêcheries palangrières, de canneurs et de senneurs) sans une correspondance directe avec les chiffres de la Tâche I. Le Groupe a estimé qu'il conviendrait d'effectuer cette révision de la prise par taille historique pour la prochaine évaluation.

Après la création d'une version révisée de la prise par taille, le Secrétariat a obtenu les matrices de la prise par âge correspondantes (matrices globales et aussi basées sur la pêcherie).

La **Figure 11** présente une comparaison entre la Tâche I et la prise par taille. La distribution de la prise par âge est décrite à la **Figure 12**. Les **Tableaux 6** et **7** indiquent les matrices globales de prise par taille et de prise par âge.

Le Secrétariat devra rassembler, dans un document du SCRS (SCRS/2008/128), des informations détaillées sur les estimations finales de la prise par taille de l'albacore et les présenter au SCRS.

3.5.2 Listao

La prise par taille du listao inclut la reconstitution complète de 2005 (incomplète dans les estimations antérieures) et de 2006. La série de prise par taille historique (1969-2004) a été légèrement ajustée avec l'inclusion de Sao Tome & Principe et du Cap-Vert. Après avoir révisé les tableaux de substitution, le Groupe a décidé d'inclure dans la prise par taille révisée :

- Les nouvelles séries de « faux poissons » (1981-2006) estimées par la flottille de senneurs européens (fichier de référence avec des échantillons d'avril 2007 à février 2008, stocké dans la base de données ICCAT comme étant de CE-France et CE-Espagne).
- Les chiffres de report (de 2005) à 2006 pour la Tâche I en ce qui concerne le Cap-Vert et CE-Irlande.

Aucun changement n'a été apporté aux critères de substitution.

La Figure 13 présente une comparaison entre la Tâche I et la prise par taille. Les **Tableaux 7** et **8** indiquent les matrices de prise par taille pour les stocks Est et Ouest.

Le Secrétariat devra rassembler, dans un document du SCRS (SCRS/2008/126), des informations détaillées sur les estimations finales de la prise par taille du listao et les présenter au SCRS.

3.5.3 Prise par âge

Le format variable de l'ICCAT pour présenter les données de prise par taille de l'albacore a été utilisé pour créer la prise par âge en suivant les paramètres de découpage des cohortes (**Tableau 10**) par classe de taille utilisés dans une évaluation antérieure. Le Secrétariat a présenté la prise par âge en nombre de poissons pour les pêcheries sélectionnées et le volume total qui ont ensuite été utilisés dans l'évaluation (**Figure 13** et **Tableau 9**). La prise par âge en poids pour les mêmes pêcheries a également été créée en utilisant le même découpage de cohortes et la relation longueur-poids suivante :

- Kevin Davis (1991) (RWT (poids vif) = 0,000000089 * FL**2.88) où RWT est en livres et la longueur à la fourche en mm.
- 2) Gaertner *et al.* (1992) RWT = 0,00006611 * FL**2,7148; et

3) Caveriviere (1976) RWT =0,00002153*FL**2,976.

Un nouveau découpage de cohortes de Shuford *et al.* (2007) a également été extrapolé et le Groupe a estimé qu'il faudrait procéder à de nouvelles recherches afin de tester d'éventuelles divergences par rapport aux calculs antérieurs.

3.6 Préparations des données Multifan

Avant la session d'évaluation, il a été décidé d'essayer de réaliser des analyses Multifan-CL (MFCL) du listao et de l'albacore à la réunion d'évaluation de 2008, afin de mieux incorporer la dynamique spatiale et halieutique liée à ces espèces dans l'ensemble de l'Atlantique.

Pour le listao, les définitions préliminaires des pêcheries sont fournies au **Tableau 3.6.1** et celles pour l'albacore au **Tableau 12**. Pendant la période intersession, le Secrétariat a préparé les données de capture jusqu'en 2006 par zone (5x5) et par trimestre, ainsi que les données disponibles d'effort/capture et de taille de la Tâche II. Les scientifiques nationaux ont élaboré des indices de CPUE pour des pêcheries spécifiques par trimestre (*cf.* section 4), et les données de la Tâche II de l'ICCAT ont été examinées afin de produire des indicateurs de taux de capture pour les pêcheries restantes.

L'intervalle temporel convenu pour les applications MFCL était trimestriel. Ainsi, les informations sur la fréquence de la capture, de l'effort et de la taille par pêcherie et trimestre ont été compilées à partir de CATDIS ICCAT, et des informations de la Tâche II sur la taille, la capture et l'effort. Les données de l'effort trimestriel par pêcherie ont été estimées à partir des données de capture et d'effort de la Tâche II en appliquant des modèles linéaires généralisés qui tiennent compte de la flottille, du type d'engin et du type d'effort au sein de chaque définition de pêcheries consignée dans la base de données de la Tâche II. L'**Appendice 4** documente les procédures utilisées pour créer la CPUE de la série temporelle, laquelle a ensuite été divisée à l'intérieur de l'information de capture spécifique à la pêcherie en vue d'estimer les schémas de l'effort pour le MFCL. Dans tous les cas, lorsque celle-ci était détaillée, la CPUE standardisée était disponible auprès des scientifiques nationaux ou basée sur les travaux réalisés par le Groupe à la session d'évaluation ; ces schémas de CPUE ont été utilisés pour calculer les schémas de l'effort trimestriel à des fins d'utilisation dans le MFCL. Les séries temporelles résultantes de prise et d'effort par pêcherie sont indiquées aux **Figures 14** et **15** et à l'**Appendice 4**.

Les données de fréquence de taille maintenues dans le jeu de données de la Tâche II de l'ICCAT ont également été organisées par définition des pêcheries et trimestre par MFCL en ce qui concerne le listao et l'albacore. On a utilisé un critère d'au moins 50 observations de taille par pêcherie/trimestre afin de filtrer les données à utiliser (**Figures 16** et **17**). Les codes SAS utilisés pour récapituler les données se trouvent à l'**Appendice 4**.

En appui aux préparations de données par MFCL, pour la flottille de senneurs européens et associés, les CPUE standardisées annuelles du listao, à la fois pour les modes de pêche sous DCP et en bancs libres, ont été obtenues à l'aide d'un GLM (*cf.* section 4 pour de plus amples informations). Afin d'incorporer ces indices aux sorties de MFCL, certains ajustements se sont avérés nécessaires afin d'obtenir les CPUE standardisées trimestriellement. Pendant la réunion, il n'a pas été possible d'obtenir de nouveaux indices standardisés par trimestre. C'est pourquoi une procédure a été établie en vue de diviser par trimestre la CPUE standardisée annuellement. Dans le cas de la CPUE du listao en bancs libres, les valeurs résiduelles partielles correspondant au facteur trimestre ont été utilisées comme critères pour diviser les CPUE. A partir du graphique des valeurs résiduelles partielles, un multiplicateur a été obtenu par rapport à la valeur moyenne, et des CPUE trimestrielles ont ensuite été obtenues en multipliant la valeur annuelle par ces multiplicateurs. Dans le cas de la CPUE standardisée du listao sous DPC, les valeurs résiduelles partielles n'étaient pas disponibles, c'est pourquoi la même valeur annuelle a été considérée pour chacun des quatre trimestres.

Albacore

En utilisant les données de CPUE pour la flottille de senneurs européenne et associée, on a estimé la CPUE au moyen du GLM (*cf.* section 4 pour obtenir des informations plus détaillées) pour : (a) le petit albacore (<10 kg) en utilisant le mode de pêche avec DCP et (b) les reproducteurs (> 30 kg) en utilisant les taux de capture standardisée du premier trimestre. Les informations disponibles sur l'indice des petits spécimens d'albacore et de listao n'ont pas permis d'établir de critères afin de scinder l'indice par trimestre. C'est pourquoi la même valeur annuelle a été considérée pour tous les trimestres.

L'**Appendice 4** contient les fichiers FRQ préliminaires élaborés pour le listao et l'albacore qui sont disponibles sur demande auprès du Secrétariat.

4. Indices d'abondance relative et autres indicateurs des pêcheries

4.1 Listao

4.1.1 Indicateurs des pêcheries

Atlantique Est

Le Groupe a examiné plusieurs indicateurs généraux des pêcheries de senneurs et de canneurs. La capacité de transport des senneurs communautaires et le nombre de canneurs ont diminué (**Figure 10**). Néanmoins, la capacité de transport a augmenté tandis que le nombre de canneurs a baissé dans les pêcheries de Dakar (**Figure 18**). Le nombre total d'opérations, le pourcentage d'opérations fructueuses par mode de pêche (**Figure 19**) et la zone totale visitée (**Figures 20** et **21**) ont également été utilisés comme indicateur de l'effort.

Le document SCRS/2008/114 utilise les données de prise par taille du listao de l'Atlantique Est pour estimer les changements dans la mortalité totale et dans les schémas de sélectivité de deux pêcheries de surface (la pêcherie à la canne et à l'hameçon opérant à partir de Dakar (Sénégal), et les flottilles de senneurs, à l'exception des navires ghanéens) de 1971 à 2005. Le schéma général décrit par Z (**Figure 22**) concorde avec les connaissances antérieures sur cette pêcherie : une situation de, ou proche de la pleine exploitation pendant les années 1990, suivie par une diminution depuis le milieu des années 1990, probablement due à un résultat combiné de la baisse de l'effort de pêche nominal des senneurs et de l'adoption du moratoire saisonnier à la pêche avec DCP. Même si le schéma de sélectivité total demeure relativement stable au fil des ans, la tendance descendante de la sélectivité observée pour les senneurs depuis le début des années 1990 suggère que ces flottilles ne ciblent plus les petits poissons. Ceci est conforme au développement des opérations de pêche avec DCP survenu depuis la même période.

En ce qui concerne les canneurs européens basés à Dakar (Sénégal), les taux de capture nominale du listao se sont régulièrement accrus pendant toute la série temporelle. Lorsque l'on analyse ces données, il convient de garder à l'esprit que depuis le début des années 1990, ces canneurs ont développé une technique de pêche (essentiellement pour cibler le thon obèse) selon laquelle le canneur sert d'objet flottant, en fixant le banc (comprenant du thon obèse, de l'albacore et du listao) pendant toute la saison de pêche dans les eaux au large du Sénégal et de la Mauritanie. En conséquence, il paraît logique de postuler que l'adoption de cette technique de pêche a accru la capturabilité globale des thonidés. Il est toutefois à noter que le schéma décrit pour le listao contraste avec les tendances décroissantes des CPUE observées pour les deux autres espèces thonières.

4.1.2 Taux de capture

Lors de la réunion du Groupe tenue à Sète (France) en 2006 (Anon. 2007), il a été recommandé que des scientifiques de diverses Parties contractantes réalisent des analyses des tendances de la CPUE pour les pêcheries le long des franges de la distribution des espèces. Les résultats de la standardisation des CPUE pour les canneurs des Açores ont été présentés et discutés pendant le Groupe d'espèces. Comme prévu, en raison de l'emplacement de cette zone de pêche en ce qui concerne la gamme de distribution du listao, l'indice standardisé a montré une forte variabilité, mais sans tendance importante (**Figure 23**).

Le Groupe a souligné l'importance de l'actualisation des taux de capture des principales pêcheries qui déclarent des captures de listao. Il convient de souligner que le listao est souvent une espèce secondaire, en fonction du prix différentiel et de la capturabilité d'autres espèces-cibles. Par conséquent, l'estimation de l'effort effectif exercé sur le listao (p.ex. effort proportionnel à la mortalité par pêche) demeure problématique et les taux de capture peuvent parfois décrire une tendance différente de l'abondance.

Pour les senneurs qui pêchent alternativement sur des bancs libres et avec DCP, il a été jugé que le temps de recherche pourrait être la meilleure mesure de l'effort de base sur les bancs libres. Il a également été suggéré que le jeu de données d'analyse pourrait être davantage limité à l'effort associé aux jeux de bancs libres en postulant que les navires qui parcourent de plus longues distances la nuit se déplacent entre les DCP, car ils ne peuvent pas rechercher les bancs libres pendant la nuit. Toutefois, cette approche nécessiterait vraisemblablement un examen plus poussé, y compris l'incorporation des données de VMS, afin de déterminer si c'est faisable et approprié. Un nouveau projet financé par l'Union européenne et intitulé « CEDER » (capture, effort et rejets estimés en temps réel), lancé en 2006, abordera en partie cette question. L'objectif fondamental développé dans le cadre de ce projet est d'analyser la trajectoire individuelle des senneurs afin de caractériser le comportement de pêche

reflétant le temps de recherche des bancs non-associés ou le déplacement vers des DPC auparavant détectés par radiobalise (en gardant à l'esprit, toutefois, que quel que soit le mode de pêche recherché, chaque banc de thons détecté par hasard peut faire l'objet de pêche). D'autres facteurs pouvant être pris en considération sont les changements dans le temps, qui ont entraîné une réduction du temps nécessaire pour réaliser les opérations et décharger les captures (augmentant l'efficacité de l'effort de pêche dans le temps).

Afin de permettre la continuité avec l'évaluation antérieure, on a actualisé les taux de capture de la flottille de senneurs européens (France et Espagne), obtenus après avoir standardisé l'effort de pêche nominal à la catégorie 5 (450-750 TJB) des senneurs de la FIS et en postulant une augmentation annuelle de 3% de l'efficacité de la pêche de la flottille à partir de 1981. L'incorporation d'une augmentation de l'efficacité avait pour but de tenir compte des changements survenus dans la flottille de senneurs pendant ces années. L'estimation d'une augmentation annuelle de l'efficacité de 3% provient d'une étude par Gascuel *et al.* (1993). Le Groupe a discuté de l'opportunité de maintenir ce postulat lorsque les navires pêchant dans l'Atlantique seront vieux (âgés en moyenne de plus de 20 ans) et que leurs capitaines et équipage auront un profil bas par rapport à ceux qui pêchent dans d'autres océans (p.ex. océan Indien). Etant donné que l'estimation de l'augmentation de 3% date d'il y a 15 ans, le Groupe a décidé de réaliser une nouvelle estimation des changements dans la capturabilité des senneurs. Ces nouvelles estimations ont montré un accroissement plus élevé de l'efficacité de la flottille, une augmentation annuelle moyenne d'environ 5% (toutes les trois espèces combinées). Néanmoins, le Groupe a décidé d'utiliser l'indice estimé avec une augmentation de 3% pour garantir la continuité avec les deux dernières évaluations.

On a présenté au Groupe des indices standardisés de juvéniles d'albacore et de listao pour les flottilles de senneurs européens et associés pêchant avec des DCP (SCRS/2008/116). On a utilisé les données des livres de bord consignées opération par opération avec DCP ainsi que les caractéristiques des flottilles. Des indices ont été élaborés en utilisant un modèle delta-lognormal. Dans ce cas, le modèle a été formulé différemment par rapport à l'utilisation générale afin de tenir compte du problème lié à la composition spécifique de la capture de petits poissons (<10 kg) réalisée par les senneurs. Ces captures sont estimées d'après l'échantillonnage afin de corriger les biais détectés dans les données des carnets de bord. C'est pourquoi le modèle a inclus deux modèles linéaires généralisés distincts : un modèle lognormal qui décrit la variabilité dans la capture non-zéro d'espèces inférieures à 10 kg, et un modèle binomial et de données qui décrit la proportion de chacune des trois espèces dans la capture. Les résultats de cette approche sont différents, en fonction de l'espèce, et les taux de capture du listao ont présenté une forme en U avec un minimum en 1998 durant toute la période.

En outre, il a été présenté un indice standardisé du listao pour la flottille espagnole qui pêche sur bancs libres (SCRS/2008/118). Cet indice correspond à la pêcherie saisonnière sur bancs libres développée par la flottille espagnole au large du Sénégal, principalement pendant les deuxième et troisième trimestres de l'année. Cette pêcherie cible essentiellement le listao. Les données des livres de bord consignées opération par opération ainsi que les caractéristiques des flottilles ont été utilisées. Dans ce modèle, seuls les jeux sur bancs libres ont été inclus pour la période (1991-2006) au cours de laquelle a démarré l'essor de la pêcherie opérant avec DCP et il existe des informations sur le mode de pêche. Pour la période historique, il a été postulé que le banc libre était le mode de pêche. Pour la période historique, il a été postulé que le banc libre était le mode de pêche. Les données se sont également limitées à la zone située au large du Sénégal. Un indice a été développé à l'aide d'un modèle delta-lognormal. Les variables considérées étaient *année, trimestre* et *catégorie de navires* (volume des viviers). Les séries ont couvert la période 1980 à 2006. Un seuil de 120 jours de pêche par navire et année a également été établi. Les taux de capture standardisés ont montré une tendance à la hausse dans les années 1980, suivie par une baisse au début des années 1990 et par une forte variabilité depuis lors. Le Groupe a estimé que la disponibilité du listao dans cette zone pourrait être liée à des facteurs environnementaux et que cet indice serait plus représentatif des changements de capturabilité plutôt que d'abondance.

Tous les taux de capture standardisés estimés par le Groupe pour le stock oriental sont illustrés dans la **Figure** 24. Certaines séries de données ne sont pas complètes. A titre d'exemple, il n'existe pas d'estimations pour les canneurs ghanéens après 1992. Les estimations qui n'ont pas été utilisées dans les analyses des évaluations (senneurs sur bancs libres-CE) ne sont pas incluses dans le chiffre. Les estimations telles que calculées pour les bases de données du Portugal et du Canada ont montré de fortes variations avec plusieurs maximums et minimums accusés. Les estimations des taux de capture standardisés des senneurs de Dakar ont augmenté jusqu'au début des années 1990, mais il n'y a pas de tendance temporelle claire depuis 1992.

Atlantique Ouest

Contrairement aux vastes zones de pêche observées dans la partie orientale de l'océan Atlantique, les zones de pêche dans l'Atlantique Ouest sont généralement plus côtières. La plupart des listaos débarqués à l'Ouest ont été capturés par des canneurs brésiliens. En fait, le listao constitue la principale espèce-cible dans ce cas. Il est à noter que les taux de capture déclarés pour cette pêcherie sont plus élevés que les CPUE observées dans toutes les pêcheries de canneurs de l'Est. Aucune nouvelle information n'a été fournie depuis la réunion de 2007 du SCRS pour les senneurs vénézuéliens pêchant essentiellement dans la mer des Caraïbes.

Les taux de capture standardisés ont été calculés pour le stock occidental. Dans la plupart des documents, le modèle linéaire généralisé et la distribution delta-lognormal ont été utilisés pour calculer les indices d'abondance relative. Les modèles mixtes linéaires généralisés ont été utilisés pour analyser les données de prise et d'effort de l'Enquête statistique des pêcheries récréatives marines des Etats-Unis (MFRSS) de la côte atlantique et du Golfe du Mexique (SCRS/2008/122). Les données positives ont été modelées à l'aide d'un modèle lognormal, tandis que la proportion des captures positives a été modelée avec une distribution binomiale. La zone géographique, la saison et le mode de pêche (navire de pêche affrété ou privé) étaient les facteurs considérés dans le modèle.

Les taux de capture standardisés calculés à l'aide du modèle delta-lognormal ont varié tous les ans, sans indiquer de tendance claire.

Le SCRS/2008/121 a présenté les taux de capture standardisés du listao capturé par les flottilles palangrières pélagiques des Etats-Unis dans le Golfe du Mexique qui ont été calculés en utilisant le GLM. Les variables réponses examinées pour le listao étaient les CPUE pour la période 1992-2007. Dans l'analyse, les modèles delta-lognormal ont été utilisés avec les variables explicatives suivantes : année, zone, saison, caractéristiques des engins et caractéristiques de la pêche. Globalement, les taux de capture du listao semblent connaître une tendance ascendante en 2006 et 2007, mais ce phénomène peut s'expliquer par des taux croissants de couverture par observateurs. Actuellement, le listao n'est pas une espèce-cible pour la flottille palangrière étasunienne et il existe peu de déclarations d'opérations positives dans les livres de bord.

La plupart du listao débarqué dans l'Atlantique Ouest est capturé par la flottille de canneurs brésiliens. Afin d'obtenir des taux de capture standardisés par année et trimestre, deux approches ont été utilisées (SCRS/2008/113). Dans la première, les prises égales à zéro ont été rejetées et un modèle (lognormal) a été sélectionné afin d'analyser le jeu de données positives. Dans la deuxième approche, les prises nulles (<2% de la base de données totale) ont également été prises en compte et un modèle delta-lognormal a été utilisé pour estimer les taux de capture standardisés. Les indices ont montré de fortes variations au fil des ans, mais aucune tendance ne s'est dégagée.

La **Figure 25** illustre tous les taux de capture standardisés utilisés dans les analyses de l'évaluation. Les estimations recueillies dans l'analyse des jeux de données brésiliens et étasuniens n'ont dégagé aucune tendance. Les estimations calculées pour la base de données vénézuéliennes ont brusquement chuté au début des années 1980, mais signalent depuis 1983 une tendance légèrement à la baisse.

4.1.3 Schémas spécifiques aux pêcheries de listao

Les définitions des pêcheries utilisées sont indiquées dans le tableau suivant et suivent généralement les définitions utilisées pour la modélisation de l'évaluation du thon obèse par MULTIFAN-CL.

Stock	Fishery	Flags	Gear	Period
Atlantic East	1E	EC-France, EC-Spain and Others	PS	1969-1979
Atlantic East	2E	EC-France, EC-Spain and Others	PS	1980-1990
Atlantic East	3E	EC-France, EC-Spain and Others-Free School	PS	1991-2005
Atlantic East	4E	EC-France, EC-Spain and Others-FADs	PS	1991-2005
Atlantic East	5E	Ghana	PS & BB	1973-2005
Atlantic East	6E	EC-France, EC-Spain (Dakar Based), Senegal	BB	1965-1983
Atlantic East	7E	EC-France, EC-Spain (Dakar Based), Senegal	BB	1984-2005
Atlantic East	8E	Azores, Madeira, Canaries	BB	1965-2005
Atlantic East	9E	Others	BB	1965-2005
Atlantic East	10E	Others	Others	1965-2005
Atlantic West	1W	Brazil	BB	1965-2005
Atlantic West	2W	Venezuela	PS+BB	1965-2005
Atlantic West	3W	All	Others	1965-2005

Définitions des pêcheries proposées pour être utilisées dans d'autres analyses du listao.

Sélection des indices d'abondance pour le listao

Afin de sélectionner parmi les pêcheries candidates les séries de CPUE les plus appropriées en termes de représentativité des changements d'abondance du listao des deux côtés de l'océan Atlantique, une attention particulière a été accordée aux critères, tels que la prise totale moyenne, la surface des zones de pêche et la taille des séries temporelles.

Dans l'Atlantique Est, les pêcheries de canneurs décrivant des changements dans le temps de l'abondance de différentes classes de taille du listao ont été sélectionnées comme suit :

- Flottille du Portugal-Açores (indice standardisé après l'omission des plus petits bateaux qui pêchent dans les eaux côtières des Açores) : 1970-2006 ;
- Navires espagnols des îles Canaries (série non-standardisée, divisée pour des périodes temporelles, antérieure et consécutive à l'adoption de la technique de pêche en banc associé en 1992): 1980-1991; 1992-2006;
- Flottilles de canneurs (CE-France, CE-Espagne, FIS, Sénégal) opérant à partir de Dakar (Sénégal), (standardisé pour la série temporelle intégrale, puis ventilée avant et après l'adoption de la technique de pêche en banc associé en 1984): 1969-1983; 1984-2006; et
- Navires ghanéens (CPUE non-standardisée), de 1969 à 1982 (Wise 1986).

Deux séries de senneurs ont été utilisées :

- Les senneurs espagnols et associés, ciblant des bancs libres de listao au large du Sénégal pendant le deuxième trimestre de l'année, de 1980 à 2006. L'emploi de la CPUE de senneurs dans cette zone a pour avantage de permettre de calculer un indice d'abondance apparente pour les opérations de pêche en bancs uniquement, ce qui n'est pas le cas dans d'autres zones.
- Les senneurs de la CE qui pêchent avec des DCP essentiellement dans les zones équatoriales : 1991-2006.

Pour le stock occidental, trois indices de taux de capture ont été utilisés :

- La pêcherie de canneurs brésiliens, connue pour cibler spécifiquement du listao (indice standardisé) : 1981-2006 ;
- Les senneurs vénézuéliens, opérant en général avec l'aide des canneurs (indice non-standardisé, corrigé en tenant compte d'une augmentation annuelle modérée de 1% de l'efficacité) : 1982-2005 ; et
- La pêcherie récréative étasunienne (série standardisée) : 1986-2006.

4.1.4 Poids moyen

La **Figure 26** indique le poids moyen du listao pour l'Atlantique Est et l'Atlantique Ouest. Le poids moyen du poisson débarqué n'a dégagé aucune tendance pendant la période la plus récente. Depuis le début des années 1980, le poids moyen du poisson débarqué à l'Ouest double le poids du poisson débarqué dans l'Atlantique Est.

4.2 Albacore

4.2.1 Poids moyen

Le poids moyen de l'albacore a connu une certaine variabilité, mais une tendance décroissante est manifeste depuis le début des années 1970 (**Figure 27**). Lorsqu'on analyse les informations séparées par engin, il est manifeste que la tendance décroissante est principalement due à la palangre et à la senne.

4.2.2 Taux de capture

Senne

Le SCRS/2008/115 présente les taux de capture standardisés de l'albacore adulte capturé par les senneurs qui ont pêché pendant la période 1980-2006 dans l'océan Atlantique tropical. Deux approches ont été utilisées pour obtenir les indices à partir des résultats du modèle linéaire généralisé : (a) moyenne des moindres carrés ; et (b) moyenne des valeurs ajustées. Les estimations de la variance effectuées avec la deuxième approche étaient plus faibles. Néanmoins, les taux de capture standardisés n'ont dégagé aucune tendance.

Dans le document SCRS/2008/116, les informations sur la pêche avec DCP opération par opération consignées dans les livres de bord ont également été analysées afin d'obtenir les taux de capture standardisés de l'albacore juvénile. Un modèle delta-lognormal et un GLM ont été utilisés pour estimer les indices. Les variables explicatives incluses dans le modèle étaient année, région, trimestre et catégorie de navires. Les taux de capture standardisés de l'albacore standardisés de l'albacore ont dégagé une tendance aplanie au cours de la période 1991-2006.

Les taux de capture disponibles à la présente réunion étaient contradictoires (**Figure 29**). Les estimations calculées pour les indices vénézuéliens ont connu trois maximums, mais une tendance à la baisse. Néanmoins, les indices des senneurs tropicaux ont connu un chiffre record en 1989, mais n'ont pas expérimenté de nombreux changements après 1992. Les taux de capture standardisés, tels que calculés pour la base de données de la CE, semblent aplanis au cours de la période 1991-2005.

Canneurs

Les taux de capture nominaux pour la flottille des îles Canaries expérimentent plusieurs chiffres record et chutes (**Figure 30**). Les valeurs estimées recueillies avec la base de données brésiliennes ont chuté abruptement de 1981 à 1982, puis ont dégagé une tendance légèrement à la baisse. Les taux de capture nominale de Dakar ont connu un chiffre record en 1993, puis ont dégagé une tendance descendante.

Pêcheries récréatives

La distribution de modèles mixtes linéaires généralisés et delta-lognormal a été utilisée pour analyser les taux de capture de l'albacore capturé dans l'Atlantique et le Golfe du Mexique, tel que déclaré dans la base de données de l'Enquête statistique des pêcheries récréatives marines des Etats-Unis (MFRSS) (SCRS/2008/122). La zone géographique, la saison et le mode de pêche (navire de pêche affrété ou privé) étaient les facteurs pris en compte dans le modèle. Les taux de capture standardisés varient tous les ans, mais sans dégager de tendance (**Figure 31**). Des maximums ont été observés en 1984, 1994 et 1999, ainsi que des chutes à la fin des années 1980, et au milieu des années 1990. Une tendance descendante est apparente après 1999.

Palangre

Plusieurs indices de CPUE ont été présentés à la réunion, lesquels émanaient de pêcheries autres que celles des senneurs. Tous les indices ont été standardisés à l'aide d'un GLM, chacun différait dans le postulat de la distribution d'erreur (log-normal ou Poisson). Ils avaient en commun les mêmes facteurs de base, tels qu'année, saison et zone, avec d'autres facteurs particuliers à chaque cas.

Les taux de capture standardisés de l'albacore capturé par la flottille palangrière japonaise de 1965 à 2006 ont été estimés à l'aide d'un modèle linéaire généralisé (GLM) (SCRS/2008/108). Les facteurs pris en compte dans le modèle étaient année, trimestre, SST (température à la surface de l'eau), nombre d'hameçons entre les flotteurs et type de lignes principales et secondaires. Les principaux effets et interactions ont été inclus dans l'analyse. Les taux de capture ont été modélisés à l'aide d'une distribution de densité lognormal et une valeur constante positive a été ajoutée au taux de capture afin de traiter les captures égales à zéro. Les taux de capture standardisés, tels qu'estimés sur une base annuelle et trimestrielle, ont diminué jusqu'au milieu des années 1970. Les estimations étaient proches de 1,7 (poissons/1.000 hameçons) jusqu'au début des années 1990, où elles ont chuté à 0,6 (poisson/1.000 hameçons). Après cette chute, la variation des taux de capture standardisés n'a dégagé aucune tendance. Les variations des indices standardisés, tels que calculés en poids, étaient similaires à celles recueillies dans les calculs basés sur le nombre de poissons. Les taux de capture nominaux pour les années 1960 et le début des années 1970, tels que déclarés pour les flottilles japonaises et pour toutes les autres flottilles palangrières, ont été jugés douteux lors d'une réunion antérieure. C'est pourquoi le Groupe a décidé de ne pas utiliser les estimations pour les toutes premières années.

Dans l'Atlantique Sud-Ouest, l'albacore est capturé principalement par les flottilles qui opèrent à la palangre pélagique dérivante. Le SCRS/2008/109 présentait la CPUE standardisée de l'albacore capturé par les flottilles palangrières du Brésil et de l'Uruguay dans l'océan Atlantique au cours de la période 1980-2006 à l'aide de modèles linéaires généralisés avec une approximation delta-lognormal. Le nombre d'opérations analysées se chiffrait à 76.521, avec un effort total de 136.947.483 hameçons entre 7°N-45°S et 57°-20°W. Les variables réponses examinées dans le modèle étaient la CPUE et une CPUE nominale pondérée par la prise totale (CPUEp). L'année, le trimestre, la zone, la température à la surface de l'eau et le type d'engin de pêche ont été considérés comme variables explicatives pour les modèles. La CPUE et la CPUEp standardisée dégagent des oscillations tout au long de la période, avec une tendance descendante au cours des sept dernières années et une hausse modérée en 2005. Les taux de capture standardisés indiquent de fortes variations au fil des ans, avec une baisse de 2000 à 2006. Dans un autre document, seule la base de données uruguayenne a été examinée (SCRS/2008/110). Les résultats étaient similaires à ceux susmentionnés.

Un GLM a également été utilisé pour analyser la CPUE de l'albacore capturé par la flottille palangrière brésilienne mais on a postulé que le taux de capture (nombre de poissons/100 hameçons) suivait les distributions de densités de Poisson et Tweedie (SCRS/2008/112). Les quatre facteurs considérés lors de l'analyse des données de 1986 à 2007 étaient l'année, la zone, le trimestre et la cible. L'analyse par grappes des compositions d'espèces capturées dans les opérations de pêche a été utilisée pour définir les niveaux du facteur « cible ». Les estimations recueillies avec les modèles de Poisson et Tweedie étaient similaires. Les taux de capture standardisés étaient importants entre 1988 et 1990, ont diminué jusqu'en 1993 et n'ont dégagé aucune tendance à la fin de la série temporelle.

Pour la pêcherie palangrière mexicaine et étasunienne opérant dans le Golfe du Mexique (1992-2006), un indice combiné a été présenté (SCRS/2008/119), basé sur les données d'observateurs disponibles. Les variables incluses étaient : année, trimestre, flottille, opérations, température et type d'appât.

Dans le document SCRS/2008/120, la CPUE de l'albacore était en poids et en nombre pour la période 1987-2007. Les taux de capture standardisés de l'albacore ont chuté depuis 1987, mais semblent être en hausse depuis 2003. Globalement, les indices standardisés montrent une baisse depuis 1986, mais une tendance plutôt aplanie depuis 1992. La proposition de prises positives et le taux de capture de jeux de données positives pour l'albacore ont montré des tendances contradictoires dans certaines zones de pêche. Cette question a été discutée mais aucun accord ne s'est dégagé sur l'explication de ces schémas contradictoires.

Pour cette évaluation, on a utilisé des jeux de données du Japon, Brésil, Uruguay, Etats-Unis et un indice combiné entre le Mexique et les Etats-Unis. La plupart des séries temporelles de taux de capture standardisé ont montré une tendance décroissante (Figure 32). Les indices calculés pour le Taïpei chinois et pour les bases de données uruguayennes font figure d'exception. Les estimations pour les données du Taïpei chinois ont chuté au début des années 1970 et sont apparues aplanies après 1974, tandis que les estimations pour les données uruguayennes ont dégagé une forte variabilité, mais aucune tendance.

Indices utilisés dans l'analyse

Après avoir évalué tous les indices de taux de capture disponibles pendant la réunion, le Groupe a décidé d'en utiliser certains pour une analyse de population virtuelle, mais pas pour des modèles de production. Certains des indices dégageaient des tendances temporelles peu fiables. Les indices des taux de capture sélectionnés pour l'analyse de l'évaluation sont inclus dans l'Appendice 7.

Indices combinés

Des indices combinés ont été estimés pour les deux espèces à l'aide d'une approche GLM (*cf.* **Appendice 5**). Pour l'albacore, le modèle incluait la palangre japonaise, la palangre combinée Mexique et Etats-Unis dans le Golfe du Mexique, la canne et moulinet des Etats-Unis, la palangre brésilienne, la palangre du Taïpei chinois, les canneurs canadiens, les senneurs vénézuéliens, les canneurs brésiliens, les canneurs de la CE basés à Dakar, la palangre vénézuélienne et les senneurs de la CE, en postulant une augmentation annuelle constante de la capturabilité de 3%. Les estimations des indices combinées non pondérés et pondérés sont présentées au **Tableau 13** et à la **Figure 33**. L'indice non pondéré et l'indice pondéré ont dégagé des tendances similaires, avec une forte chute à la fin des années 1960, suivie par une période relativement stable jusqu'à environ 1990. A partir de 1990, les deux indices ont dégagé une tendance descendante continue.

Pour le listao, les pêcheries utilisées pour estimer l'indice combiné pour le stock de l'Atlantique Est étaient les pêcheries de senneurs de UE-Dakar et UE-DCP et les pêcheries de canneurs du Ghana, des îles Canaries, du Portugal et de la CE basées à Dakar. Dans le cas du stock de listao de l'Atlantique Ouest, il s'agissait des pêcheries de senneurs vénézuéliens, de canne et moulinet des Etats-Unis et de canneurs brésiliens. L'indice combiné pour le stock de listao de l'Atlantique Est a montré une tendance ascendante variable mais constante depuis le début de la série temporelle en 1965 jusqu'à la fin en 2006. La série du stock de l'Atlantique Ouest a démarré en 1981 et a également dégagé des valeurs fortement variables mais avec une tendance relativement constante. Les valeurs des indices combinés estimés pour chaque stock et les matrices des facteurs de pondération sont illustrées au **Tableau 13** et à la **Figure 33**.

5. Méthodes et autres données relatives à l'évaluation

5.1 Méthodes – Albacore

5.1.1 ADAPT-VPA

Les spécifications des paramètres utilisés dans le cas de base du modèle VPA de 2008 étaient généralement les mêmes que celles employées dans le cas de base du modèle VPA de 2003 (Mérida, Mexique, juillet 2003) (Anon. 2004). Un résumé des réglages et paramètres de contrôle du modèle se trouve ci-dessous et aux **Tableaux 14** (Réglages) et **15** (Paramètres).

Les modèles VPA nécessitent l'estimation ou le postulat des taux de mortalité par pêche de la dernière année (F). Comme lors de l'évaluation antérieure, les cas de base en 2008 (scénarios 5 et 8) ont permis aux valeurs de F terminal d'être estimées pour les âges 0-4. La plus vieille classe d'âge représente un groupe plus (âges 5 et plus) et l'on a spécifié que le taux de mortalité par pêche de la dernière année correspondant était le produit de $F_{âge 4}$ ainsi qu'un paramètre estimé de « F-ratio » qui représente le ratio de $F_{âge 5}$ à $F_{âge 4}$. Pour les scénarios 5 et 10, le F-Ratio initial (1970) a été estimé comme étant un paramètre traditionnel ; on lui a ensuite permis de varier annuellement à l'aide d'une marche aléatoire avec une déviation standard égale à 0,2 et une valeur escomptée de la distribution a priori égale à l'estimation annuelle précédente.

Les indices d'abondance ont été ajustés en postulant une structure d'erreur lognormale et une pondération égale (c'est-à-dire que le coefficient de variation a été représenté par un unique paramètre estimé pour toutes les années et les indices). On a postulé que les coefficients de capturabilité (mise à l'échelle) pour chaque indice étaient constants pendant la durée de cet indice et ils ont été estimés par la formule de vraisemblance concentrée correspondante.

On a postulé que le taux de mortalité naturelle était dépendant de l'âge (âges 0 et $1 = 0.8 \text{ an}^{-1}$; âges $2+=0.6 \text{ an}^{-1}$), comme dans les évaluations antérieures.

Description des sorties du modèle

Le **Tableau 16** résume les indices utilisés pendant les diverses sorties du modèle. Les méthodes utilisées pour estimer les sélectivités des indices sont décrites au **Tableau 17**. Une description générale des sorties du modèle s'ensuit.

- Scénario de continuité : Le « scénario de continuité » a été réalisé afin de déterminer l'état du stock en 2008 en utilisant les mêmes paramètres et structure du modèle que ceux du cas de base de l'évaluation de 2003 (c'est-à-dire des paramètres, contraintes et indices d'abondance identiques). Ceci est supposé faciliter la comparaison entre les résultats de l'évaluation de 2008 et celle de 2003. Les indices d'abondance et les données de capture ont été actualisés et prolongés jusqu'en 2008.
- Les scénarios 5 et 10 ont été choisis comme « scénarios de base » et ont été combinés afin de formuler l'avis de gestion.
- Scénario 5 : Le scénario 5 diffère du scénario de continuité et de la sortie du modèle de 2003 en ce que:

1. Tous les indices recommandés par le groupe de travail chargé de l'évaluation de 2008 ont été utilisés.

- 2. Une pénalisation a été appliquée pour limiter les déviations dans la vulnérabilité par âge (pénalisation appliquée à 2004-2006, âges 0-5+, déviation standard = 0,4).
- 3.L'apogée de la saison de frai a été fixée au 14 février. Le poids par âge des géniteurs a également été calculé à partir de la courbe de croissance en utilisant cette date.
- Scénario 10 : Ce scenario est identique au scenario 5, à l'exception du fait qu'il a été postulé que les indices palangriers et des senneurs tropicaux ont des schémas de sélectivité à la partie supérieure plane plutôt que des schémas fortement en forme de cloche estimés par le Scénario 5. Pour intégrer ce postulat, les schémas de sélectivité estimés pendant le Scénario 5 ont été utilisés jusqu'à ce que soit atteinte la sélectivité totale. Ensuite, une pleine sélection (1,0) a été retenue pour les âges plus avancés.

5.1.2 ASPIC

Le stock d'albacore a également été évalué avec un Modèle de production excédentaire (ASPIC v. 5.16) utilisant les débarquements de la période 1950-2006. Trois différents ensembles de pêcheries ont été examinés dans les scénarios :

- Une flottille combinée avec un indice combiné pour la période 1965-2007. Ce cas a employé un indice combiné pondéré (*cf.* Section 4) pour la palangre japonaise, la palangre combinée du Mexique et des Etats-Unis opérant dans le Golfe du Mexique, la canne et moulinet des Etats-Unis, la palangre brésilienne, la palangre du Taïpei chinois, les canneurs des îles Canaries, les senneurs vénézuéliens, les canneurs brésiliens, les canneurs communautaires basés à Dakar, la palangre vénézuélienne et les senneurs communautaires, postulant une augmentation annuelle constante de 3% dans la capturabilité.
- 2) Dix flottilles distinctes dont les indices couvrent certaines parties de la période 1965-2007. Ce cas a utilisé des débarquements et indices d'abondance distincts pour la palangre japonaise, la canne et moulinet des Etats-Unis, la palangre brésilienne, la palangre des Etats-Unis, la palangre uruguayenne, la senne vénézuélienne, les canneurs brésiliens et les flottilles de canneurs de l'UE-Dakar. Une dixième flottille incluait tous les autres débarquements et n'avait pas d'indice d'abondance correspondant.
- Une flottille combinée avec un indice combiné pour la période 1956-2006. Ce cas a employé l'indice combiné de 1965 à 2006 qui est remonté jusqu'à 1956 en utilisant les données de la Tâche II.

Le **Tableau 18** montre les indices d'abondance utilisés dans chaque cas tandis que le **Tableau 19** fournit les captures. Ces trois scénarios ont testé différentes combinaisons de différentes formes de modèle (logistique par opposition à généralisé), des indices pondérés ou non pondérés, et une valeur fixe ou estimée de B_1/K . Un total de dix cas initiaux ont été examinés, lesquels sont récapitulés au **Tableau 20**.

5.2 Méthodes – Listao

5.2.1 Modèle seulement avec capture

Le modèle seulement avec capture combine un modèle de dynamique de la biomasse de Schaefer avec un modèle de dynamique de l'exploitation logistique (Vasconcellos et Cochrane, 2005). Le modèle postule que la capture des pêcheries suit une courbe logistique qui dépend de deux paramètres. Le modèle prédit les prises totales, qui sont ajustées aux prises observées à l'aide des méthodes bayésiennes (Gelman *et al.*, 2004). Les ajustements sont réalisés à l'aide d'un cadre bayésien afin de permettre d'utiliser l'information a priori, laquelle pourrait stimuler l'extraction de l'information provenant des captures. Un test de simulation préliminaire (Minte-

Vera *et al.* en prép.) a montré que, pour les jeux de données artificielles, les données de capture combinées avec des priors informatifs sur certains paramètres pourraient produire des quantités de gestion acceptables.

Un modèle de capture seulement est donné par :

$$C_{t+1} = P_t \left[1 + x \left(\frac{B_t}{aK} - 1 \right) \right] \left[B_t + r B_t \left(1 - \frac{B_t}{K} \right) - C_t \right]$$

où :

 C_{t+1} est la capture à l'heure t_{+1} ;

 P_t est la proportion de la biomasse capturée à l'heure t;

 B_t est la biomasse de la population à l'heure t;

K est la capacité de transport, ou la biomasse à laquelle la croissance de la population est nulle ;

r est le taux intrinsèque du changement de la biomasse de la population ;

x est un multiplicateur qui définit l'augmentation de la mortalité par pêche dans le temps ;

a (0<a<1) est l'équilibre bioéconomique comme proportion de K.

Dans ce modèle, quatre paramètres sont estimés : r, K, a et x. On a postulé que la population faisait l'objet d'une légère exploitation au début de la série temporelle (donc $B_0 = K$), et que la première prise (C_0) était mesurée sans erreur (donc $P_0 = C_0/B_0$).

Les paramètres ont été estimés à l'aide de techniques bayésiennes. Plusieurs combinaisons de priors ont été employées. Pour le stock Ouest, les priors pour K étaient établis comme $K \sim U(100\ 000,1\ 000\ 000)$, ln(K) $\sim U(\ln(100\ 000)$, ln($1\ 000\ 000$)) ou une distribution lognormale avec une moyenne de 350 000 t et CV=0,5. Pour le stock Est, les priors pour K étaient établis comme $K \sim U(200\ 000, 2\ 000\ 000)$, ln(K) $\sim U(\ln(200\ 000)$, ln($200\ 000$)) ou une distribution lognormale avec une moyenne de 350 000 t et CV=0,5. Pour le stock Est, les priors pour K étaient établis comme $K \sim U(200\ 000, 2\ 000\ 000)$, ln(K) $\sim U(\ln(200\ 000)$, ln($200\ 000$)) ou une distribution lognormale avec une moyenne de 700 000 t et CV=0,5. Les priors pour r étaient établis comme $r \sim U(0.4, 2.0)$ pour un prior basé sur des méthodes démographiques (cf. **Appendice 6**, McAllister *et al* 2001). Les priors pour a étaient établis comme uniformes sur la gamme possible du paramètre $a \sim U(0,1)$. Des tests de sensibilité pour les priors pour x ont été réalisés étant donné que certaines combinaisons de valeurs de a et de x pourraient entraîner des oscillations irréalistes sur le taux de capture et donc sur la biomasse. Initialement, les priors de x étaient établis comme $x \sim U(0,10)$, ensuite la gamme a été limitée à $x \sim U(0,1)$ ou $x \sim U(0, 1.1)$ pour les stocks Est et Ouest, respectivement.

On a postulé que les captures observées suivaient une fonction de vraisemblance log-normale (Casella et Berger 2002) avec une valeur escomptée égale aux captures prédites par les modèles :

$$L(\phi | w) = \prod_{t=1}^{n} \frac{1}{\sigma C_{t} \sqrt{2\pi}} \exp \left[-\frac{1}{2\sigma^{2}} (\ln C_{t} - \mu)^{2} \right]$$

où :

$$\mu = \ln E(C_t) - \frac{\sigma^2}{2}$$

n est la longueur de la série temporelle des captures

 C_t est la capture observée dans l'année t

 \hat{C}_t est la prise escomptée pour l'année t prédite par le modèle

 σ est le paramètre de variabilité postulé être connu et égal à 0,4.

Les paramètres ont été estimés à l'aide de SIR-Sampling Importance Resampling (McAllister et al. 1994; Gelman et al. 2004). La fonction de l'importance était égale à la fonction des priors conjoints, et le ratio d'importance est donc égal à la vraisemblance. Un million de vecteurs paramètres ont été aléatoirement échantillonnés à partir de la distribution des priors conjoints ; sur ceux-ci, 20.000 échantillons ont été prélevés avec remplacement, la probabilité étant proportionnelle au ratio d'importance. Punt et Hilborn (1997) ont découvert que le ré-échantillonnage doit être fait jusqu'à ce qu'aucun vecteur ne se voit assigner plus de 1% de probabilité a posteriori (MSD-maximum de la densité unique). Dans notre cas, le MSD a été contrôlé et aucun vecteur n'est apparu dans plus de 1% des ré-échantillonnages. Ont également été utilisés d'autres diagnostics pour la convergence, tels que le coefficient de variation dans la pondération moyenne de l'importance (McAllister et Kirchner, 2002) et le ratio d'importance maximum (McAllister et Pikitch, 1997).

Les données utilisées dans le premier jeu de scénarios étaient la série temporelle des prises totales de 1950 à 2006 pour le stock Est et de 1976 à 2006 pour le stock Ouest. Même si les captures du stock de listao de l'Ouest débutent en 1953, elles demeurent très faibles jusqu'au milieu des années 1970. Des scénarios préliminaires utilisant toute la série de captures n'ont pas pu être exécutés étant donné que le modèle n'a pas pu trouver une combinaison de paramètres qui produirait une trajectoire dotée d'un faible taux de capture pendant pratiquement 30 ans. Pour le deuxième jeu de scénarios, le modèle a été ajusté à une série de captures restreinte pour le stock Est afin de ne disposer que de captures originaires d'une pêcherie plus homogène (*cf.* section 3.2). La série a été divisée en deux périodes, de 1965 à 1984 et de 1985 à 2006.

5.2.2 PROCEAN

Le modèle PROCEAN (Analyse de production de capture/effort) est un modèle de production excédentaire multi-flottilles développé dans un cadre bayésien afin de réaliser des évaluations de stocks basées sur les données des séries temporelles de prise et d'effort (Maury, 2001; Maury et Chassot, 2001). PROCEAN est un modèle de dynamique de la biomasse basé sur le modèle généralisé de production excédentaire (Pella et Tomlinson, 1969) qui inclut une erreur de processus pour la capturabilité de la flottille de pêche, la capacité de transport du stock et une erreur de processus solide sur la mortalité par pêche.

Les huit séries temporelles indépendantes des indices d'abondance définis par le Groupe de travail ont été utilisées ainsi que l'indice d'abondance combiné pondéré par zone de pêche (*cf.* Section 4).

Les scénarios préliminaires ont montré que les données ne contenaient pas suffisamment d'informations pour estimer le paramètre forme (m) concernant l'évolution typique « sans retour » de la pêcherie de listao de l'Atlantique Est ; il a donc été fixé lorsque le modèle a été exécuté. La biomasse initiale du stock en 1969 (B0) s'est également avérée difficile à estimer et l'on a postulé qu'elle était égale à une proportion fixe de la capacité de transport (K). Des distributions informatives de priors ont été considérées pour le paramètre taux de croissance (r) et la production maximale équilibrée (PME). Des distributions normales avec une moyenne de 1,17 (S.D. = 0,26) et 150.000 (S.D. = 20.000) ont été postulées pour le taux de croissance intrinsèque (Section 5.3.2) et la PME, respectivement. Une analyse de sensibilité a été réalisée pour tenir compte de l'incertitude dans certains paramètres d'entrée et évaluer l'impact des distributions a priori sur les estimations a posteriori (cf. Section 6.2.4).

5.2.3 Méthodes du modèle de production excédentaire bayésien

Le modèle de production excédentaire bayésien (McAllister *et al.* 2001) est un modèle de production excédentaire en conditions de non-équilibre qui permet des distributions a priori sur le taux intrinsèque de l'augmentation de la population (r), la capacité de transport (K), la biomasse dans la première année modélisée définie comme ratio (*alpha.b0*) de K, prise annuelle moyenne avant l'enregistrement des données ainsi que la variance, le paramètre forme (n) pour un modèle Fletcher/Scheafer et des paramètres de capturabilité pour chaque série temporelle. Le modèle utilise un algorithme *Sampling Importance Resampling* (SIR, McAllister et Kirkwood 1998) et peut s'adapter à un modèle de production soit de type Scheafer, soit de type Fletcher/Scheafer. Le modèle BSP a été accepté dans le catalogue ICCAT et a été antérieurement appliqué à plusieurs espèces de l'ICCAT (makaire blanc, thon rouge, istiophoridés, thon obèse). C'est néanmoins la première fois que le modèle est appliqué au listao.

Dans cette application, nous utilisons la formulation du modèle logistique de Schaefer et l'estimation de r et k et alpha.b0 à l'aide des distributions a priori. On a postulé une distribution lognormale de priors (moyenne=1, sd=0,01) pour alpha.b0 en se basant sur le fait que la biomasse dans la première année de l'année du modèle (1950 pour le listao de l'Est et 1952 pour le listao de l'Ouest) était au niveau de la capacité de transport ou proche de celui-ci. On a déterminé les distributions a priori pour r sur la base de la modélisation démographique décrite à la Section 5.3.2. On a initialement estimé que les priors pour K étaient uniformes sur K ou log K avec des limites maximales égales à 10 fois la prise maximale observée et des limites minimales égales à la prise maximale observée, mais qu'ils sont ultérieurement descendus à ~ 5 fois la prise maximale. Dans cette formulation du modèle BSP, nous avons introduit des distributions a priori pour les paramètres r et K et avons postulé que K était égal à la biomasse au point de départ pour chaque capture enregistrée pour chaque modèle.

Il a été nécessaire d'ajuster et de paramétrer initialement le modèle pour trouver des valeurs de départ adéquates pour les paramètres d'entrée r et K afin d'obtenir que le modèle estime les valeurs modales qui sont soit les estimations maximales de vraisemblance pour les paramètres non-bayésiens, soit le mode de la distribution a posteriori pour les paramètres bayésiens. Ceci est exécuté pendant la composante « mode d'estimation » de la procédure d'ajustement du modèle et souvent différentes valeurs de départ se sont avérées nécessaires pour les différents scénarios. Les valeurs de départ pour les divers paramètres sont fournies aux **Tableaux 21** et **22** pour le listao de l'Ouest et de l'Est, respectivement. Les indices utilisés pour le listao de l'Ouest sont présentés au **Tableau 23** et pour le listao de l'Est aux **Tableaux 24** et **25**.

Pour chaque sortie du modèle, les diagnostics de convergence ont été examinés au cours du stade « échantillonnage d'importance » de la modélisation selon la méthodologie décrite dans McAllister et Kirkwood (1998). En outre, compte tenu de la nature non-informative ou contradictoire de nombreux indices d'entrée, l'examen des diagnostics s'est avéré particulièrement critique en raison du biais potentiel que la fonction d'importance peut transmettre sur les modes postérieurs. Il est recommandé que les coefficients de variation (CV) des pondérations CV(wts) des échantillonnages d'importance soient inférieurs au CV de la vraisemblance multiplié par les priors CV(L*P) pour les mêmes échantillonnages. Comme diagnostic de convergence pour l'algorithme SIR, nous avons alors utilisé le ratio de CV(wts)/CV(L*P) en postulant que des ratios supérieurs à 2 étaient inacceptables, que des ratios entre 1 e 2 étaient marginaux et que des ratios inférieurs à 1 étaient acceptables.

5.3 Autres méthodes

5.3.1 Estimation des tendances potentielles de la capturabilité dans la flottille de senneurs européens

Le Groupe a noté que dans diverses analyses antérieures on avait postulé que la capturabilité associée à la flottille senneurs tropicaux de la CE avait augmenté d'environ 3% par an depuis 1980. Le Groupe a réalisé des analyses supplémentaires afin de déterminer si des changements de capturabilité n'étaient pas survenus à un taux constant depuis 1980.

Les données utilisées (*cf.* **Figures 34** et **35** pour les trois espèces tropicales séparément et combinées) étaient : prise totale entre 1950-2006 ; prise et effort nominal (jours de pêche) entre 1969-2006 des flottilles de senneurs communautaires et associés. Aucune tentative n'a été faite de séparer les opérations avec DCP de celles en bancs libres. Les valeurs de l'effort de 1983 et 1984 ont semblé anormalement élevées et ont été exclues des analyses.

L'approche utilisée peut être récapitulée comme suit : en fonction des prises totales, les trajectoires de la biomasse ont été calculées en se basant sur un modèle de production déterministe de Fox doté de valeurs de paramètres postulées (celles-ci sont expliquées ci-dessous). A partir de ces valeurs de biomasse, des prises et de l'effort de pêche total et des senneurs, il est possible de dériver des valeurs de mortalité par pêche et de capturabilité par flottille de senneurs. Les tendances dans les valeurs de capturabilité résultantes ont ensuite été examinées. Les équations suivantes expliquent la méthode utilisée :

- 1) Postule des valeurs pour *PME* et *K*.
- 2) Postule que **J**
- Projette la population en avant en utilisant le paramétrage Fletcher du modèle Fox compte tenu des valeurs ci-dessus et la série temporelle des prises totales connues :

$$B_{r+1} = B_r - e^1 MSY \frac{B_1}{K} ln \left(\frac{B_1}{K}\right) - TC_r$$

4) Estime la mortalité par pêche totale :

$$F_{L} = \frac{t_{G_{p}}}{(n_{p} + n_{p+1})/2}$$

5) Estime la mortalité par pêche à la senne basée sur le ratio des prises des senneurs (P) par rapport à la prise totale :

$$F_{F_{p}} = \frac{F_{F_{p}}}{F_{F_{p}}}F_{p}$$

6) Estime la capturabilité des senneurs en utilisant l'effort nominal :

$$q_t = \frac{r_t}{h}$$

Les valeurs postulées pour la PME du thon obèse et de l'albacore se situaient à 90.000 t et 150.000 t, comme cela a été estimé dans les évaluations antérieures. On a postulé une PME de 150.000 t pour le listao de

l'Atlantique Est. Lorsque les trois stocks ont été examinés ensemble, la PME total se chiffrait à 390.000 t.

Les valeurs de *K* pour le thon obèse et l'albacore ont été calculées de façon à ce que les ratios projetés B_{2006}/B_{PME} s'élèvent à 0,9 et 1,0 respectivement. La valeur de *K* pour le listao a été fixée arbitrairement à 700.000 t, chiffre similaire aux valeurs calculées pour l'albacore et le thon obèse. La valeur de *K* pour les analyses des trois espèces combinées a été la somme des trois valeurs individuelles de *K*.

Le Groupe a calculé les changements de pourcentage moyens dans la capturabilité en réalisant une régression de $In(q_t)$ contre le temps pour différentes périodes temporelles. Il s'agissait de 1969-1979, 1980-1990 et 1991-2006, soit les mêmes périodes examinées pour diviser les séries pour les analyses Multifan. En outre, la période temporelle 2002-2006 a été examinée pour chercher à déterminer des tendances plus récentes.

Résultats

Les tendances projetées de la biomasse sont indiquées à la **Figure 36**. Les modèles montrent des chutes plus accusées pour le thon obèse et l'albacore qu'elles ne le font pour le listao ou pour les trois espèces combinées.

Le **Tableau 26** fournit les paramètres postulés de la dynamique de population et les pentes résultantes de la régression de In(q) contre le temps pour différentes périodes temporelles. Les valeurs de In(q) pour l'intégralité de la période temporelle sont indiquées à la **Figure 37**. Ces résultats suggèrent que pendant certaines périodes temporelles, la capturabilité pourrait avoir changé de plus de 10% par an. Ceci est manifeste principalement dans les années 1970 et 1980. Pour les cinq années les plus récentes, ces analyses suggèrent que la capturabilité continue d'augmenter rapidement pour le listao, est en diminution pour l'albacore et augmente lentement pour le thon obèse.

Les **Figures 38** et **39** montrent l'effort de pêche (nominal) d'entrée ainsi que l'effort ajusté par les estimations de capturabilité par espèce. Il est à noter que le plus grand impact de l'ajustement de l'effort par capturabilité revient au thon obèse, puis au listao et enfin à l'albacore.

La **Figure 39** compare la série d'effort nominal avec deux séries ajustées pour l'albacore. La ligne bleue est ajustée en utilisant les changements de capturabilité estimés dans les présentes analyses. La ligne rouge a été obtenue en suivant la même approche qui a été appliquée à la réunion d'évaluation sur l'albacore tenue à Cumaná, Venezuela, en 2000 (Anon. 2001), laquelle postule une hausse annuelle de 3% dans q après 1980. (Il est à noter que les séries d'effort d'entrée utilisées pour les deux analyses sont différentes). Les deux séries ajustées sont d'envergure similaire, même si au cours de certaines années l'effort ajusté à partir de l'analyse actuelle peut être supérieur de 60% à l'effort ajusté par le changement annuel de 3% dans q.

Lors des discussions sur les résultats obtenus, le Groupe a convenu que l'approche utilisée pour calculer les changements dans q a des points forts et des points faibles. Le point fort est que le taux auquel q change dans le temps n'est pas fixé. Un autre point fort est qu'il est rattaché à un modèle de dynamique de population. En termes de faiblesse, la nature déterministe du modèle Fox utilisé est plutôt inflexible. Une approche plus flexible serait, par exemple, d'estimer les changements de capturabilité comme des passages aléatoires dans un cadre d'évaluation de stock, tel que Multifan-CL. Finalement, le Groupe n'a pas examiné dans le détail l'effet que les changements dans les valeurs postulées de PME et K auraient sur les résultats, bien que les sorties limitées aient suggéré que les tendances dans q étaient relativement insensibles à ceux-ci.

Pour les analyses d'évaluation des stocks, le Groupe a conclu qu'il conviendrait d'utiliser à la fois les séries d'effort ajustées pour une augmentation de 3% dans q par an, ainsi que celles ajustées par les changements de capturabilité estimés dans ces analyses (**Tableau 27**).

6. Résultats de l'état des stocks

6.1 Etat des stocks – Albacore

6.1.1 Résultats de la VPA

Cette section résultats des analyses de VPA expliquées à la Section 5.1. L'**Appendice 7** contient les fichiers de résultats du logiciel VPA-2BOX pour les cas de base du modèle VPA (Scénarios 5 et 10). Cet Appendice contient une description complète des résultats de VPA, y compris la matrice des taux de mortalité

par pêche estimés, l'abondance à l'âge, la biomasse du stock, le recrutement, les ajustements aux indices, les sélectivités estimées des indices, les F-ratios et Fs à l'âge terminal.

Diagnostics

Les **Figures 40** et **41** résument les ajustements à la série de CPUE pour le modèle de continuité VPA et pour le cas de base. Les ajustements au cas de base (Scénarios 5 et 10) sont très similaires, mais montrent une absence considérable d'ajustement à de nombreux indices (**Figure 41**).

Rétrospectives

Une analyse rétrospective a été réalisée en éliminant séquentiellement les entrées de capture et les indices d'abondance du cas de base du modèle de 2008, en remontant jusqu'en 2003. La **Figure 42** indique les tendances de la biomasse reproductrice et les recrutements pour les cas de base. Les tendances de la SSB ont été ajustées à la valeur maximale de la série afin de faciliter la comparaison. Les tendances de la SSB sont sensibles à l'élimination séquentielle des données et ne montrent aucune convergence dans le temps. Au lieu de cela, certaines séries indiquent une chute plus accusée de la biomasse. Le recrutement estimé est assez insensible à l'élimination rétrospective des données. Au cours de ces dernières années, les estimations du recrutement ont fluctué sans un schéma évident.

Les schémas rétrospectifs de la mortalité par pêche à l'âge (FAA) et des nombres à l'âge (NAA) sont récapitulés aux **Figures 43** et **44**, respectivement. On note un schéma rétrospectif considérable dans la FAA, notamment pour les âges 4 et 5+ entre 1990 et 2006. Le schéma rétrospectif du NAA est moins apparent. Les résultats du modèle sont généralement convergents jusqu'aux années les plus récentes, puis ils varient sans schéma évident.

Comparaison du cas de base des modèles VPA de 2003 et de 2008

Le scénario de continuité de 2008 a été construit afin d'examiner les implications de l'ajout d'années récentes (2002-2006) au modèle VPA sans changer les indices utilisés ou les paramètres du modèle. Les tendances de la mortalité par pêche apicale, de la biomasse du stock reproducteur (SSB), de l'abondance (âges 0-5+), du recrutement (âge 0) et du F-ratio annuel (F5+/F4) pour le cas de base du modèle de 2003 et le modèle de continuité de 2008 sont décrites à la **Figure 45**. Les résultats de l'évaluation du stock du scénario du cas de base de 2003 et du scénario de continuité de 2008 sont similaires, mais certaines différences sont manifestes dans les estimations du recrutement, de l'abondance et de la mortalité par pêche, notamment entre 1999 et 2001. Ces incohérences pourraient vraisemblablement être causées par les différences dans les F-ratios estimés pendant ces années. Les estimations de la SSB sont assez similaires sur toute la série temporelle.

Cas de base des modèles VPA

Le Groupe de travail a choisi deux modèles (Scénarios 5 et 10) afin de fournir un avis de gestion. Les tendances annuelles de la production, la biomasse totale, la mortalité par pêche apicale, des recrutements (âge 0), de la biomasse du stock reproducteur (SSB) et de la SSB relative à la SSB à Fmax sont illustrées à la **Figure 46** (Scénario 5) et à la **Figure 47** (Scénario 10). On a estimé l'incertitude dans les valeurs annuelles à l'aide de 500 bootstraps des valeurs résiduelles de l'indice.

Les deux scénarios sont très semblables, bien que le Scénario 10 fasse une estimation légèrement plus optimiste de l'état des stocks qu'en 2006.

Scénarios de sensibilité

Plusieurs scénarios de sensibilité ont été réalisés afin d'examiner la sensibilité du modèle à :

- 1) L'application/élimination de pénalisations sur les déviations dans le récent recrutement.
- 2) L'application/élimination de pénalisations sur les déviations dans les récentes estimations de la vulnérabilité à l'âge.
- 3) Changements dans le calendrier appliqué aux indices d'abondance.
- 4) Divers postulats sur la prise par âge de la palangre japonaise en 2006.
- 5) Estimer un F-ratio unique pour toutes les années (1970-2006).
- 6) Fixer le F-ratio pour tous les ans à des valeurs différentes.

Le Groupe a envisagé ces modèles pendant le développement du scénario de base, mais a finalement décidé que ces scénarios ne seraient pas utilisés pour formuler l'avis de gestion.

Etat des stocks

Le Groupe de travail n'a pas pu choisir entre les deux cas de base de la VPA, et comme les résultats du modèle étaient si similaires (**Figures 46** et **47**), le Groupe a recommandé de combiner les résultats du modèle dans une distribution conjointe unique. Cette distribution conjointe a été utilisée pour déterminer l'état du stock et élaborer l'avis de gestion. Des références de gestion ont été calculées à l'aide des médianes de la distribution conjointe, et en postulant un recrutement constant égal à la moyenne des recrutements observés entre 1970-2006. Tous les paramètres de gestion et les points de référence sont récapitulés au **Tableau 28**.

La trajectoire de l'état du stock pendant la série temporelle est résumée à la **Figure 48**. Selon la distribution conjointe des cas de base des modèles de 2008, l'albacore n'a jamais subi de surpêche, même si une surpêche a eu lieu (**Figure 48**; symboles jaunes). L'état actuel du stock a été estimé à l'aide de SSB₂₀₀₆/SSB_{MAX} et $F_{Current}/F_{MAX}$. Selon les résultats de la distribution conjointe, le stock n'est pas actuellement surpêché (SSB₂₀₀₆/SSB_{MAX} = 1,09) ni n'expérimente de surpêche ($F_{Current}/F_{MAX}$.= 0,84) (**Figure 49**). L'incertitude dans l'état du stock a été estimée au moyen du bootstrap des valeurs résiduelles de l'indice. 500 bootstraps ont été réalisés pour chaque cas de base du modèle VPA (**Figure 49**). Des histogrammes des estimations du bootstrap de l'état du stock de 2006 à partir de la distribution conjointe ont été construits afin d'examiner la normalité de la distribution. Aucune preuve de biais accusé ne se dégage des résultats (**Figure 50**).

Les conclusions de cette évaluation ne rendent pas toute l'ampleur de l'incertitude dans les évaluations et les projections. Un facteur important contribuant à l'incertitude est l'exactitude de la courbe de croissance et de la procédure de découpage des âges. Les procédures de découpage des âges sont sensibles aux légers changements des limites de découpage. Des méthodes améliorées visant à estimer la prise par âge (p.ex. des approches stochastiques et/ou la composition démographique directement observée) ont le potentiel d'améliorer la fiabilité des modèles structurés par âge. Une autre source importante d'incertitude est le recrutement, à la fois en termes de niveaux récents (qui estimaient avec peu de précision dans l'évaluation), et en termes de niveaux futurs potentiels. Ces modèles ont postulé que le recrutement se poursuivrait au niveau observé pendant la période 1970-2006. Il est possible que des changements dans la pression de pêche ou l'environnement puissent invalider ce postulat.

6.1.2 ASPIC

Le **Tableau 29** montre les résultats initiaux des 10 scénarios. La **Figure 51** présente les trajectoires estimées de la biomasse relative et de la mortalité par pêche relative pour chacun des 10 cas. Dans le cas de la biomasse relative, les cas 1, 3, 7 et 9 ont dégagé des tendances très différentes par rapport aux autres cas. Pour la mortalité par pêche relative, les cas 1, 3, 9 et 10 ont clairement dégagé des trajectoires avec différentes tendances. Après un examen initial des résultats, le Groupe a décidé de réaliser des bootstraps pour les cas 2, 4, 6 et 8. Les trajectoires déterministes estimées pour les quatre cas de bootstrap sont indiquées à la **Figure 52**. Les quatre cas ont dégagé les mêmes tendances avec une hausse de la mortalité par pêche et une réduction de la biomasse qui a donné lieu à une période au cours de laquelle le stock a été surpêché et a connu une surpêche, suivie d'une période de rétablissement. Actuellement, le stock est surpêché mais il n'expérimente plus de surpêche. La **Figure 53** montre les diagrammes de phase de chacune des quatre sorties de bootstrap (500 bootstraps) pour l'année 2006 (c'est-à-dire condition actuelle). Les **Figures 54** et **55** montrent les trajectoires de la biomasse relative et la F relative et l'intervalle de confiance (CI) de 80% estimé à partir des 500 bootstraps. Le **Tableau 30** récapitule les résultats des sorties de bootstrap pour les cas 2, 4, 6 et 8.

6.2 Etat du stock – Listao

6.2.1 Modèle Multifan-CL

Le Groupe a tenté de réaliser plusieurs analyses des stocks Est et Ouest combinés. Ceux-ci, comme prévu, ont tous dégagé une très faible convergence étant donné que les données de marquage n'ont pas été jugés être très informatives sur une échelle spatiale océanique. Par conséquent, le Groupe a réalisé des analyses distinctes pour les stocks Est et Ouest, lesquelles sont décrites ci-dessous.

6.2.1.1 Atlantique Est

Le modèle de l'Est incluait 10 pêcheries distinctes (*cf.* Section 4.1.3), était divisé en cadres temporels annuels et trimestriels et postulait quatre cas de recrutement, chacun survenant au début de chaque trimestre. La mortalité naturelle a été fixée à 0,2.trimestre⁻¹. Les options pour le cas de base du modèle de l'Est qui incluait toutes les données de capture de 1950 à 2006 étaient similaires à celles du case de base du modèle simulé pour la région occidentale. Toutefois, les principales différences étaient que le modèle pour la région orientale incluait une fonction de sélectivité spline cubique avec trois nœuds (passant ultérieurement à cinq) et que les pénalisations pour les déviations de l'effort étaient établies pour être les mêmes pour toutes les pêcheries.

Le modèle a eu beaucoup de mal à estimer la biomasse au début de la période de pêche (**Figure 56**). L'estimation de la biomasse par le modèle a fortement fluctué pour les années initiales du modèle, étant ramenée à zéro de manière répétée. Les estimations de la PME et de F_{PME} ont en conséquence été dénuées de sens (**Figures 57** et **58**). Compte tenu de la faiblesse de l'estimation du modèle, une autre sortie du modèle a été réalisée qui incluait uniquement les données de 1970-2006. Le modèle a été établi afin d'estimer la structure démographique de la population initiale en se basant sur la moyenne de Z au cours des 20 dernières périodes temporelles (trimestres dans ce cas). En outre, l'option de sélectivité spline cubique a été supprimée et au lieu de cela, on a établi que la sélectivité dépendait de la longueur pour toutes les pêcheries. Même si ces changements ont supprimé la présence de la biomasse en la ramenant à zéro au cours des années initiales de la sortie du modèle, il s'en est tout de même ensuivi une augmentation de la biomasse dans le temps (**Figure 59**). Les estimations de PME et F_{PME} (**Figures 60** et **61**) étaient superficiellement plus plausibles que la sortie antérieure du modèle, mais clairement irréalistes en raison des étranges estimations de la biomasse.

Même si plusieurs options de modèle et variations *ad hoc* ont été simulées pour ce stock afin d'améliorer les sorties du modèle, elles ont toutes donné lieu à des schémas irréalistes similaires pour la biomasse. En conséquence, la poursuite des analyses a été abandonnée. Il est clair qu'à ce stade, les données pour la région orientale n'étaient pas appropriées pour la simulation avec Multifan-CL dans les limites temporelles de la réunion du Groupe de travail. D'autres sorties de modèles devraient être effectuées pendant la période intersession et devraient possiblement inclure les données de marquage une fois que celles-ci auraient été complètement vérifiées.

6.2.1.2 Atlantique Ouest

Le scénario du cas de base pour le stock Ouest a utilisé les données de 1952 à 2006 pour trois pêcheries (1 = canneurs brésiliens ; 2 = canneurs + senneurs vénézuéliens ; et 3 = autres) et les postulats/contraintes suivants :

- Assumer la population de départ en conditions d'équilibre sur la base de M ;
- Assumer M = 0,2 par trimestre ;
- Estimer quatre cas de recrutement annuels ;
- Permettre une plus grande variabilité dans les déviations de l'effort pour les pêcheries 2 et 3 (pondérations = 10, 3 et 3)
- Diviser les fréquences de taille en 10 (pêcherie 1) ou en 20 (pêcheries 2 et 3) ;
- Estimer les sélectivités séparément par pêcherie; postuler une sélectivité constante après l'âge 14 (trimestres);
- Estimer la courbe de croissance, à commencer par celle postulée par l'ICCAT (cf. Manuel);
- Permettre des marches aléatoires dans les capturabilités des 3 pêcheries ;
- Ajuster une relation stock-recrutement afin d'estimer les statistiques liées à la PME (moyenne du prior d'inclinaison = 0,9),

On a réalisé un scénario de sensibilité additionnel en estimant la mortalité naturelle.

Un résumé des diagnostics d'ajustement est décrit à la **Figure 62**. Les schémas de sélectivité estimés sont présentés à la **Figure 63** et les trajectoires de recrutement et la SSB sont illustrées à la **Figure 64**. Globalement, le modèle estime des schémas de sélectivité en cloche et des fluctuations considérables dans le recrutement et la biomasse reproductrice. L'ajustement du modèle était imprécis. Il n'a pas été possible d'obtenir des estimations de variance de toutes les quantités d'intérêt. Des intervalles de confiance d'environ 90% pour le recrutement et la SSB sont fournis à la **Figure 65**.

En termes de points de repère, le modèle a estimé une PME de 30.660 t par an, et des ratios actuels (2006) de $B/B_{PME}=2,04$ et $F/F_{PME}=0,51$. Un diagramme de B relatif et F relatif se trouve à la **Figure 66**. Lorsque le

scénario de sensibilité estimant M a été réalisé (M a été estimé à 0,32 par trimestre), les points de repère ont été estimés comme suit : PME=35.960 t, B/B_{PME}=2,31, F/F_{PME}=0,47.

Le Groupe a été encouragé par ces résultats préliminaires et a recommandé que des travaux supplémentaires soient entrepris à l'avenir afin d'affiner les analyses du modèle Multifan-CL pour le stock.

6.2.2 Résultats du modèle bayésien de production excédentaire

6.2.2.1 Listao de l'Ouest

Les indices utilisés pour l'évaluation du modèle de production du listao de l'Atlantique Ouest ont fourni des informations assez contradictoires, notamment à propos de la chute abrupte de l'indice des senneurs vénézuéliens (**Figure 67**) et des fortes fluctuations dans l'indice de la canne et moulinet des Etats-Unis et des canneurs brésiliens. Il existe peu de chevauchement spatial dans la couverture de ces indices et compte tenu de la forte viscosité du listao, ces indices pourraient davantage refléter les conditions locales que le stock Ouest global. Il n'est donc pas invraisemblable que ces indices puissent dégager des tendances contradictoires.

Probablement en raison de ces tendances contradictoires, les sorties du modèle BSP pour le stock de listao de l'Atlantique Ouest ont initialement rencontré des problèmes avec la convergence indiquée par un CV très élevé des pondérations des échantillonnages par importance par rapport au CV de la vraisemblance multipliée par les priors cv(wts)/cv(lp). Pareille situation peut survenir lorsque les indices des valeurs d'entrée sont soit contradictoires, soit non-informatifs, comme cela s'est produit dans plusieurs évaluations des stocks de requins (McAllister et Kirkwood, 1998), entraînant une fonction d'importance très étroite. Pour y remédier, McAllister a recommandé d'accroître la fonction d'importance de la largeur afin de permettre une variabilité d'échantillonnage plus ample avec l'ajustement du paramètre expand.imp ou en diminuant les degrés de liberté de la fonction d'importance de type t multivarié (la fonction d'importance utilisée pour ces modèles). Le Groupe a exploré une série de scénarios (5-9), soit en élargissant la fonction d'importance, soit en augmentant les degrés de liberté où chaque expansion successive a amélioré les critères de convergence cv(wts)/cv(lp) et élargi la distribution a posteriori de r (Figure 68). Il est très probable que les scénarios 1-6 soient raisonnables étant donné qu'il n'a pas été possible d'atteindre les critères de convergence. Les scénarios 1-8 ont également été réalisés avec un très large distribution a priori de r (sd=5) plutôt que le 0,25 souhaité à l'origine. Afin de corriger cela, un scénario 9 additionnel doté de la distribution a priori N correctement spécifiée N(1,17; 0,25) a été réalisé.

Les résultats des scénarios 7 et 8 atteignent tous les deux des critères de convergence raisonnables sans être parfaits ($cv(wts)/cv(lp) \sim 1,6$) (**Tableau 31**). Les scénarios 1-8 ont également été réalisés avec un très large prior pour r (sd=,5) au lieu du 0,25 souhaité à l'origine. Afin de corriger cela, un scénario 9 additionnel doté du prior N correctement spécifié N(1,17; 0,25) a été réalisé. Il convient toutefois de noter que la distribution a posteriori de r était très large (**Figure 68**). L'ajustement aux indices pour le scénario 9 était assez médiocre et escompté compte tenu des différentes trajectoires des indices (**Figure 69**) et de la pondération égale qui leur a été donnée. Le taux intrinsèque de l'augmentation de la population, *r*, pour le scénario 9 a été estimé être légèrement endessous de la moyenne du prior et à une valeur de 1,159 avec une déviation standard de 0,278.

La **Figure 70** montre la trajectoire de la biomasse, de B/B_{PME} , F, et de F/F_{PME} avec des projections de 25.000 t à compter de 2007 pour le scénario 9 du listao de l'ouest, montrant la hausse accusée initiale de la mortalité par pêche avec la création des pêcheries et une évaluation de l'état actuel de B au-dessus de B_{PME} et F en-dessous de F_{PME} . Il est important de noter que si l'on élargit la fonction d'importance, le modèle a tendance à estimer un K plus faible et des taux de mortalité par pêche plus élevés, de telle façon que si un biais est introduit par le manque de convergence des sorties précédentes, il a tendance à fournir des résultats plus optimistes pour cette configuration particulière du modèle (**Tableau 31**).

6.2.2.2 Listao de l'Est

Le modèle BSP pour l'évaluation du listao de l'Atlantique Est a utilisé huit indices (**Figure 71** et **Tableau 24**). Malgré la nature plutôt contradictoire de certains indices, les sorties du modèle BSP pour le stock de listao de l'Atlantique Est ont dégagé des critères de convergence plus acceptables que pour le SKJ-W.

Dix-neuf scénarios ont été projetés, utilisant diverses combinaisons d'indices, limités à K, et avec des déviations standard pour les priors pour r (**Tableaux 32** et **33**). Grand nombre des scénarios ont eu recours aux mêmes données et devraient en fait être considérés comme scénarios « de prospection » afin de déterminer des

conditions de limite appropriées pour les autres modèles. Les limites ont eu un fort impact sur le prior uniforme pour K (**Figure 72**). Le fait de ramener la limite supérieure de 2 millions de tonnes métriques (t) à 1 million de tonnes métriques (t) (une valeur similaire à cinq fois la prise maximum observée) a réduit les valeurs de K, qui sont passées d'environ 1,2-1,3 million de t à des valeurs approximant 720-790 mille tonnes métriques. Compte tenu des valeurs de K extrêmement élevées prédites en utilisant la limite supérieure sur K (1,3 million de t), il est vraisemblablement plus plausible d'utiliser une limite proche aux limites communément utilisées, soit 5 fois la prise maximum observée.

Il convient de noter que les distributions a priori pour *r* étaient, à l'origine, effectuées avec une variance de 0,09 où N~(moyenne=1,17, sd=0,3). Ceci différait légèrement de la déviation standard de l'analyse démographique qui a estimé une sd de 0,25. Les résultats sont toutefois vraisemblablement très comparables au fait d'utiliser un prior de N~(1.17, sd=0,3). Une valeur d'entrée de la déviation standard plutôt que la variance comme moyenne pour la distribution a priori a facilité une analyse impromptue de sensibilité des effets d'utiliser un prior étroit (sd=0,25) ou large (sd=0,50) pour r. Ce jeu de scénarios a indiqué qu'il y avait peu d'effet sur les modes postérieurs (**Tableaux 32 et 33**), ce qui avait une faible incidence réelle sur les résultats de l'état pour chaque sortie. Toutefois, les distributions a posteriori résultantes ont été bien plus larges avec le prior large ou noninformatif, ce qui a entraîné de plus larges coefficients de variation autour du mode des distributions a posteriori pour les résultats de l'état (**Tableaux 32 et 33**). En outre, les valeurs r plus élevées du mode postérieur suggèrent que le fait de libérer le prior de r permet au modèle d'estimer une valeur postérieure plus élevée pour r (~1,3-1,7) que pour les priors informatifs. Sur la base d'une modélisation démographique antérieure (section 5.3.2), ces plus fortes valeurs semblent improbables pour le listao.

Ainsi, RUN5BZ, qui utilise un prior uniforme (250000, 1000000) sur ln K, un prior N~(1,17, 0,3) sur r et tous les indices pondérés de façon égale, peut être considéré comme le meilleur modèle qui incorpore toutes les données, même si les ajustements aux indices étaient en général médiocres (**Figure 73**). Les trajectoires de la biomasse, de B/B_{PME}, F, et F/F_{PME}, avec des projections de 100.000 t à compter de 2007 pour SKJE-RUN5BZ (**Figure 74**) indiquent l'état relativement élevé de B/B_{PME} et le faible état de F/F_{PME} prédits par le modèle.

6.2.3 Modèle de capture uniquement

Listao de l'Ouest

Deux jeux de scénarios ont été réalisés pour le stock Ouest (**Tableau 34**). Pour les deux jeux, les séries de capture ont utilisé des gammes allant de 1976 à 2006, afin d'inclure les années où les captures ont commencé à augmenter (**Figure 7**). Pour le premier jeu (A), le prior de x a été établi comme des valeurs larges $x \sim U(0,10)$. Les explorations du comportement du modèle pour les combinaisons des paramètres a, x ont montré que pour x élevé et a faible, les prédictions du modèle pour la biomasse et la capture dégageaient de fortes oscillations irréalistes. Un deuxième jeu (B) de scénarios avec un prior étroit sur x a également été réalisé. Lorsque des priors plus étroits sur x étaient postulés, le modèle était capable d'obtenir plus d'informations sur les captures que pour un prior plus large sur x. La **Figure 75** ne présente les résultats que pour le scénario 1 des deux jeux, qui étaient similaires pour les autres scénarios à l'intérieur de chaque jeu (*cf.* **Appendice 8** pour obtenir les résultats complets).

Les estimations ont été sensibles au prior de x. Le premier jeu de scénarios (A) a inclus moins d'informations sur les captures, comme suggéré par les postérieurs plus larges lorsqu'on les compare avec les priors (**Figures 75** et **76**). Pour le premier jeu de scénarios, la médiane du postérieur pour la PME s'étendait entre 54.000 t et 83.000 t. Le second jeu de scénarios (B) a pu incorporer davantage d'informations sur les captures que le premier jeu de scénarios, comme suggéré par des postérieurs plus étroits sur les paramètres et les quantités dérivées, lorsqu'on les compare aux priors (**Figure 75**), et ont été sélectionnés à des fins d'inférence. Pour le deuxième jeu de scénarios, la médiane des postérieurs pour la PME s'élevait à environ 30.000 t.

Listao de l'Est

Pour le stock Est de listao, trois jeux de scénarios ont été réalisés (**Tableau 35**). Pour le premier jeu (A), la série de capture de 1950 à 2006 a été utilisée, ainsi qu'un prior plus large sur x. La série de capture a connu une baisse au milieu des années 1980 lorsqu'une grande partie des flottilles de senneurs français et espagnols se sont déplacées vers l'océan Indien. Le modèle de capture seulement postule que le taux de capture augmente et se stabilise suivant une courbe logistique. Le Groupe a suggéré d'exécuter le modèle seulement avec les captures de 1985 à 2006, afin de remplir les postulats du modèle de capture uniquement. Deux autres jeux de scénarios ont été réalisés. Le jeu B incluait des sorties ajustés aux captures de 1965 à 1984 et le jeu C inclut des sorties ajustées aux captures de 1985 à 2006. Pour ces deux jeux, le prior de x était plus étroit (**Tableau 35**).

Pareillement au SKJ-W, les résultats semblent sensibles aux priors de x, et le premier jeu de passages (A) incluait moins d'informations des captures que le jeu C, comme cela était suggéré par les larges postérieurs (**Figure 77**). Le jeu C de scénarios a été jugé être le meilleur ajustement étant donné qu'un postérieur ne s'est concentré vers les limites comme ce fut le cas pour les jeux A et B (**Figure 77** et **Appendice 8**). Pour le jeu A de scénarios, les médianes des distributions a posteriori de la PME ont oscillé entre 200.000 t et 275.000 t. Pour le jeu C de scénarios, les médianes des distributions a posteriori de la PME ont oscillé entre 143.000 t et 156.000 t.

6.2.4 PROCEAN

6.2.4.1 Listao de l'Est

Le modèle s'est en général bien ajusté aux données pour les différents scénarios bien que les pêcheries de canneurs européens et sénégalais et les senneurs européens basés à Dakar aient dégagé des tendances dans les valeurs résiduelles. Dans tous les scénarios, il s'est avéré que les priors informatifs étaient nécessaires pour la convergence du modèle. Les estimations postérieures maximales de la PME oscillaient entre 154.000 t et 185.000 t et semblaient assez sensibles à la moyenne du prior de la PME (**Tableau 36**). F_{PME} semblait solide face aux changements réalisés dans les paramètres des valeurs d'entrée et les distributions a priori, la valeur de 0,48 pour m = 2 étant liée à la forme de la courbe de production et menant à une valeur de F/F_{PME} en 2006 proche des autres scénarios.

Pour le scénario standard, les captures observées et prédites étaient proches de la courbe de production en conditions d'équilibre (**Figure 78**). Ceci pourrait être dû à la longévité relativement courte des listaos qui sont capturés avant 4 ans et à leur taux de croissance élevé. Le stock semblait sous-exploité en 2006, la mortalité par pêche étant en-dessous de la mortalité par pêche correspondant à la PME, soit $F/F_{PME}=0,32$ en 2006, et la biomasse au-dessus de la biomasse correspondant à la PME, soit $B/B_{PME}=1,79$.

La sortie du modèle réalisée avec l'indice d'abondance combiné a donné lieu à des résultats similaires en termes de diagnostic du stock, bien que la PME ait été estimée se trouver à environ 10.000 t en-dessous du scénario standard (**Tableau 36**). La qualité de l'ajustement s'est toutefois avérée assez médiocre et les résultats ont dégagé une tendance ascendante dans les valeurs résiduelles, indiquant que les données ne se conformaient pas au postulat d'erreur lognormal. L'inclusion d'une erreur de processus sur la capturabilité pour les spécifications des paramètres du scénario standard a amélioré l'ajustement du modèle en supprimant la tendance dans les valeurs résiduelles et a permis de localiser les changements dans la capturabilité dans le temps (**Figure 79**).

Les résultats ont notamment suggéré que la capturabilité des flottilles de canneurs basées à Dakar aurait continuellement augmenté d'environ 4% tous les ans depuis les années 1970. Ceci pourrait être lié dans les années 1980 à l'introduction et au développement de la pêche en mattes associées (Fonteneau et Diouf, 1994). Malgré la hausse de 3% déjà prise en compte dans les indices d'abondance, la flottille de senneurs européens basée à Dakar et pêchant sur des bancs libres a dégagé une hausse graduelle dans la capturabilité aux alentours de 1990, suivie d'une relative stabilité (**Figure 79**). Ceci suggérerait que des améliorations technologiques à la fin des années 1980 et au début des années 1990 auraient entraîné une plus forte hausse de la capturabilité qu'il n'est généralement postulé (*cf.* Section 5.3.1).

7. Projections

7.1 Projections – Albacore

7.1.1 Projections du modèle VPA

Spécifications

Les projections pour l'albacore (Scénarios 5 et 10) se sont basées sur des répétitions du bootstrap des matrices de mortalité par pêche à l'âge et de nombres à l'âge produites par le logiciel VPA-2BOX. Le Groupe a convenu que les projections et les points de repère devraient être calculés à l'aide d'un ré-échantillonnage des recrutements observés entre 1970 et 2006. Ceci a entraîné un recrutement essentiellement constant à la valeur moyenne des séries temporelles. Ceci contraste avec l'approche adoptée pendant l'évaluation de 2003 qui a eu recours à une relation fixe Beverton et Holt S-R estimée de façon externe au modèle. L'étendue de la variabilité du recrutement, σ_R , pour chaque répétition du bootstrap a été modélisée à l'aide d'une déviation standard de 0,5 sans aucune auto-corrélation.

Etant donné qu'aucun changement de gestion n'est survenu en 2007 et 2008 (projetés par le modèle VPA car les données ne sont pas encore disponibles), ces années ont été projetées à F actuel¹. Des projections ont été réalisées à divers niveaux de prise constante ou de F constante, y compris :

1) $Prise = 50.000 t$	2009-2016
2) Prise = 70.000 t	2009-2016
3) Prise = 90.000 t	2009-2016
4) Prise = 110.000 t	2009-2016
5) Prise = 130.000 t	2009-2016
6) Prise = 150.000 t	2009-2016
7) Mortalité par pêche= $F_{0.1}$	2009-2016
8) Mortalité par pêche= F _{max}	2009-2016
9) Mortalité par pêche= F _{actuelle}	2009-2016
10) Mortalité par pêche= F_{1992}	2009-2016

Les projections qui ont utilisé divers niveaux de prise constante ont utilisé une restriction selon laquelle F entièrement sélectionnée était soumise à la contrainte de ne pas dépasser 3 an^{-1} .

Résultats

Le Groupe de travail a recommandé que l'avis de gestion soit formulé en utilisant la distribution conjointe des scénarios 5 et 10 de la VPA. Les projections reflètent donc le résultat de la médiane des deux scénarios des cas de base.

Les projections de la biomasse totale, de la production, de la mortalité par pêche, de la SSB et du recrutement sont illustrées aux **Figures 80** et **81**. La SSB et F sont également décrites par rapport aux points de repère de gestion (F_{max} et la SSB correspondante en conditions d'équilibre). Les projections de prise constante (**Figure 81**) indiquent que les captures de 130.000 t ou moins sont soutenables pendant l'intervalle de la projection. Les captures dépassant 130.000 t provoqueraient une condition de surpêché et de surpêche pendant l'intervalle de la projection. Les projections de mortalité par pêche constante (**Figure 81**) indiquent que les niveaux actuels de la mortalité par pêche (2003-2006) permettent à la biomasse reproductrice d'augmenter graduellement pendant l'intervalle de la projection. Le fait d'augmenter la pression de pêche aux niveaux de 1992 entraînerait la détérioration du stock à une condition de surpêché ou de surpêche pendant l'intervalle de la projection.

7.1.2 ASPIC

Des projections ASPIC (**Figure 82**) pour chacun des quatre cas ont été réalisées pour les scénarios de capture suivants : 108.263 t (niveau de capture de 2006), 80.000 t, 100.000 t, 120.000 t, 140.000 t et 160.000 t. Tous les scénarios ont indiqué que les niveaux de capture de 120.000 t ou moins rétabliront le stock de la condition de surpêché. Un niveau de capture de 140.000 t ne rétablira pas le stock selon les résultats du cas 6, mais il le rétablira pour les autres trois cas. Les quatre cas ont tous indiqué que le stock ne se rétablira pas si les niveaux de capture se situent à 160.000 t ou plus.

8. Recommandations

- Le Groupe a décidé que le niveau de débarquement des « faux poissons » à Abidjan (de l'ordre de 10.000 t pour le listao) et la taille réduite des poissons débarqués étaient suffisamment importants pour potentiellement affecter les résultats des évaluations de stocks. C'est pourquoi le Groupe recommande de développer et de mettre en œuvre des protocoles d'échantillonnage afin de recueillir des informations détaillées sur les volumes des débarquements, la composition spécifique et la composition par taille des débarquements de faux poissons.
- Comme cela s'est déjà fait au sein d'autres ORGP, il conviendrait que l'ICCAT mette en œuvre des études de marquage conventionnel de grande envergure et de conception prudente afin de compléter l'utilisation des données dépendant des pêcheries utilisées pour estimer les indices d'abondance.

¹ F actuel a été calculée comme la valeur maximale (apicale) de la moyenne géométrique F-à l'âge. La moyenne géométrique a été calculée pour les années 2003-2006.

- Bien que des améliorations aient eu lieu, le Groupe a décidé qu'il était nécessaire d'accroître les efforts en ce qui concerne les études biologiques des trois espèces de thons tropicaux : albacore, listao et thon obèse.
- Le Groupe a été encouragé par les résultats préliminaires obtenus pour le stock de listao de l'Ouest et a recommandé que davantage de travaux soient entrepris à l'avenir afin d'affiner les analyses du modèle Multifan-CL pour ce stock. En ce qui concerne le stock Est, le Groupe a recommandé d'effectuer davantage de modélisation pendant la période intersession et d'inclure éventuellement les données de marquage une fois que celles-ci auront été complètement vérifiées.
- Le Secrétariat a besoin de ressources suffisantes pour préparer les fichiers de données disponibles (tableau de substitutions, prise par taille, prise par âge, marquage) au moins deux semaines avant la réunion et les scientifiques nationaux doivent consacrer suffisamment de ressources à l'examen de ces fichiers avant le début de la réunion, et solliciter les modifications nécessaires, selon le cas. Il convient de noter que le Sous-comité des Statistiques devrait se saisir de cette question, laquelle devrait être révisée par le SCRS à sa session plénière. Il serait bon d'envisager également d'utiliser les techniques modernes de conférence sur la web.

9. Autres questions

Le Groupe a examiné le rapport de 2007 de la Sous-commission 1, qui incluait dans le cadre des discussions, la suggestion selon laquelle le SCRS analyse et présente suffisamment à l'avance à la Commission, aux fins de son examen à sa réunion extraordinaire en 2008, une gamme d'options visant à augmenter la production par recrue et la PME du thon obèse en réduisant la mortalité des petits thons obèses en ayant recours aux fermetures de zones (c'est-à-dire la fermeture totale pour toutes les pêcheries de surface) et aux moratoires sur l'utilisation des dispositifs de concentration du poisson (DCP). Il a été, de surcroît, suggéré que le SCRS analyse les impacts de ces mesures sur les captures d'albacore et de listao également (ICCAT 2008). Le Groupe a estimé que la suggestion de la Sous-commission 1 se référait aux analyses réalisées en 2005, lesquelles incluaient une vaste gamme de scénarios de gestion ainsi que différentes approches visant à évaluer l'effet du moratoire et d'autres mesures alternatives. Néanmoins, le Groupe a pensé qu'il serait utile d'analyser l'effet de la fermeture spatiotemporelle établie par la [Rec. 04-01], étant donné qu'à l'époque de la réunion de 2005 on ne disposait pas de données d'observation pour réaliser ces analyses, étant donné que la Recommandation venait tout juste d'être adoptée à ce moment-là. Toutefois, ces analyses n'ont pas pu être effectuées à la session d'évaluation étant donné que celle-ci s'est essentiellement concentrée sur l'actualisation des évaluations de l'état des stocks de listao et d'albacore. Des discussions ont été tenues afin de planifier les analyses devant être menées entre la session d'évaluation et la réunion du Groupe d'espèces en septembre 2008.

Comme pour les analyses précédentes, le Groupe a discuté de la période de référence qu'il fallait considérer dans les analyses. Compte tenu du fait que l'application pendant la première fermeture spatio-temporelle n'était que partielle, le fait de considérer la période antérieure à 2004 comme référence entraînerait vraisemblablement une surestimation des effets de la fermeture spatio-temporelle actuelle. D'un autre côté, le fait de considérer les années antérieures (1993-1996) au premier moratoire rendrait difficile le fait de séparer l'effet de la diminution continue de l'effort par les flottilles européennes et associées depuis cette période. Comme alternative, le Groupe a décidé de limiter les analyses aux flottilles européennes et associées en postulant que ces flottilles ont totalement mis en œuvre les différentes fermetures spatio-temporelles.

En plus de ces analyses, le Groupe a estimé que l'on pourrait réaliser quelques scénarios généraux de réduction de l'effort pour différentes composantes des flottilles, comme l'avait suggéré la Sous-commission 1, et de leurs effets sur la production par recrue. Ces analyses pourraient fournir la gamme d'options sollicitées par la Sous-commission 1.

Afin de faciliter les travaux du Groupe au mois de septembre, pendant la réunion du Groupe d'espèces, il a été suggéré que les scientifiques fassent ces analyses avant la réunion du Groupe d'espèces et présentent les résultats comme des documents du SCRS.

Les résultats des analyses menées avant et pendant la réunion du Groupe d'espèces figurent à l'Appendice 9.

10. Adoption du rapport et clôture

Le Président a remercié une nouvelle fois les hôtes pour avoir organisé la réunion. Le rapport a été adopté et la réunion a été levée.

Références

- Anon., 1984. Report of the Juvenile Tropical Tuna Working Group (Brest, France, July 12-21, 1984). Collect. Vol. Sci. Pap., 21(1): 1-289.
- Anon., 2001. Report of the ICCAT SCRS Atlantic Yellowfin tuna Stock Assessment Session (Cumaná, Venezuela, July 10-15, 2000). Collect. Vol. Sci. Pap. ICCAT, 52(1): 1-148.
- Anon., 2004. 2003 ICCAT Atlantic Yellowfin Tuna Stock Assessment Session (Mérida, Mexico, July 21-26, 2003). Collect. Vol. Sci. Pap. ICCAT, 56(2): 443-527.
- Anon., 2007. Report of the 2006 ICCAT Inter-sessional Meeting of the Tropical Species Working Group (Séte, France, April 24-28, 2006). Collect. Vol. Sci. Pap. ICCAT, 60(1): 1-90.
- Anon., 2008. Report of the 2007 Inter-sessional Meeting of the Tropical Tunas Species Group. (Recife, Brazil, April 11-16, 2007). Collect. Vol. Sci. Pap. ICCAT, 62(1): 1-96.
- Butterworth, D.S. and Geromont, H.F., 1999. Some aspects of ADAPT VPA as applied to North Atlantic bluefin tuna. Collect. Vol. Sci. Pap. ICCAT, 49(2): 233-241.
- Cass-Calay, S.L., 2008. Evaluating the impact of changes in fishing pressure on Atlantic tropical tunas using yield-per-recruit and spawner-per-recruit analyses. SCRS/2008/170.
- Casella, G. and Berger, R., 2002. Statistical Inference (2nd ed.). Pacific Grove, CA: Duxbury Press.
- Casella, G. and Berger, R. 2007. Statistical Inference (7th ed.). Pacific Grove, CA: Duxbury Press.
- Caverivière, A., 1976. Longueur prédorsale, longueur a la fourche et poids des albacores (*Thunnus albacares*) de l'Atlantique. Cah. ORSTOM, ser. Océanogr., 14 (3): 201-208.
- Cayré, P. and Farrugio, H., 1986. Biologie de la reproduction du listao (*Katsuwonus pelamis*) de l'Océan Atlantique. *In* Proceedings of the ICCAT Conference on the International Skipjack Year Program. Symons, P.E.K., Miyake, P.M. and Sakagawa. G.T. (eds.), p. 252-272.
- Cayré, P. and Laloê, F., 1986. Relation poids-longueur du listao (*Katsuwonus pelamis*) de l'Ocean Atlantique. *In* Proceedings of the ICCAT Conference on the International Skipjack Year Program. Symons, P.E.K., Miyake, P.M. and Sakagawa, G.T. (eds.), p. 335-340.
- Davis, K., 1991. Length-Weight relationships for western North Atlantic yellowfin tuna. Collect. Vol. Sci. Pap. ICCAT, 36: 280-288.
- Fonteneau, A., 2000. Comparison of the species composition of tuna schools taken on logs and on free schools in the eastern Atlantic, before and after the deployment of FAD fisheries. Tuna Fishing and Fish Aggregating Devices (Symposium Caribbean-Martinique, 15-19 October 1999). Pêche thoniere et dispositifs de concentration de poissons (Colloque Caraibe-Martinique, 15-19 octobre 1999). No. 28, P. 678. Actes de colloques. Institut français de Récherche pour l'Exploitation de la Mer. Brest [Actes Colloq. IFREMER].
- Fonteneau, A. and Diouf, T., 1994. An efficient way of bait-fishing for tunas recently developed in Senegal. *Aquatic Living Resources*, 7: 139-151.
- Gaertner, D., Salazar, H., Rodriguez, O., Astudillo, L. and Castillo, C., 1992. Relacion longitud-peso para el atún aleta amarilla en el Atlantico Oeste. Collect. Vol. Sci. Pap. ICCAT, 38: 262-265.

- Gaertner, D., Delgado de Molina, A., Ariz, J., Pianet, R., Hallier, J.P., 2008. Variabilité de la croissance du listao (*Katsuwonus pelamis*) entre les secteurs de l'Atlantique Est: utilisation de données de marquage-recapture dans un contexte de méta-analyse. *Aquatic Living Resources*, Vol. 21, No. 4, pp. 349-356.
- Gascuel, D., Fonteneau, A., Capisano, A., 1992. A two-stanza growth model for the yellowfin tuna (*Thunnus albacares*) in the eastern Atlantic. *Aquatic Living Resources*, Vol. 5, No. 3, pp. 155-172.
- Gascuel, D., Fonteneau, A., Foucher, E., 1993. Analysis of fishing power evolution using Virtual Population Analysis: the case of purse seiners exploiting yellowfin (*Thunnus albacares*) in the eastern Atlantic. *Aquatic Living Resources*, Vol. 6, No. 1, pp. 15-30.
- Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2004. Bayesian Data Analysis. Chapman & Hall/CRC, Boca Raton.
- Gotelli, N.J. and Ellison, A.M., 2001. A Primer in Ecology. 3rd edition. Sinauer Associates, Inc. Sunderland, MA.
- Hallier, J.P. and Gaertner, D., 2006. Estimated growth of the skipjcak tuna (*Katsuwonus pelamis*) from tagging surveys conducted in the Senegalese area (1996-1999) within a meta-analysis framework. Collect. Vol. Sci. Pap. ICCAT, 59(2): 411-420.
- Hampton, J., 2000. Natural mortality rates in tropical tunas: size really does matter. Canadian Journal of Fisheries and Aquatic Sciences [Can. J. Fish. Aquat. Sci./J. Can. Sci. Halieut. Aquat.]. Vol. 57, No. 5, pp. 1002-1010.
- Hampton, J., 2002. Stock assessment of yellowfin tuna in the western and central Pacific Ocean. SCTB15 Working Paper.
- ICCAT, 2008. Report of the Meeting of Panel 1. In Report for Biennial Period, 2006-07, Part II (2007) Vol. 1 COM, pp. 191.
- Langley, A.M., Ogura, M. and Hampton, J., 2003. Stock assessment of skipjack tuna in the western and central Pacific Ocean SCTB16 Working Paper.
- Lessa, R. and Duarte-Neto, P., 2004. Age and growth of yellowfin tuna (*Thunnus albacares*) in the western Equatorial Atlantic, using dorsal fin spines. *Fisheries Research*, 69: 157-170.
- Lotka, A.J., 1907. Relation between birth rates and death rates. Science. 1907. 26:21.
- Maury, O., 2001. PROCEAN: A production catch/effort analysis framework to estimate catchability trends and fishery dynamics in a Bayesian context. IOTC Proceedings, 4: 228-231.
- Maury, O. and Chassot, E., 2001. A simulation framework for testing the PROCEAN model and developing Bayesian priors. IOTC Proceedings 4: 544-554.
- McAllister, M.K., Pikitch, E.K., Punt, A.E., Hilborn, R., 1994. A Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm. Can. J. Fish. Aquat. Sci. 51: 2673-2687.
- McAllister, M.K., and Kirkwood, G.P., 1998. Using Bayesian decision analysis to help achieve a precautionary approach to managing newly developing fisheries. Can. J. Fish. Aquat. Sci. 55: 2642–2661.
- McAllister, M.K., Kirkwood, G.P., 1999. Applying multivariate conjugate priors in fishery-management system evaluation: how much quicker is it and does it bias the ranking of management options? ICES Journal of Marine Science [ICES J. Mar. Sci.]. Vol. 56, No. 6, pp. 448-899. Dec. 1999.
- McAllister, M.K., Pikitch, E.K. and Babcock, E., 2001. Using demographic methods to construct Bayesian priors for the intrinsic rate of increase in the Schaefer model and implications for stock rebuilding. Can. J. Fish. Aquat. Sci. 58: 1871-1890.

- McAllister, M.K., Kirchner, C., 2002. Accounting for structural uncertainty to facilitate precautionary fishery management: illustration with Namibian orange roughy. Bull. Mar. Sci. 70:499-540.
- McAllister, M. and Carruthers, T., 2008. 2007 stock assessment projections for western Atlantic bluefin tuna using a BSP and other SRA methodology. Collect. Vol. Sci. Pap., ICCAT, 62(4): 1206-1270.

Minte-Vera, C.V., Vasconcellos, M., Cochrane, K. [in prep] Fisheries dynamics models for data-poor situations.

- Pagavino, M. and Gaertner, D., 1995. Fitting a growth curve to size frequencies of the skipjack tuna (*Katsuwonus pelamis*) caught in the southeastern Caribbean. Collect. Vol. Sci. Pap. ICCAT, 44(2): 303-309.
- Pella, J.J. and Tomlinson, P.K., 1969. A generalized stock production model. Bull. Inter. Am. Trop. Tuna. Com 13: 420-496.
- Punt, A.E. and Hilborn, R., 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Rev. Fish. Biol. Fisher. 7: 35-63.
- Rikhter, V.A. and Efanov, V.N., 1976. On one of the approaches to estimation of natural mortality of fish populations. ICNAF Res. Doc., 76/VI/8:1-12.
- Shuford, R.L., Dean, J.M., Stéquert, B., Morize, M., 2007. Age and growth of yellowfin tuna in the Atlantic Ocean, 2007. Collect. Vol. Sci. Pap. ICCAT, 60(1): 3330-341.
- Vasconcellos, M. and Cochrane, K., 2005. Overview of world status of data-limited fisheries: inferences from landings statistics. *In:* Kruse, G.H., Gallucci, V.F., Hay, D.E., Perry, R.I., Peterman, R.M., Shirley, T.C., Spencer, P.D. Wilson, B., Woodby, D. (Eds.) Fisheries Assessment and Management in Data-Limited Situations. Alaska Sea Grant College Program, Anchorage.
- Vilela, M.J. and Castello, J.P., 1993. Dinámica poblacional del barrilete (*Katsuwonus pelamis*) explotado en la región sudeste-sur del Brasil en el periodo 1980-1986. Frente Marítimo, Montevideo, 14:111-124.
- Wise, J., 1986. The baitboat fishery for skipjack in the Gulf of Guinea, 1969-82. *In* Proceedings of the ICCAT Conference on the International Skipjack Year Program. P.E.K. Symons, P.M. Miyake and G.T. Sakagawa (eds.), p. 111-117.

INFORME DE LA REUNIÓN DE EVALUACIÓN DE 2008 DEL STOCK DE LISTADO Y RABIL DE ICCAT

(Florianópolis, Brasil, 21 a 29 de julio de 2008)

1. Apertura, adopción del orden del día y disposiciones para la reunión

La reunión fue inaugurada por el Sr. Papa Kebe en nombre del Sr. Driss Meski, Secretario Ejecutivo de ICCAT. El Sr. Kebe dio las gracias al Gobierno de Brasil por acoger la reunión y facilitar todos los arreglos logísticos. El Dr. Joao G. Pereira, Relator del Grupo de especies tropicales, presidió la reunión.

El orden del día (**Apéndice 1**) fue adoptado con unos pequeños cambios. La lista de participantes se adjunta como **Apéndice 2** y la lista de los documentos presentados a la reunión se adjunta como **Apéndice 3**. Actuaron como relatores los siguientes participantes:

P. Pallarés
H. Murua, L.V. González-Ania, P. Kebe, G. Scott
A. Delgado de Molina, J. Ariz, P. Bannerman, E. Chassot
H. A. Andrade, K. Ramírez
S. Cass-Calay, K. Satoh
V. Restrepo, P. De Bruyn, J. Walters, E. Chassot
G. Scott and G. Díaz

2. Examen de la información biológica

2.1 Rabil

El rabil es una especie tropical y subtropical que se distribuye principalmente en aguas oceánicas epipelágicas de los tres océanos. Las tallas pescadas oscilan entre 30 y más de 170 cm y la madurez se produce en unos 100 cm. Los peces más pequeños (juveniles) forman cardúmenes mezclados con listados y juveniles de patudo y se limitan fundamentalmente a las aguas superficiales; mientras que los peces grandes forman cardúmenes en aguas superficiales y subsuperficiales. La producción reproductiva entre las hembras es muy variable. La principal zona de desove es la zona ecuatorial del Golfo de Guinea, y el desove se produce entre enero y abril. Los juveniles suelen hallarse en las aguas costeras a la altura de África. Además, también se produce desove en el Golfo de México, en la zona sudeste del Caribe y en las aguas de Cabo Verde, si bien no se conoce la importancia relativa de estas zonas de desove. Aunque esta separación de las zonas de desove podría significar que existen stocks separados o una gran heterogeneidad en la distribución del rabil, se asume como hipótesis de trabajo un stock único para todo el Atlántico, teniendo en cuenta los datos que indican que el rabil se distribuye de forma continua en todo el Atlántico tropical y la recuperación regular de marcas de Oeste a Este. En la captura de peces grandes predominan los machos.

Se supone una mortalidad natural más alta en los juveniles que en los adultos, supuesto respaldado por estudios de marcado en otros océanos. Se ha demostrado que las tasas de mortalidad natural dependen de la talla para el patudo, el listado y el rabil en el Pacífico tropical occidental utilizando datos de marcado (Hampton, 2000). En resumen, este trabajo demostró que M era mayor en las clases de talla más pequeña en comparación con los peces de tamaño medio. Además, demostró que la mortalidad cambiaba de elevada a baja aproximadamente a los 40 cm FL, más o menos la talla en la que las tres especies son reclutadas para la pesquería de cerco en el Pacífico occidental. Los resultados de este estudio resaltan la importancia de tener en cuenta las tasas de mortalidad natural específicas de la talla o específicas de la edad. En este sentido, el Grupo discutió la mortalidad variable para el rabil y se acordó continuar utilizando la M variable en la evaluación.

Las tasas de crecimiento se han descrito como relativamente lentas inicialmente, aumentando en cuanto los peces dejan las zonas de cría. Sin embargo, quedan pendientes algunas cuestiones relacionadas con el modelo de crecimiento más apropiado para el rabil del Atlántico. En un estudio reciente (Shuford *et al.* 2007) se desarrolló una nueva curva de crecimiento utilizando recuentos del incremento diario del crecimiento a partir de otolitos. Los resultados de este estudio, junto con otros análisis recientes de partes duras, no respaldan el concepto de un modelo de crecimiento de dos estanzas (crecimiento inicial lento) que se utiliza actualmente para las evaluaciones del stock de rabil de ICCAT. Esta discrepancia puede ser resuelta en futuros análisis. Sin embargo,

se distribuyeron varios documentos relacionados con información biológica sobre túnidos tropicales con información muy valiosa acerca del crecimiento, la ecología y el comportamiento del listado. Estos documentos eran básicamente artículos con revisión por pares y documentos de trabajo presentados al Grupo de trabajo de la IOTC sobre análisis de datos de marcado, y contenían datos nuevos relacionados con los estudios de marcado y de crecimiento del rabil. Los documentos del Grupo de trabajo de la IOTC sobre análisis de datos de marcado del Grupo de trabajo de la IOTC sobre análisis de datos de marcado y contenían datos nuevos relacionados con los estudios de marcado que se distribuyeron se centraban principalmente en las curvas de crecimiento del rabil y el listado en el océano Índico. Aunque los documentos no se presentaron durante la reunión, eran una valiosa fuente de información para comparar las tasas de crecimiento entre áreas y otros métodos en uso. Por ejemplo, la mayoría de los documentos consideraba que el rabil tiene un crecimiento de dos o más estanzas mientras que el crecimiento del listado no presenta el mismo patrón.

Se presentó un documento al Grupo de trabajo (SCRS/2008/111) con nueva información para el Atlántico sur occidental sobre tallas, sex ratio, y tasas de captura del rabil, recopilada por el Programa de observadores de la flota atunera de palangre uruguaya durante 1998-2007. Se analizaban los patrones geográficos y estacionales en la proporción de subadultos y adultos así como la relación con la temperatura de la superficie del mar (SST). Las mayores capturas se registraron en aguas territoriales de Uruguay, asociadas con el talud continental, especialmente peces subadultos (<100 cm). La mayor CPUE se produjo en latitudes meridionales, entre 35°S y 37°S tanto para los adultos como para los subadultos, con un máximo en 36°S (1,6 y 4,7 peces/1000 anzuelos para los subadultos y adultos, respectivamente). Los mayores valores de CPUE estaban asociados también a la SST entre 19° y 21°C, con el máximo en 21°C (2,0 y 7,1 peces/1000 anzuelos para los subadultos y adultos, respectivamente) y el mínimo para ambas clases se encontraba en una SST superior a 25°C. La composición por sexos era de 1,3 machos por hembra. La longitud media a la horquilla para todo el periodo era de 111.2 ± 16.7 cm (rango 52-180 cm), con pequeñas diferencias entre machos (116,9 \pm 15,4 cm, rango 65-180 cm) y las hembras (117,1 \pm 14,0 cm; rango: 65-162 cm). Las menores tallas se registraron entre mayo y agosto, con un mínimo en agosto (99,0 \pm 14,7 cm) y un máximo en diciembre (144,5 \pm 12,9 cm). Los cambios en el peso o talla medios de los peces desembarcados en la pesquería pueden ser indicadores útiles de los patrones de explotación. Sin embargo, de la misma forma que la CPUE nominal puede ser un indicador engañoso de la abundancia del stock debido a cambios en la capturabilidad, los cambios en el peso medio nominal podrían no ser necesariamente un indicador de cambios a nivel de la población en el peso medio. Deberían considerarse métodos de estandarización similares a los utilizados para los conjuntos de datos de la CPUE con el fin de separar los cambios en el peso medio a nivel de la población de los cambios en la ubicación, el momento o la selectividad de la pesca.

2.2 Listado

El listado es una especie gregaria que se encuentra en cardúmenes en las aguas tropicales y subtropicales de los tres océanos. Es una especie que muestra una madurez temprana (aproximadamente el primer o segundo año de vida), una gran fecundidad y desova de forma oportunista durante todo el año en aguas calientes, por encima de 25°C (Cayré y Farrugio, 1986). Se cree también que el listado es una especie de maduración más rápida y vida más corta que el rabil (Maunder, 2001). Además, algunos trabajos han demostrado que su crecimiento varía en función de la latitud (Gaertner *et al.*, 2008, en prensa).

El listado es la especie dominante que se captura con DCP, en asociación con juveniles de rabil, patudo y otras especies de la fauna epipelágica. La creciente utilización de dispositivos de concentración de peces (DCP) desde principios de los años 90 puede haber modificado el comportamiento de los bancos. En ese sentido, Fonteneau (2000) señaló que los cardúmenes libres de especies mezcladas eran bastante más comunes antes de la introducción de los DCP. Además, la asociación con los DCP podría haber actuado también como "trampa ecológica" que, a su vez, ha afectado negativamente al crecimiento y engorde de los listados y podría haber cambiado los patrones de movimiento de esta especie (Hallier y Gaertner, 2008).

Durante la reunión no se presentaron documentos con nueva información biológica sobre el listado.

Gaertner *et al.* 2008 (en prensa) investigaron la variabilidad latitudinal en las tasas de crecimiento del listado del Atlántico oriental. Volvieron a analizar los datos de marcado convencional recopilados por ICCAT desde los 60. Los resultados de este estudio sugieren que los parámetros de crecimiento del listado varían con la latitud. La L_{∞} estimada para el listado marcado y recapturado al norte de 10°N era inferior a la L_{∞} estimada para el listado marcado y recapturado al norte de 10°N era inferior a la L_{∞} estimada para el listado marcado y recapturado al sur de 10°N (89,4 cm vs. 112,3 cm, respectivamente); mientras que el coeficiente estimado de la tasa de crecimiento era mayor en la región septentrional del Atlántico oriental que en las zonas ecuatoriales (K = 0,376 y 0,135, respectivamente). Los parámetros de crecimiento estimados durante este estudio eran coherentes con el rango de las estimaciones de crecimiento obtenidas en el Atlántico y otros océanos. Sin

embargo, las estimaciones de L_{∞} y K realizadas en la zona senegalesa en los 80 en el marco del Programa Año del Listado, y tradicionalmente aplicadas en las evaluaciones de ICCAT, no están respaldadas por este estudio.

La variabilidad latitudinal en las tasas de crecimiento complicaría las técnicas de evaluación estructuradas por edad porque la talla por edad dependería de la localización geográfica y los patrones de movimiento. Estos autores sugirieron posibles alternativas a los modelos estándar estructurados por edad incluyendo el uso de modelos de captura por talla y matrices de transición de crecimiento por grandes zonas geográficas. El Grupo consideró las implicaciones de estos resultados en la evaluación. Teniendo en cuenta las incertidumbres asociadas a las curvas de crecimiento, la variabilidad en el crecimiento entre áreas y los movimientos de los peces, durante esta reunión no se llevó a cabo el procedimiento de separación de edades por filo de cuchillo utilizando las curvas de crecimiento disponibles. Se concluyó que es de gran prioridad contar con una mejor comprensión de los parámetros de crecimiento del listado.

El Grupo manifestó su inquietud respecto al escaso número de documentos de trabajo presentados durante la reunión y relacionados con la información biológica, tanto del listado como del rabil. Además, el Grupo resaltó la importancia de llevar a cabo estudios ecológicos y biológicos (crecimiento, maduración, reproducción, etc.) sobre las especies de túnidos tropicales para las que se considera que esta información es escasa. Esto, aparte de permitir un conocimiento más amplio de los procesos que ocurren en la población, permitirá utilizar información más actualizada en la evaluación de las especies de túnidos tropicales.

La tabla que se presenta a continuación resume los parámetros biológicos adoptados por el SCRS y utilizados en las evaluaciones de listado (Este y Oeste) y rabil del Atlántico en 2008.

Parámetro	Rabil
Mortalidad natural "Fecha de nacimiento" asumida de los peces de edad 0 Grupo plus	Asumida como 0,8 para las edades 0 y 1, y 0,6 para las edades 2+ 14 de febrero (aproximadamente la mitad de la temporada de máxima reproducción). Edad 5+
Tasas de crecimiento	La talla por edad se calculó a partir de la ecuación de Gascuel et al. (1992):
Pesos por edad	FL (cm) = $37.8 + 8.93 * t + (137.0 - 8.93 * t) * [1 - exp(-0.808 * t)]^{7.49}$ Los pesos por edad medios se basaban en la ecuación de crecimiento de Gascuel <i>et al.</i> (1992) y en la relación talla-peso de Caveriviere (1976):
	$W(kg) = 2,1527 \text{ x } 10^{-5} * L(cm)^{2.976}$
Calendario de madurez	Asumida como filo de cuchillo al principio de la edad 3.
Reclutamiento parcial	Basado en el resultado del VPA estructurado por edad (véase la sección sobre rendimiento por recluta).
	Listado (Este y Oeste)
Mortalidad natural "Fecha de nacimiento" asumida de los peces de edad 0 Grupo plus	Asumida como 0,8 para todas las edades 14 de febrero (aproximadamente la mitad de la temporada de máxima reproducción). Edad 5+
Pesos por edad	L (cm) = 94,9 * $[1 - \exp(-0,340 * t)]$ (Oeste) - Pagavino y Gaertner (1995) L (cm) = 97,258 * $[1 - \exp(-0,251 * t)]$ (Este) - Hallier y Gaertner (2006) W(kg) = 7,480 x 10 ⁻⁶ * FL (cm) ^{3,253} (todo el Atlántico)
Calendario de madurez	Asumida como filo de cuchillo al principio de la edad 2.

3. Examen de las estadísticas de las pesquería: Esfuerzo y datos de captura, lo que incluye frecuencias de tallas y tendencias de las pesquerías

3.1 Descripción de las pesquerías

El rabil se captura en todo el Atlántico tropical, entre 45°N y 40°S, mediante artes de superficie (cerco, cebo vivo y liña de mano) y palangre (**Figura 1**). La **Tabla 1** presenta los desembarques de rabil por pabellón y arte.

El listado se captura casi exclusivamente mediante artes de superficie en todo el Atlántico, aunque mediante palangre se realizan algunas capturas menores como captura fortuita (**Figura 2**). La **Tabla 2** presenta los desembarques de listado por pabellón y arte.

3.1.1 Cebo vivo

En el Atlántico este, las pesquerías de cebo vivo explotan concentraciones de rabil juvenil en cardúmenes mezclado con patudo y listado. Existen varias pesquerías de cebo vivo que operan a lo largo de la costa africana.

La más importante, en términos de captura, es la pesquería de cebo vivo de Ghana, con base en Tema. Esta flota comenzó a utilizar DCP (dispositivos de concentración de peces/objetos flotantes, que pueden ser naturales o artificiales) a principios de los 90 para mejorar la captura de la especie junto con otros túnidos. Más del 70-80% de estas capturas en los últimos cinco años proceden de los DCP; y el peso medio de los peces capturados ha permanecido relativamente estable en aproximadamente 2 kg (moda de aproximadamente 48 cm).

Hay otra pesquería de cebo vivo con base en Dakar que comenzó a operar en 1956 en zonas costeras de Senegal y Mauritania. Otras pesquerías de cebo vivo operan en varios archipiélagos del Atlántico (Azores, Madeira, Islas Canarias y Cabo Verde) y se dirigen a diferentes especies de túnidos, incluyendo el rabil y el listado, según la temporada. El peso medio del rabil capturado por estas flotas es muy variable (entre 7 y 30 kg); las tallas oscilan entre 38 cm y 80 cm con la moda en aproximadamente 48 cm. El peso medio del listado capturado por el cebo vivo en Dakar y en las Canarias es de 2,5 kg y 3 kg, respectivamente, con tallas que oscilan entre 35 cm y 70 cm (moda cercana a 45 cm) para el cebo vivo de Dakar y entre 38 cm y 72 cm (moda en 57 cm) para la flota de cebo vivo de las Canarias. Desde principios de los 90, las flotas de Dakar y de Canarias han operado utilizando un método diferente, utilizando el barco como un DCP, bajo el que se acumulan varias especies de túnidos, incluyendo el rabil. Estos cambios han producido un aumento de la biomasa explotable del stock de listado (debido a la expansión de la zona de pesca) y de su capturabilidad.

En el Atlántico oeste, las flotas de cebo vivo de Brasil y Venezuela se dirigen al rabil junto con el listado y otros pequeños túnidos. Las tallas del rabil de Venezuela se encuentran entre 45 cm y 175 cm, y las del rabil de Brasil entre 45 y 115 cm, con la moda en 65 cm.

3.1.2 Cerco

Las pesquerías de cerco del Atlántico este empezaron en 1963 y se desarrollaron rápidamente a mediados de los 70. Inicialmente operaban en zonas costeras y gradualmente se extendieron hacia alta mar. Los cerqueros capturan rabil grande en la región ecuatorial en el primer trimestre del año, coincidiendo con la temporada y la zona de desove. Capturan también rabil pequeño en asociación con el listado y el patudo. Desde principios de los 90, varias flotas de cerco (CE-Francia, CE-España y NEI) han operado pesquerías utilizando objetos, con entre un 45 y un 55% de la captura total realizada con este método, mientras que antes de esto, la proporción de captura realizada con este método era del 15% del total. La flota de cerco de Ghana pesca fundamentalmente con objetos flotantes (80-85%). Frecuentemente, los DCP con acumulaciones de peces los colocan primero los buques de cebo vivo, que llaman a un cerquero para realizar el lance si la acumulación es grande. En esta situación, la captura se comparte entre el cerquero y el buque de cebo vivo.

La pesca con objetos flotantes se realiza principalmente en el primer y cuarto trimestre del año, y el listado es la especie dominante junto con menores cantidades de rabil y patudo. La composición por especies de los cardúmenes asociados con objetos flotantes es muy diferente a la de los bancos libres. Las capturas de rabil sobre objetos flotantes comprendían entre el 15% y el 26% de la captura total en los años entre 1991 y 2006 (22% en 2006 para las flotas francesa, española y NEI) y entre el 52% y el 86% para el listado para el mismo periodo (86% en 2006 para las flotas francesa, española y NEI).

La pesquería de cerco del Atlántico este muestra una distribución bimodal en las clases de talla para el rabil, con modas cercanas a 50 cm y 150 cm pero con muy pocas tallas intermedias y una elevada proporción de peces grandes (de más de 160 cm). El peso medio de los rabiles capturados por las flotas de cerco europeas y NEI fue de 13,4 kg en 2006 (4,2 kg con DCP y 30,5 kg los peces sin asociar). Las tallas de los rabiles capturados por los cerqueros de Ghana oscilaban entre 48-52 cm en la última década. El peso medio del listado capturado por las flotas de cerco europeas y NEI era de 2,5 kg en 2006 (2,0 sobre DCP y 2,5 kg sobre banco libre), con tallas entre 30 y 65 cm, con la moda en aproximadamente 45 cm.

La serie de captura de Tarea I disponible para estas evaluaciones de stock incluye, por primera vez, capturas de *"faux poisson"* (pescado vendido en los mercados locales de los puertos de desembarque que no es declarado en los cuadernos de pesca). Las capturas de *"faux poisson"* de las flotas de cerco europeas se han calculado desde 1981.

Entre 1997 y 2004, debido al establecimiento de una veda espacio-temporal a la pesca con DCP artificiales durante un periodo de tres meses en una amplia zona del Atlántico ecuatorial, se produjeron nuevos desarrollos en la pesquería de cerco que afectan a las capturas de rabil. Desde 2005, estas restricciones se han suspendido y en su lugar se estableció una nueva veda espacio-temporal con una zona más pequeña (Piccolo) y solo durante un mes (noviembre).

En el Atlántico oeste, las pesquerías de cerco, que eran esporádicas entre 1970 y 1980, han operado desde 1980 en áreas costeras hasta el Norte de la costa de Venezuela y en el Sur de Brasil. Las tallas se encuentran en un rango más pequeño que las capturadas en el Este (entre 40 y 140 cm), y la mayoría es de tamaño intermedio. El rabil no es la especie objetivo de estas flotas.

La pesquería de cerco dirigida al listado, con capturas mucho menores que las de las flotas de cebo vivo, sólo se da en Venezuela y Brasil. Las tallas para estas pesquerías oscilan entre 35 y 65 cm, con una moda de aproximadamente 55 cm para Venezuela, y para Brasil entre 35 y 75 cm, con una moda de aproximadamente 40 cm.

3.1.3 Palangre

La pesquería de palangre comenzó a finales de los 50 y pronto fue importante, con capturas significativas realizadas antes de principios de los 60. Desde entonces, las capturas han descendido gradualmente. Las pesquerías de palangre que capturan rabil se encuentran en todo el Atlántico (**Figura 1**). El grado en que las flotas se dirigen al rabil varía entre las flotas de palangre. En el Golfo de México, tanto los palangreros mexicanos como los estadounidenses se dirigen al rabil (el peso medio del rabil ha permanecido entre 32 y 39 kg durante el periodo de 1994 a 2006). Los buques venezolanos se dirigen también al rabil, al menos estacionalmente. Por el contrario, a principios de los 80 los buques japoneses y de Taipei Chino empezaron a cambiar el objetivo desde el atún blanco y el rabil para dirigirse al patudo utilizando palangre profundo. Los palangreros uruguayos capturan también rabil en el Atlántico sudoeste, junto con otras especies objetivo. Las tallas FL del rabil oscilaban entre 52 y 180 cm con una moda de 110 cm (SCRS/2008/111).

3.2 Captura

3.2.1 Rabil

La **Tabla 1** y la **Figura 3** muestran el desarrollo de las capturas de rabil en el Atlántico este, el Atlántico oeste y el Atlántico total. Las capturas totales de rabil en 2006 ascendieron a 108.623 t. Las capturas de Tarea I que se muestran para 2007 son únicamente a título informativo, ya que son cifras preliminares e incompletas (faltan flotas importantes).

En conjunto, las capturas de rabil de Tarea I del Atlántico total han cambiado imperceptiblemente desde el SCRS de 2007. Aunque se han hecho actualizaciones menores a las series de captura nominal de la Tarea I histórica que cambiarán ligeramente la composición de la captura de ambas unidades de ordenación, la del Atlántico este y la del Atlántico oeste. Las revisiones realizadas fueron:

la serie de captura de palangre del Atlántico "sin clasificar" (sin separar en unidades de ordenación orientales y occidentales) de Taipei Chino (1962-1965), NEI (pabellones relacionados) (1983-2003), Panamá (1986-1999), y CE-España (2005-2006) fue separada entre las unidades geográficas del Este y el Oeste utilizando la correspondiente información geográfica de la captura y esfuerzo de Tarea II

(excepto las flotas NEI y Panamá para las que se utilizó Taipei Chino). Los detalles se muestran en la **Tabla 3.**

- Las series de captura histórica de Tarea I de Santo Tomé y Príncipe (1988-2003) separadas por especies (estas capturas existían en la Tarea I como túnidos sin clasificar desde 1970) fueron presentadas y discutidas al final de la reunión del SCRS de 2007 e incorporadas a las capturas de Tarea I.
- Los traspasos de Cabo Verde desde 2004 en adelante fueron sustituidos por estadísticas oficiales de captura declaradas antes de esta reunión.
- Durante la reunión, los científicos franceses presentaron una estimación del "*faux poisson*" capturado por las flotas de cerco europeas (1981-2007) y posteriormente fue incorporada como flota "Mix.FR+ES" a la Tarea I.

Las capturas de rabil aumentaron desde los 50 hasta alcanzar una media de 150.000 t en los 80 y en 1990 alcanzaron la mayor cifra (193.448 t). Desde entonces, las capturas han sufrido un descenso gradual y en años recientes han estado a un nivel similar a las de principios de los 70.

Cebo vivo: La captura total de este arte para todo el Atlántico fue de 13.129 t en 2006, aunque en 1993 la captura fue de aproximadamente 25.000 t (**Figura 4**). El desarrollo es diferente para las diversas pesquerías.

En el Atlántico este, barcos de Angola, Cabo Verde y Japón, que realizaron capturas importantes en el primer periodo de la pesquería, han disminuido su captura, mientras que otras pesquerías han aumentado las suyas. En 2006 la captura fue de 10.434 t (**Figura 5**) con una captura récord en 1968 de 22.135 t. Los documentos SCRS/2008/105, SCRS/2008/106 y SCRS/2008/124 muestran los diversos datos estadísticos para las siguientes pesquerías: tropical española, Islas Canarias, total europea y NEI, respectivamente.

En el Atlántico oeste (**Figura 6**) las capturas de cebo vivo se iniciaron en 1974, aumentando regularmente desde 1.300 t en 1974 hasta 7.000 t en 1994, para descender posteriormente hasta aproximadamente 2.695 t en 2006.

Cerco: Las capturas de rabil realizadas por esta flota alcanzaron las 62.761 t en todo el Atlántico en 2006. En el Atlántico este, las capturas aumentaron espectacularmente en los primeros años de la pesquería (**Figura 4**) desde 10.000 t en los 60 hasta 100.000 t en 1980, estabilizándose en este nivel hasta 1983, antes de descender a la mitad en 1984. Esto se produjo como resultado del drástico descenso en el esfuerzo que tuvo lugar tras la caída en el rendimiento de los rabiles de gran talla, debido principalmente a que las flotas de cerco de CE-Francia, CE-España y NEI abandonaran la pesquería. Posteriormente las capturas aumentaron de nuevo, con una captura récord en 1990 de más de 129.000 t, seguida de una tendencia descendiente en años posteriores, alcanzando en 2006 las 58.319 t. Los documentos SCRS/2008/105 y SCRS/2008/124 presentan datos estadísticos para las pesquerías de cerco española, europea y NEI. Para el *"faux poisson"*, las estimaciones correspondientes al rabil muestran que la cifra más alta fue 2.750 t en 1993, alcanzando las 1.063 t en 2006.

Las estimaciones de los descartes y la captura fortuita en la pesquería de cerco francesa del Atlántico oriental se derivaron de mareas de observadores llevadas a cabo durante 2005-2008 (SCRS/2008/117). Los resultados demostraron que casi no se habían observado descartes en los bancos libres durante este periodo y que el listado y la bacoreta (Euthynnus alleteratus) suponían el grueso de los descartes que se hicieron esencialmente con dispositivos de concentración de peces (DCP). En 2007, las tasas medias de descartes de listado y rabil con DCP se estimaron en 42,9 kg y 1,3 kg por tonelada desembarcada, respectivamente. Las muestras de datos sobre la talla del "faux poisson" recopilados en el puerto pesquero de Abidján demostraron que no existe una diferencia significativa entre las distribuciones de talla de los descartes y del "*faux poisson*" para el rabil, el listado y el patudo. Los listados pequeños han dominado los desembarques de "*faux poisson*" de túnidos en Abidján desde principios de los 80 y los desembarques medios anuales en el mercado local durante 2004-2007 eran superiores a 9.500 kg, mientras que los desembarques totales en Abidján para las conserveras eran de aproximadamente 40.000 t cada año durante el mismo periodo. Por tanto, la tasa media de "faux poisson" en años recientes era de aproximadamente 235 kg por tonelada de listado desembarcado. Para el rabil, la biomasa media anual de "faux poisson" desembarcado era de aproximadamente 1.900 t durante 2004-2007, en comparación con las 37.000 t de desembarques comerciales en Abidján. La tasa media de "faux poisson" era entonces de aproximadamente 50 kg por tonelada de rabil desembarcado para las conserveras. Las cantidades de túnidos juveniles vendidos como "faux poisson" podrían por tanto superar bastante los descartes de listado, lo que resalta la necesidad de mejorar el muestreo del "faux poisson", que actualmente no se encuentra en las estadísticas oficiales y no está incluido en los modelos de evaluación de stock.

En el Atlántico oeste (**Figura 6**) las capturas aumentaron desde el inicio de la pesquería a principios de los 60 hasta 1983, cuando alcanzaron las 25.000 t. Las capturas de los años siguientes muestran una considerable variación ya que parte de esta flota se trasladó al océano Pacífico. Las capturas de 2006 fueron de 4.442 t. Las capturas más importantes en el Atlántico oeste las realiza la pesquería de cerco venezolana (en algunos años suponen el 100% de la captura total).

Palangre: Tras un máximo de más de 50.000 t alcanzado en el periodo 1959-1961, las capturas de palangre descendieron hasta un nivel de aproximadamente 30.000 t a principios de los 70 y hasta aproximadamente 25.000 t en los 90. Las capturas de palangre en 2006 alcanzaron las 22.238 t. Las principales pesquerías son las de Brasil, Taipei Chino, Japón, México y Estados Unidos. La aparición de importantes capturas, desde 1985, por parte de las flotas NEI en zonas desconocidas es fuente de inquietud ya que no está claro hasta que punto estas capturas se produjeron realmente en el Atlántico. El documento SCRS/2008/125 presenta datos estadísticos para la pesquería mexicana de palangre en el Golfo de México.

3.2.2 Listado

La **Tabla 2** y la **Figura 7** (captura por área) muestran el desarrollo de las capturas de listado en el Atlántico este, el Atlántico oeste y el Atlántico total. Las capturas totales de listado en 2006 ascendieron a aproximadamente 142.200 t (unas 115.700 t en el Este y unas 26.500 t en el Oeste). Este nivel de capturas se ha mantenido relativamente estable los últimos once años, aunque es notablemente menor que el de 1991 y 1993, cuando se alcanzó el mayor nivel de capturas de esta especie (aproximadamente 200.000 t). Las capturas de Tarea I para 2007 mostradas son únicamente a título informativo ya que son cifras preliminares e incompletas (faltan importantes flotas).

Al igual que con el rabil, se han hecho pequeñas revisiones a las capturas históricas de Tarea I de listado desde el SCRS de 2007. No obstante, sólo afectan al stock oriental. Las revisiones realizadas fueron:

- La serie de captura histórica de Tarea I de Santo Tomé y Príncipe (1988-2003) separada por especies (estas capturas existían en la Tarea I como túnidos sin clasificar desde 1970) presentada y discutida al final de la reunión del SCRS de 2007 fue incorporada en las capturas de Tarea I.
- Los traspasos de Cabo Verde desde 2004 en adelante fueron sustituidos por las estadísticas oficiales de captura declaradas antes de esta reunión.
- Durante la reunión, los científicos franceses presentaron una estimación del "*faux poisson*" capturado por las flotas de cerco europeas (1981-2007) y posteriormente fue incorporada como flota "Mix.FR+ES" a la Tarea I.

El desglose de capturas "sin clasificar" del Atlántico en stocks del Este y del Oeste fue ya realizado durante la reunión intersesiones de túnidos tropicales de 2007 celebrada en Recife, Brasil (11 a 16 de abril de 2007) (Anón. 2008).

En el Atlántico este (**Figura 8**), actualmente las pesquerías más importantes son las de las flotas de cerco, principalmente las de CE-Francia, Ghana, la flota NEI (Belice, Guinea, Antillas Holandesas, Panamá, Malta, Marruecos, San Vicente y Vanuatu) y CE-España seguidas de las flotas de cebo vivo de CE-Francia, Ghana, CE-Portugal y CE-España.

En el Atlántico oeste (Figura 9) las pesquerías más importantes son las de cebo vivo de Brasil y Venezuela.

Cebo vivo: La captura total de este arte para todo el Atlántico fue de 64.924 t en 2006.

En el Atlántico este, las flotas de cebo vivo más importantes son las de Ghana, Senegal y las Islas del Norte (Canarias, Madeira y Azores). En 2006, las capturas alcanzaron las 41.175 t, el mismo nivel de finales de los 80. Los documentos SCRS/2008/105, SCRS/2008/106 y SCRS/2008/124 muestran los diversos datos estadísticos para las pesquerías tropicales de CE-España, de las Islas Canarias y europea y NEI total, respectivamente.

En el Atlántico oeste, las capturas de cebo vivo alcanzaron las 20.000 t en 1982 y desde entonces permanecen al mismo nivel, entre 18.000 t y 28.000 t (**Figura 9**). En 2006 las capturas en estas pesquerías ascendieron a 23.749 t. La pesquería más importante es la brasileña de cebo vivo, cuya única especie objetivo es el listado. Los buques de cebo vivo cubanos y venezolanos han participado también en esta pesquería.

Cerco: La captura total de este arte para todo el Atlántico fue de 71.215 t en 2006.

En el Atlántico este, la pesquería de cerco se desarrolló en los 60, originalmente como pesquería costera, pero con el tiempo se orientó más hacia alta mar. A principios de los 70 las capturas de listado alcanzaron las 50.000 t (**Figura 8**). A comienzos de los 80, las capturas ascendieron a 70.000 t. En 1985, se produjo un considerable descenso en las capturas de los cerqueros debido al desplazamiento de una gran parte de las flotas francesa y española hacia el océano Índico. Esta situación cambió en los años inmediatamente posteriores, y las capturas de listado alcanzaron las 142.000 t en 1991. Desde entonces se ha producido un marcado descenso en las capturas, que cayeron hasta 66.819 t en 2002 y en 2006 aumentaron hasta 69.170 t.

El documento SCRS/2008/105 y el SCRS/2008/124 presentan datos estadísticos para las pesquerías de cerco española, europea y NEI.

Para el *"faux poisson"*, las estimaciones correspondientes al listado (la principal especie de túnidos dentro de este grupo) muestran que la mayor cifra fue de 13.750 t en 1993, llegando a las 5.313 t en 2006.

En el Atlántico oeste, las pesquerías de cerco que se desarrollaron en los 60 (flota estadounidense) tenían capturas mucho menores que las de las flotas de cebo vivo; actualmente las únicas operaciones de cerco las llevan a cabo Venezuela y Brasil. A finales de los 70, las capturas anuales alcanzaron las 3.000 t, en los 80 pronto llegaron a 18.000 t (1984) y en los 90 las capturas fluctuaron entre 12.800 t (1993) y 2.100 (1995). Las capturas de 2006 fueron de 2.045 t. Las capturas más importantes en el Atlántico oeste las realiza la pesquería de cerco de Venezuela (en algunos años suponen el 100% de la captura total).

3.3 Esfuerzo pesquero

En general, las pesquerías que se dirigen a los túnidos tropicales son pesquerías en las que es extremadamente difícil discriminar el esfuerzo pesquero efectivo por especie. Sin embargo, existen excepciones, entre ellas varias pesquerías de palangre que se dirigen al rabil y la pesquería de cebo vivo de Brasil que se dirige al listado.

A partir de los 90, se han producido importantes cambios en las principales pesquerías de superficie del Atlántico este que complican aún más la estimación del esfuerzo efectivo, incluyendo el uso cada vez mayor de objetos flotantes por parte de los cerqueros y los buques de cebo vivo, así como el uso de buques de cebo vivo como DCP en Dakar y en otras pesquerías de cebo vivo.

Como indicadores del esfuerzo nominal en el Atlántico este, se ha utilizado tradicionalmente la capacidad de transporte de las flotas de cerco y cebo vivo. La **Figura 10** muestra el desarrollo de la capacidad de transporte de las flotas de superficie en el Atlántico este para el periodo 1972-2006. La capacidad de transporte del cebo vivo ha permanecido estable desde finales de los 70 en aproximadamente 10.000 t. La capacidad de transporte de la flota de cerco, por otra parte, ha sufrido cambios importantes durante todo el periodo que se está revisando, con un aumento constante desde el principio de la pesquería hasta 1983, cuando superó las 70.000 t. Después de esto, hasta 1990, la capacidad de transporte descendió considerablemente, hasta 37.000 t, debido a que parte de la flota abandonó esta pesquería. Se produjo una ligera recuperación en los dos años siguientes (1991 y 1992) seguida desde entonces por un descenso progresivo, situándose en aproximadamente 29.700 t en el último año (2006).

El documento SCRS/2008/124 muestra el desarrollo de las medidas del esfuerzo pesquero nominal para los cerqueros de la CE y NEI: el número de rectángulos de 1x1 grado explorados y el número con un esfuerzo mayor que 1 día de pesca, y los días totales de pesca de los cerqueros (1991-2007). Puede observarse que aunque la zona de búsqueda permanece en el mismo nivel durante estos periodos, el número de días de pesca ha disminuido considerablemente.

Para el Atlántico oeste, se han producido importantes cambios recientes en la cantidad y distribución del esfuerzo pesquero en la pesquería de palangre brasileño. Hasta 1995, los tiburones eran la principal especie objetivo (58% de las capturas totales). Sin embargo, desde 1993, la proporción de tiburones ha descendido, siendo sustituida por el pez espada como especie dominante en esta pesquería (el pez espada representa ahora el 48% de las capturas totales). El esfuerzo en las pesquerías de superficie venezolanas ha sido elevado desde 1992 (más de 8.000 t de capacidad de transporte por buque). El esfuerzo en la pesquería de palangre de Estados Unidos, que está activa en el Atlántico noroccidental y en el Golfo de México, ha descendido un poco en estos últimos años. El esfuerzo de palangre japonés dirigido al rabil ha descendido también en años recientes. Esta flota se dirige principalmente a otras especies (patudo y atún rojo).
El esfuerzo del palangre venezolano y mexicano dirigido al rabil ha aumentado en años recientes.

3.4 Frecuencias de talla de Tarea II

Los catálogos actualizados de las frecuencias de talla de Tarea II disponibles en la base de datos de ICCAT (muestras observadas y frecuencias de talla extrapoladas comunicadas) tanto para el rabil como para el listado, se muestran en las **Tablas 4** y **5**, respectivamente. Contienen un conjunto de información de metadatos (estratificación espacial y temporal, número de peces en el conjunto de datos, tipo de frecuencias de talla, etc.) que permite disponer de una imagen clara del nivel de heterogeneidad en los datos de talla.

Al comparar los catálogos actuales con los publicados para su revisión en la página web de ICCAT (mayo de 2008), se puede verificar lo siguiente:

- Las revisiones anteriores a 2006 fueron solo comunicadas por Japón (2003-2005, datos de talla y de captura por talla) únicamente para el rabil, y por Taipei Chino (muestras de talla para 2005) para ambas especies.
- La nueva información sobre talla (2006 en adelante) ha sido declarada por varios países: Canadá (2007), Taipei Chino (2006-2007), Japón (2006), Estados Unidos (2006-2007), CE-España (2007, tropical y flotas con base en Canarias), CE-Francia (2007, flota tropical), CE-Portugal (2007), Cabo Verde (2007) y Ghana (2007).

Los detalles acerca de las especies cubiertas y el tipo de frecuencias de talla pueden obtenerse en las tablas correspondientes.

3.5 Captura por talla y captura por edad

Al inicio de la reunión, la Secretaría presentó los conjuntos de datos actualizados de captura por talla (CAS) para el rabil (1970-2007) y el listado (1969-2007) junto con sus correspondientes tablas de sustitución. Las normas de sustitución, así como los conjuntos de datos de tallas usados en las estimaciones, fueron revisados por el Grupo y actualizados convenientemente. El año 2007 fue descartado para ambas especies debido a la falta de información sobre tallas (y capturas de Tarea I) de importantes pesquerías.

3.5.1 Rabil

La CAS del rabil incluye la reconstrucción completa de 2005 (considerablemente incompleto en estimaciones previas) y de 2006. La serie histórica de CAS (1970-2004) se dejó exactamente igual que en la evaluación previa. Tras revisar las tablas de sustitución, el Grupo decidió incluir en la CAS revisada:

- La nueva serie de "*faux poisson*" (1981-2006) estimada por la flota de cerco europea (un archivo de referencia con muestras desde abril de 2007 hasta febrero de 2008, almacenado en la base de datos de ICCAT como de CE-Francia y CE-España).
- Las cifras del traspaso (de 2005) para la Tarea I a 2006 para Colombia, Cuba, República Dominicana, CE-Letonia, Gabón y Libia.

No se han hecho cambios a los criterios de sustitución.

Un problema, identificado más tarde por Japón, tenía que ver con las discrepancias entre la revisión de la CAS japonesa comunicada (2003-2004) que no ha sido incluida en la CAS histórica, y también con una discrepancia en el número de peces descubierta en 2005 (sólo el 65% de la información sobre talla ha sido incorporada a la base de datos de ICCAT, debido a un problema con el Formulario 5 de ICCAT, que estaba incompleto, y al correspondiente punto débil en el código que automáticamente lee los formularios y omite estas posibilidades). Al mismo tiempo, Japón presentó también una revisión completa de la CAS (todos los trimestres) para 2006. El Grupo consideró que era demasiado tarde para cambiar la CAS revisada de nuevo y decidió mantener la serie incompleta de CAS de 2006 (solo el primer trimestre). El Grupo determinó que estas actualizaciones deberían hacerse antes de la próxima reunión del SCRS.

La Secretaría informó también acerca de las incoherencias (pequeñas para la CAS total del Atlántico) existentes entre la Tarea I y la CAS en el nivel de discriminación flota/arte en el periodo 1975-1983, que podrían tener implicaciones al seleccionar varios índices relacionados con la flota para los análisis de VPA. Durante este periodo, la CAS tiene varias capturas de las flotas agregadas (pesquerías de palangre, cebo vivo y cerco) sin una

estrecha correspondencia con las cifras de Tarea I. El Grupo consideró que esta revisión de la CAS histórica debería hacerse para la próxima evaluación.

Tras la creación de una versión revisada de la CAS, las matrices correspondientes de captura por edad (CAA) fueron obtenidas por la Secretaría (totales y también matrices basadas en la pesquería).

La Figura 11 muestra una comparación entre la Tarea I y la CAS. La distribución de la captura por edad se muestra en la Figura 12. Las Tablas 6 y 9 muestran las matrices totales de la CAS y la CAA.

Los detalles de las estimaciones finales de la CAS del rabil serán recogidos en un documento SCRS (SCRS/2008/128) y presentados en el SCRS por la Secretaría.

3.5.2 Listado

La CAS del listado incluye la reconstrucción completa de 2005 (incompleto en estimaciones previas) y de 2006. La serie histórica de CAS (1969-2004) fue ligeramente ajustada con la inclusión de Santo Tomé y Cabo Verde. Tras revisar las tablas de sustitución, el Grupo decidió incluir en la CAS revisada:

- La nueva serie de "*faux poisson*" (1981-2006) estimada por la flota de cerco europea (un archivo de referencia con muestras desde abril de 2007 hasta febrero de 2008, almacenado en la base de datos de ICCAT como de CE-Francia y CE-España).
- Las cifras del traspaso (de 2005) de la Tarea I a 2006 para Cabo Verde y CE-Irlanda.

No se han hecho cambios a los criterios de sustitución.

La Figura 13 muestra una comparación entre la Tarea I y la CAS. Las Tablas 7 y 8 muestran la matriz de la CAS para los stocks oriental y occidental.

Los detalles de las estimaciones finales de la CAS del listado serán recogidos en un documento SCRS (SCRS/2008/126) y presentados en el SCRS por la Secretaría.

3.5.3 Captura por edad

Los datos de captura por talla del rabil en el formato variable de ICCAT fueron usados para crear la captura por edad siguiendo los parámetros de separación de cohortes (**Tabla 10**) por clases de talla utilizados en una evaluación anterior. La captura por edad en número de peces para las pesquerías seleccionadas y la cantidad total fue presentada por la Secretaría y utilizada posteriormente en la evaluación (**Figura 13** y **Tabla 9**). Se creó también la captura por edad en peso para las mismas pesquerías usando la misma separación de cohortes y la siguiente relación talla-peso:

- 1. Kevin Davis (1991) (RWT = 0.000000089 * FL**2.88) donde RWT está en libras y la longitud a la horquilla en mm.
- 2. Gaertner et al. (1992) RWT = 0.00006611 * FL**2.7148 y;
- 3. Caveriviere (1976) RWT =0.00002153*FL**2.976

Se planteó también una nueva separación de cohortes de Shuford *et al.* y el Grupo consideró que deberían llevarse a cabo más investigaciones para probar posibles discrepancias con los cálculos anteriores.

3.6 Preparaciones de datos para Multifan

Antes de la sesión de evaluación, se acordó intentar realizar análisis de Multifan-CL (MFCL) del listado y del rabil en la reunión de evaluación de 2008, con el fin de incorporar mejor la dinámica espacial y de la pesquería relacionada con estas especies en todo el Atlántico.

Para el listado, las definiciones preliminares de la pesquería se dan en la **Tabla 11** y para el rabil en la **Tabla 12**. Intersesiones, la Secretaría preparó los datos de captura hasta 2006 por área (5x5) y trimestre así como la información disponible sobre talla y captura/esfuerzo (c/f) de Tarea II. Los científicos nacionales prepararon los índices de CPUE para las pesquerías específicas por trimestre (véase la sección 4) y los datos de la Tarea II de ICCAT fueron examinados para producir indicadores de las tasas de captura para el resto de pesquerías. El lapso temporal acordado para las aplicaciones de MFCL fue trimestral. Por tanto, la información sobre captura y esfuerzo y frecuencia de tallas por pesquería y trimestre fue compilada de la CATDIS de ICCAT y de la información de talla y captura y esfuerzo de Tarea II. Los datos de esfuerzo trimestrales por pesquería fueron estimados a partir de los datos de Tarea II aplicando modelos lineales generalizados que tienen en cuenta la Flota, el Tipo de arte y el Tipo de esfuerzo dentro de cada Definición de pesquería registrada en la base de datos de Tarea II. El **Apéndice 4** documenta los procedimientos utilizados para generar la CPUE de la serie temporal que fue posteriormente dividida en la información sobre captura específica de cada pesquería para estimar los patrones de esfuerzo para MFCL. En todos los casos, cuando la CPUE estandarizada detallada estaba disponible gracias a los científicos nacionales o basada en el trabajo llevado a cabo por el Grupo en la reunión de evaluación, esos patrones de CPUE se utilizaron para calcular los patrones de esfuerzo trimestrales para su uso en MFCL. Las **Figuras 14** y **15** y el **Apéndice 4** muestran las series temporales resultantes de captura y esfuerzo por pesquería.

Los datos de frecuencia de tallas que se mantienen en el conjunto de datos de Tarea II de ICCAT fueron también organizados por definición de pesquería y trimestre de MFCL para el listado y el rabil. Para filtrar los datos para su uso se utilizó un criterio de al menos 50 observaciones de talla por pesquería /trimestre (**Figuras 16** y **17**). El código SAS utilizado para resumir los datos se presenta en el **Apéndice 4**.

Para apoyar los preparativos de los datos de MFCL, se obtuvieron mediante GLM (véase la Sección 4 para información más detallada) las CPUE anuales estandarizadas del listado para la flota europea y asociada de cerco, tanto para los DCP como para banco libre. Con el fin de incorporar estos índices a los ensayos del MFCL, fueron necesarios algunos ajustes para obtener las CPUE estandarizadas trimestrales. Durante la reunión, no fue posible obtener nuevos índices estandarizados por trimestre. Por lo tanto, se estableció un procedimiento para separar la CPUE estandarizada anual por trimestre. En el caso de la CPUE de banco libre del listado, los residuos parciales correspondientes al factor trimestre se utilizaron como criterios para separar las CPUE. A partir del gráfico de los residuos parciales se obtuvo, por trimestre, un multiplicador relativo al valor medio; posteriormente se obtuvo la CPUE trimestral multiplicando el valor anual por estos multiplicadores. En el caso de la CPUE estandarizada de los DCP del listado, los residuos parciales no estaban disponibles, por tanto, se consideró el mismo valor anual para cada unos de los cuatro trimestres.

Rabil

Utilizando datos de CPUE para la flota de cerco europea y asociada, se estimó la CPUE mediante GLM (véase la Sección 4 para información más detallada) para: (a) rabil pequeño (<10 kg) utilizando el modo de pesca con DCP y (b) reproductores (>30 kg) utilizando las tasas de captura estandarizada del primer trimestre. La información disponible sobre el índice del rabil pequeño y del listado, no permitía establecer ningún criterio para separar el índice por trimestre. Por tanto, se consideró el mismo valor anual para todos los trimestres.

El **Apéndice 4** contiene los archivos preliminares de FRQ preparados para el listado y el rabil y están disponibles en la Secretaría previa petición.

4. Índices de abundancia relativa y otros indicadores de la pesquería

4.1 Listado

4.1.1 Indicadores de la pesquería

Atlántico oriental

El Grupo examinó varios indicadores generales de las pesquerías de cerco y cebo vivo. La capacidad de transporte de los cerqueros de la CE y el número de buques de cebo vivo ha descendido (**Figura 10**). Sin embargo, en las pesquerías con base en Dakar la capacidad de transporte aumentó mientras que el número de buques de cebo vivo descendió (**Figura 18**). El número total de lances, el porcentaje de lances con éxito por modo de pesca (**Figura 19**) y las áreas totales visitadas y en las que se ha pescado (**Figuras 20** y **21**) se utilizaron también como indicadores de esfuerzo.

Los datos de captura por talla para el listado del Atlántico oriental se utilizaron en el documento SCRS/2008/114 para estimar los cambios en la mortalidad total y en los patrones de selectividad para dos pesquerías de superficie (la pesquería de caña y liña que opera desde Dakar, Senegal, y las flotas de cerco omitiendo a los

buques de Ghana) desde 1971 hasta 2005. El patrón general descrito por Z (**Figura 22**) es conforme a los conocimientos previos sobre esta pesquería: una situación de plena explotación, o cercana, durante los 90, seguida de un descenso desde mediados de los 90 debido probablemente a un resultado combinado del descenso en el esfuerzo pesquero nominal del cerco, y a la adopción de una moratoria estacional a la pesca con DCP. Incluso si el patrón de selectividad total permanece relativamente estable a lo largo de los años, la tendencia descendente en la selectividad observada para los cerqueros desde principios de los 90 sugiere que estas flotas han cambiado de objetivo y no se dirigen a los peces pequeños. Esto se corresponde con el desarrollo de las operaciones de pesca con DCP desde el mismo periodo.

Respecto a los buques de cebo vivo europeos con base en Dakar (Senegal), las tasas de captura nominal del listado han aumentado regularmente en toda la serie temporal. Al analizar estos datos debe tenerse en cuenta que desde principios de los 90 estos buques de cebo vivo han desarrollado una técnica pesquera (principalmente para dirigirse al patudo) en la que el buque de cebo vivo se utiliza como objeto flotante fijando el banco (compuesto de patudo, rabil y listado) durante toda la temporada de pesca en aguas de Senegal y Mauritania. Como consecuencia, tiene sentido asumir que la adopción de esta técnica pesquera ha aumentado la capturabilidad total de los túnidos. Cabe señalar, no obstante, que el patrón descrito para el listado contrasta con las tendencias decrecientes en las CPUE observadas para las otras dos especies de túnidos tropicales.

4.1.2 Tasas de captura

Durante la reunión del Grupo celebrada en Séte (Francia) en 2006 (Anón. 2007) se recomendó que los científicos de las diversas Partes contratantes llevaran a cabo análisis de las tendencias de CPUE para las pesquerías en los límites de la distribución de especies. Los resultados de la estandarización de las CPUE para los buques de cebo vivo de las Azores fueron presentados y discutidos durante la reunión del Grupo de especies. Tal y como se esperaba, debido a la ubicación de esta zona de pesca con respecto al rango de distribución del listado, el índice estandarizado mostraba una variabilidad elevada, pero sin una tendencia significativa (**Figura 23**).

El Grupo resaltó la importancia de actualizar las tasas de captura de las principales pesquerías que declaran capturas de listado. Debe destacarse que el listado es a menudo una especie secundaria, dependiendo del precio diferencial y de la capturabilidad de otras especies objetivo. Por consiguiente, la estimación del esfuerzo efectivo ejercido sobre el listado (por ejemplo, esfuerzo proporcional a la mortalidad por pesca) sigue siendo problemática y las tasas de captura a veces pueden representar una tendencia diferente a la abundancia.

Para los cerqueros, que pescan alternativamente sobre banco libre y sobre DCP, se consideró que el tiempo de búsqueda puede ser la mejor medida del esfuerzo básico ejercido sobre los bancos libres. Se sugirió también que el conjunto de datos del análisis podría restringirse aún más al esfuerzo asociado con los lances sobre banco libre asumiendo que los buques que viajan mayores distancias durante la noche se mueven entre DCP, ya que no pueden estar buscando bancos libres por la noche. Sin embargo, este enfoque requeriría probablemente más estudios, incluyendo la incorporación de los datos de VMS, para determinar si es tanto viable como adecuado. Un nuevo Proyecto CEDER financiado por la UE (Captura, Esfuerzo y Descartes estimados en tiempo real), que empezó en 2006, tratará en parte esta cuestión. El objetivo básico desarrollado en el marco de este proyecto es analizar la trayectoria individual de los cerqueros con el fin de describir el comportamiento pesquero, que refleja el tiempo de búsqueda de los bancos no asociados o si se mueven hacia los DCP previamente detectados por baliza de radio (teniendo en cuenta, no obstante, que independientemente del modo de pesca investigado, cada banco de túnidos detectados por casualidad puede ser objeto de pesca). Otros factores que podrían ser considerados incluyen los cambios en el tiempo, que han producido una reducción del tiempo necesario para realizar los lances y descargar las capturas (aumentando la eficacia del esfuerzo pesquero en el tiempo).

Para continuar con la evaluación previa, se actualizaron las tasas de captura de la flota de cerco europea (CE-Francia y CE-España) obtenidas tras estandarizar el esfuerzo pesquero nominal a los cerqueros FIS de categoría 5 (450-750 TRB) y asumiendo un incremento anual del 3% en la eficacia pesquera de la flota desde 1981. El objetivo de incorporar un aumento en la eficacia pesquera era tener en cuenta los cambios que habían ocurrido en la flota de cerco durante esos años. La estimación de un incremento anual del 3% en la eficacia se deriva de un estudio de Gascuel *et al.* (1993). El Grupo discutió la conveniencia de mantener este supuesto cuando los buques que pescan en el Atlántico son antiguos (de media son de más de 20 años) y sus patrones y tripulaciones tienen un perfil bajo en comparación con los que pescan en otros océanos (por ejemplo en el océano Índico). Considerando que la estimación del incremento del 3% se hizo hace 15 años, el Grupo decidió realizar una nueva estimación de los cambios en la capturabilidad de los cerqueros. Estas nuevas estimaciones mostraban un incremento mayor en la eficacia de la flota, un incremento medio anual de aproximadamente un 5% (las tres especies combinadas). No obstante, el Grupo decidió utilizar el índice estimado con un incremento del 3% para mayor continuidad con las dos últimas evaluaciones.

Los índices estandarizados para el listado y rabil juveniles para las flotas de cerco europeas y asociadas que pescan sobre DCP fueron presentados al Grupo (SCRS/2008/116). Se utilizaron los datos de los cuadernos de pesca consignados lance por lance sobre DCP así como las características de la flota. Los índices se desarrollaron utilizando un modelo delta-lognormal. En este caso, el modelo fue formulado de forma diferente al uso general para tener en cuenta el problema relacionado con la composición por especies de la captura del cerco de peces pequeños (<10 kg). Estas capturas se han estimado a partir del muestreo para corregir el sesgo detectado en los datos de los cuadernos de pesca. Por lo tanto, el modelo incluía dos modelos lineales generalizados distintos: un modelo lognormal que describe la variabilidad en la captura no cero de las especies inferiores a 10 kg y un modelo binomial y de datos que describe la proporción de cada una de las tres especies en la captura. Los resultados de este enfoque son diferentes, dependiendo de las especies, y las tasas de captura del listado mostraron una forma de U con un mínimo en 1998 durante todo el periodo.

Además, se presentó un índice estandarizado para el listado para la flota española que pesca sobre banco libre (SCRS/2008/118). Este índice corresponde a la pesquería estacional sobre banco libre desarrollada por la flota española en aguas de Senegal, principalmente durante el segundo y tercer trimestre del año. Esta pesquería se dirige principalmente al listado. Se utilizaron los datos de los cuadernos de pesca lance por lance así como las características de la flota. En este modelo, solo se incluyeron los lances sobre banco libre para el periodo (1991-2006) durante el cual se inició la ampliación de la pesquería sobre DCP y sobre el que existe información respecto al modo de pesca. Para el periodo histórico se asumió que el modo de pesca era la pesca sobre banco libre. Los datos se limitaron también a las aguas de Senegal. Se desarrolló un índice usando un modelo delta-lognormal. Las variables consideradas fueron *año, trimestre* y *categoría de buque* (volumen de bodega). Las series cubrían el periodo desde 1980 hasta 2006. Asimismo, se estableció un umbral de 120 días de pesca por buque y año. Las tasas de captura estandarizadas mostraban una tendencia creciente en los 80, seguidas de un descenso a principios de los 90 y una variabilidad elevada desde entonces. El Grupo consideró que la disponibilidad de listado en esta zona podría estar relacionada con factores medioambientales y que este índice sería más representativo de cambios en la capturabilidad que de cambios en la abundancia.

Todas las tasas de captura estandarizadas estimadas por el Grupo para el stock oriental se muestran en la **Figura** 24. Algunas series de datos no son completas. Por ejemplo, no hay estimaciones para el cebo vivo de Ghana después de 1992. Las estimaciones que no se utilizaron en los análisis de la evaluación (cerco sobre banco libre-CE) no están incluidas en la figura. Las estimaciones calculadas para la base de datos de CE-Portugal y Canadá mostraban grandes variaciones con diversos picos y caídas. Las estimaciones de las tasas de captura estandarizadas de los cerqueros de Dakar aumentaron hasta principios de los 90, pero no hay una tendencia clara en el tiempo desde 1992.

Atlántico occidental

En contraste con las grandes zonas de pesca observadas en la parte oriental del Atlántico, los caladeros del Atlántico occidental son por lo general más costeros. La mayoría del listado desembarcado en el Oeste ha sido capturado por buques de cebo vivo brasileños. Actualmente el listado es la principal especie objetivo en este caso. Cabe señalar que las tasas de captura declaradas por esta pesquería son mayores que las CPUE observadas en todas las pesquerías de cebo vivo orientales. Para los cerqueros venezolanos que pescan fundamentalmente en el Caribe no se ha facilitado nueva información desde la reunión del SCRS de 2007.

Se calcularon las tasas de captura estandarizadas para el stock occidental. En la mayoría de los documentos, se utilizaron el modelo lineal generalizado y la distribución delta-lognormal para calcular los índices de abundancia relativa. Se usaron modelos lineales generalizados mixtos para analizar los datos de captura y esfuerzo de la Encuesta estadística sobre pesquerías marinas recreativas de Estados Unidos (MRFSS) de la costa atlántica y el Golfo de México (SCRS/2008/122). Los datos positivos se modelaron utilizando un modelo lognormal, mientras que la proporción de capturas positivas fue modelada con una distribución binomial. Los factores considerados en el modelo fueron la zona geográfica, la temporada y el modo de pesca (buque pesquero privado o alquilado). Las tasas de captura estandarizadas calculadas utilizando el modelo delta-lognormal variaban anualmente sin mostrar una tendencia clara.

Las tasas de captura estandarizada del listado capturado por las flotas de palangre pelágico de Estados Unidos en el Golfo de México calculadas usando un GLM se presentaron en el SCRS/2008/121. Las variables de respuesta consideradas para el listado fueron las CPUE para el periodo 1992-2007. En el análisis, se utilizaron los modelos

delta-lognormales con las siguientes variables explicativas: año, área, temporada, características del arte y características de la pesca. En general, parece existir una tendencia ascendente en las tasas de captura de listado en 2006 y 2007, aunque esto puede explicarse por las tasas crecientes de cobertura de observadores. Actualmente, el listado no es una especie objetivo para la flota estadounidense de palangre y hay muy pocos informes de lances positivos en los cuadernos de pesca.

La mayoría del listado desembarcado en el Atlántico oeste es capturado por la flota de cebo vivo brasileña. Con el fin de obtener tasas de captura estandarizadas por año y trimestre se utilizaron dos enfoques (SCRS/2008/113). En el primero, las capturas iguales a cero fueron descartadas y se seleccionó un modelo (lognormal) para analizar el conjunto de datos positivos. En el segundo enfoque, las capturas cero (<2% de la base de datos total) también se consideraron y se utilizó un modelo delta-lognormal para estimar las tasas de captura estandarizadas. Los índices mostraban grandes variaciones entre los años pero no mostraban ninguna tendencia.

Todas las tasas de captura estandarizadas utilizadas en los análisis de la evaluación se presentan en la **Figura 25**. Las estimaciones reunidas en el análisis de los conjuntos de datos brasileños y estadounidenses no mostraban ninguna tendencia. Las estimaciones calculadas para la base de datos venezolana caían abruptamente a principios de los 80 pero mostraban una ligera tendencia descendente desde 1983.

4.1.3 Patrones específicos de la pesquería para el listado

Las definiciones de pesquería utilizadas se muestran en la siguiente tabla y por lo general siguen las definiciones utilizadas para modelar la evaluación del patudo con MULTIFAN CL.

Stock	Fishery	Flags	Gear	Period
Atlantic East	1E	EC-France, EC-Spain and Others	PS	1969-1979
Atlantic East	2E	EC-France, EC-Spain and Others	PS	1980-1990
Atlantic East	3E	EC-France, EC-Spain and Others-Free School	PS	1991-2005
Atlantic East	4E	EC-France, EC-Spain and Others-FADs	PS	1991-2005
Atlantic East	5E	Ghana	PS & BB	1973-2005
Atlantic East	6E	EC-France, EC-Spain (Dakar Based), Senegal	BB	1965-1983
Atlantic East	7E	EC-France, EC-Spain (Dakar Based), Senegal	BB	1984-2005
Atlantic East	8E	Azores, Madeira, Canaries	BB	1965-2005
Atlantic East	9E	Others	BB	1965-2005
Atlantic East	10E	Others	Others	1965-2005
Atlantic West	1W	Brazil	BB	1965-2005
Atlantic West	2W	Venezuela	PS+BB	1965-2005
Atlantic West	3W	All	Others	1965-2005

Definiciones de pesquería propuestas para utilizar en otros análisis del listado.

Selección de los índices de abundancia para el listado

Para seleccionar entre las pesquerías posibles la serie más adecuada de CPUE en términos de representatividad de los cambios en la abundancia del listado en ambas partes del Atlántico, se ha prestado atención a criterios como la captura total media, la superficie de los caladeros y el tamaño de la serie temporal.

En el Atlántico oriental las pesquerías de cebo vivo que representan los cambios en el tiempo de la abundancia de diferentes clases de talla del listado se seleccionaron de la siguiente manera:

- Flota portuguesa-de las Azores (índice estandarizado tras omitir los barcos más pequeños que pescan en aguas costeras de las Azores): 1970-2006;
- Buques españoles de las islas Canarias (serie no estandarizada, dividida por periodos, antes y después de la adopción de la técnica de pesca sobre bancos asociados en 1992): 1980-1991, 1992-2006;
- Flotas de cebo vivo (CE-Francia, CE-España, FIS, Senegal) que operan desde Dakar (Senegal), (estandarizada para toda la serie temporal, posteriormente desglosada en antes y después de la adopción de la técnica de pesca sobre bancos asociados en 1984): 1969-1983, 1984-2006, y
- Buques ghaneses (CPUE no estandarizada); desde 1969 hasta 1982 (Wise, 1986).

Se utilizaron dos series de cerco:

- Los cerqueros españoles y asociados que se dirigen a los bancos libres de listado en aguas de Senegal durante el segundo trimestre del año desde 1980 hasta 2006. La ventaja de utilizar la CPUE del cerco en esta región es la posibilidad de calcular un índice de abundancia aparente sólo para las operaciones de pesca sobre bancos, algo que no se puede hacer en otras zonas.
- Los cerqueros de la CE que pescan sobre DCP principalmente en zonas ecuatoriales: 1991-2006.

Para el stock occidental, se utilizaron tres índices de tasas de captura:

- La pesquería de cebo vivo brasileña, que se sabe que se dirige específicamente al listado (índice estandarizado): 1981-2006;
- Los cerqueros venezolanos que operan en general con ayuda de los buques de cebo vivo (índice no estandarizado, corregido teniendo en cuenta un aumento anual moderado del 1% en eficacia): 1982-2005; y
- La pesquería de recreo estadounidense (serie estandarizada): 1986-2006.

Peso medio

La **Figura 26** muestra el peso medio del listado para el Atlántico oriental y occidental. El peso medio de los peces desembarcados no mostraba ninguna tendencia en el periodo más reciente. Desde principios de los 80, el peso medio del pescado desembarcado en la parte occidental duplicaba el peso del pescado desembarcado en el Atlántico oriental.

4.2 Rabil

4.2.1 Peso medio

El peso medio del rabil presentaba alguna variabilidad pero una tendencia descendente es evidente desde principios de los 70 (**Figura 27**). Al analizar la información separada por arte está claro que la tendencia descendente se debe principalmente al palangre y al cerco.

4.2.2 Tasas de captura

Cerco

En el SCRS/2008/115 se presentaron las tasas de captura estandarizadas para el rabil adulto capturado por los cerqueros que pescaron durante el periodo de 1980-2006 en el Atlántico tropical. Se utilizaron dos enfoques para obtener los índices de los resultados del modelo lineal generalizado: (a) medias de cuadrados mínimos y (b) una media de los valores ajustados. Las estimaciones de la varianza realizadas con el segundo enfoque fueron menores. Sin embargo, las tasas de captura estandarizadas no mostraron ninguna tendencia.

En el documento SCRS/2008/116 se analizó también la información de los cuadernos de pesca consignada lance por lance sobre DCP con el fin de obtener tasas de captura estandarizadas para el rabil juvenil. Se utilizó un modelo delta-lognormal y un GLM para estimar los índices. Las variables explicativas incluidas en el modelo fueron *año, región, trimestre y categoría de buque*. Las tasas de captura estandarizadas para el rabil mostraron una tendencia plana durante el periodo 1991-2006.

Las tasas de captura disponibles en esta reunión eran contradictorias (**Figura 29**). Las estimaciones calculadas para los índices venezolanos mostraron tres picos pero una tendencia descendente. Sin embargo, los índices del cerco tropical alcanzaron un pico en 1989 pero no mostraron muchos cambios después de 1992. Las tasas de captura estandarizadas tal y como fueron calculadas para la base de datos de la CE aparecen planas en el periodo 1991-2005.

Cebo vivo

Las tasas de captura nominal para la flota de las Islas Canarias mostraban varios picos y descensos (**Figura 30**). Los valores estimados reunidos con la base de datos de Brasil caían abruptamente entre 1981 y 1982 y posteriormente mostraban una tendencia ligeramente descendente. Las tasas de captura nominal de Dakar alcanzaron un pico en 1993 y posteriormente mostraban una tendencia descendente.

Pesquerías de recreo

Se utilizó un modelo lineal mixto generalizado y una distribución delta-lognormal para analizar las tasas de captura del rabil capturado en el Atlántico y en el Golfo de México tal y como aparecen en la base de datos de la Encuesta Estadística de las pesquerías marinas de recreo de Estados Unidos (MRFSS) (SCRS/2008/122). Los factores considerados en el modelo fueron área geográfica, temporada y modo de pesca (barco de pesca alquilado o privado). Las tasas de captura estandarizadas varían anualmente pero sin tendencia (**Figura 31**). Existen algunos picos en 1984, 1994 y 1999, así como descensos a finales de los 80 y a mediados de los 90. Después de 1999 es clara una tendencia descendente.

Palangre

En la reunión se presentaron varios índices de CPUE de pesquerías diferentes al cerco. Todos los índices fueron estandarizados utilizando GLM, y diferían en el supuesto de la distribución de error (lognormal o Poisson). Tenían los mismos factores básicos en común, como año, temporada y área, junto con otros factores específicos de cada caso.

Las tasas de captura estandarizadas para el rabil capturado por la flota japonesa de palangre desde 1965 hasta 2006 fueron estimadas utilizando un modelo lineal generalizado (GLM) (SCRS/2008/108). Los factores considerados en el modelo fueron año, trimestre, SST (temperatura de la superficie del mar), número de anzuelos entre flotadores y tipo de línea madre y brazolada. Los principales efectos e interacciones se incluyeron en el análisis. Las tasas de captura fueron modeladas utilizando una distribución de densidad lognormal y se añadió una constante positiva a la tasa de captura para manejar las capturas iguales a cero. Las tasas de captura estandarizadas tal y como fueron estimadas en base al año y al trimestre descendieron hasta mediados de los 70. Las estimaciones eran cercanas a 1,7 (peces/1000 anzuelos) hasta principios de los 90, cuando descendieron hasta 0,6 (peces/1000 anzuelos). Tras este descenso, la variación de las tasas de captura estandarizadas no mostró ninguna tendencia. Las variaciones de los índices estandarizados calculados en peso eran similares a las reunidas en los cálculos basados en el número de peces. Las tasas de captura nominal para los 60 y principios de los 70 declaradas para la flota japonesa así como para las demás flotas de palangre se consideraron dudosas en una reunión anterior. Por lo tanto, el Grupo decidió no utilizar las estimaciones para los primeros años.

En el Atlántico sudoeste, el rabil lo capturan fundamentalmente las flotas que operan con palangre pelágico a la deriva. El SCRS/2008/109 presentaba la CPUE del rabil capturado por las flotas de palangre de Brasil y Uruguay en el Atlántico para el periodo 1980-2006 estandarizada utilizando modelos lineales generalizados con una aproximación delta-lognormal. El número de lances analizados fue 76.521, con un esfuerzo total de 136.947.483 anzuelos entre 7°N-45°S y 57°-20°W. Las variables de respuesta consideradas en el modelo fueron la CPUE y una CPUE nominal ponderada por la captura total (CPUEp). Se consideraron variables explicativas para los modelos el año, trimestre, área, temperatura de la superficie del mar y tipo de arte pesquero. Tanto la CPUE como la CPUEp estandarizada muestran oscilaciones a lo largo de todo el periodo con una tendencia descendente en los últimos siete años y un pico moderado en 2005. Las tasas de captura estandarizadas mostraban amplias variaciones a lo largo de los años con un descenso desde 2000 hasta 2006. En un documento complementario, sólo se consideró la base de datos de Uruguay (SCRS/2008/110). Los resultados fueron similares a los mencionados anteriormente.

Se utilizó también un GLM para analizar la CPUE del rabil capturado por la flota de palangre brasileña pero se asumió que la tasa de captura (número de peces/100 anzuelos) seguía las distribuciones de las densidades Poisson y Tweedie (SCRS/2008/112). Los cuatro factores considerados al analizar los datos desde 1986 hasta 2007 fueron año, área, trimestre y objetivo. El análisis de conglomerados de las composiciones por especies capturadas en los lances de pesca se utilizó para definir los niveles del factor "objetivo". Las estimaciones reunidas con los modelos de Poisson y Tweedie fueron similares. Las tasas de captura estandarizadas fueron grandes entre 1988 y 1990 y no mostraron ninguna tendencia al final de la serie temporal.

Para la pesquería de palangre mexicana y estadounidense en el Golfo de México (1992-2006) se presentó un índice combinado (SCRS/2008/119) basado en los datos disponibles de observadores. Las variables incluidas eran año, trimestre, flota, lances, temperatura y tipo de cebo.

En el documento SCRS/2008/120 la CPUE del rabil se presentaba en peso y número para el periodo 1987-2007. Las tasas de captura estandarizada para el rabil han descendido desde 1987 pero parecen estar aumentando desde 2003. En conjunto, los índices estandarizados muestran un descenso desde 1986 pero una tendencia bastante plana desde 1992. La proporción de capturas positivas y la tasa de captura de los conjuntos de datos positivos

para el rabil mostraban tendencias contradictorias en algunos de los caladeros. Este tema fue discutido pero no se llegó a un acuerdo sobre la explicación de estos patrones contradictorios.

Para esta evaluación, se utilizaron conjuntos de datos de Japón, Brasil, Uruguay, Estados Unidos y un índice combinado de México y Estados Unidos. La mayoría de las series temporales de las tasas de captura estandarizadas mostraban una tendencia descendente continua (**Figura 32**). Las excepciones fueron los índices calculados para Taipei Chino y para las bases de datos uruguayas. Las estimaciones para los datos de Taipei Chino cayeron a principios de los 70 y eran planas después de 1974, mientras que las estimaciones para los datos uruguayos mostraban una gran variabilidad pero ninguna tendencia.

Índices utilizados en el análisis

Tras evaluar todos los índices de tasas de captura disponibles durante la reunión el Grupo decidió utilizar algunos de ellos para el análisis de población virtual pero no para los modelos de producción. Algunos de los índices mostraban tendencias temporales poco fiables. Los índices de la tasa de captura seleccionados para el análisis de evaluación se incluyen en el **Apéndice 7**.

Índices combinados

Se estimaron los índices combinados para ambas especies utilizando un enfoque de GLM (véase **Apéndice 5**). Para el rabil, el modelo incluía el palangre japonés, el palangre mexicano y estadounidense combinado en el Golfo de México, la caña y carrete de Estados Unidos, el palangre brasileño, el palangre de Taipei Chino, el cebo vivo canadiense, el cerco venezolano, el cebo vivo brasileño, el cebo vivo de la CE con base en Dakar, el palangre venezolano y el cerco de la CE, asumiendo un incremento anual constante en la capturabilidad del 3%. En la **Tabla 13** y la **Figura 33** se presentan los índices combinados estimados ponderados y sin ponderar. Tanto el índice ponderado como el índice sin ponderar mostraban tendencias similares con un agudo descenso a finales de los 60 seguido un periodo relativamente estable hasta aproximadamente 1990. Desde 1990 en adelante, ambos índices mostraban una tendencia descendente continua.

Para el listado, las pesquerías utilizadas para estimar el índice combinado para el stock del Atlántico este fueron las pesquerías de cerco de la CE con base en Dakar y las pesquerías de cerco sobre DCP de la CE así como las pesquerías de cebo vivo de Ghana, Islas Canarias, CE-Portugal y de cebo vivo de la CE con base en Dakar. En el caso del stock de listado del Atlántico occidental, se utilizaron las pesquerías de cerco venezolano, caña y carrete de Estados Unidos y cebo vivo brasileño. El índice combinado apara el stock de listado del Atlántico oriental mostraba una tendencia creciente variable pero constante desde el principio de la serie temporal en 1965 hasta el final en 2006. La serie del stock del Atlántico occidental empezó en 1981 y mostraba también una serie con valores muy variables pero con una tendencia relativamente constante. Los valores de los índices combinados estimados para ambos stocks y las matrices de los factores de ponderación se muestran en la **Tabla 13** y en la **Figura 33**.

5. Métodos y otros datos relevantes para la evaluación

5.1 Métodos – Rabil

5.1.1 ADAPT-VPA

Las especificaciones de parámetros utilizadas en el caso base del modelo VPA de 2008 eran por lo general las mismas que las utilizadas en el caso base del modelo VPA de 2003 (Mérida, México, julio de 2003) (Anón. 2004). A continuación y en las **Tablas 14** (especificaciones de control) y **15** (parámetros) se presenta un resumen de las especificaciones de control del modelo y los parámetros.

Los modelos VPA requieren la estimación o el supuesto de tasas de mortalidad por pesca del año terminal (F). Igual que en la evaluación previa, los casos base de 2008 (Ensayos 5 y 8) permitían que los valores de F terminal fueran estimados para las edades 0-4. La clase de edad más mayor representa un grupo plus (edades 5 y mayores) y la correspondiente tasa de mortalidad por pesca terminal se especifica como el producto de $F_{edad 4}$ y un parámetro "ratio de F" estimado que representa la ratio entre $F_{edad 5}$ y $F_{edad 4}$. Para los ensayos 5 y 10 la ratio de F inicial (1970) se estimó como un parámetro frecuentista, y luego se le permitió variar anualmente usando un desarrollo aleatorio con una desviación estándar igual a 0,2 y un valor esperado de la distribución previa igual a la estimación anual anterior.

Los índices de abundancia se ajustaron asumiendo una estructura de error lognormal y una ponderación igual (es decir, el coeficiente de variación estaba representado por un parámetro estimado único para todos los años y todos los índices). Se asumió que los coeficientes de capturabilidad (escalación) para cada índice eran constantes durante la duración de ese índice y se estimaron mediante la correspondiente formula de verosimilitud concentrada.

Se asumió que la tasa de mortalidad natural era dependiente de la edad (Edades 0 y 1 = 0.8 yr⁻¹; Edades 2+=0.6 yr⁻¹) al igual que en evaluaciones previas.

Descripción de los ensayos del modelo

Los índices utilizados durante los diversos ensayos del modelo se resumen en la **Tabla 16**. Los métodos utilizados para estimar las selectividades del índice se describen en la **Tabla 17**. A continuación se facilita una descripción general de los ensayos del modelo.

- Ensayo de continuidad: El "ensayo de continuidad" se realizó para determinar la situación del stock en 2008 utilizando unas especificaciones y una estructura del modelo idénticos a los de la evaluación base de 2003 (es decir, idénticas especificaciones de parámetros, limitaciones e índices de abundancia). La intención es facilitar la comparación entre los resultados de la evaluación de 2003 y los resultados de la de 2008. Los índices de abundancia y los datos de captura fueron actualizados y ampliados hasta 2008.
- Los **Ensayos 5** y **10** fueron elegidos como "ensayos base" y fueron combinados para desarrollar el asesoramiento en materia de ordenación.
- **Ensayo 5**: El ensayo 5 difiere del ensayo de continuidad y de los ensayos del modelo de 2003 en que:
 - 1) Se utilizaron todos los índices recomendados por el grupo de trabajo de evaluación de 2008;
 - 2) Se aplicó una penalización para restringir las desviaciones en la vulnerabilidad por edad (Penalización aplicada a 2004-2006, Edades 0-5+, desviación estándar = 0,4);
 - 3) El pico de la temporada de desove se estableció en el 14 de febrero. El peso por edad de los reproductores se calculó también a partir de la curva de crecimiento utilizando esa fecha.
- Ensayo 10: Este ensayo es idéntico al Ensayo 5 excepto en que se asumió que los índices de LONGLINE y TROP_PS tenían fijados patrones de selectividad "con la parte superior plana" en lugar de los patrones marcadamente "cóncavos" estimados por el Ensayo 5. Para adaptar este supuesto, los patrones de selectividad estimados durante el Ensayo 5 fueron utilizados hasta alcanzar la selectividad total. Posteriormente, la selección total (1,0) fue mantenida para las edades más mayores.

5.1.2 ASPIC

El stock de rabil fue evaluado también con un modelo de producción excedente (ASPIC v. 5.16) utilizando los desembarques del periodo 1950-2006. En los ensayos se consideraron tres conjuntos diferentes de pesquerías:

- 1) Una flota combinada con un índice combinado para el periodo 1965-2007. Este caso utilizaba un índice combinado ponderado (véase la Sección 4) para el palangre japonés, el palangre combinado de México y Estados Unidos en el Golfo de México, la caña y carrete estadounidense, el palangre brasileño, el palangre de Taipei Chino, el cebo vivo de las Islas Canarias, el cerco venezolano, el cebo vivo brasileño, el cebo vivo de la CE con base en Dakar, el palangre venezolano y el cerco de la CE, asumiendo un incremento anual constante del 3% en la capturabilidad.
- 2) Diez flotas separadas con índices que cubren algunas partes del periodo 1965-2007. Este caso utilizaba desembarques e índices de abundancia separados para el palangre japonés, la caña y carrete de Estados Unidos, el palangre brasileño, el palangre de Estados Unidos, el palangre uruguayo, el cerco venezolano, el cebo vivo brasileño, y las flotas de cebo vivo de la CE en Dakar. Una décima flota incluía todos los demás desembarques y no contaba con un índice de abundancia correspondiente.
- Una flota combinada con un índice combinado para el periodo 1956-2006. Este caso utilizaba el índice combinado desde 1965 hasta 2006 remontándolo hasta 1956 utilizando los datos de Tarea II.

La **Tabla 18** muestra los índices de abundancia utilizados en cada caso mientras que la **Tabla 19** proporciona las capturas. Estos tres escenarios probaban diferentes combinaciones de diferentes formas del modelo (logístico frente a generalizado), índices ponderados o sin ponderar y un valor fijo o estimado de B_1/K . Se consideró un total de diez casos iniciales que se resumen en la **Tabla 20**.

5.2 Métodos – Listado

5.2.1 Modelo sólo con captura

El modelo sólo con captura combina un modelo de dinámica de biomasa de Schaefer con un modelo de dinámica de la explotación logística (Vasconcellos y Cochrane, 2005). El modelo asume que la captura de las pesquerías sigue una curva logística que depende de dos parámetros. El modelo predice las capturas totales, que se ajustan a las capturas observadas usando métodos bayesianos (Gelman *et al.*, 2004). Los ajustes se realizan usando un marco de trabajo bayesiano con el fin de permitir el uso de información previa que podría acelerar la extracción de información de las capturas. La prueba de simulación preliminar (Minte-Vera *et al.* en prep.) demostró que para los conjuntos de datos artificiales, los datos de captura combinados con las distribuciones previas informativas sobre algunos parámetros podrían producir cantidades de ordenación aceptables.

El modelo sólo con captura se da por:

$$C_{t+1} = P_t \left[1 + x \left(\frac{B_t}{aK} - 1 \right) \right] \left[B_t + rB_t \left(1 - \frac{B_t}{K} \right) - C_t \right]$$

donde:

 C_{t+1} es la captura en el momento t+1;

 P_t es la proporción de biomasa capturada en el momento t;

 B_t es la biomasa de la población en el momento t;

K es la capacidad de transporte, o la biomasa en la que el crecimiento de la población es cero;

r es la tasa intrínseca del cambio en la biomasa de la población;

x es un multiplicador que define el incremento en la mortalidad por pesca a lo largo del tiempo;

a (0<*a*<1) es el equilibrio bioeconómico como una proporción de *K*.

En este modelo se estiman cuatro parámetros: *r*, *K*, *a* y *x*. Se asumió que la población estaba ligeramente pescada al inicio de la serie temporal (por lo que $B_0 = K$), y que la primera captura (C_0) estaba medida sin error (por lo que $P_0 = C_0/B_0$).

Los parámetros se estimaron utilizando técnicas bayesianas. Se utilizaron varias combinaciones de distribuciones previas. Para el stock occidental, las distribuciones previas para K se establecieron de la siguiente manera: K~U (100 000,1 000 000), ln (K)~U (ln(100 000), ln(1 000 000)) o una distribución lognormal con una media de 350 000 t y CV=0,5. Para el stock oriental, las distribuciones previas para K se establecieron de la siguiente manera: K~U (200 000, 2 000 000), ln (K)~U (ln(200 000), ln (2 000 000) o una distribución lognormal con una media de 700 000 t y CV=0,5. Las distribuciones previas de r se establecieron en r~U (0,4, 2,0) o una distribución previa basada en métodos demográficos (véase el **Apéndice 6**, McAllister *et al.* 2001). Las distribuciones previas de a se establecieron como uniformes en el rango posible del parámetro a~U (0,1). Se realizó la sensibilidad para las distribuciones previas de x, porque algunas combinaciones de los valores de a y x podrían generar oscilaciones no realistas sobre la tasa de captura y por consiguiente sobre la biomasa. Inicialmente, las distribuciones previas de x se establecieron como x~U (0,10), posteriormente el rango se restringió a x~U(0,1) o x~U(0, 1,1) para los stocks oriental y occidental, respectivamente.

Se asumió que las capturas observadas seguían una función de verosimilitud lognormal (Casella y Berger, 2002) con un valor esperado igual a las capturas predichas por los modelos:

$$L(\phi \mid w) = \prod_{t=1}^{n} \frac{1}{\sigma C_t \sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2} \left(\ln C_t - \mu\right)^2\right]$$

donde:

 $\mu = \ln E(C_t) - \frac{\sigma^2}{2}$

n es la longitud de la serie temporal de captura

 C_t es la captura observada en el año t

 \hat{C}_t es la captura esperada para el año *t* predicha por el modelo

 σ es el parámetro de variabilidad asumido conocido e igual a 0,4.

Los parámetros se estimaron utilizando el algoritmo *Sampling Importance Resampling* (SIR) (McAllister *et al.* 1994; Gelman *et al.* 2004). La función importancia era igual a la función de las distribuciones previas conjuntas, y por tanto, la ratio de importancia es igual a la verosimilitud. Se muestrearon aleatoriamente un millón de vectores parámetro de las distribuciones previas conjuntas; de estos, se tomaron 20.000 muestras con sustitución, con una probabilidad proporcional a la ratio de importancia. Punt y Hilborn (1997) descubrieron que el remuestreo debía hacerse hasta que ningún vector reciba una asignación de más del 1% de la probabilidad posterior (MSD- Máximo de una densidad única). En nuestro caso, el MSD fue objeto de seguimiento y ningún vector se produjo en más del 1% de los remuestreos. Se utilizaron también otros diagnósticos para la convergencia como el coeficiente de variación en la ponderación media de la importancia (McAllister y Kirchner, 2002) y en la ratio de importancia máxima (McAllister y Pikitch, 1997).

Los datos utilizados en el primer grupo de ensayos fueron la serie temporal de las capturas totales desde 1950 hasta 2006 para el stock oriental y desde 1976 hasta 2006 para el stock occidental. Aunque las capturas del stock de listado occidental empiezan en 1953, permanecen muy bajas hasta mediados de los 70. Los ensayos preliminares utilizando la serie entera de captura no funcionarían porque el modelo no podría encontrar una combinación de parámetros que produjera una trayectoria con una tasa pequeña de captura en casi 30 años. Para el segundo grupo de ensayos, el modelo se ajustó a una serie de captura restringida para el stock oriental con el fin de contar únicamente con capturas procedentes de una pesquería más homogénea (véase la sección 3.2). La serie fue dividida en dos periodos, desde 1965 hasta 1984 y desde 1985 hasta 2006.

5.2.2 PROCEAN

El modelo PROCEAN (análisis de producción de captura/esfuerzo) es un modelo de producción excedente multi-flota desarrollado en un marco bayesiano para realizar evaluaciones de stock basadas en los datos de series temporales de captura y esfuerzo (Maury, 2001; Maury y Chassot, 2001). PROCEAN es un modelo de dinámica de la biomasa basado en el modelo de producción excedente generalizado (Pella y Tomlinson, 1969) que incluye el error de proceso para la capturabilidad de la flota pesquera, la capacidad de transporte del stock y un error de proceso robusto en la mortalidad por pesca.

Se utilizaron las ocho series temporales independientes de los índices de abundancia definidos durante la reunión del GT así como el índice de abundancia combinado ponderado por zona de pesca (véase la Sección 4).

Los ensayos preliminares demostraron que no hay información suficiente en los datos para estimar el parámetro forma (m) respecto a la típica marea sin retorno de la pesquería de listado del Atlántico oriental por lo que se fijó al ensayar el modelo. La biomasa inicial del stock en 1969 (B0) fue también difícil de estimar y se asumió que era igual a una proporción fijada de la capacidad de transporte (K). Se consideraron las distribuciones previas informativas del parámetro tasa de crecimiento (r) y el rendimiento máximo sostenible (RMS). Se asumieron distribuciones normales con media de 1,17 (sd = 0,26) y 150.000 (sd = 20.000) para la tasa de crecimiento intrínseca (véase la Sección 5.3.2) y el RMS respectivamente. Se llevó a cabo un análisis de sensibilidad para tener en cuenta la incertidumbre en algunos parámetros de entrada y evaluar el impacto de las distribuciones previas de las estimaciones posteriores (véase la Sección 6.2.4).

5.2.3 Métodos del modelo de producción excedente bayesiano

El modelo de producción excedente bayesiano (BSP) (McAllister *et al.* 2001) es un modelo de producción excedente en situación de no equilibro que permite distribuciones previas sobre la tasa intrínseca del aumento de población (r), la capacidad de transporte (K), la biomasa en el primer año del modelo definida como una ratio (*alpha.b0*) de K, la captura media anual antes de que los datos fueran registrados así como la varianza, el parámetro forma (n) para un modelo Fletcher/Schaefer y parámetros de capturabilidad para cada serie temporal. El modelo utiliza un algoritmo *sampling importance resampling* (SIR, McAllister y Kirkwood, 1998) y puede ajustar un modelo de producción tipo Schaefer o tipo Fletcher/Schaefer. El modelo BSP ha sido aceptado en el

catálogo de ICCAT y ha sido aplicado a varias especies de ICCAT anteriormente (aguja blanca, atún rojo, marlines, patudo), pero esta es la primera vez que el modelo se ha aplicado al listado.

En esta aplicación se usó la formulación logística del modelo de Schaefer y la estimación de r y k y alpha.b0 usando las distribuciones previas. Se asumió una distribución previa lognormal (media =1; sd=0,01) para alpha.b0 basándose en que la biomasa del primer año del año del modelo (1950 para el listado oriental y 1952 para el listado occidental) se encontraba en o cercana a la capacidad de transporte. Las distribuciones previas de r fueron determinadas basándose en la modelación demográfica descrita en la Sección 5.3.2. Las distribuciones previas de K fueron inicialmente estimadas para ser uniformes bien en K o K logarítmica con límites máximos iguales a 10 veces la captura máxima observada y límites mínimos iguales a la captura máxima observada pero fueron posteriormente rebajados hasta ~ 5 veces la captura máxima. En esta formulación del modelo BSP se introdujeron distribuciones previas para los parámetros r y K y se asumió que K era igual a la biomasa en el punto inicial para cada captura registrada para cada modelo.

El ajuste y la parametrización iniciales del modelo fueron necesarios para descubrir valores iniciales adecuados para que los parámetros de entrada r y K logren que el modelo estime valores modales que sean las estimaciones de verosimilitud máxima para los parámetros no bayesianos o la moda de la distribución posterior para los parámetros bayesianos. Esto se llevó a cabo durante el componente "moda de estimación" del procedimiento de ajuste del modelo y a menudo fueron necesarios diversos valores iniciales para diferentes ensayos. Los valores iniciales de los diversos parámetros se presentan en las **Tablas 21** y **22** para el listado occidental y el listado oriental respectivamente. Los índices utilizados para el listado occidental se presentan en las **Tablas 24** y **25**.

Para cada ensayo del modelo, los diagnósticos de convergencia se estimaron durante la etapa de "muestreo por importancia" del modelo de acuerdo con la metodología descrita en McAllister y Kirkwood (1998). Además, dada la naturaleza no informativa o contradictoria de muchos de los índices de entrada, el examen de los diagnósticos era especialmente crítico a causa del sesgo potencial que la función importancia puede impartir en las modas posteriores. Se recomienda que el CV de las ponderaciones CV (wts) de los muestreos de importancia sea inferior al CV de la verosimilitud por las distribuciones previas CV (L*P) para los mismos muestreos. Como diagnóstico de convergencia para el algoritmo SIR, se utilizó la ratio de CV (wts)/CV (L*P) asumiendo que ratios superiores a 2 eran inaceptables, ratios entre 1 y 2 eran marginales y ratios inferiores a 1 aceptables.

5.3 Otros métodos

5.3.1 Estimación de las tendencias potenciales en la capturabilidad en la flota de cerco europea

El Grupo observó que en los diversos análisis pasados se había asumido que la capturabilidad asociada a la flota de cerco tropical de la CE ha aumentado aproximadamente un 3% por año desde 1980. El Grupo llevó a cabo análisis adicionales para determinar si quizá los cambios en la capturabilidad no habían ocurrido según una tasa constante desde 1980.

Los datos utilizados, véanse las **Figuras 34** y **35** (para las tres especies tropicales por separado y combinadas), fueron: captura total de 1950-2006, captura y esfuerzo nominal (días de pesca) de 1969-2006 de la CE y flotas de cerco asociadas. No se intentó separar los lances sobre banco libre y DCP. Los valores del esfuerzo de 1983 y 1984 parecían anormalmente altos y fueron excluidos de los análisis.

El enfoque utilizado puede resumirse de la siguiente manera: dependiendo de las capturas totales, las trayectorias de biomasa fueron calculadas basándose en un modelo de producción determinista de Fox con valores de parámetros asumidos (que se explican a continuación). A partir de estos valores de biomasa y de las capturas y el esfuerzo pesquero total y del cerco, es posible derivar valores de mortalidad por pesca y capturabilidad por flota de cerco. Las tendencias en los valores de capturabilidad resultantes fueron entonces examinadas. Las siguientes ecuaciones explican el método utilizado:

- 1) Asumir valores para RMS y K.
- 2) Asumir que 🖁 🚌 🖛 👬

3) Proyectar la población hacia delante utilizando la parametrización de Fletcher del modelo de Fox dados los valores anteriores y la serie temporal de las capturas totales conocidas:

$$B_{r+1} = B_r - e^1 MSY \frac{B_r}{K} ln \left(\frac{B_r}{K}\right) - TC_r$$

4) Estimar la mortalidad por pesca total:

$$F_{\rm p} = \frac{c_{\rm p}}{(B_{\rm p} + B_{\rm p+1})/2}$$

5) Estimar la mortalidad por pesca del cerco basándose en la ratio de la captura de cerco (P) y la captura total:

$$P_{P_{p}} = \frac{P_{P_{p}}}{V_{P_{p}}}P_{p}$$

6) Estimar la capturabilidad del cerco usando el esfuerzo nominal:

$$q_t = \frac{p_{p_t}}{f_t}$$

Los valores asumidos para *RMS* para el patudo y el rabil fueron 90.000 t y 150.000 t, estimados en evaluaciones previas. Para el listado en el Atlántico oriental se asumió un *RMS* de 150.000 t. Cuando los tres stocks se analizaron juntos, el *RMS* total utilizado fue 390.000 t.

Los valores de *K* para el patudo y el rabil se calcularon de tal forma que las ratios de B_{2006}/B_{RMS} proyectadas fueron 0,9 y 1,0, respectivamente. El valor de *K* para el listado se fijó arbitrariamente en 700.000 t, cifra similar a los valores calculados para el rabil y el patudo. El valor de *K* para los análisis de las tres especies combinadas fue la suma de los tres valores individuales de *K*.

El Grupo calculó los cambios porcentuales medios en la capturabilidad haciendo una regresión entre $\ln(q_r)$ y tiempo para diferentes periodos. Estos periodos fueron 1969-1979, 1980-1990 y 1991-2006, es decir, los mismos periodos que se consideraron para separar las series para los análisis de Multifan. Además, se examinó el periodo 2002-2006 para investigar tendencias más recientes.

Resultados

Las tendencias de biomasa proyectadas se muestran en la **Figura 36**. Los modelos muestran descensos más bruscos para el patudo y el rabil que para el listado o para las tres especies combinadas.

La **Tabla 26** proporciona los parámetros asumidos de dinámica de la población y las pendientes resultantes de la regresión entre $\ln(q_t)$ y tiempo para diferentes periodos. Los valores de $\ln(q_t)$ para todo el periodo se muestran en la **Figura 37**. Estos resultados sugieren que durante algunos periodos, la capturabilidad podría haber cambiado en más del 10% por año. Esto es evidente principalmente en los 70 y los 80. Para los cinco años más recientes, estos análisis sugieren que la capturabilidad continúa aumentando rápidamente para el listado, descendiendo para el rabil y aumentando lentamente para el patudo.

Las **Figuras 38** y **39** muestran el esfuerzo pesquero (nominal) de entrada así como el esfuerzo ajustado por las estimaciones de capturabilidad por especies. Cabe señalar que el mayor impacto de ajustar el esfuerzo por la capturabilidad es para el patudo, seguido del listado y posteriormente el rabil.

La **Figura 39** compara la serie de esfuerzo nominal con dos series ajustadas para el rabil. La línea azul se ajusta utilizando los cambios en la capturabilidad estimados en los presentes análisis. La línea roja se obtuvo siguiendo el mismo enfoque que se aplicó durante la sesión de evaluación de rabil celebrada en Cumaná, Venezuela en 2000 (Anón. 2001), que asume un incremento anual del 3% en q después de 1980 (cabe señalar que las series de esfuerzo de entrada utilizadas para ambos análisis son diferentes). Las dos series ajustadas son similares en magnitud, aunque en algunos años el esfuerzo ajustado del análisis actual puede ser hasta un 60% mayor que el esfuerzo ajustado por el cambio anual del 3% en q.

Al discutir los resultados obtenidos, el Grupo acordó que el enfoque utilizado para calcular los cambios en q tiene puntos fuertes y débiles. Uno de los puntos fuertes es que la tasa en la que q cambia en el tiempo no está fijada. Otro punto fuerte es que está vinculada a un modelo de dinámica de población. En cuanto a los puntos débiles, la naturaleza determinista del modelo de Fox utilizado es bastante inflexible. Un enfoque más flexible sería, por ejemplo, estimar los cambios en la capturabilidad como desarrollos aleatorios dentro de un marco de evaluación de stock como Multifan-CL. Por último, el Grupo no examinó en detalle el efecto que tendrían los cambios en los valores asumidos de RMS y K sobre los resultados, aunque ensayos limitados sugerían que las tendencias en q eran relativamente insensibles a ellos.

Para los análisis de evaluación de stock, el Grupo concluyó que deberían usarse ambas series de esfuerzo ajustadas para un aumento del 3% en q por año, así como ajustadas por los cambios de la capturabilidad estimados en estos análisis (véase **Tabla 27**).

6. Resultados de la situación del stock

6.1 Situación del stock – rabil

6.1.1 Resultados del VPA

Esta sección resume los resultados de los análisis del VPA explicados en la Sección 5.1. El archivo de resultados del software VPA-2BOX para los casos base del modelo VPA (Ensayos 5 y 10) se incluye en el **Apéndice 7**. Este apéndice contiene una descripción completa de los resultados del VPA, incluyendo la matriz de las tasas estimadas de mortalidad por pesca, la abundancia por edad, la biomasa del stock, el reclutamiento, los ajustes a los índices, las selectividades estimadas de los índices, las ratios de F y la Fs por edad terminal.

Diagnósticos

Los ajustes a la serie de CPUE para los modelos de base y continuidad del VPA se resumen las **Figuras 40** y **41**. Los ajustes a los casos base (Ensayos 5 y 10) son muy similares y muestran una sustancial falta de ajuste a muchos índices (**Figura 41**).

Retrospectivas

Se finalizó un análisis retrospectivo eliminando secuencialmente entradas de captura e índices de abundancia del caso base del modelo de 2008, hasta 2003. La **Figura 42** muestra las tendencias de la biomasa reproductora y los reclutas para los casos base. Las tendencias de la SSB se escalaron al valor máximo de la serie para facilitar la comparación. Las tendencias de la SSB son sensibles a la eliminación secuencial de los datos y no muestran convergencia remontándose en el tiempo. En su lugar, algunas series indican un descenso brusco en la biomasa. El reclutamiento estimado es bastante insensible a la eliminación retrospectiva de los datos. En años recientes, las estimaciones de reclutamiento fluctúan sin un patrón obvio.

Los patrones retrospectivos en la mortalidad por pesca por edad (FAA) y los números por edad (NAA) se resumen en la **Figura 43** y **44**, respectivamente. En la FAA se ha observado algún patrón retrospectivo sustancial, especialmente para las edades 4 y 5+ entre 1990 y 2006. El patrón retrospectivo en NAA es menos claro. Los resultados del modelo son generalmente convergentes hasta los años más recientes, y posteriormente varían sin un patrón obvio.

Comparación de los modelos base del VPA de 2003 y 2008

El ensayo de continuidad de 2008 fue construido para examinar las implicaciones de añadir años recientes (2002-2006) al modelo VPA sin cambiar los índices utilizados o las especificaciones del modelo. Las tendencias en la mortalidad por pesca apical, la biomasa del stock reproductor (SSB), la abundancia (Edades 0-5+), el reclutamiento (Edad 0) y la ratio de F anual (F5+/F4) para los modelos base de 2003 y de continuidad de 2008 se muestran en la **Figura 45**. Los resultados de la evaluación de stock base de 2003 y de continuidad de 2008 son similares pero existen algunas diferencias claras en las estimaciones de reclutamiento, abundancia y mortalidad por pesca, especialmente entre 1999 y 2001. Estas incoherencias están causadas, probablemente, por diferencias en las ratios de F estimadas durante esos años. Las estimaciones de la SSB son bastante similares a lo largo de la serie temporal.

Modelos base del VPA

El Grupo de trabajo eligió dos modelos (Ensayos 5 y 10) para proporcionar asesoramiento en cuanto a ordenación. Las tendencias anuales en el rendimiento, la biomasa total, la mortalidad por pesca apical, los reclutas (Edad 0), la biomasa reproductora del stock (SSB) y la SSB relativa a SSB en Fmax se muestran en la **Figura 46** (Ensayo 5) y la **Figura 47** (Ensayo 10). La incertidumbre en los valores anuales se estimó usando 500 ensayos bootstrap de los residuos del índice.

Los dos ensayos son muy similares, aunque el Ensayo 10 hace unas estimaciones ligeramente más optimistas de la situación del stock en 2006.

Ensayos de sensibilidad

Se llevaron a cabo varios ensayos de sensibilidad para examinar la sensibilidad del modelo a:

- 1) La aplicación/eliminación de penalizaciones sobre las desviaciones en el reclutamiento reciente.
- 2) La aplicación/eliminación de penalizaciones sobre las desviaciones en las estimaciones recientes de la vulnerabilidad por edad.
- 3) Cambios en los periodos de tiempo aplicados a los índices de abundancia.
- 4) Varios supuestos sobre la captura por edad del palangre japonés en 2006.
- 5) Estimar una única ratio de F para todos los años (1970-2006).
- 6) Ajustar la ratio de F para todos los años en diversos valores.

El Grupo consideró estos modelos durante el desarrollo del ensayo base, pero finalmente decidió que estos ensayos no se utilizarían para desarrollar el asesoramiento en materia de ordenación.

Situación del stock

El Grupo de trabajo no pudo elegir entre los dos casos base del VPA, y dado que los resultados del modelo eran tan similares (**Figuras 46** y **47**), el Grupo recomendó combinar los resultados del modelo en una distribución conjunta única. Esta distribución conjunta se utilizó para determinar la situación del stock y desarrollar el asesoramiento en materia de ordenación. Las referencias de ordenación se calcularon utilizando las medianas de la distribución conjunta y asumiendo un reclutamiento constante igual a la media de los reclutamientos observados durante 1970-2006. Todos los elementos de referencia de la ordenación y los puntos de referencia se resumen en la **Tabla 28**.

La trayectoria de la situación del stock durante la serie temporal se resume en la **Figura 48**. De acuerdo con la distribución conjunta de los modelos base de 2008, el rabil nunca ha estado sobrepescado aunque se ha producido sobrepesca (**Figura 48**; símbolos amarillos). La situación actual del stock se estimó utilizando SSB_{2006}/SSB_{MAX} y F_{actual}/F_{MAX} . De acuerdo con los resultados de la distribución conjunta, el stock no está actualmente sobrepescado (SSB_{2006}/SSB_{MAX} = 1,09) o sufriendo sobrepesca (F_{actual}/F_{MAX} =0,84) (**Figura 49**). La incertidumbre en la situación del stock se estimó haciendo un bootstrap de los residuos del índice. Se hicieron 500 bootstraps de cada modelo base del VPA (**Figura 49**). Se construyeron histogramas de las estimaciones del bootstrap de la situación del stock de 2006 a partir de la distribución conjunta para examinar la normalidad de la distribución. No hay pruebas de un fuerte sesgo en los resultados (**Figura 50**).

Las conclusiones de esta evaluación no reflejan el grado total de incertidumbre en las evaluaciones y las proyecciones. Un factor importante que contribuye a la incertidumbre es la precisión de la curva de crecimiento y del procedimiento de separación de edades (filo de cuchillo). Los procedimientos de separación de edades (filo de cuchillo) son sensibles a pequeños cambios en los límites de separación. Los métodos mejorados para estimar la captura por edad (por ejemplo, enfoques estocásticos y/o composición por edades directamente observada) tienen el potencial de mejorar la fiabilidad de los modelos estructurados por edad. Otra importante fuente de incertidumbre es el reclutamiento, tanto en términos de niveles recientes (que estimaban con poca precisión en la evaluación) como en posibles niveles futuros. Estos modelos asumían que el reclutamiento continuaría al nivel observado durante 1970-2006. Es posible que los cambios en la presión pesquera o el medio ambiente pudieran invalidar este supuesto.

6.1.2 ASPIC

La **Tabla 29** muestra los resultados iniciales de los 10 ensayos. Las trayectorias estimadas de la biomasa relativa y la mortalidad por pesca relativa para cada uno de los 10 casos se presentan en la **Figura 51**. En el caso de la biomasa relativa, los casos 1, 3, 7 y 9 mostraron tendencias muy diferentes en comparación con los demás casos. Para la mortalidad por pesca relativa, los casos 1, 3, 9 y 10 mostraron claramente trayectorias con tendencias diferentes. Tras el examen inicial de los resultados, el Grupo decidió hacer bootstraps para los casos 2, 4, 6 y 8. Las trayectorias deterministas estimadas para los 4 casos de bootstrap se muestran en la **Figura 52**. Los cuatro casos mostraron las mismas tendencias con un aumento en la mortalidad por pesca y una reducción de la biomasa que provocó un periodo en el que el stock estaba sobreprescado y sufriendo sobrepesca, seguido de un periodo de recuperación. La condición actual del stock es sobrepescado pero sin experimentar ya sobrepesca. La

Figura 53 muestra los diagramas de fase de cada uno de los 4 ensayos de bootstrap (500 bootstraps) para el año 2006 (es decir, la condición actual). Las **Figuras 54** y **55** muestran las trayectorias de la biomasa relativa y la F relativa y el intervalo de confianza del 80% estimado a partir de 500 bootstraps. Los resultados de los bootstraps para los casos 2, 4, 6 y 8 se resumen en la **Tabla 30**.

6.2 Situación del stock – listado

6.2.1 Modelo Multifan – CL

El Grupo intentó diversos análisis de los stocks oriental y occidental combinados. Todos mostraron una convergencia muy pobre, tal y como se esperaba porque se consideró que los datos de marcado no eran muy informativos sobre la escala espacial de todo el océano. Por consiguiente, el Grupo realizó análisis separados para los stocks oriental y occidental, que se describen a continuación.

6.2.1.1 Atlántico oriental

El modelo oriental incluía 10 pesquerías separadas (véase la Sección 4.1.3) y fue dividido en marcos temporales anuales y trimestrales, y se asumieron cuatro sucesos de reclutamiento, cada uno produciéndose al principio de cada trimestre. La mortalidad natural se fijó en 0,2.trimestre⁻¹. Las opciones para el caso base del modelo oriental, que incluían todos los datos de captura desde 1950 hasta 2006, eran similares a las del caso base del modelo simulado para la región occidental. No obstante, las principales diferencias eran que el modelo de la región oriental incluía una función de selectividad spline cúbica con tres nodos (posteriormente aumentados hasta 5) y que las penalizaciones para las desviaciones de esfuerzo se establecieron iguales para todas las pesquerías.

El modelo tenía grandes dificultades para estimar la biomasa al inicio del periodo de pesca (**Figura 56**). La estimación de la biomasa del modelo fluctuaba enormemente para los años iniciales del modelo, reduciendo repetidamente a cero. Las estimaciones de RMS y F_{RMS} no tenían, por consiguiente, sentido (**Figuras 57** y **58**). Como resultado de la pobre estimación del modelo, se llevó a cabo otro ensayo del modelo incluyendo sólo datos de 1970-2006. El modelo se preparó para estimar la estructura de edad de la población inicial basada en Z promediada durante los últimos 20 periodos (trimestres en este caso). Además, la opción de selectividad spline cúbica fue eliminada y en su lugar la selectividad se estableció como dependiente de la longitud en todas las pesquerías. Aunque estos cambios eliminaron la presencia de la biomasa reduciendo a cero en los años iniciales del ensayo del modelo, continuaba produciéndose un aumento de la biomasa en el tiempo (**Figura 59**). Las estimaciones de RMS y F_{RMS} fueron superficialmente más plausibles que el ensayo previo del modelo, pero claramente poco realistas debido a las extrañas estimaciones de la biomasa.

Aunque se simularon para este stock varias variaciones *ad hoc* y opciones del modelo con el fin de mejorar los resultados del modelo, todas produjeron similares patrones poco realistas de biomasa. Como consecuencia, se suspendieron análisis posteriores. Está claro que en esta etapa los datos para la región oriental no eran adecuados para la simulación de Multifan-CL dentro de las limitaciones temporales de la reunión del Grupo de trabajo. Deberían llevarse a cabo otros modelos intersesiones y posiblemente incluir datos de marcado una vez que hayan sido plenamente verificados.

6.2.1.2 Atlántico occidental

El ensayo básico para el stock occidental utilizaba datos desde 1952 hasta 2006 para tres pesquerías (1= Brasil BB, 2= Venezuela BB+PS y 3= otros) y las siguientes limitaciones/supuestos:

- Asumir una población inicial en equilibrio basada en M
- Asumir M=0,2 por trimestre
- Estimar 4 sucesos anuales de reclutamiento
- Permitir mayor variabilidad en las desviaciones de esfuerzo para las pesquerías 2 y 3 (ponderaciones = 10, 3 y 3)
- Dividir las frecuencias de tallas entre 10 (pesquería 1) o 20 (pesquerías 2 y 3)
- Estimar selectividades separadas por pesquería; asumir una selectividad constante después de la edad 14 (trimestres)
- Estimar la curva de crecimiento, empezando por la asumida por ICCAT (véase Manual de ICCAT)
- Permitir desarrollos aleatorios en las capturabilidades de las 3 pesquerías
- Ajustar una relación stock-reclutamiento para estimar las estadísticas relacionadas con el RMS (media de la distribución previa de la inclinación = 0,9).

Se realizó un ensayo de sensibilidad adicional estimando la mortalidad natural.

La Figura 62 representa un resumen de los diagnósticos de ajuste. Los patrones de selectividad estimados se muestran en la Figura 63 y las trayectorias del reclutamiento y la SSB se muestran en la Figura 64. En conjunto, el modelo estima patrones de selectividad cóncavos y fluctuaciones sustanciales en el reclutamiento y la biomasa reproductora. El ajuste del modelo fue impreciso. No fue posible obtener estimaciones de varianza de todas las cantidades de interés. La Figura 65 muestra intervalos de confianza de aproximadamente el 90% para el reclutamiento y la SSB.

En términos de elementos de referencia, el modelo estimó un RMS de 30.660 t por año, y ratios actuales (2006) de $B/B_{RMS} = 2,04$ y $F/F_{RMS} = 0,51$. En la **Figura 66** se presenta un diagrama de B relativa y F relativa. Cuando se hizo el ensayo de sensibilidad estimando M (M fue estimada en 0,32 por trimestre), los elementos de referencia se estimaron de la siguiente manera: RMS = 35.960 t, $B/B_{RMS} = 2,31$, $F/F_{RMS} = 0,47$.

El Grupo se mostró alentado con estos resultados preliminares y recomendó trabajar más en el futuro para refinar los análisis del modelo Multifan-CL para el stock.

6.2.2 Resultados del modelo de producción excedente Bayesiano

6.2.2.1 Listado occidental

Los índices utilizados para la evaluación del modelo de producción del listado del Atlántico occidental proporcionaban información bastante contradictoria, especialmente el brusco descenso del índice del cerco venezolano (**Figura 67**) y las grandes fluctuaciones en el índice de cebo vivo de Brasil y de caña y carrete de Estados Unidos. Hay poco solapamiento espacial en la cobertura de estos índices y dada la elevada viscosidad del listado, estos índices podrían reflejar condiciones más locales en lugar de la del stock occidental en su totalidad. Por tanto, no es improbable que estos índices puedan mostrar tendencias contradictorias.

Debido probablemente a estas tendencias contradictorias, los ensayos del modelo BSP para el stock de listado del Atlántico occidental tenían problemas iniciales con la convergencia indicada por un CV muy elevado de las ponderaciones de los muestreos por importancia relativos al CV de la verosimilitud por las distribuciones previas cv(wts)/cv(lp). Dicha situación puede producirse cuando los índices de entrada o son contradictorios o no informativos, tal y como ocurrió en varias evaluaciones de stock de tiburones (McAllister y Kirkwood, 1998), produciendo una función de importancia muy estrecha. Como solución, McAllister recomendó aumentar la función de importancia ancha para permitir una mayor variabilidad de muestreo con la especificación del parámetro *expand.imp* o reduciendo los grados de libertad de la función de importancia usada para estos modelos). El Grupo exploró varios ensayos (5 a 9) bien ampliando la función de importancia o aumentado los grados de libertad en los que cada expansión sucesiva mejoraba los criterios de convergencia cv(wts)/cv(lp) y amplió la distribución posterior de *r* (**Figura 68**). Es muy probable que los ensayos 1-6 sean poco razonables dado que no se lograron los criterios de convergencia. Los ensayos 1-8 fueron realizados también con una distribución previa muy ancha de r (sd=,5) en lugar del 0,25 deseado originalmente. Para corregir esto, se llevó a cabo un ensayo 9 adicional con la distribución previa N correctamente especificada (1,17, 0,25).

Los resultados de los ensayos 7 y 8 alcanzaban ambos criterios de convergencia razonables pero no perfectos $(cv(wts)/cv(lp) \sim 1,6)$ (**Tabla 31**). Los ensayos 1-8 fueron también realizados con una distribución previa muy ancha de r (sd=,5) en lugar del 0,25 deseado originalmente. Para corregir esto, se llevó a cabo un ensayo 9 adicional con la distribución previa N correctamente especificada (1,17, 0,25), sin embargo cabe señalar que la distribución posterior de r era muy ancha (**Figura 68**). El ajuste a los índices para el ensayo 9 era bastante pobre y no inesperado dadas las diferentes trayectorias de los índices (**Figura 69**) y la ponderación igual que se les había dado. La tasa intrínseca de aumento de población, *r*, para el ensayo 9 fue estimada como ligeramente inferior que la media de la distribución previa y en un valor de 1,159 con una desviación estándar de 0,278.

La **Figura 70** muestra la trayectoria de la biomasa, B/B_{RMS} , F y F/F_{RMS} con proyecciones de 25.000 t empezando en 2007 para el ensayo 9 del listado del Oeste mostrando el brusco aumento inicial en la mortalidad por pesca con la creación de las pesquerías y una evaluación de la situación actual de B por encima de B_{RMS} , y de F por debajo de F_{RMS} . Es importante indicar que ampliar la función de importancia tiende a dejar que el modelo estime una K menor y mayores tasas de mortalidad por pesca de tal modo que si existe un sesgo introducido por la falta de convergencia de los ensayos anteriores, tiende a producir resultados más optimistas para esta configuración particular del modelo (**Tabla 31**).

6.2.2.2 Listado oriental

El modelo BSP para la evaluación del listado del Atlántico oriental utilizó ocho índices (**Figura 71, Tabla 24**). A pesar de la más bien contradictoria naturaleza de algunos de los índices, los ensayos del modelo BSP para el stock del Atlántico oriental del listado mostraban criterios de convergencia más aceptables que los del listado del Oeste.

Se realizaron diecinueve ensayos utilizando varias combinaciones de índices, límites en K, y con desviaciones estándar para las distribuciones previas de r (**Tablas 32** y **33**). Muchos de los ensayos utilizaban los mismos datos y realmente deberían considerarse como ensayos "de prospección" para determinar las condiciones limitativas adecuadas para posteriores modelos. Existía un fuerte efecto de los límites sobre la distribución previa uniforme de K (**Figura 72**). Rebajar el límite superior desde 2 millones de toneladas métricas (t) a 1 millón de toneladas métricas (un valor similar a 5 veces la captura máxima observada) reducía los valores de K desde aproximadamente 1,2-1,3 millones de toneladas métricas hasta valores cercanos a 720-790 mil toneladas métricas. Dados los extremadamente elevados valores de K predichos utilizando el límite superior de K (1,3 millones de t) es probablemente más plausible utilizar un límite cercano a los límites usados comúnmente, como 5 veces la captura máxima observada.

Cabe señalar que las distribuciones previas de *r* eran originalmente ensayadas con una varianza de 0,9 donde N~(media=1,17, sd=0,3). Esto era ligeramente diferente de la desviación estándar del análisis demográfico que estimaba una sd de 0,25, sin embargo, los resultados son probablemente muy comparables a usar una distribución previa N~(media=1,17, sd=0,3). Una entrada de la desviación estándar en lugar de la varianza como la media para la distribución previa facilitaba un análisis de sensibilidad improvisado de los efectos de utilizar una distribución previa estrecha (sd=0,25) o ancha (sd=0,5) de r. Este conjunto de ensayos indicaba que se producía poco efecto sobre las modas posteriores (**Tablas 32** y **33**) produciendo poco efecto real sobre los resultados de situación previa ancha o no informativa, produciendo coeficientes de variación más amplios alrededor de la moda de las distribución posteriores para los resultados de situación previa de r permite al modelo estimar una valor posterior más alto para r (~1,3-1,7) que para las distribuciones previas informativas. Basándose en anteriores modelos demográficos (sección 5.3.2) estos valores más altos parecen improbables para el listado.

Por tanto, RUN5BZ, utilizando una distribución previa uniforme (250000, 1000000) de ln K, una distribución previa N~(1,17, 0,3) de r y todos los índices ponderados igualmente puede ser considerado el mejor modelo que incorpora todos los datos, aunque los ajustes a los índices eran generalmente pobres (**Figura 73**). Las trayectorias de biomasa, B/B_{RMS}, F y F/F_{RMS} con proyecciones de 100.000 t empezando en 2007 para el SKJE-RUN5BZ (**Figura 74**) indican la situación relativamente alta de B/B_{RMS}, y la baja situación de F/F_{RMS} predicha por el modelo.

6.2.3 Modelo sólo con captura

Listado occidental

Para el stock occidental se llevaron a cabo dos conjuntos de ensayos (**Tabla 34**). Para ambos conjuntos, la serie de captura utilizada oscilaba desde el año 1976 hasta 2006 con el fin de incluir los años en los que las capturas empezaron a aumentar (**Figura 7**). Para el primer conjunto (A), la distribución previa de x se estableció como valores amplios $x \sim U(0,10)$. Las exploraciones del comportamiento del modelo para las combinaciones de los parámetros *a*, *x* mostraron que para una *x* elevada y una *a* baja, las predicciones del modelo para la biomasa y la captura tenían oscilaciones irrealistas amplias. Se llevó a cabo también un segundo conjunto de ensayos (B) con una distribución previa estrecha de *x*. Cuando se asumían distribuciones previas más estrechas de *x*, el modelo era capaz de obtener más información de las capturas que para una distribución previa más ancha de *x*. La **Figura 75** tiene los resultados sólo para el ensayo 1 de los dos conjuntos, que eran similares para los demás ensayos de cada conjunto (véase el **Apéndice 8** para todos los resultados).

Las estimaciones eran sensibles a la distribución previa de x. El primer conjunto de ensayos (A) incluía menos información de las capturas tal y como sugerían las distribuciones posteriores más anchas al compararlas con las distribuciones previas (**Figuras 75** y **76**). Para el primer conjunto de ensayos, la mediana de la distribución posterior de RMS oscilaba entre 54.000 y 83.000 t. El segundo conjunto de ensayos (B) era capaz de incorporar más información de las capturas que el primer conjunto, tal y como sugerían las distribuciones posteriores más

estrechas de los parámetros y las cantidades derivadas, al compararlo con las distribuciones previas (**Figura 75**), y fue seleccionado para la inferencia. Para el segundo conjunto de ensayos, la mediana de las distribuciones posteriores de RMS era de aproximadamente 30.000 t.

Listado oriental

Para el stock de listado oriental, se llevaron a cabo tres conjuntos de ensayos (**Tabla 35**). Para el primer conjunto (A) se utilizó la serie de capturas de 1950 a 2006 así como una distribución previa más amplia de *x*. La serie de captura mostraba un descenso a mediados de los 80 cuando se produjo el desplazamiento de gran parte de las flotas de cerqueros españoles y franceses al océano Índico. El modelo sólo con captura asume que la tasa de captura aumenta y se estabiliza siguiendo una curva logística. El Grupo sugirió ensayar el modelo sólo con las capturas desde 1985 hasta 2006 con el fin de cumplir los supuestos del modelo sólo con captura. Se llevaron a cabo otros dos conjuntos de ensayos. El conjunto B incluye ensayos ajustados a las capturas desde 1965 hasta 1984 y el conjunto C incluye ensayos ajustados a las capturas desde 1985 hasta 2006. Para estos dos conjuntos, la distribución previa de *x* era más estrecha (**Tabla 35**).

De forma similar al listado occidental, los resultados parecían sensibles a las distribuciones previas de x, y el primer conjunto de ensayos (A) incluía menos información de las capturas que el conjunto C tal y como sugerían las distribuciones posteriores más amplias (**Figura 77**). El conjunto de ensayos C fue considerado el mejor ajuste porque ninguna distribución posterior se concentraba hacia los límites como ocurría en los conjuntos A y B (**Figura 77** y **Apéndice 8**). Para el conjunto de ensayos A, las medianas de las distribuciones posteriores de RMS oscilaban entre 200.000 y 275.000 t. Para el conjunto de ensayos C, las medianas de las distribuciones posteriores de RMS oscilaban entre 143.000 y 156.000 t.

6.2.4 PROCEAN

6.2.4.1 Listado oriental

El modelo, por lo general, ajustaba bien los datos para los diferentes ensayos aunque las pesquerías de cebo vivo europeas y senegalesas y los cerqueros europeos con base en Dakar mostraban tendencias crecientes en los residuos. En todos los ensayos, se demostró que eran necesarias distribuciones previas informativas para la convergencia del modelo. Las estimaciones de la distribución posterior máxima de RMS se encontraban en el rango de 154.000-185.000 t y parecían bastante sensibles a la media de la distribución previa de RMS (**Tabla 36**). F_{RMS} parecía robusta ante los cambios realizados en los parámetros de entrada y en las distribuciones previas, y el valor de 0,48 para m = 2 está relacionado con la forma de la curva de producción y conduce a un valor de F/F_{RMS} en 2006 cercano al de los demás ensayos.

Para el ensayo estándar las capturas observadas y predichas eran cercanas a la curva de producción en equilibrio (**Figura 78**). Esto podría deberse al ciclo vital relativamente corto del listado que se captura principalmente antes de la edad 4 y a su elevada tasa de crecimiento. El stock parecía subexplotado en 2006 con la tasa de mortalidad por pesca por debajo de la mortalidad por pesca en RMS, es decir, $F/F_{RMS} = 0,32$ en 2006 y la biomasa por encima de la biomasa en RMS, es decir B/B_{RMS} = 1,79.

El ensayo del modelo llevado a cabo con el índice de abundancia combinado condujo a resultados similares en términos de diagnóstico del stock, aunque el RMS se estimó en aproximadamente 10.000 t menos que en el ensayo estándar (**Tabla 36**). Sin embargo la calidad del ajuste era bastante pobre y los resultados demostraron una tendencia creciente en los residuos indicando que los datos no se ajustaban al supuesto de error lognormal. La inclusión del error de proceso en la capturabilidad para las especificaciones de parámetros del ensayo estándar mejoró el ajuste del modelo eliminando la tendencia en los residuos y permitió hacer un seguimiento de los cambios en la capturabilidad en el tiempo (**Figura 79**).

En particular, los resultados sugerían que la capturabilidad de las flotas pesqueras de cebo vivo con base en Dakar habría aumentado de forma continua en aproximadamente el 4% cada año desde los 70. Esto podría estar relacionado en los años 80 con la introducción y desarrollo de la pesca sobre manchas (Fonteneau y Diouf, 1994). A pesar del aumento del 3% ya tenido en cuenta en los índices de abundancia, la flota pesquera europea de cerco con base en Dakar que pesca sobre banco libre mostraba un aumento gradual en la capturabilidad en torno a 1990 seguido de una estabilidad relativa (**Figura 79**). Esto sugeriría que las mejoras tecnológicas a finales de los años 80 y principios de los 90 habrían conducido a un mayor aumento en la capturabilidad de lo que se había asumido generalmente (véase la sección 5.3.1).

7. Proyecciones

7.1 Proyecciones – rabil

7.1.1 Proyecciones del modelo VPA

Especificaciones

Las proyecciones para el rabil (Ensayos 5 y 10) se basaban en las réplicas de bootstrap de las matrices de mortalidad por pesca por edad y números por edad producidas por el programa VPA-2BOX. El Grupo acordó que las proyecciones y los elementos de referencia deberían ser calculados usando un remuestreo de los reclutamientos observados durante 1970-2006. Esto produjo un reclutamiento esencialmente constante en el valor medio de la serie temporal. Esto contrasta con el enfoque utilizado durante la evaluación de 2003 que utilizaba una relación fija S-R de Beverton y Holt estimada de forma externa al modelo. El alcance de la variabilidad de reclutamiento, σ_R , para cada réplica de bootstrap fue modelado utilizando una desviación estándar de 0,5 sin autocorrelación.

Dado que durante 2007 y 2008 no se habían producido cambios de ordenación (proyectados por el modelo VPA porque los datos no estaban aún disponibles) estos años fueron proyectados en F actual¹. Se hicieron proyecciones a varios niveles de captura constante o F constante incluyendo:

1) Captura = 50.000 t	2009-2016
2) Captura = 70.000 t	2009-2016
3) Captura = 90.000 t	2009-2016
4) Captura = 110.000 t	2009-2016
5) Captura = 130.000 t	2009-2016
6) Captura = 150.000 t	2009-2016
7) Mortalidad por pesca = F0,1	2009-2016
8) Mortalidad por pesca = F_{max}	2009-2016
9) Mortalidad por pesca = F _{actual}	2009-2016
10) Mortalidad por pesca = $F1992$	2009-2016

Las proyecciones que utilizaban diversos niveles de captura constante empleaban una restricción, que la F plenamente seleccionada estaba restringida para que no superara 3 yr⁻¹.

Resultados

El Grupo de trabajo recomendó que el asesoramiento en materia de ordenación fuera construido utilizando la distribución conjunta de los ensayos 5 y 10 del VPA. Por tanto, las proyecciones reflejan el resultado de la mediana de ambos ensayos base.

Las proyecciones de la biomasa, rendimiento, mortalidad por pesca, SSB y reclutamiento totales se muestran en las **Figuras 80** y **81**. La SSB y la F están también dibujadas en relación a los elementos de referencia de la ordenación (Fmax y la SSB correspondiente en equilibrio). Las proyecciones de captura constante (**Figura 81**) indican que capturas de 130.000 t o menos son sostenibles durante el intervalo de proyección. Capturas de más de 130.000 t causarían una condición de sobrepescado y objeto de sobrepesca durante el intervalo de proyección. Las proyecciones de mortalidad por pesca constante (**Figura 81**) indican que los niveles actuales de mortalidad por pesca (2003-2006) permiten a la biomasa reproductora aumentar gradualmente durante el intervalo de proyección. Aumentar la presión pesquera hasta los niveles de 1992 provocaría que la situación del stock se deteriore hasta una condición de soprepescado y objeto de sobrepesca durante el intervalo de proyección.

7.1.2 ASPIC

Las proyecciones de ASPIC (**Figura 82**) para cada uno de los 4 casos fueron ensayadas para los siguientes escenarios de captura: 108.263 t (nivel de captura de 2006), 80,000 t, 100,000 t, 120,000 t, 140,000 t, y 160,000 t. Todos los ensayos indicaban que niveles de captura de 120.000 t o menos recuperarían el stock de la condición de sobrepescado. Un nivel de captura de 140.000 t no recuperaría el stock de acuerdo con los resultados del caso

¹ F actual fue calculada como el valor máximo (apical) de la media geométrica F por edad. La media geométrica fue calculada para los años 2003-2006.

6, pero lo recuperaría para los otros tres casos. Los 4 casos mostraban que el stock no se recuperaría si los niveles de captura eran de 160.000 t o más.

8. Recomendaciones

- El Grupo acordó que el nivel de desembarques de "faux poisson" en Abidján (del orden de 10.000 t para el listado) y la pequeña talla de los peces desembarcados era lo suficientemente importante para afectar potencialmente a los resultados de las evaluaciones de stock. Por tanto, el Grupo recomienda el desarrollo y la implementación de protocolos de muestreo para recopilar información detallada sobre el volumen de los desembarques, la composición por especies y la composición por tallas de los desembarques de "faux poisson".
- Al igual que se ha implementado ya en otras OROP, diseñar cuidadosamente amplios estudios de marcado convencional que deberían ser implementados por ICCAT para complementar el uso de datos dependientes de la pesquería utilizados para estimar los índices de abundancia.
- Aunque se han producido algunas mejoras, el Grupo acuerda que es necesario aumentar los esfuerzos en los estudios biológicos de las tres especies de túnidos tropicales: rabil, listado y patudo.
- El Grupo se mostró alentado por los resultados preliminares obtenidos para el stock de listado occidental y recomendó que en el futuro se refinen los análisis del modelo Multifan-CL para este stock. Respecto al stock oriental, el Grupo recomendó realizar más modelos intersesiones y posiblemente incluir los datos de marcado una vez que estén totalmente verificados.
- La Secretaría necesita recursos suficientes para preparar los archivos de datos disponibles (tablas de sustituciones, captura por talla, captura por edad, marcado) al menos dos semanas antes de la reunión y los científicos nacionales deben dedicar recursos suficientes a revisar estos archivos antes del inicio de la reunión y solicitar cualquier modificación necesaria, si procede. Cabe señalar que este tema debería ser tratado por el Subcomité de Estadísticas y revisado en las sesiones plenarias del SCRS y que debería considerarse el uso de técnicas modernas de conferencia a través de la web.

9. Otros asuntos

El Grupo revisó el Informe de la Subcomisión 1 de 2007 que incluía como parte de sus debates la sugerencia de que *"el SCRS analizase y presentase a la Comisión, para que las considere en la reunión extraordinaria de 2008, un abanico de opciones para aumentar el rendimiento por recluta y el RMS del patudo reduciendo la mortalidad del patudo pequeño mediante el uso de vedas espaciales (es decir, una veda total a todas las pesquerías de superficie) y moratorias al uso de dispositivos de concentración de peces (DCP)".* Además, se sugirió que *el SCRS analizase el impacto de dichas medidas también en las capturas de rabil y listado* (ICCAT 2008). El Grupo consideró que la sugerencia de la Subcomisión se refería a los análisis llevados a cabo en 2005 que incluían una amplia gama de escenarios de ordenación así como diferentes enfoques para evaluar el efecto de la moratoria y otras medidas alternativas. No obstante, el Grupo consideró útil analizar el efecto de la veda espacio-temporal establecida por la [Rec. 04-01] porque en el momento de la reunión de 2005 no había datos de observación para realizar dichos análisis, ya que en aquel momento la Recomendación acababa de ser adoptada. Sin embargo, estos análisis no pudieron realizarse en la reunión de evaluación ya que el principal objetivo de la reunión de evaluación era actualizar las evaluaciones de la situación de los stocks de listado y rabil. Se mantuvieron discusiones para planificar la realización de análisis entre la reunión de evaluación y la reunión del Grupo de especies en septiembre de 2008.

Al igual que para los análisis previos, el Grupo discutió el periodo de referencia a considerar en los análisis. Teniendo en cuenta que el cumplimiento durante la primera veda espacio-temporal fue sólo parcial, considerar el periodo previo a 2004 como referencia conduciría probablemente a una sobrestimación de los efectos de la actual veda espacio-temporal. Por otra parte, considerar los años previos a la primera moratoria (1993-1996) haría difícil separar el efecto del descenso continuo del esfuerzo por parte de las flotas europea y asociadas desde este periodo. Como alternativa, el Grupo decidió limitar los análisis a las flotas europea y asociadas asumiendo que estas flotas han implementado totalmente las diferentes vedas espacio-temporales.

Además de estos análisis, el Grupo consideró que podrían llevarse a cabo algunos escenarios generales de reducción en el esfuerzo para los diferentes componentes de la flota, tal y como sugirió la Subcomisión 1, y sus efectos en el rendimiento por recluta. Estos análisis podrían proporcionar el rango de opciones solicitado por la Subcomisión 1.

Con el fin de facilitar el trabajo del Grupo en septiembre, durante la reunión del Grupo de especies, se sugirió que los científicos llevaran a cabo estos análisis antes de la reunión del Grupo de especies y presentaran los resultados como documentos SCRS.

El resultado de los análisis llevados a cabo antes y durante la reunión del Grupo de especies se incluye como **Apéndice 9**.

10. Adopción del informe y clausura

El Presidente dio las gracias una vez más a los anfitriones por la organización de la reunión. El informe fue adoptado y la reunión fue clausurada.

Referencias

- Anon., 1984. Report of the Juvenile Tropical Tuna Working Group (Brest, France, July 12-21, 1984). Collect. Vol. Sci. Pap., 21(1): 1-289.
- Anon., 2001. Report of the ICCAT SCRS Atlantic Yellowfin tuna Stock Assessment Session (Cumaná, Venezuela, July 10-15, 2000). Collect. Vol. Sci. Pap. ICCAT, 52(1): 1-148.
- Anon., 2004. 2003 ICCAT Atlantic Yellowfin Tuna Stock Assessment Session (Mérida, Mexico, July 21-26, 2003). Collect. Vol. Sci. Pap. ICCAT, 56(2): 443-527.
- Anon., 2007. Report of the 2006 ICCAT Inter-sessional Meeting of the Tropical Species Working Group (Séte, France, April 24-28, 2006). Collect. Vol. Sci. Pap. ICCAT, 60(1): 1-90.
- Anon., 2008. Report of the 2007 Inter-sessional Meeting of the Tropical Tunas Species Group. (Recife, Brazil, April 11-16, 2007). Collect. Vol. Sci. Pap. ICCAT, 62(1): 1-96.
- Butterworth, D.S. and Geromont, H.F., 1999. Some aspects of ADAPT VPA as applied to North Atlantic bluefin tuna. Collect. Vol. Sci. Pap. ICCAT, 49(2): 233-241.
- Cass-Calay, S.L., 2008. Evaluating the impact of changes in fishing pressure on Atlantic tropical tunas using yield-per-recruit and spawner-per-recruit analyses. SCRS/2008/170.
- Casella, G. and Berger, R., 2002. Statistical Inference (2nd ed.). Pacific Grove, CA: Duxbury Press.
- Casella, G. and Berger, R. 2007. Statistical Inference (7th ed.). Pacific Grove, CA: Duxbury Press.
- Caverivière, A., 1976. Longueur prédorsale, longueur a la fourche et poids des albacores (*Thunnus albacares*) de l'Atlantique. Cah. ORSTOM, ser. Océanogr., 14 (3): 201-208.
- Cayré, P. and Farrugio, H., 1986. Biologie de la reproduction du listao (*Katsuwonus pelamis*) de l'Océan Atlantique. *In* Proceedings of the ICCAT Conference on the International Skipjack Year Program. Symons, P.E.K., Miyake, P.M. and Sakagawa. G.T. (eds.), p. 252-272.
- Cayré, P. and Laloê, F., 1986. Relation poids-longueur du listao (*Katsuwonus pelamis*) de l'Ocean Atlantique. *In* Proceedings of the ICCAT Conference on the International Skipjack Year Program. Symons, P.E.K., Miyake, P.M. and Sakagawa, G.T. (eds.), p. 335-340.
- Davis, K., 1991. Length-Weight relationships for western North Atlantic yellowfin tuna. Collect. Vol. Sci. Pap. ICCAT, 36: 280-288.

- Fonteneau, A., 2000. Comparison of the species composition of tuna schools taken on logs and on free schools in the eastern Atlantic, before and after the deployment of FAD fisheries. Tuna Fishing and Fish Aggregating Devices (Symposium Caribbean-Martinique, 15-19 October 1999). Pêche thoniere et dispositifs de concentration de poissons (Colloque Caraibe-Martinique, 15-19 octobre 1999). No. 28, P. 678. Actes de colloques. Institut français de Récherche pour l'Exploitation de la Mer. Brest [Actes Colloq. IFREMER].
- Fonteneau, A. and Diouf, T., 1994. An efficient way of bait-fishing for tunas recently developed in Senegal. *Aquatic Living Resources*, 7: 139-151.
- Gaertner, D., Salazar, H., Rodriguez, O., Astudillo, L. and Castillo, C., 1992. Relacion longitud-peso para el atún aleta amarilla en el Atlantico Oeste. Collect. Vol. Sci. Pap. ICCAT, 38: 262-265.
- Gaertner, D., Delgado de Molina, A., Ariz, J., Pianet, R., Hallier, J.P., 2008. Variabilité de la croissance du listao (*Katsuwonus pelamis*) entre les secteurs de l'Atlantique Est: utilisation de données de marquage-recapture dans un contexte de méta-analyse. *Aquatic Living Resources*, Vol. 21, No. 4, pp. 349-356.
- Gascuel, D., Fonteneau, A., Capisano, A., 1992. A two-stanza growth model for the yellowfin tuna (*Thunnus albacares*) in the eastern Atlantic. *Aquatic Living Resources*, Vol. 5, No. 3, pp. 155-172.
- Gascuel, D., Fonteneau, A., Foucher, E., 1993. Analysis of fishing power evolution using Virtual Population Analysis: the case of purse seiners exploiting yellowfin (*Thunnus albacares*) in the eastern Atlantic. *Aquatic Living Resources*, Vol. 6, No. 1, pp. 15-30.
- Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2004. Bayesian Data Analysis. Chapman & Hall/CRC, Boca Raton.
- Gotelli, N.J. and Ellison, A.M., 2001. A Primer in Ecology. 3rd edition. Sinauer Associates, Inc. Sunderland, MA.
- Hallier, J.P. and Gaertner, D., 2006. Estimated growth of the skipjcak tuna (*Katsuwonus pelamis*) from tagging surveys conducted in the Senegalese area (1996-1999) within a meta-analysis framework. Collect. Vol. Sci. Pap. ICCAT, 59(2): 411-420.
- Hampton, J., 2000. Natural mortality rates in tropical tunas: size really does matter. Canadian Journal of Fisheries and Aquatic Sciences [Can. J. Fish. Aquat. Sci./J. Can. Sci. Halieut. Aquat.]. Vol. 57, No. 5, pp. 1002-1010.
- Hampton, J., 2002. Stock assessment of yellowfin tuna in the western and central Pacific Ocean. SCTB15 Working Paper.
- ICCAT, 2008. Report of the Meeting of Panel 1. *In* Report for Biennial Period, 2006-07, Part II (2007) Vol. 1 COM, pp. 191.
- Langley, A.M., Ogura, M. and Hampton, J., 2003. Stock assessment of skipjack tuna in the western and central Pacific Ocean SCTB16 Working Paper.
- Lessa, R. and Duarte-Neto, P., 2004. Age and growth of yellowfin tuna (*Thunnus albacares*) in the western Equatorial Atlantic, using dorsal fin spines. *Fisheries Research*, 69: 157-170.
- Lotka, A.J., 1907. Relation between birth rates and death rates. Science. 1907. 26:21.
- Maury, O., 2001. PROCEAN: A production catch/effort analysis framework to estimate catchability trends and fishery dynamics in a Bayesian context. IOTC Proceedings, 4: 228-231.
- Maury, O. and Chassot, E., 2001. A simulation framework for testing the PROCEAN model and developing Bayesian priors. IOTC Proceedings 4: 544-554.

- McAllister, M.K., Pikitch, E.K., Punt, A.E., Hilborn, R., 1994. A Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm. Can. J. Fish. Aquat. Sci. 51: 2673-2687.
- McAllister, M.K., and Kirkwood, G.P., 1998. Using Bayesian decision analysis to help achieve a precautionary approach to managing newly developing fisheries. Can. J. Fish. Aquat. Sci. 55: 2642–2661.
- McAllister, M.K., Kirkwood, G.P., 1999. Applying multivariate conjugate priors in fishery-management system evaluation: how much quicker is it and does it bias the ranking of management options? ICES Journal of Marine Science [ICES J. Mar. Sci.]. Vol. 56, No. 6, pp. 448-899. Dec. 1999.
- McAllister, M.K., Pikitch, E.K. and Babcock, E., 2001. Using demographic methods to construct Bayesian priors for the intrinsic rate of increase in the Schaefer model and implications for stock rebuilding. Can. J. Fish. Aquat. Sci. 58: 1871-1890.
- McAllister, M.K., Kirchner, C., 2002. Accounting for structural uncertainty to facilitate precautionary fishery management: illustration with Namibian orange roughy. Bull. Mar. Sci. 70:499-540.
- McAllister, M. and Carruthers, T., 2008. 2007 stock assessment projections for western Atlantic bluefin tuna using a BSP and other SRA methodology. Collect. Vol. Sci. Pap., ICCAT, 62(4): 1206-1270.
- Minte-Vera, C.V., Vasconcellos, M., Cochrane, K. [in prep] Fisheries dynamics models for data-poor situations.
- Pagavino, M. and Gaertner, D., 1995. Fitting a growth curve to size frequencies of the skipjack tuna (*Katsuwonus pelamis*) caught in the southeastern Caribbean. Collect. Vol. Sci. Pap. ICCAT, 44(2): 303-309.
- Pella, J.J. and Tomlinson, P.K., 1969. A generalized stock production model. Bull. Inter. Am. Trop. Tuna. Com 13: 420-496.
- Punt, A.E. and Hilborn, R., 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Rev. Fish. Biol. Fisher. 7: 35-63.
- Rikhter, V.A. and Efanov, V.N., 1976. On one of the approaches to estimation of natural mortality of fish populations. ICNAF Res. Doc., 76/VI/8:1-12.
- Shuford, R.L., Dean, J.M., Stéquert, B., Morize, M., 2007. Age and growth of yellowfin tuna in the Atlantic Ocean, 2007. Collect. Vol. Sci. Pap. ICCAT, 60(1): 3330-341.
- Vasconcellos, M. and Cochrane, K., 2005. Overview of world status of data-limited fisheries: inferences from landings statistics. *In:* Kruse, G.H., Gallucci, V.F., Hay, D.E., Perry, R.I., Peterman, R.M., Shirley, T.C., Spencer, P.D. Wilson, B., Woodby, D. (Eds.) Fisheries Assessment and Management in Data-Limited Situations. Alaska Sea Grant College Program, Anchorage.
- Vilela, M.J. and Castello, J.P., 1993. Dinámica poblacional del barrilete (*Katsuwonus pelamis*) explotado en la región sudeste-sur del Brasil en el periodo 1980-1986. Frente Marítimo, Montevideo, 14:111-124.
- Wise, J., 1986. The baitboat fishery for skipjack in the Gulf of Guinea, 1969-82. *In* Proceedings of the ICCAT Conference on the International Skipjack Year Program. P.E.K. Symons, P.M. Miyake and G.T. Sakagawa (eds.), p. 111-117.

TABLEAUX

Tableau 1. Tâche I – Prises estimées (t) d'albacore (*Thunnus albacares*) par zone, engin et pavillon principaux.

Tableau 2. Tâche I – Prises estimées (t) de listao (Katsuwonus pelamis) par zone, engin et pavillon principaux.

Tableau 3. Ventilation des prises atlantiques "non-classifiées » d'albacore de la Tâche I en unités de gestion Est et Ouest à l'aide des informations géographiques de prise et d'effort de la Tâche II.

Tableau 4. Catalogue des données de taille de la Tâche II de l'albacore dans la base de données ICCAT.

Tableau 5. Catalogue des données de taille du listao de la Tâche II dans la base de données ICCAT.

Tableau 6. Matrice globale de prise par taille de l'albacore (nombre de poissons) obtenue pour l'ensemble de l'Atlantique.

Tableau 7. Matrice globale de prise par taille du listao (nombre de poissons) obtenue pour le stock Est.

Tableau 8. Matrice globale de prise par taille du listao (nombre de poissons) obtenue pour le stock Ouest.

Tableau 9. Matrice de prise par âge de l'albacore.

Tableau 10. Limites de taille supérieures de l'albacore à des fins de découpage des âges.

Tableau 11. Définitions de la pêcherie utilisées pour la préparation des analyses MFCL pour le listao.

Tableau 12. Définitions de la pêcherie utilisées pour la préparation des analyses MFCL pour l'albacore.

Tableau 13. Estimations des indices pondérés et non-pondérés combinés pour l'albacore et le listao. Se référer au texte pour obtenir une explication des flottilles utilisées dans la procédure de GLM.

Tableau 14. Spécifications du fichier de contrôle utilisées pour les sorties du modèle VPA.

Tableau 15. Spécifications du fichier de paramètres utilisées pour les sorties du modèle VPA.

Tableau 16. Indices d'abondance utilisés pour les sorties du modèle de VPA.

Tableau 17. Méthodes utilisées pour estimer les sélectivités des indices pour les modèles VPA. (B&G = Butterworth et Geromont, 1999).

Tableau 18. Indices estimés d'abondance utilisés dans les sorties d'ASPIC.

Tableau 19. Séries de captures utilisées dans les sorties d'ASPIC.

Tableau 20. Scénarios résumés pour les sorties d'ASPIC de l'albacore

Tableau 21. Valeurs d'entrée initiales des paramètres du BSP du listao de l'Ouest et valeurs d'entrée techniques pour tous les scénarios.

Tableau 22. Valeurs d'entrée initiales des paramètres du BSP du listao de l'Est et valeurs d'entrée techniques pour tous les scénarios.

Tableau 23. Indices du BSP du listao de l'Ouest.

Tableau 24. Listao de l'Est – Huit indices utilisés dans le modèle BSP. Les pondérations sont déterminées par l'inverse de la fraction de la zone totale pêchée dont l'indice tient compte chaque année¹. Les pondérations sont utilisées dans le modèle BSP comme CV de façon à ce que plus la valeur est élevée, plus faible est son influence.

Tableau 25. Indices combinés et indices UE-senneurs pour le listao de l'Est construits avec la variable q ou une augmentation de 3% de q par an, utilisés pour le modèle BSP.

Tableau 26. Résultats récapitulatifs des analyses des tendances de capturabilité dans la pêcherie de senneurs. Les valeurs de la pente de régression peuvent être utilisées pour inférer un changement dans le pourcentage annuel moyen de la capturabilité pour différentes périodes temporelles.

Tableau 27. Séries temporelles de l'effort de pêche nominal des senneurs de la CE, estimations des tendances de capturabilité par espèce (et espèces combinées), et effort ajusté pour les changements de capturabilité estimés par année. La dernière colonne montre l'effort ajusté pour l'albacore postulant un changement de 3% par an en suivant la méthode appliquée en 2000.

¹ Pour 1960, la pondération pour SKJ-GHN-BB = 1/% de la zone totale pêchée=1/(4/19)=4,75.

Tableau 28. Points de repère et références de gestion calculés à partir de la distribution conjointe de l'albacore, dans les scénarios 5 et 10 de la VPA.

Tableau 29. Résultats du non-bootstrap des sorties initiales d'ASPIC.

Tableau 30. Résultats du bootstrap des cas 2, 4, 6 et 8 d'ASPIC.

Tableau 31. Sorties du modèle, critères de convergence et résultats du modèle BSP pour le listao de l'Ouest.

Tableau 32. Sorties du modèle, critères de convergence et résultats du modèle BSP pour le listao de l'Est pour les distributions a priori de r avec des déviations standard plus étroites (0,3 ou 0,25). Il convient de noter que la sd=0,25 était spécifiée à l'origine à partir des analyses démographiques.

Tableau 33. Sorties du modèle, critères de convergence et résultats du modèle BSP pour le listao de l'Est avec de larges déviations standard (0,5) de la distribution a priori de *r*.

Tableau 34. Tableau récapitulatif des sorties du modèle de capture uniquement pour le listao de l'Ouest. Abréviations : $\ln K$ est $\ln(K) \sim U(\ln(100), \ln(1000))$, U est $K \sim U(100, 1000)$, $\log N$ est $K \sim \log N(\text{moyenne}=350000, \text{CV}=0.5)$, u est $r \sim U(0,4;2,0)$, D est $r \sim \text{démographique}$, L est $x \sim U(0,10)$, s est $x \sim U(0;1,1)$. Les données de capture utilisées allaient de 1976 à 2006.

Tableau 35. Tableau récapitulatif des sorties du modèle de capture uniquement pour le lista de l'Est. Abréviations : lnK est $ln(K) \sim U(ln(200), ln(2000))$, U est $K \sim U(200, 2000)$, logN est $K \sim logN(moyenne=350000, CV=0.5)$, u est $r \sim U(0,4$;2,0), D est $r \sim démographique$, L est $x \sim U(0,10)$, s est $x \sim U(0;1,1)$. Les sorties ont été ajustées aux séries de capture suivantes : A- 1950 à 2006, B – 1965 à 1984, C- 1985 à 2006.

Tableau 36. Estimations maximum de la distribution a posteriori des paramètres et points de référence basés sur les différents scénarios réalisés avec PROCEAN. SD = déviation standard ; q = capturabilité.

TABLAS

Tabla 1. Tarea I – Capturas estimadas (t) de rabil (*Thunnus albacares*) por área, arte y pabellón principales.

Tabla 2. Tarea I – Capturas estimadas (t) de listado (Katsuwonus pelamis) por área, arte y pabellón principales.

Tabla 3. Desglose de las capturas atlánticas "sin clasificar" de rabil de Tarea I en las unidades de ordenación oriental y occidental utilizando la información geográfica de captura y esfuerzo de Tarea II.

Tabla 4. Catálogo de datos de talla de Tarea II de rabil en la base de datos de ICCAT.

Tabla 5. Catálogo de datos de talla de Tarea II de listado en la base de datos de ICCAT.

Tabla 6. Matriz de captura por talla global de rabil (número de peces) obtenida para todo el Atlántico.

Tabla 7. Matriz de captura por talla global de listado (número de peces) obtenida para el stock oriental.

Tabla 8. Matriz de captura por talla global de listado (número de peces) obtenida para el stock occidental.

Tabla 9. Matriz de captura por edad para el rabil.

Tabla 10. Límites de talla superiores del rabil utilizados para la determinación de la edad (filo de cuchillo).

Tabla 11. Definiciones de la pesquería utilizadas para las preparaciones de los análisis MFCL del listado.

Tabla 12. Definiciones de la pesquería utilizadas para las preparaciones de los análisis MFCL del rabil.

Tabla 13. Índices combinados ponderados y no ponderados estimados para el rabil y el listado. Véase el texto para la explicación de las flotas utilizadas en el procedimiento GLM.

Tabla 14. Especificaciones del archivo de control utilizadas para los ensayos del modelo VPA.

Tabla 15. Especificaciones del archivo de parámetros utilizadas para los ensayos del modelo VPA.

Tabla 16. Índices de abundancia utilizados para los ensayos del modelo VPA.

Tabla 17. Métodos utilizados para estimar las selectividades de los índices para los modelos VPA. (B&G = Butterworth y Geromont, 1999).

Tabla 18. Índices estimados de abundancia usados en los ensayos de ASPIC.

Tabla 19. Series de captura utilizadas en los ensayos de ASPIC.

Tabla 20. Escenarios resumidos para los ensayos de ASPIC del rabil.

 Tabla 21. Valores de entrada iniciales de los parámetros del BSP del listado occidental y valores de entrada técnicos para todos los ensayos.

Tabla 22. Valores de entrada iniciales de los parámetros del BSP del listado oriental y valores de entrada técnicos para todos los ensayos.

 Tabla 23. Índices del BSP del listado occidental.

Tabla 24. Listado oriental – ocho índices utilizados en el modelo BSP. Las ponderaciones están determinadas por el inverso de la fracción del área total pescada que el índice tiene en cuenta cada año². Las ponderaciones se utilizan en el modelo BSP como CV para que cuanto mayor sea el valor menor sea su influencia.

Tabla 25. Índices combinados del listado oriental e índices EU-PS construidos con variable q o un aumento del 3% en q por año usados para el modelo BSP.

Tabla 26. Resumen de resultados de los análisis de las tendencias en la capturabilidad en la pesquería de cerco. Los valores de la pendiente de regresión pueden utilizarse para inferir un cambio en el porcentaje anual medio en la capturabilidad para diferentes periodos.

Tabla 27. Serie temporal de esfuerzo pesquero nominal del cerco de la CE, estimaciones de las tendencias de capturabilidad por especies (y especies combinadas) y esfuerzo ajustado para los cambios en la capturabilidad estimados por año. La última columna muestra el esfuerzo ajustado para el rabil asumiendo un cambio del 3% por año siguiendo el método aplicado en 2000.

Tabla 28. Elementos de referencia y referencias de la ordenación calculadas a partir de la distribución conjunta de los ensayos 5 y 10 del VPA del rabil.

Tabla 29. Resultados que no son del bootstrap de los ensayos iniciales de ASPIC.

Tabla 30. Resultados de bootstraps de los casos 2, 4, 6 y 8 de ASPIC.

Tabla 31. Ensayos del modelo, criterios de convergencia y resultados del modelo BSP para el listado occidental.

Tabla 32. Ensayos del modelo, criterios de convergencia y resultados del modelo BSP para el listado oriental para las distribuciones previas de r con desviaciones estándar más estrechas (0,3 o 0,25). Cabe señalar que sd= 0,25 estaba originalmente especificada a partir de los análisis demográficos.

Tabla 33. Ensayos del modelo, criterios de convergencia y resultados del modelo BSP para el listado oriental con desviaciones estándar amplias (0,5) de la distribución previa de r.

Tabla 34. Tabla resumen de los ensayos del modelo solo con captura para el listado occidental. Abreviaturas: lnK es $\ln(K) \sim U(\ln(100), \ln(1000))$, U es $K \sim U(100, 1000)$, logN es $K \sim \log N(\text{media}=350000, \text{CV}=0.5)$, u es $r \sim U(0.4, 2.0)$, D es $r \sim \text{demographic}$, L es $x \sim U(0, 10)$, s es $x \sim U(0, 1.1)$. Los datos de captura utilizados eran desde 1976 a 2006.

Tabla 35. Tabla resumen de los ensayos del modelo solo con captura para el listado oriental. Abreviaturas: lnK es $\ln(K) \sim U(\ln(200), \ln(2000))$, U es $K \sim U(200, 2000)$, logN es $K \sim \log N(\text{media}=350000, \text{CV}=0.5)$, u es $r \sim U(0.4, 2.0)$, D es $r \sim \text{demographic}$, L es $x \sim U(0, 10)$, s es $x \sim U(0, 1.1)$. Los ensayos fueron ajustados a la siguiente serie de captura: A- 1950 hasta 2006, B – 1965 hasta 1984, C- 1985 hasta 2006.

Tabla 36. Estimaciones máximas de la distribución posterior de los parámetros y puntos de referencia basados en los diferentes ensayos llevados a cabo con PROCEAN. SD = desviación estándar; q = capturabilidad.

FIGURES

Figure 1. Distribution géographique des prises d'albacore par engin et décennie.

Figure 2. Distribution géographique des prises de listao par engin et décennie.

Figure 3. Capture d'albacore atlantique par zone.

² Para 1960, la ponderación para SKJ-GHN-BB = 1/% área total pescada =1/(4/19)=4,75.

Figure 4. Capture d'albacore atlantique par engin.

Figure 5. Capture d'albacore par engin – Est.

Figure 6. Capture d'albacore par engin – Ouest.

Figure 7. Capture de listao atlantique par zone.

Figure 8. Capture de listao par engin dans l'Atlantique Est.

Figure 9. Capture de listao par engin dans l'Atlantique Ouest.

Figure 10. Changement dans le temps de la capacité de transport de la flottille de senneurs européens et associés.

Figure 11. Comparaison de la prise par taille de la Tâche II et de la Tâche I (t) pour l'albacore atlantique.

Figure 12. Distribution relative des prises d'albacore atlantique par âge (0-5+) et année (la taille des bulles est proportionnelle aux prises totales).

Figure 13. Comparaison de la prise par taille de la Tâche II et de la Tâche I (t) pour le listao.

Figure 14. Prise trimestrielle de listao par trimestre cumulatif de 1956 à 2006, selon les définitions des pêcheries de MFCL (Tableau 11).

Figure 15. Modes de taux de capture trimestriels par pêcheries élaborés pour le listao (Tableau 11).

Figure 16. Prise trimestrielle d'albacore par trimestre cumulatif de 1956 à 2006, selon les définitions des pêcheries de MFCL (Tableau 12).

Figure 17. Modes de taux de capture trimestriels par pêcheries élaborés pour l'albacore (Tableau 12).

Figure 18. Changement dans le temps de la capacité de transport des canneurs basés à Dakar.

Figure 19. Proportion des opérations avec DCP, % des opérations réussies et nombre total d'opérations pour les senneurs de la CE dans l'Atlantique Est.

Figure 20. Changement dans le temps de la zone totale que les senneurs de la CE ont visitée et dans laquelle ils ont pêché.

Figure 21. Changement dans le temps de la zone totale que les canneurs basés à Dakar ont visitée et dans laquelle ils ont pêché.

Figure 22. Changements au fil des ans de la mortalité totale apparente Z, sur la base de l'équation de Beverton et Holt, pour les trois espèces de thons tropicaux dans l'océan Atlantique. YFT = albacore; BET = thon obèse; SKJ = listao (stocks Est et Ouest). La taille du recrutement complet a été fixée à 50 cm (FL).

Figure 23. CPUE standardisée du listao pour la pêcherie de canneurs des Açores. L'indice a été obtenu en ajustant un GLM delta-lognormal aux registres de capture journaliers. Symboles ouverts : CPUE observée. Lignes : CPUE prédite et intervalles de confiance d'environ 95%.

Figure 24. CPUE standardisées pour le stock de l'Atlantique Est (1969-2006).

Figure 25. CPUE standardisées pour le stock de l'Atlantique Ouest (1981-2006). Les lettres w et n indiquent les estimations rassemblées dans l'analyse de la prise en poids et en nombre, respectivement.

Figure 26. Poids moyen du listao débarqué dans l'océan Atlantique Est et Ouest.

Figure 27. Poids moyen de l'albacore débarqué dans l'océan Atlantique.

Figure 28. Poids moyen de l'albacore débarqué par flottille de pêche.

Figure 29. CPUE standardisée de l'albacore capturé par les flottilles de senneurs.

Figure 30. CPUE nominale de l'albacore capturé par les flottilles de canneurs.

Figure 31. CPUE standardisée de l'albacore capturé par la flottille des Etats-Unis de canne et moulinet.

Figure 32. CPUE standardisée de l'albacore capturé par les flottilles palangrières.

Figure 33. Estimation des indices d'abondance combinés pondérés et non-pondérés pour l'albacore et les deux stocks de listao.

Figure 34. Séries de capture d'entrée utilisées dans les analyses des tendances de capturabilité.

Figure 35. Séries d'effort nominal d'entrée utilisées dans l'analyse des tendances de capturabilité. Le chiffre à droite exclut les valeurs de 1983 et de 1984.

Figure 36. Trajectoires de la biomasse résultant des analyses de la tendance de capturabilité.

Figure 37. Tendances de la capturabilité estimée (en unités logarithmiques) pour les trois stocks individuels et combinés. La ligne continue est une moyenne glissante.

Figure 38. Effort de pêche des senneurs de la CE et associés (jours de pêche). La ligne noire continue est la série nominale. Les lignes avec les symboles représentent l'effort de pêche ajusté pour les changements de capturabilité potentiels. Toutes les séries sont mises à l'échelle afin de démarrer à la même valeur en 1969.

Figure 39. Effort de pêche des senneurs de la CE et associés (jours de pêche). La ligne noire continue est la série nominale. Les lignes avec les symboles représentent l'effort de pêche ajusté pour les changements de capturabilité potentiels pour l'albacore. La ligne rouge avec les carrés vides postule un changement de 3% par an dans q à partir de 1980 ; la ligne bleue avec les cercles pleins est ajustée pour les changements de capturabilité estimés dans la présente analyse.

Figure 40. Ajustements des indices de CPUE pour le modèle de continuité VPA de l'albacore.

Figure 41. Ajustements des indices de CPUE pour les scénarios 5 et 8 de la VPA de l'albacore. Les losanges bleus sont les valeurs observées. La ligne rouge et le symbole « X » sont les valeurs prédites du scénario 5 et du scénario 10, respectivement.

Figure 42. Tendances rétrospectives de la biomasse reproductrice (t) et des recrutements (nombres à l'âge 0) à partir des cas de base de la VPA de l'albacore. La légende indique la dernière année de l'analyse.

Figure 43. Schémas rétrospectifs de la mortalité par pêche à l'âge à partir des cas de base du modèle pour l'albacore. La légende indique la dernière année de l'analyse.

Figure 44. Schémas rétrospectifs en nombre à l'âge à partir des cas de base du modèle pour l'albacore. La légende indique la dernière année de l'analyse.

Figure 45. Estimations annuelles de la mortalité par pêche moyenne par groupe d'âge, biomasse du stock reproductif (SSB), recrutement et F-ratio pour les sorties du cas de base de 2003 (ligne rouge) de la VPA et celui de continuité de 2008 (ligne bleue) de la VPA.

Figure 46. Scénario 5 – Estimations annuelles de la production, biomasse totale, mortalité par pêche apicale, des recrutements (âge 0), de la biomasse du stock reproducteur (SSB) et de la SSB par rapport à SSB à F_{MAX} . Les lignes en pointillés sont les intervalles de confiance de 80% obtenues à partir de 500 sorties de bootstraps.

Figure 47. Scénario 10 – Estimations annuelles de la production, biomasse totale, mortalité par pêche apicale, des recrutements (âge 0), de la biomasse du stock reproducteur (SSB) et de la SSB par rapport à SSB à F_{MAX} . Les lignes en pointillés sont les intervalles de confiance de 80% obtenus à partir de 500 sorties de bootstraps.

Figure 48. Trajectoire de l'état du stock de 1970 à 2006. L'état du stock en 2006 (grand cercle) a été estimé à l'aide de SSB_{2006}/SSB_{MAX} et F_{Actuel}/F_{MAX} . Les points jaunes indiquent qu'il y avait surpêche. Les points verts indiquent que la population n'est ni surpêchée, ni qu'elle fait l'objet de surpêche.

Figure 49. Diagrammes de phase illustrant la situation du stock en 2006 (symbole continu) obtenu en utilisant la moyenne de la distribution conjointe des modèles 5 et 10 de la VPA. Les cercles vides montrent 500 sorties de bootstrap de chaque modèle VPA.

Figure 50. Histogrammes des estimations de bootstrap de la situation du stock en 2006. Ils ont été construits pour examiner le biais et la normalité.

Figure 51. Biomasse relative (B/B_{PME}) et mortalité par pêche relative (F/F_{PME}) estimées pour 10 sorties d'ASPIC. Consulter le texte pour obtenir une explication plus détaillée des spécifications de chaque sortie.

Figure 52. Trajectoires de la biomasse relative – F relative ('snail tracks') pour 4 cas d'ASPIC.

Figure 53. Diagrammes de phase des conditions de 2006 à partir des sorties de bootstrap pour 4 sorties d'ASPIC. Le losange vert indique les résultats déterministes.

Figure 54. Trajectoires estimées de la biomasse relative et intervalles de confiance de 80% estimés à partir de 500 bootstraps.

Figure 55. Trajectoires estimées de F relative et intervalles de confiance de 80% estimés à partir de 500 bootstraps.

Figure 56. Estimations de la biomasse par Multifan-CL pour la zone de l'Atlantique Est à l'aide des données de 1950 à 2006.

Figure 57. Estimations de la biomasse par rapport à la B_{PME} par Multifan-CL pour la zone de l'Atlantique Est à l'aide des données de 1950 à 2006.

Figure 58. Estimations de F par rapport à F_{PME} par Multifan-CL pour la zone de l'Atlantique Est à l'aide des données de 1950 à 2006.

Figure 59. Estimations de la biomasse par Multifan-CL pour la zone de l'Atlantique Est à l'aide des données de 1970 à 2006.

Figure 60. Estimations de la biomasse par rapport à la B_{PME} par Multifan-CL pour la zone de l'Atlantique Est à l'aide des données de 1970 à 2006.

Figure 61. Estimations de F par rapport à F_{PME} par Multifan-CL pour la zone de l'Atlantique Est à l'aide des données de 1970 à 2006.

Figure 62a. Déviations de l'effort estimées à partir de l'application de Multifan-CL au listao de l'Ouest pour les trois pêcheries.

Figure 62b. Fréquences de taille globales ajustées dans l'application de Multifan-CL au listao de l'Ouest pour les trois pêcheries.

Figure 63. Sélectivités estimées par l'application de Multifan-CL au listao de l'Ouest pour les trois pêcheries.

Figure 64. Tendances du recrutement et de la biomasse reproductrice estimées par l'application de Multifan-CL au listao de l'Ouest.

Figure 65. Intervalles de confiance d'environ 95% pour la SSB et le recrutement estimés par l'application de Multifan-CL au listao de l'Ouest.

Figure 66. Trajectoire conjointe de la biomasse et de la mortalité par pêche par rapport aux niveaux de la PME, estimée par l'application de Multifan-CL au listao de l'Ouest.

Figure 67. Diagramme des indices d'abondance utilisés pour les modèles de projection BPS pour le listao de l'Ouest.

Figure 68. Distributions a priori et a posteriori de r, K et distributions a posteriori de la PME et F_{PME} pour les scénarios 1, 5, 7 et 9 de BSP, montrant l'expansion de la distribution a posteriori de r et la migration de K vers des valeurs plus faibles. Il convient de noter que pour le scénario 9, la distribution a priori de r était N(1,17; 0,25) et N(1,17; 0,5) pour tous les autres.

Figure 69. Ajustements des indices pour le scénario 9 du BSP du listao de l'Ouest.

Figure 70. Trajectoire de la biomasse, de B/B_{PME} , F, et F/F_{PME} avec des projections de 25.000 t à partir de 2007 pour le scénario 9 du listao de l'Ouest. Les lignes en pointillés sont des intervalles de confiance de 90% basés sur les échantillons d'importance.

Figure 71. Diagrammes des indices d'abondance utilisés pour les modèles de projection BSP pour le listao de l'Est.

Figure 72. Comparaison du listao de l'Est. A. Passage 5B avec une distribution a priori large de r (sd=0,5) et B. Scénario 5BZ avec une distribution a priori étroite de r (sd=0,25).

Figure 73. Ajustements des indices pour le scénario 5BZ du BSP avec une distribution a priori de r avec faible variance.

Figure 74. Trajectoire de la biomasse, de B/B_{PME}, F, et F/F_{PME} avec des projections de 100.000 t à partir de 2007 pour le scénario 5BZ du listao de l'Est, distribution a priori de r avec faible variance. Les lignes en pointillés sont des intervalles de confiance de 90% basés sur les échantillons d'importance.

Figure 75. Distributions a priori et a posteriori pour les scénarios A.1 et B.1 pour le stock de listao de l'Ouest. Les distributions a priori (boîtes en pointillés) et les postérieurs (boîtes en ligne continue) ont été relativisés afin de s'inscrire dans la même échelle. Les boîtes en pointillés pour les quantités de gestion sont les valeurs obtenues en exécutant le modèle seulement avec les distributions a priori.

Figure 76. Distributions a posteriori de *K*, *r* et PME pour les scénarios A1 à A6 (gauche) et B1 à B6 (droite) pour le stock de listao de l'Ouest (les unités pour *K* et PME sont de 1.000 t).

Figure 77. Distributions a posteriori de K, r et PME pour les scénarios A1 à A6 (gauche) et C1 à C6 (droite) pour le stock de listao de l'Est (les unités pour K et PME sont de 1.000 t).

Figure 78. Total des captures observées (cercles), prédites (ligne continue) et courbe de production en conditions d'équilibre estimée dans le scénario standard.

Figure 79. Changements relatifs dans la capturabilité estimés avec une erreur de processus sur la capturabilité pour les 8 flottilles de pêche considérées dans le scénario standard. GHN.BB = canneurs ghanéens ; CAN.BB = canneurs canariens ; POR.BB = canneurs açoréens ; EUSKR.BB = canneurs européens et sénégalais ; EC.PS.FAD = senneurs européens pêchant avec des dispositifs de concentration du poisson ; EUDKR.PS = senneurs espagnols pêchant au large du Sénégal.

Figure 80. Résultats de la projection de captures constantes à l'aide de la distribution conjointe des sorties 5 et 10 de VPA de l'albacore.

Figure 81. Résultats de la projection de F constante à l'aide de la distribution conjointe des sorties 5 et 10 de VPA de l'albacore.

Figure 82. Projections de la biomasse pour les niveaux de capture de 80.000 t, 100.000 t, 120.000 t, 140.000 t et 160.000 t pour chacun des 4 cas d'ASPIC.

FIGURAS

Figura 1. Distribución geográfica de la captura de rabil por arte y década.

Figura 2. Distribución geográfica de la captura de listado por arte y década.

Figura 3. Captura de rabil del Atlántico por área.

Figura 4. Captura de rabil del Atlántico por arte.

Figura 5. Captura de rabil por arte – este.

Figura 6. Captura de rabil por arte - oeste.

Figura 7. Captura de listado del Atlántico por área.

Figura 8. Captura de listado por arte en el Atlántico oriental.

Figura 9. Captura de listado por arte en el Atlántico occidental.

Figura 10. Cambios en el tiempo de la capacidad de transporte de la flota de cerco europea y asociada.

Figura 11. Comparación de la captura por talla de Tarea II y la Tarea I (t) para el rabil del Atlántico.

Figura 12. Distribución relativa de las capturas de rabil del Atlántico por edad (0-5+) y año (el tamaño de la burbuja es proporcional a las capturas totales).

Figura 13. Comparación de la captura por talla de Tarea II y la Tarea I (t) para el listado.

Figura 14. Captura trimestral de listado por trimestre acumulativo empezando en 1956 hasta 2006, por definiciones de pesquería de MFCL (Tabla 11).

Figura 15. Patrones trimestrales de tasas de captura por pesquería preparados para el listado (Tabla 11).

Figura 16. Captura trimestral de rabil por trimestre acumulativo empezando en 1956 hasta 2006, por definiciones de pesquería de MFCL (Tabla 12).

Figura 17. Patrones trimestrales de tasas de captura por pesquería preparados para el rabil (Tabla 12).

Figura 18. Cambio en el tiempo de la capacidad de transporte de los buques de cebo vivo con base en Dakar.

Figura 19. Proporción de lances sobre DCP, % de lances con éxito y número total de lances de los cerqueros de la CE en el Atlántico oriental.

Figura 20. Cambio en el tiempo del área total que han visitado y en la que pescan los cerqueros de la CE.

Figura 21. Cambio en el tiempo del área total que han visitado y en la que pescan los buques de cebo vivo con base en Dakar.

Figura 22. Cambios a lo largo de los años en la mortalidad total aparente *Z*, basados en la ecuación de Beverton y Holt, para las tres especies de túnidos tropicales en el Atlántico. YFT = rabil, BET = patudo, SKJ = listado (stock oriental y occidental). La talla de pleno reclutamiento se fijó en 50 cm (FL).

Figura 23. CPUE estandarizada para el listado para la pesquería de cebo vivo de las Azores. El índice se obtuvo ajustando un GLM delta-lognormal a los registros diarios de captura. Símbolos abiertos: CPUE observada. Líneas: CPUE predicha e intervalos de confianza de aproximadamente el 95%.

Figura 24. CPUE estandarizadas para el stock del Atlántico oriental (1969-2006).

Figura 25. CPUE estandarizadas para el stock del Atlántico occidental (1981-2006). Las letras w y n indican estimaciones reunidas en el análisis de la captura en peso y número respectivamente.

Figura 26. Peso medio del listado desembarcado en el Atlántico este y oeste.

Figura 27. Peso medio del rabil desembarcado en el Atlántico.

Figura 28. Peso medio del rabil desembarcado por flota pesquera.

Figura 29. CPUE estandarizada para el rabil capturado por las flotas de cerco.

Figura 30. CPUE nominal para el rabil capturado por las flotas de cebo vivo.

Figura 31. CPUE estandarizada para el rabil capturado por la flota estadounidense de caña y carrete.

Figura 32. CPUE estandarizada para el rabil capturado por las flotas de palangre.

Figura 33. Índices combinados estimados ponderados y sin ponderar de las abundancias de rabil y de los dos stocks de listado.

Figura 34. Series de captura de entrada utilizadas en el análisis de las tendencias de capturabilidad.

Figura 35. Series de esfuerzo nominal de entrada utilizadas en el análisis de las tendencias de capturabilidad. La figura de la derecha excluye los puntos de datos de 1983 y 1984.

Figura 36. Trayectorias de biomasa que resultan de los análisis de la tendencia de la capturabilidad.

Figura 37. Tendencias en la capturabilidad estimada (en unidades logarítmicas) para los tres stocks, individualmente y combinados. La línea sólida es una media móvil.

Figura 38. Esfuerzo pesquero de cerco de la CE y asociada (días de pesca). La línea negra sólida es la serie nominal. Las líneas con símbolos representan el esfuerzo pesquero ajustado para los potenciales cambios en la capturabilidad. Todas las series están escaladas para que empiecen con el mismo valor en 1969.

Figura 39. Esfuerzo pesquero de cerco de la CE y asociada (días de pesca). La línea negra sólida es la serie nominal. Las líneas con símbolos representan el esfuerzo pesquero ajustado para los potenciales cambios en la capturabilidad del rabil: la línea roja con cuadrados abiertos asume un cambio del 3% anual en q empezando a partir de 1980; la línea azul con círculos sólidos está ajustada para los cambios en la capturabilidad estimados en el presente análisis.

Figura 40. Ajustes a los índices de CPUE del modelo de continuidad VPA del rabil.

Figura 41. Ajustes a los índices de CPUE para los Ensayos 5 y 8 del VPA del rabil. Los rombos azules son los valores observados. La línea roja y el símbolo "X" son los valores predichos a partir de los ensayos 5 y 10, respectivamente.

Figura 42. Tendencias retrospectivas de la biomasa reproductora (t) y reclutas (número a edad 0) a partir de los casos base del VPA del rabil. La leyenda indica el año terminal del análisis.

Figura 43. Patrones retrospectivos en la mortalidad por pesca por edad (FAA) a partir de los casos base del modelo del rabil. La leyenda indica el año terminal del análisis.

Figura 44. Patrones retrospectivos en los números por edad (NAA) a partir de los casos base del modelo del rabil. La leyenda indica el año terminal del análisis.

Figura 45. Estimaciones anuales de la mortalidad por pesca media por grupo de edad, de la biomasa del stock reproductor (SSB), del reclutamiento y de la ratio de F para el ensayo del caso base de 2003 (línea roja) del VPA y para el de continuidad de 2008 (línea azul) del VPA.

Figura 46. Ensayo 5 – Estimaciones anuales de rendimiento, biomasa total, mortalidad por pesca apical, reclutas (edad 0), biomasa del stock reproductor (SSB) y SSB relativa a SSB en F_{MAX} . Las líneas de puntos son los intervalos de confianza del 80% obtenidos a partir de 500 ensayos de bootstrap.

Figura 47. Ensayo 10 - Estimaciones anuales de rendimiento, biomasa total, mortalidad por pesca apical, reclutas (edad 0), biomasa del stock reproductor (SSB) y SSB relativa a SSB en F_{MAX} . Las líneas de puntos son los intervalos de confianza del 80% obtenidos a partir de 500 ensayos de bootstrap.

Figura 48. Trayectoria de la situación del stock desde 1970 a 2006. La situación del stock en 2006 (círculo grande) se estimó utilizando SSB_{2006}/SSB_{MAX} y F_{actual}/F_{MAX} . Los puntos amarillos indican que se estaba produciendo sobrepesca. Los puntos verdes indican que la población ni está sobrepescada ni sufriendo sobrepesca.

Figura 49. Diagrama de fase que muestra la situación del stock en 2006 (símbolo sólido) obtenido utilizando la mediana de la distribución conjunta de los modelos 5 y 10 del VPA. Los círculos abiertos muestran 500 ensayos de bootstrap de cada modelo VPA.

Figura 50. Histogramas de estimaciones de bootstrap de la situación del stock en 2006. Fueron construidos para examinar el sesgo y la normalidad.

Figura 51. Biomasa relativa (B/Brms) y mortalidad por pesca relativa (F/Frms) estimadas para 10 ensayos de ASPIC. Véase el texto para una explicación más detallada de las especificaciones de cada ensayo.

Figura 52. Trayectorias de biomasa relativa – F relativa (snail tracks) para 4 casos de ASPIC.

Figura 53. Diagramas de fase de las condiciones de 2006 a partir de los ensayos de bootstrap para 4 ensayos de ASPIC. El rombo verde indica resultados deterministas.

Figura 54. Trayectorias estimadas de biomasa relativa e intervalos de confianza del 80% estimados a partir de 500 bootstraps.

Figura 55. Trayectorias estimadas de F relativa e intervalos de confianza del 80% estimados a partir de 500 bootstraps.

Figura 56. Estimaciones de Multifan-CL de la biomasa para la región del Atlántico oriental utilizando datos desde 1950 a 2006.

Figura 57. Estimaciones de Multifan-CL de la biomasa relativa a Brms para la región del Atlántico oriental utilizando datos desde 1950 a 2006.

Figura 58. Estimaciones de Multifan-CL de la F relativa a F_{RMS} para la región del Atlántico oriental utilizando datos desde 1950 a 2006.

Figura 59. Estimación de Multifan-CL de la biomasa para la región del Atlántico oriental utilizando datos desde 1970 a 2006.

Figura 60. Estimaciones de Multifan-CL de la biomasa relativa a Brms para la región del Atlántico oriental utilizando datos desde 1970 a 2006.

Figura 61. Estimaciones de Multifan-CL de la F relativa a F_{RMS} para la región del Atlántico oriental utilizando datos desde 1970 a 2006.

Figura 62a. Desviaciones de esfuerzo estimadas a partir de la aplicación de Multifan-CL al listado occidental para las tres pesquerías.

Figura 62b. Frecuencias de talla totales ajustadas en la aplicación de Multifan-CL al listado occidental para las tres pesquerías.

Figura 63. Selectividades estimadas por la aplicación de Multifan-CL al listado occidental para las tres pesquerías.

Figura 64. Tendencias de reclutamiento y biomasa reproductora estimadas por la aplicación de Multifan-CL al listado occidental.

Figura 65. Intervalos de confianza de aproximadamente el 95% para la SSB y el reclutamiento estimados por la aplicación de Multifan-CL al listado occidental.

Figura 66. Trayectoria conjunta de biomasa y mortalidad por pesca relativa a los niveles de RMS, estimada por la aplicación de Multifan-CL al listado occidental.

Figura 67. Diagrama de los índices de abundancia utilizados para los modelos de proyección BSP para el listado occidental.

Figura 68. Distribuciones previas y posteriores de r, K y distribuciones posteriores para RMS y F_{RMS} para los ensayos 1, 5, 7, y 9 del BSP mostrando la expansión de la distribución posterior de r y la migración de K hacia valores más bajos. Cabe señalar que para el ensayo 9 la distribución previa de r era N(1,17, 0,25) y N(1,17, 0,5) para todos los demás.

Figura 69. Ajustes a los índices para el ensayo 9 del BSP del listado occidental.

Figura 70. Trayectoria de biomasa, B/B_{RMS} , F, y F/F_{RMS} con proyecciones de 25.000 t empezando en 2007 para el ensayo 9 del listado occidental. Las líneas discontinuas son intervalos de confianza del 90% basados en muestreos de importancia.

Figura 71. Diagrama de índices de abundancia utilizados para modelos de proyección BSP para el listado oriental.

Figura 72. Comparación del listado oriental. A. Ensayo 5B con una distribución previa ancha de r (sd = 0,5) y B. Ensayo 5BZ con una distribución previa estrecha de r (sd =0,25).

Figura 73. Ajustes a los índices para el ensayo 5BZ del BSP con una distribución previa de r con varianza baja.

Figura 74. Trayectoria de biomasa, B/B_{RMS} , F, y F/F_{RMS} con proyecciones de 100.000 t empezando en 2007 para el ensayo 5BZ del listado oriental, distribución previa de r con varianza baja. Las líneas discontinuas son intervalos de confianza del 90% basados en muestreos de importancia.

Figura 75. Distribuciones previas y posteriores para los ensayos A.1 y B.1 para el stock de listado occidental. Las distribuciones previas (cajas de líneas discontinuas) y las posteriores (cajas de líneas sólidas) fueron relativizadas para que estuvieran en la misma escala. Las cajas de líneas discontinuas para las cantidades de ordenación son los valores obtenidos al ensayar el modelo sólo con las distribuciones previas.

Figura 76. Distribuciones posteriores para K, r y RMS para los ensayos A1 a A6 (izquierda) y B1 a B6 (derecha) para el stock occidental de listado (las unidades para K y RMS están en 1000 t).

Figura 77. Distribuciones posteriores para K, r y RMS para los ensayos A1 a A6 (izquierda) y C1 a C6 (derecha) para el stock oriental de listado (las unidades para K y RMS están en 1000 t).

Figura 78. Capturas totales observadas (círculos), predichas (línea sólida) y curva de producción en equilibrio estimada en el ensayo estándar.

Figura 79. Cambios relativos en la capturabilidad estimados con un error de proceso sobre la capturabilidad para las 8 flotas pesqueras consideradas en el ensayo estándar. GHN.BB = buques de cebo vivo de Ghana; CAN.BB = buques de cebo vivo de las Canarias; POR.BB = buques de cebo vivo de las Azores; EUDKR.BB = buques de cebo vivo europeos y senegaleses; EC.PS.FAD = cerqueros europeos que pescan sobre DCP; EUDKR.PS = cerqueros españoles que pescan en aguas de Senegal.

Figura 80. Resultados de la proyección de la captura constante utilizando la distribución conjunta de los ensayos 5 y 10 del VPA del rabil.

Figura 81. Resultados de la proyección de F constante utilizando la distribución conjunta de los ensayos 5 y 10 del VPA del rabil.

Figura 82. Proyecciones de biomasa para niveles de captura de 80.000 t, 100.000 t, 120.000 t, 140.000 t y 160.000 t para cada uno de los 4 casos de ASPIC.

APPENDICES

- Appendice 1. Ordre du jour.
- Appendice 2. Liste des participants.
- Appendice 3. Liste des documents.
- Appendice 4. Appendices MFCL.
- Appendice 5. Estimation des indices combinés pour l'albacore et le listao.
- Appendice 6. Elaboration des distributions a priori démographiques pour l'albacore et le listao.

- **Appendice 7.** Résultats de la VPA. Fichier de résultats pour les scenarios 5 et 10 du cas de base de la VPA pour l'albacore.
- **Appendice 8.** Résultats détaillés de l'application du modèle de capture seulement à l'évaluation du listao de l'Atlantique.
- **Appendice 9.** Production par recrutement et biomasse reproductrice par recrutement des thonidés tropicaux avec modification de la mortalité par pêche spécifique aux flottilles.

APÉNDICES

- Apéndice 1. Orden del día.
- Apéndice 2. Lista de participantes.
- Apéndice 3. Lista de documentos.
- Apéndice 4. Apéndices MFCL.
- Apéndice 5. Estimación de índices combinados para el rabil y el listado.
- Apéndice 6. Desarrollo de distribuciones previas demográficas para el rabil y el listado.
- Apéndice 7. Resultados del VPA. Archivo de salida para los Ensayos 5 y 10 del caso base del VPA del rabil
- Apéndice 8. Resultados de la aplicación del modelo solo con captura a la evaluación del listado del Atlántico.
- Apéndice 9. Rendimiento por recluta y biomasa reproductora por recluta de los túnidos tropicales con modificación de la mortalidad por pesca específica de la flota.
| | | | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
|----------|-----|-----------------------------------|-------|
| TOT | AL | | 145361 | 136265 | 162247 | 193448 | 166901 | 163760 | 162753 | 172551 | 153246 | 153040 | 137211 | 148564 | 140366 | 136235 | 164650 | 140279 | 125515 | 119936 | 107322 | 108623 | 75156 |
| | ATE | | 113379 | 101671 | 125345 | 160717 | 130004 | 126048 | 124009 | 124336 | 117973 | 119984 | 104871 | 117644 | 109656 | 101725 | 124363 | 110619 | 100595 | 88794 | 81344 | 80225 | 62697 |
| | ATW | | 31982 | 34594 | 36902 | 32731 | 36897 | 37712 | 38745 | 48215 | 35274 | 33056 | 32341 | 30919 | 30710 | 34510 | 40287 | 29660 | 24920 | 31143 | 25979 | 28398 | 12459 |
| Landings | ATE | Bait boat | 16750 | 16020 | 12168 | 19560 | 17772 | 15095 | 18471 | 15652 | 13496 | 13804 | 12907 | 17330 | 19256 | 13267 | 19071 | 13432 | 11513 | 15354 | 12012 | 10434 | 7498 |
| | | Longline | 6624 | 8956 | 7566 | 10253 | 9082 | 6516 | 8537 | 14605 | 13718 | 14233 | 10488 | 13869 | 13561 | 11364 | 7570 | 5790 | 9075 | 11501 | 7494 | 7857 | 2851 |
| | | Other surf. | 2932 | 2646 | 2586 | 2175 | 3748 | 2450 | 2122 | 2030 | 1989 | 2065 | 2136 | 1674 | 1580 | 2424 | 2074 | 1826 | 2540 | 2928 | 3062 | 3615 | 1456 |
| | | Purse seine | 87074 | 74049 | 103025 | 128729 | 99402 | 101987 | 94880 | 92050 | 88770 | 89882 | 79339 | 84771 | 75260 | 74670 | 95648 | 89572 | 77468 | 59011 | 58776 | 58319 | 50892 |
| | ATW | Bait boat | 5468 | 5822 | 4834 | 4718 | 5359 | 6276 | 6383 | 7094 | 5297 | 4560 | 4275 | 5511 | 5349 | 5649 | 5315 | 6009 | 3764 | 4868 | 3867 | 2695 | |
| | | Longline | 14291 | 19046 | 17128 | 18851 | 13667 | 16594 | 11439 | 11343 | 10059 | 11111 | 11554 | 11671 | 13326 | 15760 | 14872 | 11922 | 10136 | 15953 | 14409 | 14376 | 9108 |
| | | Other surf. | 5557 | 3692 | 3293 | 2362 | 3457 | 3483 | 4842 | 10166 | 13580 | 6601 | 4801 | 4581 | 5345 | 5231 | 7027 | 3763 | 6413 | 7104 | 5069 | 6880 | 3345 |
| | | Purse seine | 6665 | 6034 | 11647 | 6800 | 14414 | 11359 | 16081 | 19612 | 6338 | 10784 | 11710 | 9157 | 6523 | 7870 | 13072 | 7966 | 4607 | 3217 | 2634 | 4442 | |
| Discards | ATW | Longline | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 167 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 6 |
| Landings | ATE | Angola | 51 | 246 | 67 | 292 | 510 | 441 | 211 | 137 | 216 | 78 | 70 | 115 | 170 | 35 | 34 | 34 | 34 | 34 | 111 | 0 | |
| | | Benin | 3 | 2 | 7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | |
| | | Cambodia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | Canada | 0 | |
| | | Cape Verde | 2675 | 2468 | 2870 | 2136 | 1932 | 1426 | 1536 | 1727 | 1781 | 1448 | 1721 | 1418 | 1663 | 1851 | 1684 | 1802 | 1855 | 3236 | 2127 | 2179 | 1355 |
| | | Cayman Islands | 0 | |
| | | China P.R. | 0 | 0 | 0 | 0 | 0 | 0 | 139 | 156 | 200 | 124 | 84 | 71 | 1535 | 1652 | 586 | 262 | 1033 | 1030 | 1112 | 1017 | |
| | | Chinese Taipei | 193 | 207 | 96 | 2244 | 2163 | 1554 | 1301 | 3851 | 2681 | 3985 | 2993 | 3643 | 3389 | 4014 | 2787 | 3363 | 4946 | 4145 | 2327 | 830 | 1791 |
| | | Congo | 15 | 15 | 21 | 22 | 17 | 18 | 17 | 14 | 13 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | Côte D'Ivoire | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 673 | 213 | 99 | 302 | 565 | 175 | 482 | 216 |
| | | Cuba | 1295 | 1694 | 703 | 798 | 658 | 653 | 541 | 238 | 212 | 257 | 269 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | EC.España | 66093 | 50167 | 61649 | 68603 | 53464 | 49902 | 40403 | 40612 | 38278 | 34879 | 24550 | 31337 | 19947 | 24681 | 31105 | 31469 | 24884 | 21414 | 11795 | 11606 | 13417 |
| | | EC.Estonia | 0 | 0 | 0 | 0 | 234 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | EC.France | 17491 | 21323 | 30807 | 45684 | 34840 | 33964 | 36064 | 35468 | 29567 | 33819 | 29966 | 30739 | 31246 | 29789 | 32211 | 32753 | 32429 | 23949 | 22672 | 18940 | 13263 |
| | | EC.Ireland | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | |
| | | EC.Latvia | 0 | 0 | 0 | 0 | 255 | 54 | 16 | 0 | 55 | 151 | 223 | 97 | 25 | 36 | 72 | 334 | 334 | 334 | 334 | 334 | |
| | | EC.Lithuania | 0 | 0 | 0 | 0 | 332 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | EC.Poland | 0 | |
| | | EC.Portugal | 278 | 188 | 182 | 179 | 328 | 195 | 128 | 126 | 231 | 288 | 176 | 267 | 177 | 194 | 4 | 6 | 4 | 5 | 16 | 274 | 854 |
| | | Faroe Islands | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | Gabon | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 88 | 218 | 225 | 225 | 295 | 225 | 162 | 270 | 245 | 44 | 44 | 44 | 44 | |
| | | Gambia | 0 | 0 | 0 | 2 | 16 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | Georgia | 0 | 0 | 0 | 0 | 25 | 22 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| | | Ghana | 10830 | 8555 | 7035 | 11988 | 9254 | 9331 | 13283 | 9984 | 9268 | 11720 | 15437 | 17657 | 25268 | 17662 | 33546 | 23674 | 18457 | 15054 | 17493 | 11931 | 12954 |
| | | Guatemala
Guinea
Fountorial | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2906 | 6560 | |
| | | Ianan | 4521 | 5808 | 5882 | 5887 | 4467 | 2961 | 2627 | 4194 | 4770 | 4246 | 2733 | 4092 | 2101 | 2286 | 1550 | 1534 | 1000 | 5066 | 3137 | 4840 | |
| | | Japan | 4321 | 2000 | 3002 | 2001 | 4407 | 2901 | 2027 | 4194 | 4770 | 4240 | 2133 | 4092 | 2101 | 2200 | 1330 | 1334 | 1999 | 5000 | 5157 | 4040 | |

Table.1 Task I - Estimated catches (t) of yellowfin tuna (*Thunnus albacares*) by major area, gear and flag.

	Korea Rep.	1221	1248	1480	324	259	174	169	436	453	297	101	23	94	142	3	8	209	984	95	4	
	Libya	0	0	0	0	0	0	0	0	0	0	0	0	0	0	208	73	73	73	73	73	
	Maroc Mixed flags (FR+FS)	1529 933	0 932	0 825	0	0	0 2455	0 2750	0	0	0	0 981	0	0	0 1892	0 1427	79 599	108 992	95 1052	183 933	95 1063	655
	Namibia	0	0	025	0	0	0	0	2	14	72	69	3	147	59	165	89	139	85	135	59	055
	NEI (ETRO) NEI (Flag	2077	3140	5436	12513	4856	10921	9875	8544	8970	9567	6706	7225	5418	5448	10205	8209	5396	4294	6808	6151	6163
	related) Netherlands Antilles	285 0	206 0	280 0	1115 0	2310 0	1315 0	1157 0	2524 0	2975 0	3588 3183	3368 6082	5464 6110	5679 3962	3072 5441	2090 4793	133 4035	466 6185	0 4161	0 0	0 1939	1429
	Norway	418	493	1787	1790	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Panama	1858	1239	901	1498	7976	8338	10973	12066	13442	7713	4293	2111	1315	1103	574	1022	0	1887	6170	8557	9363
	Philippines Russian	0	0	0	0	0	0	0	0	0	0	0	126	173	86	0	50	9	68	69	30	211
	S. Tomé e Príncipe	178	298	299	0 164	3200 187	1862	181	125	135	120	4275	124	4359	122	122	122	122	134	4 145	42 137	211
	Senegal	0	0	2	90	132	40	19	6	20	41	208	251	834	252	295	447	279	681	1301	1262	816
	Seychelles Seychelles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0	0	
	(Toreign obs.)	0	127	671	624	52	60	266	196	192	157	116	240	220	101	242	152	208	402	1156	1197	
	South Arnea St. Vincent and Grenadines	0	0	0/1	024	52 0	09	0	480	0	0	0	240 0	0	0	0 0	5	298 0	402 0	0	101	209
	U.S.A.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	U.S.S.R.	1275	3207	4246	3615	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	UK.Sta Helena	93	98	100	92	100	166	171	150	181	151	109	181	116	136	72	9	0	0	0	344	
	Ukraine	0	0	0	0	215	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Vanuatu	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	24	145	
	Venezuela	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ATW	Argentina	18	66	33	23	34	1	0	0	0	0	0	0	0	0	0	0	0	327	327	0	
	Barbados	57	236	62	89	108	179	161	156	255	160	149	150	155	155	142	115	116	116	116	197	
	Belize	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	143	1164
	Brasil	2266	2512	2533	1758	1838	4228	5131	4169	4021	2767	2705	2514	4127	6145	6239	6172	3503	6985	7223	3790	
	Canada	40	30	7	7	29	25	71	52	174	155	100	57	22	105	125	70	73	304	240	293	276
	China P.R.	0	0	0	0	0	0	0	0	0	0	0	628	655	22	470	435	17	275	74	68	
	Chinese Taipei	709	1641	762	5221	2009	2974	2895	2809	2017	2668	1473	1685	1022	1647	2018	1296	1540	1679	1269	430	156
	Colombia	258	206	136	237	92	95	2404	3418	7172	238	46	46	46	46	46	46	46	46	46	46	
	Cuba	1062	98	91	53	18	11	1	14	54	40	40	15	15	0	0	65	65	65	65	65	
	Dominica Dominican Republic	0	0	0	18	12	23	30	31	9	0	0	0	80 220	78 226	120	169 226	119 226	81 226	119 226	65 226	103
	FC España	0	1	3	2	1462	1314	080	7	4	36	2/	16	30	171	0	0	0	0	0	1	
	EC France	0	0	0	2 0	1402	1314	0	, 0		0	0	40	0	0	0	0	0	0	0	1	
	FC Portugal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	151	60	14
	Grenada	186	215	235	530	620	595	858	385	410	523	302	484	430	403	759	593	749	460	492	502	633

	Jamaica	0	0	0	0	0	0	0	0	0	21	21	0	0	0	0	0	0	0	0	0	
	Japan	1647	2395	3178	1734	1698	1591	469	589	457	1004	806	1081	1304	1775	1141	571	755	1194	1176	494	
	Korea Rep.	236	120	1055	484	1	45	11	0	0	84	156	0	0	0	0	0	0	0	580	279	
	Mexico NEI (Flag	33	283	345	112	433	742	855	1093	1126	771	826	788	1283	1390	1084	1133	1313	1208	1050	938	890
	related) Netherlands	1012	2118	2500	2985	2008	2521	1514	1880	1227	2374	2732	2875	1730	2197	793	42	112	0	0	0	
	Antilles	160	170	170	170	150	160	170	155	140	130	130	130	130	130	0	0	0	0	0	0	
	Panama	3289	2192	1595	2651	2249	2297	0	0	0	0	0	0	5	0	0	0	0	0	0	2804	
	Philippines	0	0	0	0	0	0	0	0	0	0	0	36	106	78	12	79	145	299	299	234	
	Seychelles St. Vincent and	0	0	0	0	0	0	0	0	0	0	0	0	0	32	0	0	0	0	0	0	
	Grenadines	0	0	1	40	48	22	65	16	43	37	35	48	38	1989	1365	1160	568	4251	0	2680	2989
	Sta. Lucia Trinidad and	76	97	70	58	49	58	92	130	144	110	110	276	123	134	145	94	139	147	172	103	82
	Tobago	0	1	11	304	543	4	4	120	79	183	223	213	163	112	122	125	186	224	295	459	615
	U.S.A.	9661	11064	8462	5666	6914	6938	6283	8298	8131	7745	7674	5621	7567	7051	6703	5710	7695	6516	5568	7091	5529
	UK. Bermuda UK. British	25	23	22	15	17	42	58	44	44	67	55	53	59	31	37	48	47	82	61	31	
	Virgin Islands UK.Turks and	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	Caicos	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Uruguay	109	177	64	18	62	74	20	59	53	171	53	88	45	45	90	91	95	204	644	218	
	Vanuatu	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	681	689	661	
	Venezuela	11137	10949	15567	10556	16503	13773	16663	24789	9714	13772	14671	13995	11187	10549	18651	11421	7411	5774	5097	6514	
ATW	Mexico	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	6
	U.S.A.	0	0	0	0	0	0	0	0	0	0	0	0	167	0	0	0	0	0	0	0	

Table 2 Task I-Estimated catches (t) of skipjack tuna (Katsuwonus pelamis) by major area, gear and flag.

Discards

			1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
TOTA	L		119229	144796	120419	144118	219733	170708	205685	185014	167381	154127	146082	151699	166488	148598	155767	116781	145293	158707	162241	142177	124546
	ATE		95052	121060	94037	118008	186329	140554	172462	155065	145479	126557	114367	122436	139079	119202	124239	95144	120412	131085	133597	115704	124234
	ATW		24164	23736	26382	26110	33404	30155	33221	29949	21859	27562	31712	29087	27356	29307	31451	21600	24749	27461	28517	26454	313
	MED		13	0	0	0	0	0	2	0	43	9	4	176	53	90	77	37	132	161	127	20	
Landings	ATE	Bait boat	38803	48015	41000	36569	41611	35660	31656	37817	33691	32047	37293	42045	37696	29967	46281	27590	29847	39539	43603	41175	26321
		Longline	6	4	9	0	5	3	2	10	3	7	47	85	42	48	53	56	66	316	458	2957	8454
		Other surf.	1027	1506	1643	1357	2067	1602	1223	501	445	501	304	923	417	2423	764	681	551	816	1898	2402	1817
		Purse seine	55216	71535	51385	80082	142646	103288	139581	116737	111340	94002	76722	79383	100925	86763	77142	66817	89948	90414	87638	69170	87642
	ATW	Bait boat	18675	21057	23292	22246	23972	20852	19697	22645	17744	23741	26797	24724	23881	25754	25142	18737	21990	24082	26028	23749	
		Longline	6	9	25	23	33	29	20	16	33	19	12	21	58	23	60	349	95	206	207	287	38
		Other surf.	518	355	600	600	872	764	710	1577	2023	452	556	516	481	466	951	398	367	404	316	372	275
		Purse seine	4964	2315	2466	3241	8527	8509	12794	5712	2059	3349	4347	3826	2936	3063	5297	2116	2296	2769	1967	2045	
	MED	Bait boat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Longline	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	17	21	13	8	
		Other surf.	13	0	0	0	0	0	2	0	43	9	4	176	53	90	77	32	12	40	16	12	

		Purse seine	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	103	101	99	0	
Discards	ATW	Longline	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Landings	ATE	Angola	80	30	85	69	66	41	13	7	3	15	52	2	32	14	14	14	14	10	0	0	
		Benin	5	3	7	2	2	2	2	2	2	2	7	3	2	2	0	0	0	0	0	0	
		Canada	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Cape Verde	2076	1456	971	806	1333	864	860	1007	1314	470	591	684	962	789	794	398	343	1097	637	929	325
		Cayman Islands	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		China P.R.	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	
		Chinese	0	1	3	0	5	3	2	10	3	5	47	73	30	41	24	23	26	16	10	8	14
		Congo	8	8	11	12	9	9	10	7	7	5	47	0	0	41	0	0	0	0	0	0	14
		Côte	0	0	11	12	,	,	10	,	,	0	0	0	0	0	0	0	0	0	0	0	
		D'Ivoire	0	0	0	0	0	0	0	0	0	0	0	0	0	1173	259	292	143	559	1259	1565	1817
		Cuba	81	206	331	86	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	
		EC. Bulgaria	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00.001
		EC.Espana	33076	47643	35300	47834	79908	53319	63660	50538	51594	38538	38513	36008	44520	37226	30954	25456	44837	38725	28139	22206	23621
		EC.Estonia	0	0	0	0	102	0	0	0	0	0	0	19292	0	19192	0	0	0	0	0	0	5792
		EC.France	1/114	16504	15211	17099	332/1	21890	33/35	32779	25188	23107	17023	18382	20344	18183	16593	16615	19899	218/9	14850	/034	5782
		EC.Germany	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	14	14	14	
		EC.Iretatio	0	0	0	0	92	0	0	0	0	0	0	0	0	0	0	0	0	14	14	14	
		EC Lithuania	0	0	0	0	221	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		EC Portugal	8420	14257	7725	3987	8059	7477	5651	7528	4996	8297	4399	4544	1810	1302	2167	2958	4315	8504	4735	11158	8962
		Gabon	0120	0	0	0	0	0	1	11	51	26	0	59	76	21	101	0	0	0	0	0	0702
		Ghana	24347	26597	22751	24251	25052	18967	20225	21258	18607	19602	26336	34183	40216	28974	42489	30499	24597	25727	44671	30236	45709
		Guatemala	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6389	5162	
		Japan	1982	3200	2243	2566	4792	2378	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
		Korea Rep.	6	3	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Maroc	1028	428	295	1197	254	559	310	248	4981	675	4509	2481	848	1198	268	280	523	807	1893	3779	
		Mixed flags (FR+FS)	4663	4660	4125	5280	11101	12273	13750	9492	5862	5831	4905	5621	6845	9461	7137	2005	4959	5262	4666	5313	3275
		Namihia	005	4000	4125	0	0	0	13750	2 (7)	15	0	1	0	0	0	8	0	4,557	0	-000	0	5215
		NEL (ETRO)	791	2994	2263	10516	11335	12409	20291	17418	16235	16211	6161	6748	8893	7127	8122	8550	9688	11137	9740	7629	11247
		Netherlands										700.6	0.1.1.1	0550	0000	10000	12250	5.405	10000	0700		2010	1050
		Antilles	0	0	0	0	0	0	0	0	0	7096	8444	8553	9932	10008	13370	5427	10092	8708	0	3042	1252
		Norway	581	738	0	0	0	0	0	12079	14952	0	1200	0 572	1209	0	0	0	0	0	0	0	10001
		Panama	0	0	50	142	8312	8/19	13027	12978	14853	2822	1300	572	1308	1559	281	342	0	/126	11490	13468	18821
		Russian	0	0	59	142	349	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Federation	0	0	0	0	1175	1110	540	1471	1450	381	1146	2086	1426	374	0	0	0	0	0	392	1130
		S. Tome e Príncipe	20	195	196	204	201	178	212	190	180	187	178	169	181	179	179	179	179	117	166	143	
		Senegal	0	0	47	134	652	260	95	59	18	163	455	1963	1631	1506	1271	1053	733	1333	4874	3534	2278
		South Africa	88	157	96	17	15	7	6	4	4	1	6	2	1	0	1	0	2	2	1	0	
		St. Vincent and	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0

	U.S.A.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	U.S.S.R. UK.Sta	547	1822	1915	3635	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Helena	139	158	397	171	24	16	65	55	115	86	294	298	13	64	205	63	63	63	63	88	
	Venezuela	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ATW	Argentina	90	7	111	106	272	123	50	1	0	1	0	2	0	1	0	0	0	30	0	0	
	Barbados	21	3	9	11	14	5	6	6	6	5	5	10	3	3	0	0	0	0	0	0	
	Bras il	16286	17316	20750	20130	20548	18535	17771	20588	16560	22528	26564	23789	23188	25164	24146	18338	20416	23037	26388	23270	
	Canada Chinese	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		2	1	19	0	32	20	9	700	1592	10	1	2	1	0	1	16	14	21	28	30	4
	Colombia	0	0	0	0	0	0	2074	/89	1583	0	0	0	0	0	0	0	0	0	0	0	
	Cuba	1101	1631	1449	1443	1596	1638	1017	1268	886	1000	1000	651	651	651	0	0	624	545	514	536	
	Dominica Dominican Republic	0 62	0 63	0	60 110	38 156	41 135	24 143	43 257	33 146	33 146	33	33	85 0	86 0	45 0	55	51	30 0	20 0	28	32
	EC.España	0	0	0	0	1592	1120	397	0	0	0	0	0	1	1	0	0	0	0	0	0	
	EC.France	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	EC.Portugal	0	0	0	0	0	0	0	0	0	0	0	0	0	4	1	0	3	3	5	21	1
	Grenada	5	22	11	23	25	30	25	11	12	11	15	23	23	23	15	14	16	21	22	15	26
	Jamaica	0	0	0	0	0	0	0	0	0	62	0	0	0	0	0	0	0	0	0	0	
	Japan	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	Korea Rep.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Mexico Netherlands	13	10	14	4	9	8	1	1	0	2	3	6	51	13	54	71	75	9	7	10	7
	Antilles	40	40	40	40	40	40	45	40	35	30	30	30	30	30	0	0	0	0	0	0	
	Panama St. Vincent and	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Grenadines	0	17	28	29	27	20	66	56	53	37	42	57	37	68	97	357	92	251	251	355	90
	Sta. Lucia	60	53	38	37	51	39	53	86	72	38	100	263	153	216	151	106	132	137	159	120	89
	Trinidad and Tobago	0	1	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	
	U.S.A.	734	57	73	304	858	560	367	99	81	85	84	106	152	44	70	88	79	103	30	61	66
	UK. Bermuda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	
	Venezuela	5750	4509	3723	3813	8146	7834	11172	6697	2387	3574	3834	4114	2981	3003	6870	2554	3247	3270	1093	2008	
MED	Algerie	0	0	0	0	0	0	0	0	0	0	0	171	43	89	77	0	0	0	0	0	
	EC.España	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	26	10	15	
	EC.France	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22	0	0	0	0	
	EC.Greece	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	102	99	99	0	
	EC.Italy	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	29	34	17	0	
	Maroc	13	0	0	0	0	0	2	0	43	9	4	5	10	1	0	1	1	2	1	5	
ATW	Mexico	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ſ

Grenadines

781

Task-1	Stock	Flag	FleetCode	1962	1963	1964	1965	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2005	2006
(UNK	Chinese Taipei	TAI	278	399	396	183																							
ntic		EC.España	EC.ESP-ES-SWO																										18	226
tlar		NEI (Flag related)	NEI.007																							23				
ПА			NEI.028																							72	118			
= 9			NEI.040											137	162	78	68	18	174	143	223	48	41		11	29				
ЧK			NEI.042																							4				
5			NEI.071					754	406	526	956	1297	2324	2643	3938	4240	3768	2555	3626	2913	3970	4155	4057	3453	2646	332				
νn			NEI.079																						77	54				
cop			NEI.081																		20	393	1263	1396	951	762				
eak			NEI.094																		34	46	22							
a br			NEI.105																	284	400	59	62							
are			NEI.111																					649						
ore			NEI.134															98	604	862	1315	1399	2894	1911	1584	1471	22	578		
befo			NEI.144																							26	35			
Ξ			NEI.166																							110				
ask		Panama	PAN								7222	5147	3431	2496	4149	3519	3594	3134	3422	2588	1954	1156	358	385						
L		TOTAL	·	278	399	396	183	754	406	526	8178	6444	5755	5276	8249	7837	7430	5805	7826	6790	7916	7256	8697	7794	5269	2883	175	578	18	226
	ATE	Chinese Taipei	TAI	66	95	94	44																							
		EC.España	EC.ESP-ES-SWO																										18	226
		NEI (Flag related)	NEI.007																							17				
			NEI.028																							52	90			
s			NEI.040											14	44	42	23	8	100	101	134	27	27		6	21				
ini			NEI.042																							3				
enti			NEI.071					103	54	76	150	285	206	266	1071	2268	1292	1106	2078	2063	2389	2294	2658	2647	1543	241				
eme			NEI.079																						45	39				
lag			NEI.081																		12	217	828	1070	555	553				
mai			NEI.094																		20	25	14							
M			NEI.105																	201	241	33	41							
AT			NEI.111																					497						
pue			NEI.134															42	346	610	791	772	1896	1465	924	1067	17	466		
E			NEI.144																							19	27			
LA			NEI.166																							80				
into		Panama	PAN								1944	1858	1239	901	1498	1270	1297	3134	3422	2588	1954	1156	358	385						
νn	ATW	Chinese Taipei	TAI	212	304	302	139																							
op		NEI (Flag related)	NEI.007																							6				
ken			NEI.028																							20	28			
brol			NEI.040											123	118	36	45	10	74	42	89	21	14		5	8				
es			NEI.042																							1				
atch			NEI.071					651	352	450	806	1012	2118	2377	2867	1972	2476	1449	1548	850	1581	1861	1399	806	1103	91				
c ci			NEI.079																						32	15				
anti			NEI.081																		8	176	435	326	396	209				
Atla			NEI.094																		14	21	8							
17			NEI.105																	83	159	26	21							
ask			NEI.111																					152						
Г			NEI.134															56	258	252	524	627	998	446	660	404	5	112		
			NEI.144																							7	8			
			NEI.166																							30				
		Panama	PAN								5278	3289	2192	1595	2651	2249	2297													
		TOTAL		278	399	396	183	754	406	526	8178	6444	5755	5276	8249	7837	7430	5805	7826	6790	7916	7256	8697	7794	5269	2883	175	578	18	226

Table 3. Breakdown of Task I yellowfin "unclassified" Atlantic catches into eastern and western management units using Task II catch and effort geographic information.

Table 4. Task II size data catalog of yellowfin tuna in the ICCAT database.

Species	Flag	GearGro	960 196	9 62	963 964	965 9.66	967	969 969	07.6	971 972	973	9.74 9.75	976 977	978	979 980	981 982	983 9.84	985	986 987	988	989 9 9 0 0	166	9 <i>9</i> 2 993	9.94 005	966	7997	999 999	000	002	003 004	005	006 007
SKJ	Angola	BB		-					~		_			-				_		~				~ -		- ,		~ ~		0 0	7	2
SKI	Brasil	BB											_																			
SKI	Brasil																															_
SKJ	Brasil	PS																														
SКJ	Brasil	SU														-																
SKJ	Brasil	UN																														
SKJ	Canada	PS																													_	_
SKJ	Cape Verde	BB																				_										
SKJ	Cape Verde	HL																														
SKJ	Cape Verde	PS																														
SKJ	Cayman Island's	PS																														
SKJ	China (ICCAT program)	Ш													-																	
SKJ	Chinese Taipei	Ш																														
SKJ	Congo	PS																													-	_
SKJ	Côte D'Ivoire	GN																		_												
SKJ	Cuba	BB																														
SKJ	Cuba (ICCAT program)	Ш.																														
SKJ	EC.Bulgaria	TW																														_
SKJ	EC.Espana	BB																														
SKJ	EC.Espana	GN																														
SKJ	EC.Espana	Ш.																														
SKJ	EC.Espana	15																														
SKI	EC.France	BB																														
SN	EC.Fidille	r5 TD																														
SKI	EC.Fiance EC.Portunal	BB																														
SKI	EC Portugal	н																														-
SKI	EC Portugal	DS DS																														
SKI	EC Portugal	91 91																														
SKI	EC.Portugal	TP																		-												
SKI	Ghana	BB																														
SKJ	Ghana	PS																			_	-										
SKJ	Ghana (ICCAT program)	BB																														_
SKJ	Japan	BB															_															
SKJ	Japan	Ш																														
SKJ	Japan	PS													_																	
SKJ	Japan (foreign obs.)	Ш																														
SKJ	Japan (ICCAT program)	BB																_														
SKJ	Korea Rep.	BB																														
SKJ	Maroc	PS																										_	_			
SKJ	Mexico	LL.																														
SKJ	Mixed flags (FIS)	BB																														
SKJ	Mixed flags (FIS)	PS																														
SKJ	Mixed flags (FIS)	SU																														
SKJ	Mixed flags (KR +P A)	BB																														
SKJ	Mixed flags (KR+PA)	LL																														
SVI	NEI (EIRO)	DD																														
SIU	Panama	F3 DD																				_										
SIJ	Pussian Ecologiation	DC														_																
SKI	Senegal	BB																														
SKI	South Africa	BB																														
SKI	South Africa																															
SKJ	South Africa	PS																														
SKJ	U.S.A.	GN																											1			
SKJ	U.S.A.	HL																			_	-										
SKJ	U.S.A.	Ш																														
SKJ	U.S.A.	PS																											_			
SKJ	U.S.A.	RR					_	_		_																						
S KJ	U.S.S.R.	PS																														
SKJ	U.S.S.R.	SU																		_												
S KJ	U.S.S.R.	TW																-														
S KJ	UK.Sta Helena	HL									=							J									_					_
SKJ	Venezuela	BB																														
SKJ	Venezuela	Ш																														_
SKJ	venezuela	PS -																														

Table 6. Overall yellowfin catch-at-size matrix (number of fish) obtained for the overall Atlantic.

n <22 24 26	1970 1607 985 1866	1971	1972 1771 2232	1973	1974	1975		1976	1976 1977	1976 1977 1978	1976 1977 1978 1979	1976 1977 1978 1979 1980 1291	1976 1977 1978 1979 1980 1981 80 1291 605	1976 1977 1978 1979 1980 1981 1982 80 85 1291 605 638	1976 1977 1978 1979 1980 1981 1982 1983 80 85 121 1291 605 638 906	1976 1977 1978 1979 1980 1981 1982 1983 1984 80 85 121 27 1291 605 638 906 206	1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 80 85 121 27 18 1291 605 638 906 206 134	1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 80 85 121 27 18 35 1291 605 638 906 206 134 259	1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 80 85 121 27 18 35 233 1291 605 638 906 206 134 259 1745	1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 80 85 121 27 18 35 233 232 1291 605 638 906 206 134 259 1745 1744	1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 80 85 121 27 18 35 233 232 206 1291 605 638 906 206 134 259 1745 1744 1543	1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 80 85 121 27 18 35 233 232 206 263 1291 605 638 906 206 134 259 1745 1744 1543 1976	1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 80 85 121 27 18 35 233 232 206 263 554 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154	1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 80 85 121 27 18 35 233 232 206 263 554 612 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592	1976 1977 1978 1979 1980 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 80 85 121 27 18 35 233 232 206 263 554 612 686 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154	1976 1977 1978 1979 1980 1982 1983 1984 1985 1986 1987 1988 1990 1991 1992 1993 1994 80 85 121 27 18 35 233 232 206 263 554 612 686 474 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552	1976 1977 1978 1979 1980 1982 1983 1984 1985 1986 1987 1988 1990 1991 1992 1993 1994 1995 80 85 121 27 18 35 233 232 206 263 554 612 686 474 292 28 28 28 28 28 28 28 28 28 28 28 229 28 554 612 686 474 292 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28	1976 1977 1978 1979 1980 1982 1983 1984 1985 1986 1987 1988 1990 1991 1992 1993 1994 1995 1996 1976 1977 1978 1979 1983 1984 1985 1986 1987 1988 1990 1991 1992 1993 1994 1995 1996 80 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552 2229 2182	1976 1977 1978 1979 1980 1982 1983 1984 1985 1986 1987 1988 1990 1991 1992 1993 1994 1995 1996 1997 1976 1977 1978 1979 1988 1988 1980 1990 1991 1992 1993 1994 1995 1996 1997 80 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 245 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552 2229 2182 2652	1976 1977 1978 1979 1980 1982 1983 1984 1985 1986 1987 1988 1990 1991 1992 1993 1994 1995 1996 1997 1998 1976 1977 1978 1979 1988 1980 1990 1991 1992 1993 1994 1995 1996 1997 1998 80 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552 2229 2182 2652 7966	1976 1977 1978 1979 1980 1981 1982 1984 1985 1986 1987 1988 1990 1991 1992 1993 1994 1995 1996 1977 1998 1999 1976 1977 1978 1971 1988 1980 1990 1991 1992 1993 1994 1995 1996 1977 1988 1999 1976 1978 1921 207 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552 2229 2182 2652 7966 3013	1976 1977 1978 1979 1980 1981 1982 1984 1985 1986 1987 1988 1990 1991 1992 1993 1996 1997 1998 1999 2000 1976 1977 1978 1979 1983 1984 1985 1989 1990 1991 1992 1993 1996 1997 1998 1999 2000 80 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 517 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552 2229 2182 2652 7966 3013 5033 1291 605 638 906 206 1745 1745 1744 41543 4154 4592 <td< th=""><th>1976 1977 1978 1979 1980 1981 1982 1984 1985 1986 1987 1988 1990 1991 1992 1993 1996 1997 1998 1999 2000 2001 1976 1977 1978 1979 1983 1984 1985 1989 1990 1991 1992 1993 1996 1997 1998 1999 2000 2001 80 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 517 356 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552 2229 2182 2652 7966 3013 3033 333 333 333 333 333 333 333 335 335 335</th><th>1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1990 1991 1992 1993 1994 1997 1998 1999 2000 2001 2002 1076 1977 1978 1979 1980 1981 1982 1983 1994 1995 1996 1997 1998 1999 2000 2001 2002 80 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 517 356 149 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552 2292 2182 2652 7966 3013 5033 3365 2387</th><th>1976 1977 1978 1979 1980 1981 1982 1984 1985 1986 1987 1990 1991 1992 1993 1994 1997 1998 1999 2000 2001 2002 2003 1976 1977 1978 1979 1980 1981 1982 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 100 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 517 356 149 251 1291 605 638 906 206 1745 1745 1744 1543 1976 4154 4592 514 3552 2292 2182 2652 7966 3013 3365 23352 2145</th><th>1976 1977 1978 1979 1980 1981 1982 1984 1985 1986 1987 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 1976 1977 1978 1979 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 100 101 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 517 356 149 251 1578 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552 2292 2182 2652 7966 3013 365</th><th>1976 1977 1978 1979 1980 1981 1982 1984 1985 1986 1987 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 80 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 517 356 149 251 1578 585 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 514 3552 2292 2182 2652 7966 3013 3365 2387 2145 4305 2247</th></td<>	1976 1977 1978 1979 1980 1981 1982 1984 1985 1986 1987 1988 1990 1991 1992 1993 1996 1997 1998 1999 2000 2001 1976 1977 1978 1979 1983 1984 1985 1989 1990 1991 1992 1993 1996 1997 1998 1999 2000 2001 80 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 517 356 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552 2229 2182 2652 7966 3013 3033 333 333 333 333 333 333 333 335 335 335	1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1990 1991 1992 1993 1994 1997 1998 1999 2000 2001 2002 1076 1977 1978 1979 1980 1981 1982 1983 1994 1995 1996 1997 1998 1999 2000 2001 2002 80 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 517 356 149 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552 2292 2182 2652 7966 3013 5033 3365 2387	1976 1977 1978 1979 1980 1981 1982 1984 1985 1986 1987 1990 1991 1992 1993 1994 1997 1998 1999 2000 2001 2002 2003 1976 1977 1978 1979 1980 1981 1982 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 100 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 517 356 149 251 1291 605 638 906 206 1745 1745 1744 1543 1976 4154 4592 514 3552 2292 2182 2652 7966 3013 3365 23352 2145	1976 1977 1978 1979 1980 1981 1982 1984 1985 1986 1987 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 1976 1977 1978 1979 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 100 101 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 517 356 149 251 1578 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 5154 3552 2292 2182 2652 7966 3013 365	1976 1977 1978 1979 1980 1981 1982 1984 1985 1986 1987 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 80 85 121 27 18 35 233 232 206 263 554 612 686 474 292 291 245 43968 342 517 356 149 251 1578 585 1291 605 638 906 206 134 259 1745 1744 1543 1976 4154 4592 514 3552 2292 2182 2652 7966 3013 3365 2387 2145 4305 2247
3007 1296 4441 8507	ļ	450 56 175 1364	12394 2155 7620 13780	1652 5444	5993 29511	263 147903 220744	860 10805	1780 12849	43887 53200	3316 8222 18810	2406 1641 15245 51409	3183 12656 40446 139621	3403 13908 37007 82953	4829 21312 59216 147640	1098 4622 15947 59705	713 6824 19944 62533	1382 9094 16042 60543	9306 43572 119576 250092	9299 37785 114252 240744	8232 33779 100412 254430	10537 55739 141060 264454	22154 98507 262990 474338	24492 102501 287888 580284	27440 112733 308776 594714	19644 76078 208159 381615	18875 51260 145201 266854	11849 47616 142301 258522	14060 58775 173178 382716	16129 65824 184543 332005	13660 66764 220895 416182	19976 91174 263659 508319	16712 73002 238857 408197	8110 38141 97172 175185	13049 93645 207745 420326	22664 82240 209206 436596	13541 58126 160851 315893	17379 59803 166792 303761
9832 11958 29399 44712		4173 13439 31028 58978	10205 24646 42251 65707	6388 13852 36380 56492	62432 124539 163090 171891	133220 147843 221688 228408	101307 213961 350279 400813	55739 111239 190719 294207	87313 63577 178892 302865	71848 96733 310749 397166	224504 335399 498581 644009	536910 840525 1030771 1153633	172540 248606 391632 568562	330715 473408 746150 950624	172337 376583 511907 614460	309089 594336 680072 675340	123017 258526 478871 676713	461247 707254 983665 1160446	417689 516376 617928 875385	463939 658335 967635 1294966	502792 616295 1023705 1146528	707673 683286 903003 906365	879860 985893 1059812 1019357	906542 947411 1053057 1663461	521642 485985 437917 687085	369988 382886 452299 737631	342621 374470 423097 717799	439705 468765 475345 636297	481968 442493 481598 672446	663076 661480 765470 960959	690983 759955 939564 1241718	700661 1188952 1219511 1919516	299686 375065 563956 855512	692162 814022 956906 1118316	720717 662626 866493 972358	490467 525917 712325 928459	400003 352745 447350 555374
48771 172947 233785 247495	1	74372 188800 209271 179032	72792 153234 200333 187952	57420 125782 164292 131124	157627 241511 324331 287881	334081 517076 554524 380819	388319 500914 464925 347420	395952 576631 487371 372384	357486 504713 490891 370535	462724 586732 503571 418287	667407 834200 682722 436238	1351147 1567408 1188230 509690	583280 1188526 1180635 720997	762324 1153668 1026863 448904	565445 724788 741217 584025	835511 964318 816978 520044	738342 1091055 1083794 597778	1137953 1236237 995092 493455	1004704 1413318 1283118 592079	1168744 1569952 1261035 467739	1827219 1818506 1371124 913852	1402854 1385515 1044915 688960	941290 1050194 1140024 679743	2504768 1322417 1304153 620281	933904 1353556 1682101 1043778	1218277 1472103 1587953 950052	1143265 1643147 1718657 1031703	771245 1116050 1526297 1150042	980691 1255592 1305393 1230834	1878730 2521692 2841577 2436569	1609840 1823021 1643116 1240278	1827633 1533326 1713524 1241525	1626199 2332152 2714981 2188697	1325771 1748318 1781689 1364356	1364952 1852388 1847144 1291398	1134989 1552010 1624609 1441449	763083 1335586 1129445 678431
28650 31021 31629 24318 1886	19 5 12 32	195494 224121 281540 267474 209454	182606 204254 284481 276574 227028	12/218 131939 179463 194238 172248	275551 244152 259496 254620 213321	294766 249346 268331 219752 167358	297718 337146 446059 495881 438599	326302 326302 507446 473878 410064	293821 332493 414661 448146 380955	461491 440252 499992 459853 350533	450103 446237 441036 400409 284365	454457 361292 348476 327909 269688	679255 610244 657912 579217 417744	399969 319293 358013 336414 329598	570315 635431 653091 507386 541515	448431 395327 323264 287484 269710	419306 320639 378652 335213 367517	465264 363779 395198 387654 329758	365091 346719 307175 266830	355435 238677 291483 238048 108580	366353 328187 272859 248963	396419 396050 336403 297189	500776 320924 231059 206210	508236 421738 398925 305196 273034	880953 342426 379972 326409 260648	623772 262661 221681 158018	826726 429251 296700 275801 212280	1295190 569452 375412 339705 210051	1245825 1001238 669235 441530 265855	1520917 943604 546955 307239 203968	1035758 538716 423901 239477 310904	1381902 1044965 956824 659227 475358	1456301 783787 450751 251393 172402	749790 440472 265112 210848	7/9414 671096 388830 179443 159776	974345 724237 572627 255591 219861	286814 286814 355770 240606 207986
1220 850 667 46)56 695 801 311	137151 100357 71047 52274	127020 156963 127089 94586 73819	133778 114159 80908 59951	167831 148119 98071 61159	176802 128268 106557 64199	333479 258733 193029 112802	332756 267473 177706 103325	274558 193467 133970 95121	228496 140834 92614 69581	180483 108926 86737 69990	222312 160577 124576 86124	243521 205525 150604 168770	266334 190060 151323 141863	424266 394129 468584 309650	243846 168729 162186 164103	323936 210956 151676 104152	199993 144577 122385 114969	213869 211564 169468 145141	68196 76004 55334 56202	162550 196851 199273 150769	209001 177750 155355 106692	159037 159004 164555 154515	203263 215898 174728 191664	260048 171432 264935 195422 224409	132438 199419 137885 125055	148809 198782 129746 118631	163874 195622 138644 131069	234970 313551 195756 168182	203500 160770 243275 131198 117399	246119 229976 110234 109618	339065 286277 125708 155971	121152 160098 73370 102654	114019 187128 94506 113401	75032 106873 50750 86701	134430 221520 164139 160239	169685 165187 82671 97842
500 479 442 368)34)05 241 378 206	63543 73986 72806 65179 56785	70318 69790 62804 52672 42728	65883 62377 52266 44390 36255	67878 73037 66872 47739 37215	60862 65907 44989 43604 53715	124833 120882 95964 75443 66260	76704 65268 61029 61029 65147	124852 126146 116364 109838 05526	66157 74708 58190 56281 47064	68150 63426 54298 64128 51004	77330 76968 68220 79880 59385	174719 145960 163272 166113 127512	98163 86406 80073 59920 73640	338289 214634 265684 186651 163256	203456 149174 133119 124478 75434	121677 91589 85489 72448 65430	130940 124995 103749 89020	134582 110181 86721 76379 71806	49405 57202 44173 35339 56535	206447 175720 116424 114252 61074	122023 101703 104144 97748	168505 157931 117823 110953 54128	146711 164558 109238 123567 127263	147437 169067 84621 190079	110022 137065 94429 114894 120285	100516 118695 84051 104384 104646	104426 145589 105997 117656 110125	155633 155796 145394 106500	103101 139732 123410 121364 103416	47042 55505 50445 79858 63937	113955 115484 70898 137611 86260	77426 96376 89362 144881 76010	80553 79287 71025 123863	61480 80002 40108 75520 54211	74608 93314 71256 73243 67129	51643 67530 48275 59224 59615
25 23 26 27	874 828 138 731	47563 42786 44180 53574	39446 36684 39540 50632	35189 33850 38392 53097	34778 34816 36793 57329	57784 49741 38093 47041	62885 58897 54544 68608	59017 65128 68138 82541	69005 64692 59240 68902	43840 49708 53927 38751	67719 76602 68280 56762	63533 65954 60759 68287	66224 71740 60725 56550	82519 96975 130185 71020	163230 151567 167557 109669 146787	88752 77823 77246 88614	68252 60466 69979 70254	91711 84505 89244 98357	58928 52034 53690 59936	66246 43290 39176 42822	57836 44741 48254 32421	95092 65091 56889 81885	46722 26988 42853 36770	50823 45681 37500 52208	91513 87064 65321 96645	69226 60981 50833 73579	69260 55643 51667 66018	71867 48581 49592 60524	54400 46985 54380 132695	145778 67538 79797 69901	60115 63428 49475 68585	86950 117295 60930 60121	49989 88435 45250 63648	48727 96485 51715 60344	24026 60978 37180 61154	58756 66982 39690 48361	53638 80979 56261 64607
36 43 36 29	711 175 861 764	55515 66835 58401 47463	60951 75324 69628 62085	63038 79721 69215 52568	65555 82068 74964 50080	56429 63686 66662 101589	65260 65369 60394 65138	84620 91019 86940 80368	77073 83727 82433 84543	48090 51513 43608 41170	84149 104163 77408 73928	85544 82979 65259 63217	52405 60222 67026 84815 75612	86845 65151 66221 68126	106607 113277 78894 74931	88229 96306 105881 99795	60491 72252 79724 73766	72646 82043 77440 93248	57134 66933 61924 62251	43985 43612 42300 42649	44582 38074 38611 40075	61123 60707 60941 61436	39424 46777 44726 61783	35272 46240 40349 45867	67722 110957 84459 124938	52062 61162 54967 91240	45318 57709 42617 69077	57884 54552 32187 58502	48075 55077 40233 74739	121511 78350 73466 60939	56866 83130 48242 68916	64224 83375 58064 50551	61915 69991 48641 46986	61622 51625 39777 41771	58535 80702 53270 63224	40618 53385 36864 46943	60716 68449 53700 62973
31 30 28 26 30	505 505 550 558 888	51362 53692 55579 60896 67810	67967 72574 82466 79616 90526	54092 46368 52571 51679 55116	51977 45469 50856 47955 52400	85384 93641 114507 104899 100294	56901 57569 57062 48412	76155 77896 76741 78590 79295	93820 118890 117677 106758 96947	40052 42890 53987 45889 57702	69567 71552 75276 68250 87421	65033 60452 66158 56475 62847	75613 81276 70423 57216 71517	73015 78783 74232 67116 101558	75597 81062 68718 55414	122648 115925 110814 107700 98776	107425 75011 61445 57910 55706	80897 80953 65305 73374 87485	52583 58084 59251 57836	39548 42959 46521 57646 61488	42901 47760 56169 53056 65407	52355 61486 45820 53557 57279	52039 56288 63526 77550 70103	47532 45171 39043 54099 58846	172296 204314 148608 134024 116229	72590 74646 67204 62237 57793	48356 49960 54100 59187 57985	50811 58223 53094	28085 40469 69358 46816	55216 56902 51495 100364	47647 70024 53588 101990 57364	44132 65439 59774 70389 47992	45149 67919 37844 62988 40190	32024 37363 42679 54692 36648	50212 60101 40325 86655 43752	33840 40404 38747 61757 27747	52583 75049 72742 94094 100116
268 308 296 296	75 24 33 48	62943 63691 59939 54007	84411 88185 72977 64658	55330 62438 66086 63224	58310 73011 80345 70305	100141 89372 92155 79384 76675	59469 49630 43686 41966 21722	92500 78565 75741 59144	83211 83996 76892 68430	64519 54922 57075 47140	70481 58446 61620 50983	57072 63719 67780 63551 67760	53957 48572 50689 48352	93928 74572 76401 70898	64122 81488 88248 91160	97140 103572 91926 114865 76011	40830 48407 49010 48214	71058 75396 71630 67634	50382 60505 56467 56298	61070 59474 51424 52732	52251 43186 43939 43710 26647	48103 72706 75444 74848	67992 71887 75192 77507	61522 74136 73526 64373 78650	125806 87802 106842 82028	60524 61046 93411 64198	63698 58397 88909 57220	67501 46749 78287 37854	29954 30947 66926 27572	45540 51389 53779 63606 40880	121589 62601 146564 48507	71751 56863 70561 52713	50855 39591 54044 42908	48296 48311 69303 54168	58943 54056 75247 55689	44348 35377 45482 21243 21708	117242 63164 83401 61494
32336 23152 29124 33790 34553		36141 32666 35792 39718	47206 50653 54441 58792	56274 60571 58284 57641	66005 77362 72189 69962	72932 80887 72972 73392	25186 35161 35855 43804	55349 67465 74479 79547	62082 71987 77014 77234	40201 51126 46018 53024	49798 57680 69064 53336	59596 64657 76286 56037	71024 84221 73924 71277	80887 76600 136643 157976	76853 68785 72674 59834	79384 75637 68831 60004	64127 60775 79464 90162	55776 62000 65350 61172	73835 77239 80251 92993	47403 53914 55239 72084 81672	36143 48128 55364 51484	63373 79510 58206 74928	53612 79453 85133 70351	78639 54800 96969 49449 69120	59051 98993 84130 51805	64363 114197 98788 61975	48039 95885 84997 62412	39899 38823 84043 76646 42085	32616 69426 70968 37949	40880 38697 48216 73492 40892	43337 107375 50194 44625	65687 79451 68449 60641	42353 54891 50097 44729	33257 43269 41447 38941	42786 54523 53933 48175	21745 28589 20797 20960	29200 35066 46041 32604
40580 34027 37319 46231)) [38746 30562 29116 27274	60811 48787 52193 54853	59445 48423 50682 50663	71713 54547 61663 53220	67671 51449 56511 55335	50976 45313 61006 57361 72505	86972 80738 79592 73866 81627	82771 76854 82488 81797	58229 56369 68123 72599	66333 46770 51867 57383	64456 46749 53196 58441 60701	72160 60164 73508 87255 07241	165038 93235 104328 90221	74148 63668 55936 75831	72391 70462 69396 88606	105538 89939 98249 109102	68993 55955 63736 69989	103184 94111 104460 108674	82278 79378 107664 106106	73489 69579 89805 108499	80222 79134 93364 81175 84011	87696 85896 97856 98634	101674 71631 101457 70367	80848 73251 78124 67578 75004	87683 68113 80358 72304	86501 76012 90967 86440	70381 54220 60720 55870	64926 52145 62907 58344	57706 43585 51493 60262 51421	88307 58693 77965 65715 84520	81854 66934 90195 89094	51057 44291 51994 55060	45868 41967 41720 40364 47112	57014 53719 52705 47209	32129 26210 27844 31189 20764	58924 38147 35578 33865
49804 49571 54278 47489 62091		26578 28295 30567 35276	50846 61368 57948 57218 48894	55930 559477	58683 60085 59384 57453	60693 62239 72377 71091	72303 71855 79724 87830 85480	73206 74064 82531 78827	99534 110614 113326 103757	97702 96176 110571 113494 115870	61318 69688 79324 90630	69791 79401 87039 93843 102478	97341 104325 112118 115347 114909	103031 103652 112447 101707 109952	66526 59946 60275 48075	92735 92988 115286 114851 117247	112230 117282 112453 115430 107691	87809 104662 109050 110519	111996 114031 110369 96345	111342 108065 115557 134423 127626	125595 135972 162687 167556 173534	99184 138343 113168 108901	103624 100054 108511 109701 114844	97737 99234 114492 110469	83235 90703 97217 101642	94603 99721 109913 108634	104722 107202 121916 115854	70348 76505 85962 89898	69390 76165 82474 87147	64846 72236 68763 73436	65357 75508 76046 79131	93398 99350 105712 99085 95153	72562 79426 89865 93019	47113 54491 65888 71828 73107	51433 60951 62643 58593	43820 51998 55753 61733	40891 40585 44331 42369 50434
48073 41011 42303 42403 51206		30638 31809 30926 38989 41775	43169 42934 37906 42709 44427	53768 52688 47096 52322 61751	56556 57288 49480 56803 68897	68800 66192 66648 85187 94031	82839 71043 74632 83684 89518	79769 67610 70491 78199 86688	97831 78000 76797 74023 78559	112413 94916 90591 91182 99717	86700 81343 81510 89035 96227	100005 88340 93698 104316 115394	111267 98886 93167 98761 101767	128044 96630 86377 90860 90737	45026 35564 33467 32839 32811	115222 108284 98481 97126 103846	104465 94778 92300 89467 94272	112549 99806 94587 92907 95432	92757 82781 86383 70312 67538	130582 118274 123185 126215 132366	162740 129665 136651 147175 162960	115904 104963 103554 107747 116477	108903 98759 97000 104038 114463	110464 107481 108282 111804 118103	97818 100940 98359 109381 116554	106187 104130 95900 98157 102001	113744 105501 96898 100560 97090	89285 89801 84385 92438 92883	88478 92488 88818 93496	70077 73287 72937 71939 73971	67913 64146 61381 63322 62580	86887 86361 77766 75995 72973	89989 87771 82923 85300 85181	67415 62540 62692 69296 72121	56363 53492 50946 55736 54402	63711 60780 57108 60504 63578	46117 47981 46128 50954 5755
39130 36964 30690 27815		35799 36908 31764 27123	34864 37619 31037 29150	49981 49071 39083 35687	58449 53312 39598 39323	86629 78980 64460 59671	81147 67296 58383 50740	73079 60971 50403 37510	61908 46242 35815 24173	82756 61429 47640 34427	80621 64416 48253 41005	107573 88322 71390 55749	91757 76860 62053 52559	80587 65457 57185 42106	29578 22675 17837 14197	83191 64289 49170 33118	84704 63479 48155 34869	80482 59333 44525 32213	58190 43163 32212 23722	132300 118276 96785 75261 56721	138344 110689 88215 69295	110003 87536 72479 54301	110369 91322 71238 55693	110294 87195 64572 44541	106367 84764 62786 49708	91154 73474 53622 38516	90908 69607 51417 37815	83239 67587 55725 35603	96423 82762 62700 49695	65995 58079 43878 35257	57933 48418 39949 32885	68633 53498 44156 31970	75619 61042 47267 34629	66945 58569 49782 37824	49620 44239 34702 30117	62171 49618 40530 33311	58213 48911 44160 35447
25333 24271 16345 14848 12620		22922 17835 15014 13172 11830	24136 20824 16914 13796 14222	28794 24419 21494 16591 15703	32661 25102 20572 18459 16638	47306 36246 29989 27498 20843	38730 33167 26477 23872 18544	27866 21535 16599 15871 12659	19326 13701 9846 8958 7721	22798 18375 14120 12268 9199	33167 22822 18216 15623 11893	39952 33896 24442 21683 14801	41917 30045 25082 21356 15155	33687 24538 17832 16277 11560	9957 7485 4989 4219 3680	22114 17955 10961 9754 6221	23143 16998 11808 10163 6550	22831 16880 11471 9629 7235	15008 11257 7077 4892 3399	36383 28528 19347 16897 12259	47129 37714 26768 24196 16959	37923 26167 19420 15562 13279	37216 24856 18317 15647 13259	26738 16888 12610 11557 8726	29949 19764 15514 10770 10357	26738 17321 13258 10416 7757	25361 17359 11989 9997 6608	28180 17396 12390 9357 11725	37147 25555 20617 15357 12672	26888 19827 15188 12042 9077	24814 20520 15583 13421 9732	22755 14493 11606 10801 7514	24318 16574 11865 10044 7073	26326 21100 15876 15158 12512	21223 17468 15428 15308	23649 16907 13710 13368 9651	27713 22532 18275 18133
9864 5148 4529 1544		8249 4750 3571 1275	9588 5330 3382 1343	12510 8620 5285 2728	12935 8674 6249 3782	15871 9590 5183 2578	14956 9782 6316 3023	11080 7609 4708 2367	5360 4389 3304 2059	8658 4876 2886 1185	11421 6238 4661 1532	9753 6924 3519 1677	14323 6973 3834 880	10878 6506 4203 2637	2219 1703 910 338	3695 2049 816 402	4346 2907 1431 521	4069 2272 1727 274	1954 1064 514 139	7897 5337 2612 1198	12018 7378 3904 1591	8983 6715 3625 1568	8099 5042 2483 1642	6364 3618 2525 983	6235 3641 2229 1534	5215 3006 1905 868	4534 2456 1494 332	4612 2550 1684 579	9690 5374 3426 1478	7013 3846 2332 1024	7255 4967 2953 1594	18170 3379 2107 1116	4982 3129 1821 1053	9933 7711 5503 3490	9758 8897 6194 4033	6439 4828 2695 1266	9312 8254 4611 2747
993 1330 349 69(5)	;))) 2	785 172 274 497	1223 452 782 1071 190	1852 672 537 410	1787 362 964 481 143	1757 818 441 330 10	1810 587 285 43	1370 366 359 74 117	800 739 92 65	649 225 43 18 8	1324 1246 227 284	1454 769 384 544 523	944 1802 40 336 6	1342 1692 222 689 83	197 31 29 10	252 36 26 1	271 63 4 6	592 19 7	800 12 21	890 341 24	933 418 54 108	947 797 1245 451 24	787 125 12 473	574 137 12 5 213	485 468 23 86 8	1778 320 34 4	449 289 72 28 116	378 112 5	1456 503 68 46 15	679 718 162 126 91	1488 960 278 344 359	4779 351 26469 13 42	548 317 42 64 15	4202 1607 268 181 106	8752 2718 376 456 293	1351 656 269 608 381	2086 628 636 72 49:
42	155 418	363	114 4132	689	692	671	62 106	69 691	27	82 8	51 730	261 216	3 166	5 51	1 4 12002822	12242265	11281800	12896200	12086650	2	17	33 491	14625242	866	4 10	56 2	15 4	15 3	12 13	42 232	137 318	6 1236	4	40 41	43 616	67 937	18

Table 7. Overall skipjack catch-at-size matrix (number of fish) obtained for the eastern stock	٢.
--	----

80 81 82 83 84 85 85	72 73 74 75 76 77 78 79	65 66 67 68 69 70 71	60 61 62 63 64	55 56 57 58 59	50 51 52 53 54	45 46 47 48 49	41 42 43 44	37 38 39 40	32 33 34 35 36	28 29 30 31	<24 24 25 26 27
	2	4 2 3 4	158 112 65 47	549 396 395 259 234	497 474 563 578 582	631 663 512 550	235 423 445 771	39 116 123 229	1 15 14 34	1	
	139 548 2188 1757	208 4995 2998 3569 4714 290 870	3931 1 2598 1 5761 7767 9901	9865 8 5384 5 5424 5 9516 3 1342 5	7806 9 4876 7 3143 9 3866 8 2491 7	1367 10 3213 14 2536 13 0969 12	5778 4 3390 7 5291 9 1092 14	9292 5523 1 3339 2 9600 4	1720 1183 5836 1976 1005	753 1505 1183 2150	215 215 215 108
	115 171 3266 3266	20672 15671 8035 4312 3615 115 171	65786 20672	327931 559343 556998 332729 270255	963283 798912 928689 841362 791056	598826 598826 481100 539821 239082	126866 753996 927553 192009	70224 169932 205986 406258	9107 7333 28344 28952 41126	6505 13661 7806 9758	651 1952 3903 4554 8457
	5179 5179 45	44549 21610 15441 14554 9182 45	439490 290647 165703 84729 112281 66314	1281304 855605 817770 483505 439490	1713407 1557886 1700883 1510953 1482605	2489906 2150198 1961540 1637316 1900972	976623 1509236 1743772 2568192	100942 271248 435029 790001	25722 2298 44316 43489 60101	25736 72613 14247 10556	7353 19302 14706 14706 30792
	956 6449 6006 443	46930 28433 13467 9247 9691 2287 3991	393204 189964 155617 113628 77679 41620	1261073 860131 805427 437934 395204	1729143 1575321 1590173 1456184 1376282	2375031 1866827 2042365 1774242 1959914	985328 1528159 1580105 2445328	94459 389939 509485 855136	17295 887 50158 42475 71470	10643 29712 1330 2661	2661 1330 887 3548
	712 712 4120 4120	43108 28841 21395 17076 17616 5193 2366	154846 132597 83789 77534 34133	937185 644411 684425 396030 364615	1170822 965679 999790 934667 964971	3154657 2782746 1991939 1663610	1383229 2254286 2564792 3659805	221737 439474 574053 1197426	3970 5934 49338 82277 137249	810 820 5678	
	2582 1729 865 865 865 865 4324	34364 34413 91198 22378 18006 17647 9329	331143 289776 319269 150898 149456 68459 24264	838957 625234 455744 298604 351145	2115683 1892249 1347907 1202702 911862	4552430 4406804 3776548 3242856 2813024	3085153 4185033 4365511 4818428	400316 886059 1198467 2416226	23276 39261 103702 174323 348841	7274 6986 13395 26430	
3360 3360	19451 14710 12146 10635 3360 3360 1609 12	101535 114751 107517 56315 51665 41820 28908	288100 264400 266644 106609 125378 105150	755522 608278 548731 285394 286106	986783 967131 885548 896334 683066	1353835 1398302 1354908 1072462 1057748	743077 1046304 1134258 1401624	141188 303255 347786 656379	9016 6984 22124 31021 108372	1016 1573 9178	
1392	4814 1267 1731 1267 464 928	32862 29099 15573 8491 12908 12900 8774	229104 156503 86626 87455 61964	682035 597154 467266 292449 338708	1514461 1311659 1038783 781754 832422	2285969 2111211 1899894 1740787 1643065	1729841 1984934 1998015 2350049	211683 502272 806175 1377159	39353 34592 65293 100505 165406	803 803 29651 29651	67468
4591 5130	2047 2047 1079 1079 3237 3237 7836 3245	64761 53343 54424 38546 23285 12237	400387 476395 274413 225267 164097 117339	1217096 846920 823594 652754 460587	3134530 2687108 2131789 1705872 1279561	2980303 3357855 3450953 3218508	1548177 2054328 2274317 2482795	292020 582204 779080 1459300	24461 42843 92538 108689 199632	3403 4331	
	21187 12308 6123 2560 747 795 747 3866	75903 79480 68597 56434 49583 42317 32735	334992 382502 221997 259257 182690 125921 75002	976637 804903 773777 593954 554992	2237682 1753586 1429318 1192187 1017423	3631017 3498277 3166805 2724144	1885796 2330482 2676550 3066611	390309 673233 902919 1581692	26859 29361 62721 132824 302075	1495 2475 23918 25389	1495 1495 1495
	18502 10690 11148 1180 1187	116164 98801 102360 92661 84244 40959 20011	292848 323933 254222 252322 246122 228544	679689 560843 415728 364834 292848	1802342 1543019 1144375 914245 750661	2002114 3001842 2998611 2550998 2165395	1374783 1715964 1984944 2433419	462085 775304 868974 1299867	60064 142801 131284 171113 393204	3167 13830 12949	
1143	20085 13783 3376 893 1322 1003 203	99286 82818 68700 65010 55916 36857 31815	273813 300684 232827 202111 167294 123121	845912 615455 490882 357245 273813	2187594 1634373 1600696 1237525 1021804	3204334 2864535 2916545 2501066	2365078 2994350 3059270 3136131	1210916 1646355 1516664 2238624	91970 131995 234260 424303 897308	5112 5112 31717 45463	3408 6817 6817 3408 3408
	16118 11929 5570 2482 1634 936	73543 58139 52940 31208 34474 21600 13492	238899 207746 155767 170928 161990 72850 72542	786070 534534 424737 319018 258899	2251691 1460075 1443827 1213609 935148	5094078 4190087 4027249 2876586 2575156	3353163 3802800 4757821 4769117	663326 1274781 1707253 2453689	128264 185705 322533 344246 372543	101900 105394 88357 102033	36 143 36 17791 18718
577 759 197	5950 3103 3066 2323 987 197 592 197	56803 48470 43926 24602 11432 14315 6959	284425 218058 121707 102633 59809	952292 873811 683141 536928 374957	2734641 1768113 1679936 1379311 1091602	5169502 5578322 5560412 4153417 3110807	2963166 3491992 4114400 4339963	798315 1118183 1540150 2271533	95531 124025 227792 355491 499280	13293 17028 40244 52428	38 152 38 381
309 77	5803 5664 463 463 309 154 695 154	52200 31829 23399 18416 14619 5709 1897	192380 176540 140065 107644 68654 69270	639118 410800 312775 230452 192580	2374038 1464519 1427801 1056976 754735	4/79775 5120994 4615384 4025330 2897498	2453382 3384854 4315887 4306553	691479 991020 1251063 1793548	116757 161835 247857 396385 568305	4706 10008 38010 60753	54 216 54 541
504 101	5404 2543 3435 2473 906 403 504 201	78276 62692 59357 36793 37020 20755 13551	214780 134397 89528 92825 101766 78850 78276	909684 653829 404034 255265 214780	2588861 2169388 2014868 1635309 1250703	3045745 2929172 2721567 2504225	1626215 2343385 2859901 2995842	362602 494042 702464 1134604	29954 51692 91380 149019 248280	1070 2274 10924 16247	12 49 12 123 443
430 430	4173 2742 1711 1234 430 704 75	93236 55168 47295 26235 30089 14186 8518	307907 187003 192705 152893 108619	829156 676031 505046 402918 350699	1794240 1344141 1387167 1145525 993818	2416855 2276118 2077369 1877860	1684327 2253957 2612920 2569564	391688 559024 764038 1219576	20251 33328 71662 138775 244608	865 2965 8146 13372	8 32 8 80 457
	259 514 243 70	37519 19972 19288 5832 4576 690 1664	193189 117817 89857 68283 71949 35278	705048 489490 382943 259921 193189	2683558 1760090 1705965 1151765 902070	4263646 4376213 3918772 3193792	1054874 1540576 2141595 2823283	409440 561511 703250 909929	29456 38995 74627 126441 248779	1347 2864 8822 13950	15 62 15 155 557
397 501 702	991 1557 490 305 438 376 250 397 397	59625 55175 35277 21402 8577 5667 2870	223313 229831 167887 136470 113530 88356	693110 537208 405235 298933 223515	2414366 1828717 1778441 1372280 964054	3796391 3762959 3199935 2824553	1572421 2249740 2839020 2927998	751841 850115 886003 1300878	184519 239518 369276 544986 690502	9069 19285 49315 86420	104 417 104 1042 3753
1213 1418 167	2106 1865 4045 1823 3485 3485 6273 3412	61092 31046 13681 10465 3665 3571 1188	226940 207756 154740 121770 118517 66349	650311 473828 413433 321852 226940	2647752 1635457 1549956 1062263 815635	5774561 5360414 4677220 3379508	2460663 3704093 4404580 4793117	953020 1247729 1452413 2154106	192586 276899 409983 671798 821579	9062 19269 54584 91312	104 417 104 1042 3750
97	13147 13389 5586 3640 295 934 195 934	45811 20104 21613 8608 10209 13280 18690	154544 117324 116633 89425 71370	597115 477784 312609 247678 168824	2378280 1848443 1526746 1134525 802499	4215240 4218403 3589523 3452905 2750524	1770983 2576689 2911567 2763604	732568 1076490 1097063 1746953	173768 238822 369065 572753 672933	8022 17409 47920 80549	92 369 92 922 3319
	7722 1569 596 364 246 30	106261 78759 58785 40407 35833 14524 9375	201117 211012 174384 162874 110701 110207	881163 639861 411363 348278 201117	3080014 2023103 1815099 1249328 1020684	5021871 5227978 4625354 4515011 3416359	2165791 3185285 3430266 3366052	933783 1417186 1459893 2139464	227881 311483 439039 719360 854365	10268 21835 68393 104051	118 472 118 1180 4249
	5942 7212 710 183 96	84486 73320 58283 51107 27871 18440 15804	273561 191229 179467 123862 103238	1028274 751322 619246 499508 355352	4746669 3275127 2615688 1826123 1474187	7692540 7888205 7774928 7067811 5247130	3822612 5466980 6545842 7230412	1796534 2366208 2479451 3677003	463268 619813 901306 1240586 1581089	21589 45908 130718 217867	248 993 248 2482 8933
	15669 10049 7854 5429 4361 17 2581	160599 131487 119317 107296 58465 56860 42234	234480 279971 194214 223667 163839 168582	636389 509994 382479 363712 234480	2954385 1905704 1617472 1095433 880418	6469215 5740910 5139648 3333082	3145404 4299021 4995788 5499007	1668939 1977176 1986806 2866013	491629 651886 946104 1246256 1572283	23867 50752 134587 229857	274 1097 274 2743 9876
4 4 4	2860 6015 3809 3011 3239 2 2	65929 61919 34348 58826 34337 22882 14577	302929 313737 189464 216471 117900 91231	744327 637393 492652 396201 302929	3493957 2276679 1723295 1235866 1068830	7339294 6590713 5164494	4369470 5551883 6218178 6732046	1962217 2360206 2681611 3747778	554791 738553 1102434 1456676 1902174	26740 56862 165050 271446	307 1234 312 3074
	18004 7293 6111 1416 680	82052 62272 65935 52579 44425 27946 10200	282340 289978 148586 147643 119163 111016 82052	675310 582991 421836 361271 262540	3558020 2035591 2295468 1287162 964294	6958536 7934317 6159303 6588220 4460010	3177782 4519004 5207458 5847163	1637617 2120955 2163376 2743853	407252 556748 832537 1162833 1462078	18460 39875 102982 185083	212 849 212 2152 8257
17	15600 7852 4728 2433 517 141 136 70	95875 78355 53776 53387 23837 22575 14724	283390 263453 203461 206638 147038 123210	452454 362133 314683 293307 285590	2864428 1453698 1478742 772979 598941	7660770 5648823 5886098 3274461	4028464 5858281 6356782 7319037	1262451 1743395 2251848 3121918	261726 374795 563152 762291 1067968	11906 25771 68500 116345	131 524 131 2167 7227
	3986 887 410 244 10 10 6 3	87520 62623 46091 51016 24538 25208 5084	293389 272936 183289 172360 123816 85040	591366 508537 427250 345633 293589	2329485 1330544 1287621 838751 750637	5550020 6994116 4544575 5223030 2842398	3145774 4475558 4888884 5623958	1584421 1854926 1960101 2562192	269704 390435 620058 946007 1461493	11346 25226 66095 125545	130 528 137 1303 4692
77 77 146	4156 518 144 144 2974 52 68 350	66520 26223 20427 17833 19448 10025 2180	220448 212787 132618 139067 106969 62156	484749 384209 306057 262211 226448	2907084 1296604 1708072 930951 643985	4567266 6245562 3884181 5565495 2309097	2692530 3762455 3945448 4265586	1512984 1842288 1874331 2339748	317989 461902 645861 988709 1336745	11047 32889 86161 162188	110 439 334 1104 3983
189 774 332	3157 5070 250 1158 1411 727 98 98	67759 44607 29194 11884 11276 12260 6712	508050 275624 158797 133797 101657 79919	752482 530975 434406 373952 308030	3088825 2196285 2092495 1434069 961540	5509336 5509336 5078584 4876197 3767813	2148763 2965294 3335897 3927299	1145961 1354276 1455823 1836059	323549 413808 567314 814384 1007278	14138 36229 97011 153814	126 503 126 1257 4524
32 910 24	2668 7956 673 583 120 2534 16 16	85248 68690 36851 11704 27734 11653 7420	246374 140781 127296 87743 82956	827418 505137 482468 338817 283144	3324107 2337431 1807274 1243277 987315	6335593 6177689 5379204 4642068 3439626	3345320 4455032 5278979 5796220	1543288 1948962 1878438 2850025	351418 508336 776195 1141465 1447546	13312 31516 100159 159114	153 612 153 1530 6988
21 21 82	11342 9145 1067 2178 1910 932 674 41	74458 38712 38340 26764 11519 36524 14612	337927 213939 203881 125423 74386	1036521 700077 543201 480658 386586	2600816 2011351 1561471 1184592 1026407	4052057 3958539 3774866 3442664 2954905	3354343 3826021 4019986 4050163	1849722 2081676 2219588 2909917	446530 611703 921663 1201522 1569777	20319 42104 115519 214961	211 1356 232 2156 7655
289 68	5438 1544 765 1516 761 1369 2218 1091	87857 65314 48130 49834 28050 13024 6361	298322 308047 207760 167653 169520 130005	849097 507499 492379 411422 298522	2632096 2318762 1736466 1376752 982903	4604820 4392917 3935701 3618227 3193715	3332945 4158522 4401076 4854603	1649163 1994383 2310936 3007550	398003 508418 707954 986287 1337417	20709 43083 104283 178599	160 638 160 2976 9068
633 144 466	4096 7821 5674 4025 1523 2629 1784 1229	40869 26799 26618 16563 14484 10120 5695	243830 221284 159226 123911 99126 73759	609135 502914 384915 340372 243850	2384811 1739075 1413215 1087649 851286	3577786 3435705 3270232 2835529	2178825 2705833 2920666 3231380	1031387 1259705 1609023 1992571	204834 277037 424152 567701 821185	7606 26362 58412 116050	67 268 67 670 2917
1336 463 880	15104 11299 7063 4755 557 1866 814 3196	96477 98496 74180 56492 31473 27576 16484	340332 222868 212329 137131 115088	692908 544337 478272 423368 321717	2607280 1941097 1516456 1138410 856152	4515350 4092120 3556063 2940749	2971823 3838042 4459257 4704853	1518058 1870363 2060197 2683742	309964 467625 697997 933717 1244471	9644 20507 81313 147157	111 443 111 1108 3990
36 75 17975	3373 6466 5135 159 210 1719 2231 182	120925 79530 49204 33337 21531 14397 8544	329947 217778 203269 181768 146191	885684 749323 552814 436757 330649	3417618 2274134 2118125 1335699 1103140	4420535 4445044 4541690 4332374 3723010	2763531 3567475 3725662 4193732	1916878 1985875 2163209 2649705	517430 851820 1132809 1425355 1671743	15505 35244 121637 288778	1474 470 4946 3429 4234
182 359 276	7872 5561 3726 2417 918 5707 1986 1868	136040 116035 40843 83968 25364 15292 8567	397834 391746 287247 237520 256872 191265	923459 782849 626277 501612 397854	3143427 2239865 1923230 1345700 1032509	4843040 4520494 4433168 3875077 3314833	3089321 4462579 4300660 4723633	1655751 1910063 2151424 3042852	279714 377008 695295 1110067 1343630	9437 25695 81747 131368	141 417 584 4002 7208
28 31 35	5427 7633 2185 3446 1153 9898 4133 392	50533 37764 37685 31055 24674 16731 1492	32497 32497 19237 14451 15077 7977	112303 95626 70329 75006 34275	268372: 201407- 174255: 145834 116356	424433 396790 357902 337229 285485	262514 332357 335135 353590	115045 155114 161362 226886	30210 45971 62692 83203 103341	1376/ 3547- 9307 14888	108 104 165 261

Table 8. Overall skipjack catch-at-size matrix (number of fish) obtained for the wester	n stock.
---	----------

L	i (cm)	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
	<24	4	20	59	76	203	249	305	77	18	90	17	427	332	300	134		854	730			440	556										346						
	24	40.0				<i></i>				21	974		827															075											
	25	483	/13	428	570	606	125	547	627	560	1273	91	827		221	154				270	119	54/ 201	692	244		1//4		2/5									453		
	20	644	950	855	760	808	966	J47	057	5	225	182	414		177	268				279	118	301	118	344		0	1155	275											
	28	322	475	428	380	404	483	821	956	797	220	91	621		221	805				1117	473	1203	473	1375		1289	3466	549									453	676	
	29	1127	1663	1497	1330	1413	1743	274	319	282	749	91	621		221	671				1117	473	1203	473	1375			2031	158	349				346				453	2028	
	30	807	1198	1099	988	1111	1332	700	676	585	2067	371	4014	622	1284	560	302	5181	5372	1592	413	1053	413	2527		1472	1943	713	370					1756		1453	4531	1352	3400
	31	968	1435	1312	1178	1313	1574	973	995	846	1842	411	3736	492	903	387	353	7274	9437	977	413	1053	413	1297	16	15942	7910	1588	466	2122	1204	2193	2520	1756	356	234	5890	4732	
	32	2414	3203	3207	2855	3029	3024	3010	4143	3084	5570 6740	2786	6617	391	560	252	488	8002 7231	1958/	2123	3042	2180	992	2/94	258	29311	10998	1700	228	2817	1284	1024	2520	4200	1012	3/19	8156	5408 4056	
	34	1770	2619	2358	22001	2252	2750	10434	12118	10901	8484	4212	8089	782	206	602	3201	5565	7743	2094	1741	2180	1614	10878	924	38662	22821	5667	4314	4752	1190	4715	12769	19316	3505	3715	10887	5518	153
	35	2897	4282	3854	3576	3665	4547	15360	17855	15671	8117	7016	9555	1165	623	2029	6315	8474	16275	2709	3150	2987	1614	18698	21212	87993	11945	5636	3190	5800	3985	6723	16478	32485	4461	5961	23118	10625	134
	36	3058	4573	4121	3893	4220	6163	25467	29394	25693	12016	10367	9683	1614	802	4973	11209	14681	32208	3963	6128	25379	22069	32117	32702	121996	24886	12244	14418	21826	5012	11972	18652	35119	5736	4657	14238	18842	479
	37	3541	5285	4763	4463	5004	7179	13743	15371	13963	12768	13868	13414	2851	2539	11967	18226	59750	29720	11766	8413	9841	11111	16498	44651	183489	33519	20161	12849	12636	4591	14776	14598	50923	9879	7513	9888	15268	1238
	38 20	0110	9224	8321	9055	8916 21820	12270	22010	22872	21566	20054	23239	16400	4133	3042	12102	24924	11315	52162	10326	15922	22246	26605	69/98 50602	38/00	276873	68162 80205	35699	32880	4/2/6	26269	38035	44607	70220	15204	14981	24974	23772	65/2
	59 40	13199	19798	17870	19107	19157	34580	58514	65118	42197 58566	53310	51803	41303	7036	3522	12105	52019	276853	164059	48439	20071	32885	23785	82777	62505	234938	136183	52593	32437 82724	27334	70391	30038 84636	86294	132004	12572	26359	33061	20994	9176
	41	12072	18135	16373	18331	19619	47024	48759	52052	47538	60595	45302	49986	22652	30377	43753	114419	416841	141177	56132	40775	52933	42897	118758	58345	300636	144507	61747	69770	54143	48605	62036	61373	161886	32092	58059	34143	64638	20703
	42	13889	20996	18917	23021	25188	56256	52369	52282	49827	76886	55505	72483	33091	81059	97512	212843	521398	188292	48096	45657	61420	55753	171350	110281	368683	167481	80148	93171	92112	73287	67994	81635	169273	33533	68706	51772	107810	28937
	43	19458	29169	26210	31428	35612	66680	58526	57402	54118	90605	64052	113063	85769	260951	287982 4	493612	525137	194418	44775	61967	59158	45340	221592	111021	318797	158531	66001	80036	74579	66740	57154	74706	180743	39995	106302	76609	139016	75663
	44	26442	39709	35777	42775	46082	84294	76906	66421	63764	92729	71545	151872	122949	346608	373160 (515415	628391	173199	130393	80470	99233	63468	235193	148612	469746	282476	94554	101775	85959	90714	63914	98897	177733	40696	126494	136691	183819	155740
	45	23369	35103	31537	3/4/1 -	45100	81590	85441	80/92	76025	124509	81319	121585	88074	209784	226628 4	100596	4/1842	233868	180244	148152	1358/9	83447	282677	208445	424568	229534	109426	106408	101380	80095	6//9/	02782	24/144	62181 72504	192537	244839	270855	182498
	40	27700	41368	36784	40750	55205	84197	81583	74721	70022	145262	90371	126812	105902	87393	143868	217611	431583	278230	187217	224893	211809	202675	413286	278676	386364	365913	139085	172151	166663	169469	108938	101054	206371	115152	268214	552989	363144	267597
	48	24788	37078	32836	43642	52735	82899	69327	65605	64203	148906	85081	142956	133329	133611	175679	224977	516459	371470	308833	282227	253753	325719	497651	336831	426828	446919	221297	267911	238368	195224	152425	128389	275002	156820	297382	619878	413285	386125
	49	29841	44583	39653	50524	58511	86606	84868	88851	83681	140726	86139	130845	166711	155169	204377	250377	524198	338543	338797	365228	329609	429972	572454	370516	366247	390351	212980	242099	227843	204632	191373	188011	302271	172087	269207	608143	495921	513044
	50	37195	55390	49404	62447	71290	82830	78802	78306	72917	150775	110654	134596	196760	209460	286219	301171	888732	467267	361156	458005	487550	567107	598241	365397	458858	510573	250344	285481	338222	227473	235694	249759	367512	239163	306450	779360	656597	592056
	51	16733	23247	19751	38238	39042	48588	50429	51846	49719	111312	96809	106169	264555	226092	302166	280818	748650	454533	367480	460833	470454	691285	605556	375796	374210	470603	280478	293602	393897	294321	281721	271344	433502	286908	307100	537075	680331	615392
	52	23112	20855	23062	43408	39/5/	45819	55/30	57040	46204	94048	/5058	94503	335237	521704	531634	593107	818402 629447	566138	349720	491442	590191	705412	683727	430795	428/21	230080 . 483527	2833377	298530	403705	380923 430230	302915	324885 413130	444852	353615	338034	4/3192	745103	617445
	54	14368	19339	16163	38668	27105	33179	42548	44233	35685	76690	57894	92567	327809	464937	423940	556954	674922	621990	378571	383244	590957	762865	591135	449963	639989	465016	294895	359205	558362	468680	385665	410608	502952	365282	370555	393967	757599	706306
	55	15970	19833	15978	41926	25344	28864	42758	42283	33209	80423	58641	104705	381877	559938	508582	564778	761959	665884	416833	394606	537732	674399	622940	413279	572715	448808	311666	380040	622065	494098	435736	487280	510156	359890	368990	414784	668086	620660
	56	13391	16925	12930	39374	18688	21476	40808	42842	34078	70767	55159	97266	334639	463611	420030 4	440336	712462	703751	451649	383326	508816	624895	598403	423469	544428	475667	275272	370189	623447	450174	425952	449624	487146	370437	380010	381990	624183	466337
	57	15587	19197	13652	29230	20614	19839	25457	29560	23604	55489	72081	117615	348901	468459	390677	383169	587541	619353	402723	359476	443381	442544	494364	427556	446628	423344	290643	405042	582345	485111	472370	511812	464973	343306	364923	343984	467155	488595
	58	13/42	17204	10285	21962	12704	16035	20648	23864	22037	54138	60002	125022	239354	3/3215	355979 .	5/33/8	568255	545821	389790	315413	201010	323409	240616	418460	418/89	404369	293391	402272	502511	511807	4992/1	533819	410865	313000	250854	318977	328909	390161
	59	20482	22596	15297	23680	21653	14055	25170	37478	20370	42122	60970	132719	255411	297512	280905 1	204233	480049	437492	300419	290597	239835	148582	327286	330061	399719	341127	272459	378024	413640	491/07	460588	493140	321159	240399	266495	302189	207510	223083
	61	16199	18596	11981	17705	16956	13741	19343	24042	21456	37044	53476	139270	240133	252810	228682	255939	268574	270783	227636	218069	183825	138551	260385	264452	153702	306229	265432	364805	368089	407666	400822	422629	230194	166393	190345	168807	126597	132947
	62	11716	14279	9168	13072	14068	10887	10971	14054	13471	32506	47060	121521	203694	271013	226476	261382	220115	199821	144694	179714	155147	112049	206777	203779	205412	236887	234769	322730	289573	333627	322357	348395	247975	184160	209318	179470	102121	103634
	63	9235	11032	6812	13658	13218	8035	9705	12280	11584	23630	39176	119649	196709	308954	264885	330140	169538	169302	106214	146042	110041	75129	166222	195396	156097	182627	200777	261027	219369	235373	233743	253166	200687	137023	161449	193002	72611	84160
	64	9056	11760	8025	11698	12582	10590	9259	9433	9527	26409	40740	89473	157589	225765	168641	197419	62225	91763	82526	110603	62434	40723	92924	155234	117472	131684	156218	208790	168216	167005	164228	176506	175568	124287	137562	140014	61576	55443
	65 66	6700	5993	8702 3564	13807 6946	5833	4433	8008 7973	13/05	10/56	25355	32308 23491	97382	122810	234945	204057	224404	53329	76490 51367	12370 52774	78734 56362	58829 40668	26800	88000	90298	48547	87412 49997	99462 58816	82757	123401	104309	120833	144281	126329	91667	99525	57158	45202	40508
	67	4488	4277	2209	6063	3981	2440	5025	7976	6808	22665	22560	60002	110262	180979	150153	165108	42027	35127	50427	40592	42598	23188	52691	68227	48443	36270	54853	74594	89533	89919	87704	94299	141457	103978	114738	52041	16643	16625
	68	2114	2561	1169	2474	3026	1690	2618	2648	3318	22045	16462	54277	72435	195480	180920	186907	31601	22303	55132	20339	27561	13792	28390	76438	25448	22692	37341	51190	57304	60856	59715	60374	120639	86273	95131	18354	8360	7579
	69	5686	7972	6228	6151	7017	7426	2789	2906	3360	16660	17451	34395	48869	84408	88158	67950	22381	20075	35307	19392	23066	5336	20966	50279	15427	20156	26437	33924	42052	42007	44458	43407	76292	49689	53941	18199	10764	3976
	70	7691	11203	9706	8848	11276	13010	4019	2359	2423	16183	15185	41982	51033	149712	152635	178853	17473	19823	28067	9462	33095	7134	15070	31001	61278	19559	32035	43572	28384	30821	29399	26586	43131	34309	35488	13875	8670	259
	71	8517	0001	8757	9904 8101	12348	14085	4242	2607	2380	9807	6273 5904	22079	25042	00800 56795	/0305 60184	50752	15274	14194	25584	9974 6434	22438	3112	3202	53716	4249	15910	23330	29564	8121	6373	105/5	6720	28465	23844	2/308	2730	12817	288
	73	3476	5335	4836	4427	6411	6447	2215	1004	941	5823	6281	7706	23916	21821	32953	19001	12441	8171	17818	9143	8759	1924	15368	31271	14562	11864	20361	22407	4674	4014	4875	3737	21888	16655	16372	2904	7997	153
	74	1188	1993	1929	1820	3303	3158	2484	1500	1259	4647	3349	7989	12670	12907	22540	13244	8499	6479	16062	10543	9205	7463	9689	27356	17791	13552	13462	13200	6543	6354	5051	4900	15083	12753	12363	3335	3880	6162
	75	979	1707	1703	1618	2974	2861	1937	853	662	2456	3245	7946	23350	13275	25126	8279	3000	3929	13319	8788	5118	5097	5637	11498	3592	13735	12067	12360	4755	2352	3572	2472	15787	11939	13345	4138	4440	5945
	76	163	385	381	365	1110	734	519	209	244	2729	2153	7171	15148	10837	20759	5785	1131	2499	6006	2762	2362	2352	9168	24000	1661	5052	6729	3851	2167	2923	1235	1786	18345	9863	10688	5794	2603	3117
	77	163	385	381	365	985	734	519	209	223	1757	1555	4808	9124 6207	7289	20009	5872	804	1694	4293	3974	2362	2352	5888	9566	28163	7538	5127	3895	1630	1764	1061	1299	6980	5647	5742	1731	1454	3117
	78 79	161	4/ 284	261	237	338 434	610	118	58 58	102	2318	4201	2803	3663	4118	6065	3599	1959	931	1225	839/	5719	5677	6281	19808	4026	5102	8687	4344	3968	2552	2552	2580	2005	573	1625	2891	985	3743
	80	101	50	50	50	374	115	147	62	87	1387	6968	306	5005	2	1407	3281	188	811	965	197	169	168	3489	2748	1687	533	2108	2417	116	76	76	141	3090	1892	5335	5386	2762	85
	81		50	50	50	248	115	147	62	98	2374	1442	28	28	632	2463	1833	956	541	335	1108	169	168	1466	355	2035	703	1368	2122	116	76	76	176	415	611	585		441	18
	82		50	50	50	248	115	126	62	130	5413	2823	28	28	632	1457	5915		743	460	365	112	112	124	7772	1075	98	873	1015	78	836	51	82	1997	1583	1772		84	1499
	83		50	50	50	248	115	126	62	106	3287	1442	28			201	4851	252	406	251	132	10486	7351	16205	2870	607	571	69	687	78	304	51	111	251	327	352		84	1499
	84 85		55 52	53 52	53 53	263	122	134	00 66	104	3293 2455	4209	30				724	253	1/0	42				1260	2130	1855	6072	88	33		200	5	39 26	131	1/2	199		3028	18
	60 86		16	16	16	205	36	154	19	36	24.55	1554	0C 0				475	255	238	64 864	1349			1200	407	387	1847	2777	3821		13	5	20 10	78 41	152	120		5028	2
	87		16	16	16	77	36	39	19	22	31	2935	9				113		135	316				10	24	17	635	2	5021				34	140	217	217		5	7
	88		12	12	12	62	29	31	15	18	25	168	7				362		348	42						1181	916	88	33				5	21	27	28		76	7
	89		12	12	12	62	29	31	15	18	25	168	7						280								1538	88	33				7	29	38	40	1592	191	83
-	90+	4	20	59	76	203	249	305	77	18	90	17	13	332	300	0	227	22/20/2/	01202	864	438	1/77500 /	020022 1	151	28192	628	1242	526	133		553	214	325	75	7945	673	2891	342	98
-11	otal	5//0857	938396	0000099	952/9/9	4214712	2953751	3907061	4490901	303097	(5/18211	19008/72	384698 5	080/6168	su 56418 8	\$140664.9	/49014-1	110/9079	10912031	1/9/0316	1803947	(n//599°	9/893/10	1238136 8	sus /s201	11130584 9	7115984.5	81/8917	1930388	in 14/il 7	10147	1478 197	1002865 8	ssi/245 *	5500218 (0/21/67 8	54/84189	0849578	311/427

Year	0	1	2	3	4	5+
1970	361290	2229482	607301	650369	335068	85575
1971	344448	1977021	1287353	474486	293744	72602
1972	370595	2052767	1492978	786068	289931	91172
1973	243206	1577104	1251198	811921	370436	103603
1974	886952	2496615	1274896	897957	403301	115146
1975	1850686	2801854	1719568	842170	602660	162022
1976	2183572	3635133	1388487	867883	547868	148267
1977	1488116	4057058	1711726	970685	504842	105140
1978	1592943	3664928	1963323	1155362	441937	60903
1979	2028285	3775358	1022740	1156845	537482	73775
1980	3200008	4016663	1247358	972350	532110	83719
1981	6758071	4062149	1479983	926044	810154	139639
1982	2657563	6800765	1379253	1214320	710570	142131
1983	4323476	4680819	1680974	1290371	704840	128569
1984	2901125	6946804	1953147	861417	211065	30274
1985	4268983	4165569	2143130	957578	738008	69106
1986	3706439	4362541	1306129	1351567	586169	68951
1987	6280192	4318997	1513905	1055188	652139	65881
1988	5045170	5018133	1138051	1362108	479093	44092
1989	5844442	4139343	946698	1212904	945449	121843
1990	6840077	5910204	977104	1354542	1052048	177816
1991	6313402	5500947	1181880	1108701	832673	126849
1992	6170239	5029419	1236534	1294467	780051	124612
1993	8654594	5382283	1528458	1371075	745384	81507
1994	4983084	6443400	2198100	1089902	762615	100493
1995	5210909	4889679	1543835	1000446	724878	82982
1996	5415623	5453178	1306456	1144517	699652	77460
1997	5109588	6051401	1090160	805058	697640	81796
1998	5261746	7237372	1260581	828678	716679	132870
1999	6104314	11684800	1722161	797909	524019	96085
2000	8362333	5878954	1274923	1133947	475691	100301
2001	7465211	10065910	1576328	1271341	534448	117632
2002	7175201	8115388	952183	882558	613958	76429
2003	6879341	7202107	1008228	764832	507098	107459
2004	7118910	5801751	1149694	874474	360014	114175
2005	5792990	6796869	895413	573610	446518	86079
2006	4628314	3926747	1232116	759365	382044	98240

 Table 9. Yellowfin catch-at-age matrix.

	Upper S	licing limits			
		ç	Quarter		
Age	1	2	3	4	
0	42	45	48	53	Current and pas
1	60	69	78	89	
2	100	110	120	128	
3	136	143	148	153	
4	157	161	163	166	
0	30	44	58	71	Shuford et al.
1	83	100	104	114	
2	122	131	139	146	
3	153	159	165	170	
4	175	180	185	189	

 Table 10. Yellowfin upper size limits used for slicing.

 Table 11. Fishery definitions used for skipjack MFCL analyses preparations.

Definition of	of fisheries				
Region	Fishery	Nation/Gear		Years	Fishery #
#East	1E	EC-France, EC-Spain and Others	PS	1956-1979	1
#East	2E	EC-France, EC-Spain and Others	PS	1980-1990	2
#East	3E	EC-France, EC-Spain and Others-Free	PS	1991-2005	3
		School			
#East	4E	EC-France, EC-Spain and Others-FADs	PS	1991-2005	4
#East	5E	Ghana	PS & BB	1973-2005	5
#East	6E	EC-France, EC-Spain (Dakar Based),	BB	1956-1983	6
		Senegal			
#East	7E	EC-France, EC-Spain (Dakar Based),	BB	1984-2005	7
		Senegal			
#East	8E	Azores, Madeira, Canaries	BB	1956-2005	8
#East	9E	Others	BB	1956-2005	9
#East	10E	Others	Others	1956-2005	10
#West	1W	Brazil	BB	1956-2005	11
#West	2W	Venezuela	PS+BB	1956-2005	12
#West	3W	All	Others	1956-2005	13

	Fishery	Gear	Nation	Years	Region
#	1	PS	EC-France, EC-Spain, Others	1956-1979	Е
#	2	PS	EC-France, EC-Spain, Others	1980-1990	Ε
#	3	PS	EC-France, EC Spain, Others, free schools Qtr 2-4	1991 - 2006	Е
#	4	PS	EC-France, EC-Spain, Others, FADS	1991 - 2006	Е
#	5	PS&BB	Ghana (1973 - 2005)	1956 - 2006	E
#	6	BB	EC-France, EC-Spain (Dakar based), Senegal	1965 - 1983	E
#	7	BB	EC-France, EC-Spain (Dakar based), Senegal	1984 - 2006	E
#	8	BB	Azores, Madeira, Canaries	1956 - 2005	E
#	9	BB	Others	1956 - 2006	Ε
#	10	LL	ALL	1956 - 1975	E
#	11	LL	ALL	1976 - 2006	E
#	12	OTH	Others	1956 - 2006	Е
#	13	PS	EC-France, EC-Spain, Others, free schools Qtr 1	1991 - 2006	E
#	14	BB	Brazil	1956 - 2006	W
#	15	PS&BB	Venezuela	1956 - 2006	W
#	16	LL	All	1956 - 1975	W
#	17	LL	All	1976 - 2006	W
#	18	Others	Others	1956 - 2006	W

 Table 12. Fishery definitions used for yellowfin MFCL analyses preparations.

	YELLO	WFIN	SKIPJAC	K - ATE	SKIPJAC	CK - ATW
Year	Unweighted	Weighted	Unweighted	Weighted	Unweighted	Weighted
1965	2.5708	2.5708	0.1476	0.220		
1966	1.7311	1.7311	0.1985	0.142		
1967	3.4049	3.4049	0.3608	0.582		
1968	3.2299	3.2299	0.3063	0.438		
1969	1.9136	1.9136	0.2339	0.279		
1970	1.5549	1.5549	0.2681	0.226		
1971	1.2247	1.2247	0.1230	0.102		
1972	1.3862	1.3862	0.2730	0.345		
1973	1.2904	1.2904	0.3052	0.492		
1974	1.2970	1.2970	0.4099	0.593		
1975	0.9611	0.9611	0.5716	0.752		
1976	1.0211	1.0211	0.4586	0.594		
1977	1.0334	1.0334	0.7638	0.994		
1978	0.8556	0.8556	0.7091	1.067		
1979	1.0593	1.0593	0.2645	0.227		
1980	0.5871	0.5871	0.5238	0.694		
1981	1.1711	1.1711	0.4980	0.674	1.1371	1.160
1982	1.0718	1.0718	0.7100	0.677	2.5823	2.420
1983	1.3095	1.3095	0.8498	0.956	1.0104	0.934
1984	1.1961	1.1961	1.1888	1.344	0.8831	0.918
1985	1.1660	1.1660	0.7824	0.953	1.1639	1.170
1986	1.2742	1.2742	0.8196	0.685	1.0632	1.152
1987	1.3523	1.3523	1.1653	0.667	0.7874	0.719
1988	1.4114	1.4114	0.8892	0.532	0.8940	0.929
1989	1.1496	1.1496	1.1556	0.651	0.9410	0.930
1990	1.4176	1.4176	1.0684	0.890	1.0947	1.064
1991	1.2238	1.2238	0.8047	0.387	1.0400	0.992
1992	1.1837	1.1837	1.1339	1.283	0.7074	0.636
1993	0.9902	0.9902	0.9468	1.458	1.2769	1.315
1994	1.0952	1.0952	0.9560	1.548	0.7491	0.763
1995	0.7577	0.7577	0.9832	1.097	0.6162	0.597
1996	1.1553	1.1553	1.0552	0.884	0.8227	0.733
1997	0.7201	0.7201	0.8262	0.643	1.2126	1.073
1998	0.8519	0.8519	0.8533	0.484	1.1828	1.141
1999	0.8140	0.8140	1.2205	1.255	0.8910	1.200
2000	0.6015	0.6015	1.3322	1.161	0.5497	0.532
2001	0.5274	0.5274	1.2468	0.956	1.2446	1.297
2002	0.8007	0.8007	1.1831	1.305	0.8448	0.937
2003	0.8928	0.8928	0.1476	0.220	1.0310	1.202
2004	0.7589	0.7589	0.1985	0.142	0.7431	0.769
2005	0.5288	0.5288	0.3608	0.582	0.3078	0.449
2006	0.6980	0.6980	0.3063	0.438	0.6849	0.592

 Table 13. Estimated yellowfin and skipjack weighted and unweighted combined indexes. Refer to text for explanation of the fleets used in the GLM procedure.

Table 14. Control file specifications used for VPA model runs.

SEARCH ALGORITHM CONTROLS (USED FOR ALL RUNS)

-911 RANDOM NUMBER SEED

50 MAXIMUM NUMBER OF AMOEBA SIMPLEX SEARCH RESTARTS

3 \qquad NUMBER OF CONSECUTIVE RESTARTS THAT MUST VARY BY LESS THAN 1% TO STOP SEARCH

0.4 PDEV (standard deviation controlling vertices for Initial simplex of each restart)

INDEX WEIGHTING CONTROLS (USED FOR ALL RUNS)

1 SCALE (DIVIDE INDEX VALUES BY THEIR MEAN)- ANY VALUE > 0 = YES

1.0 INDEX WEIGHTING:(0)INPUT CV's, (+)DEFAULT CV, (-)DEFAULT STD. DEV., (999)MLE

0~~(0) MULTIPLICATIVE VARIANCE SCALING FACTOR or (1) ADDITIVE VARIANCE SCALING FACTOR

CONSTRAINT ON VULNERABILITY (PARTIAL RECRUITMENT) - LINKS THE VULNERABILITIES IN THE LAST N YEARS. (Number of years affected, Standard Deviation, First Age, Last Age)

0 0.4 0 5 (CONTINUITY RUN) – NO PENALTY USED

3 0.4 0 5 (BASE RUNS 5 and 10) – PENALTY APPLIED

CONSTRAINTS ON RECRUITMENT - LINKS THE RECRUITMENTS IN THE LAST N YEARS (N Years,

4 0.4 (CONTINUITY AND BASE RUNS 5 and 10) – PENALTY APPLIED

PARAMETER ESTIMATION OPTIONS

1 USE F'S AS TERMINAL YEAR PARAMETERS (ALL RUNS)

-1 ESTIMATE Q BY CONCENTRATED MLE'S (ALL RUNS)

 Table 15. Parameter file specifications used for VPA model Runs.

#					Х	K	
\$	1	0	0.2	2	1	0.1	first age (AGE 0 in this case)
\$	1	0	0.8	2	1	0.1	- .
\$	1	0	0.3	2	1	0.1	
\$	1	0	0.3	2	1	0.1	
\$	1	0	0.5	2	1	0.1	next to last age
#					Х	ζ.	-

TERMINAL F PARAMETERS: (lower bound, best estimate, upper bound, indicator, reference age) #(USED FOR CONTINUITY AND BASE RUNS 5 and 10)

F-RATIO PARAMETERS F{oldest}/F{oldest-1} (lower bound, best estimate, upper bound, indicator, std. dev. of prior)

#	one parameter	(set of speci	fications) for	each year	r
#(USED FOR CO	NTINUITY	AND BASE	RUNS 5	and 10
#				v	

#					Λ_		
\$	1	0.1	0.2	5	1	0.2	1970 estimated
\$	36	0.1	0.2	5	3	0.2	1971-2006 random walk
#					X		

NATURAL MORTALITY PARAMETERS: (lower bound, best estimate, upper bound, indicator, std. dev. of prior)

one parameter (set of specifications) for each age

#(US)	ED FOR	CONTIN	JUITY AI	ND BAS	SE RUNS	S 5 and 10)		
#					X	Κ	 	
\$	1	0	0.8	1	0	0.1		
\$	1	0	0.8	1	0	0.1		
\$	1	0	0.6	1	0	0.1		
\$	1	0	0.6	1	0	0.1		
\$	1	0	0.6	1	0	0.1		
\$	1	0	0.6	1	0	0.1		
#					X	Κ	 	

MIXING PARAMETERS: (lower bound, best estimate, upper bound, indicator, std. dev. of prior)
one parameter (set of specifications) for each age :not used here!

#(NO MIXING WAS	USED FOR ANY 2008	YFT VPA RUN)
-----------------	-------------------	--------------

#					X	K	 	 	_
\$	6	0	0	0	0	0			
#					Х	X			

STOCK-RECRUITMENT PARAMETERS: (lower bound, best estimate, upper bound, indicator, std. dev. of prior)

five parameters so 5 sets of specifications : not used here!

#(THESE SETTINGS ARE USED TO CONTRAINT ON THE ESTIMATED S-R RELATIONSHIP. THIS WAS NOT DONE FOR ANY 2008 YFT VPA RUN)

#					X
0	0	0	0	0	maximum recruitment
0	0	0	0	0	spawning biomass scaling parameter
0	0	0	0	0	extra parameter (not used yet)
0	0	0	0	0	autocorrelation parameter
0	0	0	0	0	variance for penalty function
#					X
# 17 4		SCALL		AMETEI	O (lower bound best estimate unner bound indicator atd day

VARIANCE SCALING PARAMETER (lower bound, best estimate, upper bound, indicator, std. dev.)
#(USED FOR CONTINUITY AND BASE RUNS 5 and 10. THESE SETTINGS ESTIMATE A SINGLE
VARIANCE SCALAR FOR ALL INDICES. THE SAME SCALAR IS USED FOR THE INTERANNUAL
VARIANCE OF EACH INDEX. (EQUAL WEIGHTING ACROSS YEARS AND INDICES).
X

\$1 0 0.5 1.0 1 0.1

\$ 17 0 1.0 1.0 -0.1 0.1

Index	Continuity Run	Runs 5 & 10
Brazilian Bait Boat	Used	Used
Brazilian Longline	Used	Used
Japanese Longline	Used	Used
USA-Mexico Longline (GOM)	Used	Used
USA Rod and Reel	Not Used	Used
USA Pelagic Longline (ATL)	Used	Used
Venezuela Longline	Used	Used
Venezuela Purse Seine	Used	Used
EU FAD Purse Seine	Not Available in 2003	Used
EUPS 3% Annual Increase in Q	Used 1970-2006	Used (1970-1979) ***
EU TROP Purse Seine	Not Available in 2003	Used
EU Dakar Purse Seine	Not Available in 2003	Used
Uruguay Longline	Not Available in 2003	Used
Chinese Taipei Longline	Not Available in 2003	Used
Canary Islands Bait Boat	Not Available in 2003	Used

Table 16. Indices of abundance used for VPA model runs.

*** No increase in catchability was applied during this period. The EU indices for juveniles (EU-FAD_PS) and adults (EU-TROP-PS) were used when available. They cannot be used with the EU-PS 3% index during overlapping time periods because they were developing using the same datasets.

	Estimation of Index Selectivities								
Index	Continuity Run	Run 5	Run 10						
Brazilian Bait Boat	Partial Catches	Partial Catches							
	(B&G) Ages 0-4	(B&G) Ages 0-4							
Brazilian Longline	Partial Catches	Partial Catches							
	(B&G) Ages 0-5	(B&G) Ages 0-5							
Japanese Longline	Partial Catches	Partial Catches							
	(B&G) Ages 0-5	(B&G) Ages 0-5							
USA-Mexico	Partial Catches	Partial Catches							
Longline (GOM)	(B&G) Ages 0-5	(B&G) Ages 0-5							
USA Rod and Reel	Not Used	Partial Catches							
		(B&G) Ages 0-5	Identical to Run 5 except that for all						
USA Pelagic	Partial Catches	Partial Catches	LONGLINE INDICES, the						
Longline (ATL)	(B&G) Ages 0-5	(B&G) Ages 0-5	selectivity was estimated as in Run						
Venezuela Longline	Partial Catches	Partial Catches	5, then for all ages older than the						
	(B&G) Ages 0-5	(B&G) Ages 0-5	first fully selected age, the selectivity						
Venezuela Purse	Partial Catches	Partial Catches	was fixed at 1.0. Using this method,						
Seine	(B&G) Ages 0-4	(B&G) Ages 0-4	the selectivity vectors of the longline						
EUFAD Purse Seine	Not Used	Partial Catches EU-	fleets were assumed to be logistic						
		PS (B&G) Ages 0-1	(flat-topped) rather than dome						
EUPS 3% Annual	Partial Catches	Partial Catches EU-	shaped (as in Run 5).						
Increase in Q	(B&G) Ages 0-5	PS (B&G) Ages 0-5							
EU TROP Purse	Not Used	Fixed at Fecudity							
Seine		Proxy Ages 3-5							
EU Dakar Purse	Not Used	Partial Catches							
Seine		(B&G) Ages 0-4							
Uruguay Longline	Not Used	Partial Catches							
		(B&G) Ages 0-5							
Chinese Taipei	Not Used	Partial Catches							
Longline		(B&G) Ages 0-5							
Canary Islands Bait	Not Used	Partial Catches							
Boat		(B&G) Ages 0-4							

Table 17. Methods used to estimate index selectivities for VPA models. (B&G = Butterworth and Geromont, 1999).

YEAR	YFT- JPN- LL(w)	YFT- USA- RR(n)	YFT- BRZ- LL(n)	YFT- USA- LL(w)	YFT- URU- LL(n)	YFT- VEN- PS(w)	YFT- BRZ- BB(w)	YFT- EUDKR- BB(w)	EU PS 3% incQ	combined index (from 1965 to 2006)	combined index (from 1956 to 2006)
1950											
1951											
1952											
1952											
1054											
1954											
1955											72 000
1950											12.909
1957											45.752
1958											31.410
1959											32.821
1960											20.334
1961											12.884
1962											4.283
1963											4.027
1964	2 355									0.505	2.367
1965	1 586									2.537	1.222
1966	3 110									1.708	0.823
1967	2.580									3.360	1.618
1968	2.380									3.128	1.507
1969	2.270							0.659		2.715	1.308
1970	1.690							0.644	5.061	2.099	1.011
1971	1.357							0.636	4.318	1.469	0.707
1972	1.834							0.640	4.795	1.776	0.856
1973	1.288							0.589	4.833	1.560	0.751
1974	1.778							0.925	4.405	1.367	0.658
1975	1.321							0.405	4.744	1.121	0.540
1976	1.297							0.448	4.693	1.169	0.563
1977	1.006							0.684	4.610	1.026	0.494
1978	1.478							0.264	4.195	1.084	0.522
1979	1.783							0.498	4.171	1.246	0.600
1980	1.102								3.457	0.965	0.465
1981	1.390				144.960		1.391	1.024	3.709	1.133	0.546
1982	1.228				196.750		0.212	0.976	3.166	0.915	0.441
1983	1.222				84.811	13.589	0.576	0.994	2.748	1.068	0.514
1984	1.315				42.077	6.027	0.280	1.420	2.172	1.021	0.492
1985	0.840				75.434	10.170	0.209	1.091	3.732	0.909	0.438
1986	1.053	32.756	5.035		116.428	5.977	0.209	1.647	4.026	1.098	0.529
1987	1.110	15.564	6.355	1.766	112.292	4.574	0.295	1.858	3.527	1.141	0.549
1988	1.102	7.789	5.276	1.861	142.612	6.304	0.327	1.798	3.340	1.341	0.646
1989	0.863	12.821	5.342	1.626	56.755	13.656	0.299	0.433	4.162	1.091	0.525
1990	1.169	5.746	9.045	1.371	51.864	7.002	0.620	1.658	4.531	1.323	0.637

Table 18. Estimated indexes of abundance used in ASPIC runs.

1991	0.891	9.236	4.962	1.053	186.624	7.151	0.187	1.200	3.605	1.020	0.491
1992	1.003	6.298	2.069	1.257	293.019	4.812	0.295	2.340	3.290	0.935	0.450
1993	0.478	14.332	2.402	0.716	55.948	5.511	0.350	1.899	3.256	0.766	0.369
1994	0.813	34.744	2.668	0.695	214.310	6.720	0.210	1.414	3.123	0.951	0.458
1995	0.560	47.164	1.810	0.835	88.011	3.025	0.104	0.845	3.192	0.796	0.383
1996	0.613	14.731	4.648	0.824	166.935	6.777	0.289	1.381	3.116	0.864	0.416
1997	0.465	6.324	3.678	0.888	54.748	4.569	0.422	0.586	2.887	0.703	0.339
1998	0.557	10.750	4.685	0.650	62.019	3.704	0.323	0.223	2.589	0.730	0.351
1999	0.563	21.224	4.392	0.982	125.597	5.434	0.112	0.639	2.329	0.729	0.351
2000	0.625	22.736	4.583	0.853	165.542	6.624		0.301	2.983	0.765	0.368
2001	0.421	24.172	3.676	0.771	0.000	13.243	0.681	0.482	3.290	0.621	0.299
2002	0.430	19.716	2.908	0.606	100.350	8.181	0.291	0.731	3.723	0.707	0.340
2003	0.507	17.978	6.166	0.513	152.398	3.999	0.238	0.835	3.175	0.882	0.425
2004	0.657	17.585	7.536	0.868	109.591	2.393	0.091	0.636	2.906	0.905	0.436
2005	0.499	13.211	0.918	0.869	231.081	1.226	0.103	0.519	3.146	0.636	0.306
2006	0.693	19.888	2.305	0.891	90.832		0.376	0.588	3.838	0.749	0.361

Table 19. Series of catches used in ASPIC runs.

YEAR	YFT- JPN- LL(w)	YFT- USA- RR(n)	YFT- BRZ- LL(n)	YFT- USA- LL(w)	YFT- URU- LL(n)	YFT- VEN- PS(w)	YFT- BRZ- BB(w)	YFT- EUDKR- BB(w)	EU PS (PILAR) 3% incQ	others	Total
1950	0	0	0	0	0	0	0	0	0	1200	1200
1951	0	0	0	0	0	0	0	0	0	1358	1358
1952	0	0	0	0	0	0	0	0	0	2787	2787
1953	0	0	0	0	0	0	0	0	0	3600	3600
1954	0	0	0	0	0	0	0	0	0	3407	3407
1955	0	0	0	0	0	0	0	0	0	4300	4300
1956	612	0	0	0	0	0	0	0	0	5985	6597
1957	13198	0	0	0	0	0	0	0	0	10500	23698
1958	27159	0	1740	0	0	0	0	0	0	11682	40581
1959	44071	0	5920	111	0	0	0	0	0	7667	57769
1960	50822	0	4700	0	0	0	0	0	0	12971	68493
1961	42609	0	4400	0	0	0	0	0	0	11794	58803
1962	41973	0	1400	17	0	0	0	0	0	14133	57523
1963	37717	0	2400	8	0	0	0	0	88	24384	64598
1964	35106	0	1624	0	0	0	0	0	637	31561	68928
1965	36918	0	696	0	0	0	0	0	718	29390	67721
1966	22354	0	464	0	0	0	0	0	983	34639	58439
1967	12824	0	812	0	0	0	0	0	994	45163	59793
1968	13913	0	812	0	0	0	0	0	1402	68196	84323
1969	9966	0	464	0	0	0	0	14269	1595	68277	94571
1970	6809	0	812	0	0	0	0	7556	4309	54969	74455
1971	10629	0	347	0	0	0	0	7570	3014	52887	74448
1972	6497	0	233	0	0	0	0	7539	5017	75342	94628
1973	3803	0	153	0	0	0	0	5542	5297	80332	95127
1974	3475	0	232	0	0	0	0	6353	12498	84583	107141
1975	4192	0	260	0	0	0	0	2881	27309	90154	124796
1976	3366	0	681	0	0	0	0	3718	17720	99475	124960
1977	1467	0	928	0	0	0	0	3380	22329	102909	131013
1978	1923	0	795	0	0	0	0	2783	24669	103874	134044
1979	1986	0	1076	0	0	0	117	2141	22199	99998	127517
1980	2839	0	521	52	0	4397	392	0	22398	100097	130696
1981	4145	1275	1159	45	67	2500	917	2766	40976	102287	156137
1982	6062	912	935	65	214	12030	1036	2907	35639	105542	165342
1983	2069	2196	887	165	357	23503	1778	2690	39808	92404	165857
1984	3967	404	484	593	368	17814	1298	3460	10972	74690	114050
1985	5308	3393	515	738	354	16241	2176	2874	32339	92680	156619
1986	3405	4836	1057	3975	270	9175	751	3797	32462	86945	146673
1987	3365	3952	653	4888	109	6583	1560	3778	31498	88975	145361
1988	5982	1899	898	8644	177	5992	1596	4420	28618	78039	136265
1989	6970	1930	1126	6247	64	11612	1376	2809	47539	82574	162247

1990	5919	545	661	4474	18	6533	953	3805	50053	120487	193448
1991	4718	1418	582	4141	62	11967	1169	4824	30805	107214	166901
1992	3715	957	1248	5337	74	9693	2660	3359	30426	106290	163760
1993	3096	1898	1518	3886	20	12659	3087	3002	26500	107088	162753
1994	4783	4523	1084	3246	59	19587	2744	3155	30473	102896	172551
1995	5227	4053	1312	3645	53	6338	2613	2152	28324	99529	153246
1996	5250	4032	734	3320	171	10777	1956	2190	26181	98428	153040
1997	3539	3569	849	3773	53	11653	1643	1478	26761	83893	137211
1998	5173	2927	1014	2449	88	9157	1229	569	27255	98703	148564
1999	3405	3967	2930	3541	45	6523	1197	1857	19442	97459	140366
2000	4061	3862	2754	2901	45	7572	3093	872	15627	95447	136235
2001	2691	4185	4883	2200	90	13064	1276	1172	18756	116333	164650
2002	2105	2887	3323	2573	91	7961	2843	2242	23166	93088	140279
2003	2754	5328	1941	2164	95	4607	1289	1963	14816	90558	125515
2004	6260	3759	1968	2492	204	3185	2838	1664	14077	83488	119936
2005	4488	3657	4695	1746	644	2634	2236	1288	10077	75857	107322
2006	5334	4908	1329	2010	218	0	1214	2483	4430	86697	108623

 Table 20. Summarized scenarios for yellowfin ASPIC runs.

Run	Model	Abundance indicators	Weighting of indexes	<i>B1/K</i>	Time period
1	GENFIT				
2	LOGISTIC			fix as 1	
3	GENFIT	combined (from 1965 -			
4	LOGISTIC	2006)	none	estimate	
5	GENFIT				
6	LOGISTIC		equal		
7	GENFIT		weighting by ratio of		
8	LOGISTIC	10 separate series	area convergence		1950 -2006
9	GENFIT	combined (from 1956 –	none	fix as 1	
10	LOGISTIC				

Table 21. Western skipjack BSP starting parameter inputs and technical inputs for all runs.

param.out file		
para meter	starting guess	Comment
К	100000	close to mode
B1950/K	1	close to mode
r	1.2	close to mode

Techinputs file	
Fmin	0.0000001
stepsize	0.000001
eps	0.0000001
maxlikefunc	10000

 Table 22. Eastern skipjack BSP starting parameter inputs and technical inputs for all runs.

Lowvariar	nce on r prior		High variance	e on r prior				
Runs 1-3	-		Runs 1-3	-		Same for all ru	ns	
param.out fil	e		param.out file			Techin puts file		
parameter	starting guess	Comment	parameter	startingguess	Comment	Fmin	1.00E-07	
к	1500000	dose to mode	к	1500000	close to mode	stepsize	1.00E-06	
B1950/K	1	dose to mode	B1950/K	1	close to mode	eps	1.00E-07	
r	1.1	dose to mode	r	1.1	close to mode	maxlikefunc	1.00E+04	
						-		
Run 4			Run 4					
param.out file	e		param.out file					
parameter	starting guess	Comment	parameter	startingguess	Comment			
к	700000	dose to mode	к	700000	close to mode			
B1950/K	1	dose to mode	B1950/K	1	close to mode			
r	1.1	dose to mode	r	1.1	close to mode			
Runs 5-8			Runs 5-8			Run 5B		
param.out file	e		param.out file			param.out file		
parameter	starting guess	Comment	para mete r	startingguess	Comment	parameter	starting guess	Comment
к	700000	dose to mode	к	700000	close to mode	к	600 000	close to mode
B1950/K	1	dose to mode	B1950/K	1	close to mode	B1950/K	1	close to mode
r	1.3	dose to mode	r	1.3	close to mode	r	1.2	close to mode

 Table 23. Western skipjack BSP indices.

	Drozilion			Combined	Combined
Voor	Brazillan		US rod and	weighted by	Completed
<u>year</u>				1 160	4 4 27
1901		INA 4.000		1.100	1.137
1982	1.577	4.083	NA	2.420	2.582
1983	0.624	1.581	NA	0.934	1.010
1984	0.646	1.167	NA	0.918	0.883
1985	0.928	1.409	1.516	1.170	1.164
1986	0.935	0.848	0.652	1.152	1.063
1987	0.716	1.046	1.018	0.719	0.787
1988	0.827	0.849	0.957	0.929	0.894
1989	0.763	1.142	0.947	0.930	0.941
1990	1.341	1.033	1.090	1.064	1.095
1991	0.834	1.237	0.434	0.992	1.040
1992	0.935	0.872	1.640	0.636	0.707
1993	1.334	0.952	0.795	1.315	1.277
1994	0.822	0.643	0.439	0.763	0.749
1995	1.063	0.501	0.528	0.597	0.616
1996	0.923	1.144	0.710	0.733	0.823
1997	1.257	1.999	1.380	1.073	1.213
1998	0.807	1.487	2.209	1.141	1.183
1999	0.624	0.514	0.525	1.200	0.891
2000	NA	0.559	1.602	0.532	0.550
2001	0.927	1.298	1.289	1.297	1.245
2002	0.777	0.602	1.623	0.937	0.845
2003	1.372	0.492	0.827	1.202	1.031
2004	0.967	0.514	0.455	0.769	0.743
2005	1.409	0.046	0.366	0.449	0.308
2006	1.368	NA	NA	0.592	0.685

Table 24. Eastern skipjack - Eight indices used in the BSP model. Weights are determined by the inverse of the fraction of the total fished area that the index accounts for in each year¹. Weights are used in the BSP model as CVs so that the higher the value, the lower its influence.

year	SKJ- GHN- BB	Weight	Area	SKJ - CAN 1- BB	Weight	Area	SKJ- CAN2- BB	Weight	Area	SKJ- POR- BB(w)	Weight	Area	SKJ- EUDK R1-BB	Weight	Area	SKJ- EUDK R2-BB	Weight	Area	SKJ- EC-PS- FAD	Area	SKJ- EU DK R -PS	Weight	Area	Total area
1969	1.138 4	1.75	4										0.121	1.27	15									19
1970	1.612	6	4							0.0188	12.0	2	0.213	1.33	18									24
1971	1.000 0	5.25	4							0.793	10.5	2	0.299	1.35	17									23
1973	1.138	4.5	4							0.1962	9.0	2	0.203	1.50	12									18
1974	1.233 4	1.25	4							0.0655	8.5	2	0.319	1.55	11									17
1975	0.664	4	3							0.0205	6.0	2	0.175	1.71	7									12
1976	0.917	4	3							0.3899	6.0	2	0.257	1.71	7									12
1977	1.201 2	2.13	8							0.9981	8.5	2	0.224	2.43	7									17
1978	1.296 3	3.33	3							1.2161	5.0	2	0.296	2.00	5									10
1979	2.308 4	1.33	3	1 420	20.0	1				0.8233	6.5	2	0.503	1.63	8						0.1.47	E 0	4	13
1980	2 340 4	175	1	2.035	10.0	1				0.0776	9.5	2	0.516	2.30	0 8						0.147	0.0 4 7	4	10
1982	2.055 2	2.87	8	2.105	23.0	1				1.4974	11.5	2	0.620	2.87	8						0.610	5.8	4	23
1983			-	0.265	16.0	1				0.1333	8.0	2	0.376	1.78	9						0.098	4.0	4	16
1984				0.883	15.0	1				1.5574	7.5	2				0.273	1.88	8			0.363	3.7	4	15
1985				2.471	13.0	1				0.6045	6.5	2				0.311	2.17	6			0.260	3.2	4	13
1986				0.405	13.0	1				1.1491	6.5	2				0.380	2.17	6			0.696	3.2	4	13
1987				1.191	12.0	1				1.8142	6.0	2				0.576	2.40	5			0.395	3.0	4	12
1988				1.260	18.0	1				3.2581	6.0	3				0.663	2.00	9			0.704	3.6	5	18
190.9				0.911	20	5				0.2620	0.5	2				0.444	1.00	0			0.541	3.7	4	10
1990				0.146	29.0	1				0.2039	9.5	2				0.505	4.14	7	1,2985 1.8	1 16	1.061	9.7	3	29
1992							0.160	33.0	1	0.2577	16.5	2				0.516	5.50	6	0.8376 1.6	5 20	0.688	8.3	4	33
1993							0.153	27.0	1	0.2547	13.5	2				1.028	5.40	5	1.0758 1.5	9 17	0.786	13.5	2	27
1994							0.676	33.0	1	0.4754	16.5	2				0.966	6.60	5	0.8534 1.6	5 20	0.608	6.6	5	33
1995							0.379	35.0	1	0.0295	17.5	2				0.381	5.00	7	0.9468 1.6	7 21	0.622	8.8	4	35
1996							1.376	32.0	1	1.5686	16.0	2				2.118	6.40	5	0.7653 1.6	0 20	0.286	8.0	4	32
1997							3.208	34.0	1	1.3652	17.0	2				1.037	5.67	6	0.5449 1.6	2 21	0.767	8.5	4	34
1998							4.821	34.0	1	0.7329	17.0	2				1.732	4.86	7	0.474 1.0	2 21	0.883	11.3	3	34
200.0							0.901	35.0	1	0.2085	11.7	3				1.200	4.37	8	0.8031 1.8	4 19	0.861	8.8	4	35
2001							0.263	32.0	1	0.2975	10.7	3				1.100	8.00	4	0.6577 1.6	0 20	0.558	8.0	4	32
2002							0.041	33.0	1	0.827	11.0	3				1.230	5.50	6	0.6683 1.6	5 20	0.272	11.0	3	33
2003							1.232	34.0	1	0.9712	17.0	2				1.169	5.67	6	0.864 1.6	2 21	0.742	8.5	4	34
2004							0.605	37.0	1	1.0496	18.5	2				1.148	6.17	6	1.0084 1.5	4 24	0.825	9.3	4	37
2005							0.555	33.0	1	0.6505	16.5	2				1.383	5.50	6	0.9809 1.5	7 21	0.469	11.0	3	33
2006							0.904	28.0	1	2.7102	14.0	2				1.376	5.60	5	0.8057 1.7	5 16	0.401	7.0	4	28

¹ For 1960, weight for SKJ-GHN-BB = 1/% total area fished=1/(4/19)=4.75

Combined, Weighted by areaCombined Combined unweightedEU-PS EU-PS CPUE variable qEU-PS CPUE 3% change in q19690.2200.1484.56819700.1420.1984.9533.25319710.5820.3614.2494.47319720.4380.3062.8913.79119730.2790.2343.7603.83519740.2260.2682.6414.67919750.1020.1232.3391.99419760.3450.2732.7552.46319770.4920.3052.6583.77319780.5930.4102.4533.15819790.7520.5722.9312.71919800.5940.4592.4902.60719810.9940.7642.2632.60819821.0670.7092.1712.38119830.2270.265NA1.75219840.6940.524NA1.74919850.6740.4982.2021.87819860.6770.7102.0752.49219870.9560.8502.4342.32119881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.823 <tr< th=""></tr<>
Weighted by yearCombined areaEU-PS CPUE variable qCPUE 3% change in q19690.2200.1484.56819700.1420.1984.9533.25319710.5820.3614.2494.47319720.4380.3062.8913.79119730.2790.2343.7603.83519740.2260.2682.6414.67919750.1020.1232.3391.99419760.3450.2732.7552.46319770.4920.3052.6583.77319780.5930.4102.4533.15819790.7520.5722.9312.71919800.5940.4592.4902.60719810.9940.7642.2632.60819821.0670.7092.1712.38119830.2270.265NA1.75219840.6940.524NA1.74919850.6740.4982.2021.87819860.6770.7102.0752.49219870.9560.8502.4342.32119881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.82319930.6511.1561.452 </td
yearareaunweightedvariable qchange in q19690.2200.1484.56819700.1420.1984.9533.25319710.5820.3614.2494.47319720.4380.3062.8913.79119730.2790.2343.7603.83519740.2260.2682.6414.67919750.1020.1232.3391.99419760.3450.2732.7552.46319770.4920.3052.6583.77319780.5930.4102.4533.15819790.7520.5722.9312.71919800.5940.4592.4902.60719810.9940.7642.2632.60819821.0670.7092.1712.38119830.2270.265NA1.75219840.6940.524NA1.74919850.6740.4982.2021.87819860.6770.7102.0752.49219870.9560.8502.4342.32119881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.82319930.6511.1561.1523.450
1969 0.220 0.148 4.568 1970 0.142 0.198 4.953 3.253 1971 0.582 0.361 4.249 4.473 1972 0.438 0.306 2.891 3.791 1973 0.279 0.234 3.760 3.835 1974 0.226 0.268 2.641 4.679 1975 0.102 0.123 2.339 1.994 1976 0.345 0.273 2.755 2.463 1977 0.492 0.305 2.658 3.773 1978 0.593 0.410 2.453 3.158 1979 0.752 0.572 2.931 2.719 1980 0.594 0.459 2.490 2.607 1981 0.994 0.764 2.263 2.608 1982 1.067 0.709 2.171 2.381 1983 0.227 0.265 NA 1.752 1984 0.694 0.524 NA 1.749 1985 0.674 0.498 2.202 1.878 1986 0.677 0.710 2.075 2.492 1987 0.956 0.850 2.434 2.321 1988 1.344 1.189 2.254 2.990 1989 0.953 0.782 2.448 2.426 1990 0.667 1.165 1.458 4.025 1992 0.532 0.889 1.419 2.823 1993 0.651 1.156 1.152 3.450
1970 0.142 0.198 4.953 3.253 1971 0.582 0.361 4.249 4.473 1972 0.438 0.306 2.891 3.791 1973 0.279 0.234 3.760 3.835 1974 0.226 0.268 2.641 4.679 1975 0.102 0.123 2.339 1.994 1976 0.345 0.273 2.755 2.463 1977 0.492 0.305 2.658 3.773 1978 0.593 0.410 2.453 3.158 1979 0.752 0.572 2.931 2.719 1980 0.594 0.459 2.490 2.607 1981 0.994 0.764 2.263 2.608 1982 1.067 0.709 2.171 2.381 1983 0.227 0.265 NA 1.752 1984 0.694 0.524 NA 1.749 1985 0.674 0.498 2.202 1.878 1986 0.677 0.710 2.075 2.492 1987 0.956 0.850 2.434 2.321 1988 1.344 1.189 2.254 2.990 1989 0.953 0.782 2.448 2.426 1990 0.667 1.165 1.458 4.025 1992 0.532 0.889 1.419 2.823 1993 0.651 1.156 1.152 3.450
1971 0.582 0.361 4.249 4.473 1972 0.438 0.306 2.891 3.791 1973 0.279 0.234 3.760 3.835 1974 0.226 0.268 2.641 4.679 1975 0.102 0.123 2.339 1.994 1976 0.345 0.273 2.755 2.463 1977 0.492 0.305 2.658 3.773 1978 0.593 0.410 2.453 3.158 1979 0.752 0.572 2.931 2.719 1980 0.594 0.459 2.490 2.607 1981 0.994 0.764 2.263 2.608 1982 1.067 0.709 2.171 2.381 1983 0.227 0.265 NA 1.752 1984 0.694 0.524 NA 1.749 1985 0.674 0.498 2.202 1.878 1986 0.677 0.710 2.075 2.492 1987 0.956 0.850 2.434 2.321 1988 1.344 1.189 2.254 2.990 1989 0.953 0.782 2.448 2.426 1990 0.667 1.165 1.458 4.025 1992 0.532 0.889 1.419 2.823 1993 0.651 1.156 1.152 3.450
1972 0.438 0.306 2.891 3.791 1973 0.279 0.234 3.760 3.835 1974 0.226 0.268 2.641 4.679 1975 0.102 0.123 2.339 1.994 1976 0.345 0.273 2.755 2.463 1977 0.492 0.305 2.658 3.773 1978 0.593 0.410 2.453 3.158 1979 0.752 0.572 2.931 2.719 1980 0.594 0.459 2.490 2.607 1981 0.994 0.764 2.263 2.608 1982 1.067 0.709 2.171 2.381 1983 0.227 0.265 NA 1.752 1984 0.694 0.524 NA 1.749 1985 0.674 0.498 2.202 1.878 1986 0.677 0.710 2.075 2.492 1987 0.956 0.850 2.434 2.321 1988 1.344 1.189 2.254 2.990 1989 0.953 0.782 2.448 2.426 1990 0.667 1.165 1.458 4.025 1992 0.532 0.889 1.419 2.823 1993 0.651 1.156 1.152 3.450
1973 0.279 0.234 3.760 3.835 1974 0.226 0.268 2.641 4.679 1975 0.102 0.123 2.339 1.994 1976 0.345 0.273 2.755 2.463 1977 0.492 0.305 2.658 3.773 1978 0.593 0.410 2.453 3.158 1979 0.752 0.572 2.931 2.719 1980 0.594 0.459 2.490 2.607 1981 0.994 0.764 2.263 2.608 1982 1.067 0.709 2.171 2.381 1983 0.227 0.265 NA 1.752 1984 0.694 0.524 NA 1.749 1985 0.674 0.498 2.202 1.878 1986 0.677 0.710 2.075 2.492 1987 0.956 0.850 2.434 2.321 1988 1.344 1.189 2.254 2.990 1989 0.953 0.782 2.448 2.426 1990 0.667 1.165 1.458 4.025 1991 0.667 1.165 1.458 4.025 1993 0.651 1.156 1.152 3.450
1974 0.226 0.268 2.641 4.679 1975 0.102 0.123 2.339 1.994 1976 0.345 0.273 2.755 2.463 1977 0.492 0.305 2.658 3.773 1978 0.593 0.410 2.453 3.158 1979 0.752 0.572 2.931 2.719 1980 0.594 0.459 2.490 2.607 1981 0.994 0.764 2.263 2.608 1982 1.067 0.709 2.171 2.381 1983 0.227 0.265 NA 1.752 1984 0.694 0.524 NA 1.749 1985 0.674 0.498 2.202 1.878 1986 0.677 0.710 2.075 2.492 1987 0.956 0.850 2.434 2.321 1988 1.344 1.189 2.254 2.990 1989 0.953 0.782 2.448 2.426 1990 0.667 1.165 1.458 4.025 1991 0.667 1.165 1.419 2.823 1993 0.651 1.156 1.152 3.450
1975 0.102 0.123 2.339 1.994 1976 0.345 0.273 2.755 2.463 1977 0.492 0.305 2.658 3.773 1978 0.593 0.410 2.453 3.158 1979 0.752 0.572 2.931 2.719 1980 0.594 0.459 2.490 2.607 1981 0.994 0.764 2.263 2.608 1982 1.067 0.709 2.171 2.381 1983 0.227 0.265 NA 1.752 1984 0.694 0.524 NA 1.749 1985 0.674 0.498 2.202 1.878 1986 0.677 0.710 2.075 2.492 1987 0.956 0.850 2.434 2.321 1988 1.344 1.189 2.254 2.990 1989 0.953 0.782 2.448 2.426 1990 0.667 1.165 1.458 4.025 1991 0.667 1.165 1.419 2.823 1993 0.651 1.156 1.152 3.450
1976 0.345 0.273 2.755 2.463 1977 0.492 0.305 2.658 3.773 1978 0.593 0.410 2.453 3.158 1979 0.752 0.572 2.931 2.719 1980 0.594 0.459 2.490 2.607 1981 0.994 0.764 2.263 2.608 1982 1.067 0.709 2.171 2.381 1983 0.227 0.265 NA 1.752 1984 0.694 0.524 NA 1.749 1985 0.674 0.498 2.202 1.878 1986 0.677 0.710 2.075 2.492 1987 0.956 0.850 2.434 2.321 1988 1.344 1.189 2.254 2.990 1989 0.953 0.782 2.448 2.426 1990 0.667 1.165 1.458 4.025 1991 0.667 1.165 1.419 2.823 1993 0.651 1.156 1.152 3.450
1977 0.492 0.305 2.658 3.773 1978 0.593 0.410 2.453 3.158 1979 0.752 0.572 2.931 2.719 1980 0.594 0.459 2.490 2.607 1981 0.994 0.764 2.263 2.608 1982 1.067 0.709 2.171 2.381 1983 0.227 0.265 NA 1.752 1984 0.694 0.524 NA 1.749 1985 0.674 0.498 2.202 1.878 1986 0.677 0.710 2.075 2.492 1987 0.956 0.850 2.434 2.321 1988 1.344 1.189 2.254 2.990 1989 0.953 0.782 2.448 2.426 1990 0.667 1.165 1.458 4.025 1991 0.667 1.165 1.458 4.025 1993 0.651 1.156 1.152 3.450
1978 0.593 0.410 2.453 3.158 1979 0.752 0.572 2.931 2.719 1980 0.594 0.459 2.490 2.607 1981 0.994 0.764 2.263 2.608 1982 1.067 0.709 2.171 2.381 1983 0.227 0.265 NA 1.752 1984 0.694 0.524 NA 1.749 1985 0.674 0.498 2.202 1.878 1986 0.677 0.710 2.075 2.492 1987 0.956 0.850 2.434 2.321 1988 1.344 1.189 2.254 2.990 1989 0.953 0.782 2.448 2.426 1990 0.685 0.820 1.935 2.778 1991 0.667 1.165 1.458 4.025 1992 0.532 0.889 1.419 2.823 1993 0.651 1.156 1.152 3.450
1979 0.752 0.572 2.931 2.719 1980 0.594 0.459 2.490 2.607 1981 0.994 0.764 2.263 2.608 1982 1.067 0.709 2.171 2.381 1983 0.227 0.265 NA 1.752 1984 0.694 0.524 NA 1.749 1985 0.674 0.498 2.202 1.878 1986 0.677 0.710 2.075 2.492 1987 0.956 0.850 2.434 2.321 1988 1.344 1.189 2.254 2.990 1989 0.953 0.782 2.448 2.426 1990 0.685 0.820 1.935 2.778 1991 0.667 1.165 1.458 4.025 1993 0.651 1.156 1.152 3.450
19800.5940.4592.4902.60719810.9940.7642.2632.60819821.0670.7092.1712.38119830.2270.265NA1.75219840.6940.524NA1.74919850.6740.4982.2021.87819860.6770.7102.0752.49219870.9560.8502.4342.32119881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519930.6511.1561.1523.450
19810.9940.7642.2632.60819821.0670.7092.1712.38119830.2270.265NA1.75219840.6940.524NA1.74919850.6740.4982.2021.87819860.6770.7102.0752.49219870.9560.8502.4342.32119881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.82319930.6511.1561.1523.450
19821.0670.7092.1712.38119830.2270.265NA1.75219840.6940.524NA1.74919850.6740.4982.2021.87819860.6770.7102.0752.49219870.9560.8502.4342.32119881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.82319930.6511.1561.1523.450
19830.2270.265NA1.75219840.6940.524NA1.74919850.6740.4982.2021.87819860.6770.7102.0752.49219870.9560.8502.4342.32119881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.82319930.6511.1561.1523.450
19840.6940.524NA1.74919850.6740.4982.2021.87819860.6770.7102.0752.49219870.9560.8502.4342.32119881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.82319930.6511.1561.1523.450
19850.6740.4982.2021.87819860.6770.7102.0752.49219870.9560.8502.4342.32119881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.82319930.6511.1561.1523.450
19860.6770.7102.0752.49219870.9560.8502.4342.32119881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.82319930.6511.1561.1523.450
19870.9560.8502.4342.32119881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.82319930.6511.1561.1523.450
19881.3441.1892.2542.99019890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.82319930.6511.1561.1523.450
19890.9530.7822.4482.42619900.6850.8201.9352.77819910.6671.1651.4584.02519920.5320.8891.4192.82319930.6511.1561.1523.450
1990 0.685 0.820 1.935 2.778 1991 0.667 1.165 1.458 4.025 1992 0.532 0.889 1.419 2.823 1993 0.651 1.156 1.152 3.450
1991 0.667 1.165 1.458 4.025 1992 0.532 0.889 1.419 2.823 1993 0.651 1.156 1.152 3.450
1992 0.532 0.889 1.419 2.823 1993 0.651 1.156 1.152 3.450
1993 0.651 1.156 1.152 3.450
1994 0.890 1.068 1.142 2.806
1995 0.387 0.805 1.116 3.032
1996 1.283 1.134 1.174 2.577
1997 1.458 0.947 1.576 2.407
1998 1.548 0.956 1.898 2.137
1999 1.097 0.983 1.623 2.308
2000 0.884 1.055 1.594 2.612
2001 0.043 0.826 1.862 2.484
2002 0.484 0.853 1.912 2.526
2003 1.255 1.220 1.640 3.050
2004 1.101 1.332 1.077 3.180
2005 0.956 1.247 2.206 3.919

Table 25. Eastern skipjack combined indices and EU-PS indices constructedwith variable q or a 3% increase in q by year. used for BSP model.

Table 26. Summary results from the analyses of catchability trends in the purse seine fishery. The regression slope values can be used to infer average annual percent change in catchability for different time periods.

						q Regress	ion slopes		
	MSY	k	Bmsy	B/k	B/Bmsy	1969-79	1980-90	1991-06	2002-06
SKJ	150000	700000	257516	0.61	1.66	0.04	0.10	0.01	0.13
YFT	150000	644588	237131	0.37	1.00	0.09	0.11	0.05	-0.07
BET	90000	839523	308843	0.33	0.90	0.07	0.06	0.08	0.03
All	390000	2184112	803490	0.55	1.50	0.07	0.10	0.03	0.03

	Effort	Catchabi	lity			Adjusted	Effort			Adj. Effort
Year	Nominal	SKJ	YFT	BET	All	SKJ	YFT	BET	All	3%/year
1969	6010	2.3E-06	6.6E-06	3.5E-07	2.7E-06	6010	6010	6010	6010	
1970	8970	2.4E-06	5.2E-06	4.4E-07	2.4E-06	9647	7063	11308	8060	14686
1971	11708	3.5E-06	4.4E-06	3.7E-07	2.5E-06	17990	7875	12234	11155	17091
1972	13322	4.4E-06	5.3E-06	4.1E-07	3.1E-06	25736	10869	15699	15586	19624
1973	15041	3.0E-06	5.6E-06	4.4E-07	2.8E-06	20076	12961	18768	15566	19683
1974	17491	5.6E-06	5.6E-06	4.8E-07	3.6E-06	43084	15015	23994	23665	24322
1975	19179	2.7E-06	8.0E-06	4.2E-07	3.3E-06	22432	23385	23092	23450	26305
1976	19726	2.7E-06	9.6E-06	5.4E-07	3.7E-06	23797	29052	30327	27424	26624
1977	17065	5.4E-06	1.2E-05	1.0E-06	5.3E-06	40346	30575	49899	33874	28420
1978	19950	4.7E-06	1.1E-05	6.6E-07	4.7E-06	41134	33857	37439	35156	31950
1979	21138	3.1E-06	1.1E-05	5.7E-07	3.9E-06	28357	34101	34399	31223	30570
1980	24732	3.7E-06	9.6E-06	5.2E-07	3.9E-06	39676	36302	36932	36008	37884
1981	25660	4.3E-06	1.1E-05	8.4E-07	4.6E-06	48412	43247	61599	43894	42010
1982	27674	4.7E-06	1.1E-05	7.8E-07	4.5E-06	57154	45305	61622	46823	52118
1983										60175
1984										52468
1985	14362	5.7E-06	1.6E-05	7.2E-07	6.1E-06	35788	35561	29479	32877	41949
1986	11397	8.7E-06	2.1E-05	1.3E-06	8.5E-06	43727	36563	42421	36319	36401
1987	13390	6.6E-06	1.9E-05	8.6E-07	7.1E-06	39055	39317	32772	35475	40951
1988	11647	1.0E-05	1.9E-05	1.1E-06	8.4E-06	53716	33406	35072	36829	40486
1989	13050	6.7E-06	2.4E-05	8.4E-07	8.1E-06	38409	47275	31284	39481	38756
1990	12006	1.2E-05	3.7E-05	1.4E-06	1.3E-05	60990	67900	47327	56488	42480
1991	12109	2.4E-05	3.2E-05	2.2E-06	1.6E-05	127784	60056	77349	72834	46291
1992	12700	1.8E-05	3.5E-05	2.9E-06	1.4E-05	99020	67029	103537	67849	49781
1993	12462	2.7E-05	3.5E-05	5.2E-06	1.9E-05	149726	66026	186500	86770	49990
1994	11679	2.6E-05	4.0E-05	6.5E-06	2.0E-05	135785	70805	215071	86298	55253
1995	10969	2.7E-05	4.4E-05	6.0E-06	2.1E-05	130382	73872	187096	84939	48003
1996	10544	2.3E-05	4.7E-05	6.9E-06	2.0E-05	107790	75714	206154	80148	49115
1997	8506	1.9E-05	4.9E-05	5.8E-06	1.9E-05	72590	63849	141217	60017	47521
1998	8581	1.7E-05	5.3E-05	4.9E-06	1.8E-05	64594	68904	119406	58124	57373
1999	7909	2.5E-05	4.6E-05	6.8E-06	2.1E-05	85731	56112	154479	61369	60271
2000	7337	2.3E-05	5.5E-05	7.8E-06	2.2E-05	74841	61312	163285	59859	45663
2001	7661	2.0E-05	6.6E-05	7.7E-06	2.1E-05	66769	77093	168851	61472	50044
2002	6397	1.8E-05	8.3E-05	9.3E-06	2.2E-05	49771	81084	169902	52767	37675
2003	6366	2.6E-05	7.3E-05	9.3E-06	2.4E-05	73525	71136	168495	56257	39529
2004	5430	3.3E-05	6.3E-05	9.4E-06	2.5E-05	78281	52485	146129	50267	41268
2005	4600	3.0E-05	5.9E-05	8.4E-06	2.3E-05	60619	41337	109729	39417	34118
2006	3675	3.2E-05	6.5E-05	1.1E-05	2.6E-05	51387	36505	117368	35942	28299

Table 27. Time series of nominal EC-purse seine fishing effort, estimates of catchability trends by species (and species combined), and effort adjusted for catchability changes estimated by year. The last column shows adjusted yellowfin effort assuming a 3% change per year following the method applied in 2000.

Table 28. Management benchmarks and references calculated from the jointdistribution of yellowfin VPA Runs 5 and 10.

Run	MSY (mt)	K (mt)	B _{MSY} (mt)	F _{MSY}	B_{2006}/B_{MSY}	F ₂₀₀₆ /F _{MSY}	Equilibrium yield (mt)
1	170,200	2,151,00	215,100	0.792	3.581	0.175	135,700
2	146,600	852,700	426,400	0.344	0.834	0.845	145,600
3	1,173,000	39,120,0	13,270,000	0.088	3.034	0.031	-73,060
4	146,600	853,000	426,400	0.344	0.834	0.845	145,600
5	111,900	4,027,00	2,014,000	0.056	0.957	1.013	111,700
6	119,800	3,320,00	1,667,000	0.072	0.944	0.955	119,500
7	137,100	1,521,00	459,300	0.299	0.940	0.815	137,100
8	150,400	631,500	315,800	0.476	0.707	0.948	145,100
9	69,460	4,377,00	547,100	0.127	0.811	2.022	68,940
10	8,723	6,179,00	3,089,000	0.003	0.216	62.800	2,882

Table 29. Non-bootstrap results of initial ASPIC runs.

		run02	run04	run06	run08
	point estimate	1.47E+05	1.47E+05	1.20E+05	1.50E+05
MSY (MT)	80% lower	1.20E+05	9.62E+04	9.88E+04	1.44E+05
	80% upper	1.54E+05	1.53E+05	1.42E+05	1.54E+05
	point estimate	8.53E+05	8.53E+05	3.32E+06	6.32E+05
K (MT)	80% lower	4.60E+05	5.17E+05	1.20E+06	4.65E+05
	80% upper	2.63E+06	3.99E+06	4.63E+06	9.82E+05
	point estimate	4.26E+05	4.26E+05	1.67E+06	3.16E+05
$B_{MSY}(MT)$	80% lower	2.30E+05	2.58E+05	5.99E+05	2.32E+05
	80% upper	1.31E+06	2.00E+06	2.31E+06	4.91E+05
_	point estimate	0.344	0.344	0.072	0.476
F _{MSY}	80% lower	0.089	0.049	0.040	0.292
	80% upper	0.671	0.590	2.205	0.664
	point estimate	0.834	0.834	0.944	0.707
B _{current} /B _{MSY}	80% lower	0.745	0.733	0.871	0.669
	80% upper	0.965	0.963	1.044	0.764
	point estimate	0.845	0.845	0.955	0.948
F _{current} /F _{MSY}	80% lower	0.615	0.631	0.749	0.828
	80% upper	1.149	1.206	1.308	1.105
Equilibrium	point estimate	1.46E+05	1.46E+05	1.20E+05	1.45E+05
yield (MT)	80% lower	1.31E+05	1.25E+05	9.64E+04	1.33E+05
	80% upper	1.54E+05	1.53E+05	1.42E+05	1.53E+05

 Table 30. ASPIC bootstraps results of cases 2, 4, 6, and 8.

			limits of prior or 100	funiform n In (K) in 0 M T	para settir impo functio	interen ngsfor rtance on width	status re	sults (marg	inal posterio	r distributio	nsofeach	parameter)	converg converg CV	gen ce criteria good gen ce is achieved if (wts)/CV(lp) <2
RUN	In dic es	prior on r	Kmin	Kmax	degf	_imp	к	r	MSY	m sy	msy	Bmsy	((wis)/cv ((p)	comments
RUN1	3 equal	~N(1.17,.5)	ln (500)	ln(2500)	1E-05	2	159,322 (55,374)	1.372 (0.372)	52,064 (14,488)	0.381 (0.461)	1.625 (0.208)	79,661 (27,687)	18.74	CV (wts)/CV(Ip)>2
RUN2	combined eq wt	~N(1.17,.5)	ln (500)	ln(2500)	1E-05	2	164,549 (48,812)	1.392 (0.361)	54,159 (10,465)	0. 304 (0 .0 8)	1.69 (0.08)	82,274 (24,406)	60.46	CV (wts)/CV(Ip)>2
RUN3	combined sep wt	~N(1.17,.5)	ln (500)	ln(2500)	1E-05	2	187,037 (48,041)	1.328 (0.329)	59,334 (10,548)	0.271 (0.07)	1.724 (0.071)	93,519 (24,020)	58.51	CV (wts)/CV(Ip)>2
RUN4	3 equal	~U(0.01, 3)	ln (5 0 0)	ln(2500)	1E-05	2	159,3 <i>2</i> 2 (55,374)	1.372 (0.372)	52,064 (14,488)	0.381 (0.461)	1.625 (0.208)	79,661 (27,687)	18.74	CV (wts)/CV(Ip)>2
RUN5	3 equal	~N(1.17,.5)	ln (500)	ln(2500)	1E-05	4	147,037 (53,860)	1.342 (0.341)	47,596 (15,286)	0.449 (0.615)	1.565 (0.232)	73,519 (26,930)	12.95	CV (wts)/CV(Ip)>2
RUN6	3 equal	~N(1.17,.5)	ln (5 0 0)	ln(2500)	1E-05	10	132,316 (34,320)	1.19 (0.344)	38,471 (11,216)	0.596 (0.663)	1.427 (0.271)	66,158 (17,160)	3.79	CV (wts)/CV(Ip)>2
RUN7	3 equal	~N(1.17,.5)	ln (500)	ln(2500)	1E-08	15	124,907 (14,181)	1.097 (0.154)	33,972 (4607)	0.664 (0.798)	1.369 (0.249)	62,453 (7,090)	1.66	marginal
RUN8	3 equal	~N(1.17,.5)	ln (500)	ln(2500)	1E-09	20	127,373 (14,677)	1.107 (0.172)	34,912 (5037)	0.624 (0.662)	1.395 (0.244)	63,686 (7,338)	1.56	marginal
RUN9	3 equal	~N (1.17,.25)	ln (500)	ln(2500)	1E-09	20	200104 (35297)	1.159 (0.278)	57815 (17229)	0.326 (0.262)	1.672 (0.189)	100052 (17649)	1.22	acceptable

 Table 31. BSP model runs, convergence criteria and model results for western skipjack.

Table 32. BSP model runs, convergence criteria and model results for eastern skipjack for priors on r with narrower standard deviations (0.3 or 0.25). Note that sd= 0.25 was originally specified from the demographic analysis.

RUN	Indices		limits of prior on in 1000 !	uniform K or In(K) MT	paramete for importa function w	rsettings ance vidth	status res	ults (marqir	nalposterior d	istribution	s of each	parameter)	converc	gence criteria
		prior on r	Kmin	Kmax	degf	expand _imp	к	r	MSY	F(2006)/ Fmsy	B(2006)/ Bmsy	Bmsy	cv(wt)/c v(I*p)	comments
RUN1	8 equal	~normal (1.17,sd=.3)	200	2000	0.00001	2	1,393,053 (392,931)	1.351 (0.296)	465,834 (162,805)	0.159 (0.074)	1.834 (0.078)	696,527 (196,466)	1.1578	marginal
RUN2	8 equal	~normal (1.17,sd=.3)	h(200)	ln(2000)	0.00001	2	1,293,317 (410,825)	1.285 (0.275)	465,834 (162,805)	0.183 (0.082)	1.808 (0.087)	646,658 (205,413)	0.9627	acceptable
RUN3	combined eq wt	~normal (1.17,sd=.3)	h(200)	ln(2000)	0.00001	2	1,316,538 (406,767)	1.326 (0.332)	408,830 (148,173)	0.176 (0.081)	1.816 (0.086)	658,269 (203,383)	0.7832	acceptable
RUN4	combined sep wt	~normal (1.17,sd=.3)	h(200)	ln(2000)	0.00001	2	1,278,930 (425,336)	1.305 (0.335)	428,418 (162,252)	0.19 (0.092)	1.801 (0.098)	639,465 (212,668)	0.7667	acceptable
RUN5	8 equal	~normal (1.17,sd=.3)	200	1000	0.00001	2	724,475 (146,955)	1.422 (0.281)	407,960 (161,318)	0.261 (0.081)	1.727 (0.087)	395,034 (73,477)	0.9344	acceptable
RUN5B	8 equal	~normal (1.17,sd=.3)	h(200)	ln(1000)	0.00001	2	762,831 (154,416)	1.416 (0.263)	278,228 (69,645)	0.273 (0.083)	1.713 (0.089)	381,416 (77,208)	0.8815	acceptable
RUN6	8 separate weighting	~normal (1.17,sd=.3)	h(200)	ln(1000)	0.00001	2	849,344 (115,140)	1.497 (0.316)	267,019 (66,345)	0.221 (0.064)	1.769 (0.069)	424,672 (57,570)	1.4983	marginal
RUN7	1 EU-PS, variable q	~normal (1.17,sd=.3)	h(200)	ln(1000)	0.00001	2	543,400 (106,018)	1.237 (0.273)	316,192 (74,752)	0.523 (0.151)	1.443 (0.161)	271,700 (53,009)	1.3096	marginal
RUN8	1 EU-PS, 3% per year	~normal (1.17,sd=.3)	h(200)	ln(1000)	0.00001	2	731,404 (175,105)	1.286 (0.312)	163,313 (31,388)	0.344 (0.13)	1.637 (0.14)	365,702 (87,553)	0.7225	acceptable
RUN8Z	1 EU-PS, 3% per year	~normal (1.17,sd=.25)	h(200)	ln(1000)	0.00001	2	735,623 (169,249)	1.25 (0.269)	229,727 (66,596)	0.347 (0.125)	1.633 (0.135)	367,812 (84,624)	0.99	acceptable
RUN5 BZ	8 equal	~normal (1.17.sd=.25)	h(200)	ln(1000)	0.00001	2	768,318 (150,650)	1.371 (0.243)	225,796 (61,501)	0.279 (0.082)	1.707 (0.088)	384,159 (75,325)	0.8185	comments

			limits of prior on l	uniform K or In(K) MT	paramete for importa function w	rsettings ance idth	status res	ults (margin	alposterior di	stributions	s of each r	parameter)	converg	ence criteria
RUN	Indices	prior on r	Kmin	Kmax	degf	expand _imp	к	r	MSY	F(2006)/ Fmsy	B(2006)/ Bmsy	Bmsy	cv(wt)/c v(I*p)	comments
							4 000 055	4 407	504.040	0.450	4.04	004 007		
RUN1	8 equal	~normai (1.17,sd=.5)	200	2000	0.00001	2	(408,971)	(0.444)	(207,639)	0.153 (0.078)	(0.083)	(204,486)	1.1058	marginal
		~normal					1,248,077	1.538	461,961	0.172	1.821	624,038		
RUN2	8 e qual	(1.17,sd=.5)	h(200)	ln(2000)	0.00001	2	(449,897)	(0.483)	(206,136)	(0.089)	(0.094)	(224,949)	0.9333	acceptable
DUNO	and the set of the set	~normal			0.000.04		1,266,776	1.581	485,205	0.163	1.83	633,388		
RUN3	combined eq wt	(1.17,Sd=.5)	In(200)	ln(2000)	0.00001	2	(435,154)	(0.502)	(216,089)	(0.085)	(0.09)	(217,577)	0.8496	acceptable
		~normal					1,243,952	1.518	453,691	0.178	1.814	621,976		
RUN4	combined sep wt	(1.17,sd=.5)	h(200)	ln(2000)	0.00001	2	(451,127)	(0.499)	(207,983)	(0.096)	(0.102)	(225,563)	0.932	acceptable
		~normal					790,069	1.422	278,228	0.261	1.727	395,034		
RUN5	8 e qual	(1.17,sd=.5)	200	1000	0.00001	2	(146,955)	(0.281)	(69,645)	(0.081)	(0.087)	(73,477)	0.852	acceptable
		~normal					724,475	1.685	300,485	0.246	1.743	362,238		
RUN5B	8 e qual	(1.17,sd=.5)	h(200)	ln(2000)	0.00001	2	(174,418)	(0.369)	(90, 125)	(0.089)	(0.095)	(87,209)	1.0382	marginal
	8 separate	~normal					827,685	1.681	345,673	0.201	1.79	413,843		
RUN6	weighting	(1.17,sd=.5)	h(200)	ln(2000)	0.00001	2	(127,400)	(0.352)	(84,803)	(0.061)	(0.065)	(63,700)	1.2219	marginal
		~normal					577,890	1.309	177,892	0.495	1.475	288,945		
RUN7	1 EU-PS, variable q	(1.17,sd=.5)	h(200)	ln(2000)	0.00001	2	(157,188)	(0.434)	(52,233)	(0.197)	(0.194)	(78,594)	1.1259	marginal
	1 EU-PS, 3% per	~normal					661,461	1.516	241,380	0.343	1.639	330,730		
RUN8	year	(1.17,sd=.5)	h(200)	ln(2000)	0.00001	2	(195,584)	(0.454)	(89,412)	(0.145)	(0.156)	(97,792)	0.7676	acceptable

Table 33. BSP model runs, convergence criteria and model results for eastern skipjack with wide standard deviations (0.5) on r prior.

Table 34. Summary table of the model runs for the catch-only model for SKJ-W. Abreviations: lnK is $ln(K) \sim U(ln(100), ln(1000))$, U is $K \sim U(100, 1000)$, logN is $K \sim logN(mean=350000, CV=0.5)$, u is $r \sim U(0.4, 2.0)$, D is $r \sim demographic$, L is $x \sim U(0, 10)$, s is $x \sim U(0, 1.1)$. The catch data used ranged from 1976 to 2006.

	Priors			Posteriors							Obs
Model	Κ	r	x	Κ	r	MSY	F_{2006}	B_{2006}	B_{MSY}	P(MSY	
							F_{MSY}	B_{MSY}		$< C_{2006}$)	
A. 1	lnK	u	L	239 193	0.97	58	0.31	1.71	119		Wide posterior
						234			596	0.01	on x
A. 2	logN	u	L	316 597	0.89	69	0.25	1.77	158		
						561			299	0.00	
A. 3	U	u	L	399 328	0.82	83	0.20	1.81	199		
						646			664	0.00	
A. 4	lnK	D	L	202 204	1.09	54	0.34	1.69	101		
						887			102	0.01	
A. 5	logN	D	L	295 618	1.05	77	0.22	1.79	147		
						250			809	0.00	
A. 6	U	D	L	312 610	1.04	83	0.21	1.80	156		
						012			305	0.00	
B . 1	lnK	u	S			30					
				129 023	0.93	520	0.98	1.22	64 512	0.08	
B. 2	logN	u	S			31					
				165 843	0.75	069	0.86	1.26	82 921	0.06	
B. 3	U	u	S			30					
				140 755	0.85	702	0.93	1.24	70 377	0.07	
B. 4	lnK	D	S			30					Posterior
		_		116 808	1.04	601	1.02	1.20	58 404	0.06	probability
B. 5	logN	D	S			30					increasing
		_		127 264	0.98	986	0.97	1.23	63 632	0.05	towards the
B. 6	U	D	S		4.0-	30	0.07			o o -	upper limit of
				120 434	1.02	892	0.99	1.22	60 217	0.05	the prior

Table 35. Summary table of the model runs for the catch-only model for eastern skipjack. Abbreviations: lnK is $ln(K) \sim U(ln(200), ln(2000))$, U is $K \sim U(200, 2000)$, logN is $K \sim logN(mean=350000, CV=0.5)$, u is $r \sim U(0.4, 2.0)$, D is $r \sim demographic$, L is $x \sim U(0, 10)$, s is $x \sim U(0, 1.1)$. The runs were fit to the following catch series: A-1950 ro 2006, B – 1965 to 1984, C- 1985 to 2006.

	Prior	s		Results – 1	nedian oj	f the posterio	ors			Obs	
Mode	Κ	r	x	Κ	r	MSY	F_{2006}	B_{2006}	B_{MSY}	P(MS	
l							F_{MSY}	B_{MSY}		$Y < C_2$	
										006)	
A. 1	lnK	u	L	827 839	1.37	223 930	0.37	1.66	413 919	0.03	The fishery
A. 2	log	u	L	722 445	1.27	204 349	0.43	1.62	361 222		was not
	Ν									0.02	homogeneo
A. 3	U	u	L	1 187	1.20	275 904	0.28	1.74	593 579		us over the
				158						0.01	whole time
A. 4	lnK	D	L	759 226	1.15	204 510	0.42	1.62	295 061	0.03	series
A. 5	log	D	L	698 803	1.17	198 995	0.45	1.60	349 401		
	Ν									0.03	
A. 6	U	D	L	1 121	1.15	308 717	0.24	1.77	560 886		
				772						0.02	
B . 1	lnK	u	S	229 516	1.51	88 195			114 758	1.00	The
B. 2	log	u	S								posteriors
	Ν			231 966	1.52	87 194			115 983	1.00	for K were
B. 3	U	u	S	234 421	1.49	89 199			117 210	1.00	concentrate
B. 4	lnK	D	s	255 996	1.32	85 573			127 998	1.00	d on the
B. 5	log	D	S								lower
	Ν			288 006	1.21	87 830			144 003	1.00	bound
B. 6	U	D	s	266 596	1.28	86 827			133 298	1.00	
C. 1	lnK	u	S	618 746	1.05	143 632	0.94	1.20	309 373	0.06	
C. 2	log	u	s	663 628	0.95	145 004	0.92	1.24	331 814		
	Ν									0.06	
C. 3	U	u	s	871 930	0.81	155 552	0.71	1.37	435 965	0.05	
C. 4	lnK	D	s	534 309	1.12	142 865	1.10	1.17	267 155	0.06	
C. 5	log	D	s	569 172	1.09	146 103	1.01	1.21	284 586		
	Ν									0.04	
C. 6	U	D	S	629 915	1.09	156 326	0.82	1.32	314 957	0.04	

Table 36. Maximum posterior estimates of the parameters and reference points based on the different runs conducted with PROCEAN. SD = standard deviation; q = catchability.

	т	r	<i>B0/K</i>	Κ	MSY	F_{MSY}
Standard run	1.2	1.169	0.9	2173530	170200	0.19
Sensitivity m	1.7	1.174	0.9	740914	167798	0.48
Sensitivity B0/K	1.2	1.114	0.7	2265240	169055	0.19
Sensitivity mean prior $MSY = 130,000$	1.2	1.164	0.9	2020000	157090	0.19
Sensitivity mean prior $MSY = 170,000$	1.2	1.172	0.9	2360080	185192	0.20
Sensitivity SD prior $r = 0.7$	1.2	1.161	0.9	2189580	170195	0.19
Combined abundance index	1.2	1.212	0.9	1978800	160653	0.20
Standard run with random walk on q	1.2	1.234	0.9	1860000	153986	0.21

a. YFT (LL)

b. YFT (BB)

c. YFT (PS)

d. YFT (OTH)

e. YFT (FAD/FREE 1991-2006)

Figure 1. Geographic distribution of yellowfin catch by gear and decade.

a. SKJ (LL)

ş

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50

c. SKJ (PS)

Figure 2. Geographic distribution of skipjack catch by gear and decade.

Figure 3. Atlantic yellowfin tuna catch by area.

Figure 4. Atlantic yellowfin tuna catch by gear.

Figure 5. Yellowfin catch by gear – east.

Figure 6. Yellowfin catch by gear – west.

Figure 7. Atlantic skipjack catch by area.

Figure 8. Skipjack catch by gear in the eastern Atlantic.

Figure 9. Skipjack catch by gear in the western Atlantic.

Figure 10. Change over time of the carrying capacity of the European and associated purse seine fleet.

Figure 11. Comparison of Task II catch at size and Task I (t) for Atlantic yellowfin.

Figure 12. Relative distribution of Atlantic yellowfin catches by age (0-5+) and year (bubble size is proportional to total catches).

Figure 13. Comparison of Task II catch at size and Task I (t.) for skipjack.

Figure 14. Skipjack quarterly catch by cumulative quarter starting in 1956 through 2006, by MFCL fishery definitions (Table 11).

Figure 15. Quarterly catch rate patterns by fishery prepared for skipjack (Table 11).

Figure 16. Yellowfin quarterly catch by cumulative quarter starting in 1956 through 2006, by MFCL fishery definitions (Table 12).

Figure 17. Quarterly catch rate patterns by fishery prepared for yellowfin (Table 12).

Figure 18. Change over time of the carrying capacity of the Dakar based baitboats.

Figure 19. Proportion of FADs sets, % of successful sets and total number of sets for the EC-purse seiners in the eastern Atlantic.

Figure 20. Change over time of the total area visited and fished by the EC purse seiners.

Figure 21. Change over time of the total area visited and fished by the Dakar based baitboats.

Total mortality based on length frequency

Figure 22. Changes over the years in the apparent total mortality *Z*, based on Beverton and Holt's equation, for the three tropical tuna species in the Atlantic Ocean. YFT = yellowfin, BET = bigeye, SKJ = skipjack (eastern and western stock). The size of full recruitment was fixed at 50 cm (FL).

Figure 23. Standardized CPUE for skipjack for the Azorean baitboat fishery. The index was obtained by fitting a delta-lognormal GLM to daily catch records. Open symbols: observed CPUE. Lines: predicted CPUE and approximate 95% confidence intervals.

Figure 24. Standardized CPUEs for the east Atlantic stock (1969-2006).

Figure 25. Standardized CPUEs for the western Atlantic stock (1981-2006). Letters w and n indicate estimations gathered in analysis of catch in weight and number, respectively.

Figure 26. Average weight of skipjack landed in the East and West Atlantic Ocean.

Figure 27. Average weight of yellowfin landed in the Atlantic Ocean.

Figure 28. Average weight of yellowfin landed by fishing fleet.

Figure 29. Standardized CPUE for yellowfin tuna caught by purse seine fleets.

Figure 30. Nominal CPUE for yellowfin tuna caught by baitboat fleets.

Figure 31. Standardized CPUE for yellowfin tuna caught by the U.S. rod and reel fleet.

Figure 32. Standardized CPUE for yellowfin tuna caught by longline fleets.

Figure 33. Estimated combined weighted and unweighted indexes of abundances for yellowfin and the two skipjack stocks.

Figure 34. Input catch series used in the analyses of catchability trends.

Figure 35. Input nominal effort series used in the analysis of catchability trends. The figure on the right excludes the 1983 and 1984 data points.

Figure 36. Biomass trajectories that result from the catchability trend analyses.

Figure 37. Trends in estimated catchability (in logarithmic units) for the three stocks individually and combined. The solid line is a running average.

Figure 38. EC and associated purse seine fishing effort (fishing days). The solid black line is the nominal series. The lines with symbols represent fishing effort adjusted for potential catchability changes. All series are scaled so that they start at the same value in 1969.

Figure 39. EC and associated purse seine fishing effort (fishing days). The solid black line is the nominal series. The lines with symbols represent fishing effort adjusted for potential catchability changes for yellowfin tuna: The red line with open squares assumes a 3% per year change in q starting in 1980; the blue line with solid circles is adjusted for catchability changes estimated in the present analysis.

Figure 40. Fits to the CPUE indices for yellowfin VPA continuity model.

Figure 41. Fits to the CPUE indices for YFT VPA Runs 5 and 8. The blue diamonds are the observed values. The red line and the "X" symbol are the predicted values from Run 5 and Run 10, respectively.

Figure 42. Retrospective trends of spawning biomass (mt) and recruits (numbers at Age 0) from the yellowfin VPA base cases. The legend indicates the terminal year of the analysis.

Figure 43. Retrospective patterns in fishing mortality at age (FAA) from the yellowfin base models. The legend indicates the terminal year of the analysis.

Figure 44. Retrospective patterns in numbers at age (NAA) from the yellowfin base models. The legend indicates the terminal year of the analysis.

Figure 45. Annual estimates of average fishing mortality by age group, spawning stock biomass (SSB), recruitment and F-Ratio for the 2003 base (red line) and 2008 continuity (blue line) VPA runs.

Figure 46. Run 5 - Annual estimates of yield, total biomass, apical fishing mortality, recruits (Age 0), spawning stock biomass (SSB) and SSB relative to SSB at F_{MAX} . The dashed lines are the 80% confidence intervals obtained from 500 bootstrap runs.

Figure 47. Run 10 - Annual estimates of yield, total biomass, apical fishing mortality, recruits (Age 0), spawning stock biomass (SSB) and SSB relative to SSB at F_{MAX} . The dashed lines are the 80% confidence intervals obtained from 500 bootstrap runs.

Figure 48. Trajectory of stock status from 1970 to 2006. Stock status in 2006 (large circle) was estimated using SSB_{2006}/SSB_{MAX} and $F_{Current}/F_{MAX}$. Yellow points indicate that overfishing was occurring. Green points indicate that the population is neither overfished nor undergoing overfishing.

Figure 49. Phase plot showing the 2006 stock status (filled symbol) obtained using the median of the joint distribution of VPA models 5 and 10. The open circles show 500 bootstrap runs of each VPA model.

Figure 50. Histograms of bootstrap estimates of 2006 stock status. These were constructed to examine bias and normality.

Figure 51. Estimated relative biomass (B/Bmsy) and relative fishing mortality (F/Fmsy) for 10 ASPIC runs. Refer to text for detail explanation of each run setting.

Figure 52. Relative Biomass – Relative F trajectories ('snail tracks') for 4 cases of ASPIC.

Figure 53. Phase plots of 2006 conditions from bootstraps runs for 4 runs of ASPIC. Green diamond indicates deterministic results.

Figure 54. Estimated relative biomass trajectories and 80% confidence intervals estimated from 500 bootstraps.

Figure 55. Estimated relative F trajectories and 80% confidence intervals estimated from 500 bootstraps.

Figure 56. Multifan-CL biomass estimates for the eastern Atlantic region using data from 1950 to 2006.

Figure 57. Multifan-CL estimates of biomass relative to B_{MSY} estimates for the eastern Atlantic region using data from 1950 to 2006.

Figure 58. Multifan-CL F estimates of biomass relative to F_{MSY} for the eastern Atlantic region using data from 1950 to 2006.

Figure 59. Multifan-CL biomass estimation for the eastern Atlantic region using data from 1970 to 2006.

Figure 60. Multifan-CL estimates of biomass relative to B_{MSY} for the eastern Atlantic region using data from 1970 to 2006.

Figure 61. Multifan-CL estimates of biomass relative to F_{MSY} for the eastern Atlantic region using data from 1970 to 2006.

Figure 62a. Effort deviations estimated from the Multifan-CL application to western skipjack for the three fisheries.

Figure 62b. Overall size frequencies fitted in the Multifan-CL application to western skipjack for the three fisheries.

Figure 63. Selectivities estimated by the Multifan-CL application to western skipjack for the three fisheries.

Figure 64. Recruitment and spawning biomass trends estimated by the Multifan-CL application to western skipjack.

Figure 65. Approximate 95% confidence intervals for SSB and recruitment estimated by the Multifan-CL application to western skipjack.

Figure 66. Joint trajectory of biomass and fishing mortality relative to MSY levels, estimated by the Multifan-CL application to western skipjack.

Figure 67. Plot of indices of abundance used for BSP projection models for western skipjack.

Figure 68. Prior and posteriors for r, K and posteriors for MSY and F_{MSY} for BSP runs 1, 5, 7 and 9 showing the expansion of the posterior for r and the migration of K to lower values. Note that for run 9 the prior for r was N(1.17, 0.25) and N(1.17, 0.5) for all others.

Figure 69. Fits to the indices for BSP SKJW-RUN9.

Figure 70. Biomass, B/B_{MSY} , F, and F/F_{MSY} trajectory with projections of 25,000 MT starting in 2007 for SKJW-RUN9. Dashed lines are 90% confidence intervals based on importance samples.

Figure 71. Plot of indices of abundance used for BSP projection models for eastern skipjack.

Figure 72. Comparison of SKJE A. Run 5B with a loose prior on r (sd=0.5) and B. Run 5BZ with a tight prior on r (sd =0.25).

Figure 73. Fits to the indices for BSP RUN5BZ with low variance r prior.

Figure 74. Biomass, B/B_{MSY} , F, and F/F_{MSY} trajectory with projections of 100,000 MT starting in 2007 for SKJE-RUN5BZ, low variance on r. Dashed lines are 90% confidence intervals based on importance samples.

Figure 75. Priors and posteriors for runs A.1 and B.1 for the western skipjack stock. The priors (dashed boxes) and posteriors (solid boxes) were relativised to be in the same scale. The dashed boxes for management quantities are the values obtained by running the model only with the priors.

Figure 76. Posteriors for K, r and MSY for runs A1 to A6 (left) and B1 to B6 (right) for the western skipjack stock. (Units for K and MSY are in 1,000 t).

Figure 77. Posteriors for K, r and MSY for runs A1 to A6 (left) and C1 to C6 (right) for the eastern SKJ stock (units for K and MSY are in 1000 t).

Figure 78. Total catches observed (circles), predicted (solid line) and equilibrium production curve estimated in the standard run.

Figure 79. Relative changes in catchability estimated with a process error on catchability for the 8 fishing fleets considered in the standard run. GHN.BB = Ghanean baitboats; CAN.BB = Canarian baitboats; POR.BB = Azorean baitboats; EUDKR.BB = European and Senegalese baitboats; EC.PS.FAD = European purse seiners fishing on fishing aggregating devices; EUDKR.PS = Spanish purse seiners fishing off Senegal.

Figure 80. Constant catch projection results using the joint distribution of YFT VPA runs 5 and 10.

Figure 81. Constant F projection results using the joint distribution of YFT VPA runs 5 and 10.

Figure 82. Biomass projections for catch levels of 80,000 t, 100,000 t, 120,000 t, 140,000 t and 160,000 t for each of the 4 ASPIC cases.

Agenda

- 1. Opening, adoption of the Agenda and meeting arrangements.
- 2. Review of Biological Information, including results from tagging, growth & reproductive studies, and other studies pertinent to the assessment
- 3. Review of fishery statistics: Effort and Catch data, including size frequencies and fisheries trends
- 4. Relative abundance indices and other fishery indicators
- 5. Methods and other data relevant to the assessment
 - 5.1 Methods Yellowfin
 - 5.2 Methods Skipjack
- 6. Stock status results
 - 6.1 Stock status Yellowfin
 - 6.2 Stock status Skipjack
- 7. Projections
 - 7.1 Projections Yellowfin
 - 7.2 Projections Skipjack
- 8. Recommendations
 - 8.1 Research and Statistics Yellowfin
 - 8.2 Research and Statistics Skipjack
 - 8.3 Management Yellowfin
 - 8.4 Management Skipjack
- 9. Other matters
- 10. Adoption of the report and closure

Appendix 2

List of Participants

CONTRACTING PARTIES

SCRS Chairman

Scott, Gerald P. NOAA Fisheries, Southeast Fisheries Science Center Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida 33149-1099

Tel: +1 305 361 4220, Fax: +1 305 361 4219, E-Mail: gerry.scott@noaa.gov

ANGOLA

Airosa Ferreira, Júlia Ministério das Pescas. Av. Marginal, Luanda, Angola Tel: + 244 924 822254, E-Mail: fjairosar@hotmail.com

Lutuba Nsilulu, Henriette

INIP-MIN PESCAS. Rua Martala Mohamed. Ilha do Caba. C.P. 2601, Luanda, Angola Tel: + 244 92334 7560, E-Mail: henrim60@hotmail.com; henrim60@yahoo.com

BRAZIL

Agrelli Andrade, Humber Universidade Federal de Santa Catarina - UFSC Depto. Informática e Estatística, INE/CTC Caixa Postal 476, Florianópolis, Santa Catarina 88010-970, Tel: +55 48 3721 9942, Fax: +55 48 3721 9566, E-Mail: humber@inf.ufsc.br

de Lima, Luis Henrique Esplanada dos Ministerios - Edificio Sede, 2º andar, Sala 236, Brasilia D.F. Tel: +55 61 321 83891, E-Mail: luislima@seap.gov.br

Hazin, Humberto

UFRPE/DEPAq, Laboratorio de Oceanografía Pesqueira (LOP), Rua Dom Manuel de Medeiros, s/n, Dois Irmaos, Recife-PE Tel: +55 44 326 14622, E-Mail: hghazin@hotmail.com

Minte-Vera, Carolina V.

Universidade Estadual de Maringá - Av. Colombo n`5790 Bloco H90. Maringá-PR Tel: +55 48 3721 9942, Fax: + 55 48 3721 9566, E-Mail: cminte@nupelia.uem.br

Sheidt de Souza, Guilherme

Esplanada dos Ministérios -Bloco D, 2 andar, Sala 244. 70043-900 Brasilia/DF Tel: +55 61 3218 3881, Fax: +55 61 3226 9980, E-Mail: scheidt@seap.gov.br

Travassos, Paulo

Universidade Federal Rural de Pernambuco - UFRPE, Laboratorio de Ecologia Marinha - LEMAR, Departamento de Pesca e Aquicultura - DEPAq, Avenida Dom Manoel Medeiros s/n - Dois Irmaos, CEP 52171-900, Recife, Pernambuco Tel: +55 81 3320 6511, Fax: +55 81 3320 6512, E-Mail: paulotr@ufrpe.br;p.travassos@depaq.ufrpe.br

Velasco, Gonzalo

Secretaría Especial de Aquicultura e Pesca (SEAP/PR). Esplanada dos Ministérios, Bloco D, 2 andar, Sala 238, 70043-900 Brasilia/DF

Tel: +55 61 3218 3893, Fax: +55 61 3218 3886, E-Mail: gonzalovelasco@seap.gov.br

EUROPEAN COMMUNITY

Ariz Telleria, Javier

Instituto Español de Oceanografía, C.O. de Canarias, Apartado 1373, 38080, Santa Cruz de Tenerife, Islas Canarias, Spain Tel: +34 922 549 400, Fax: +34 922 549 554, E-Mail: javier.ariz@ca.ieo.es

Chassot, Emmanuel

I.R.D. UR nº 109 Centre de Recherche Halieutique Méditerranéenne et Tropicale, Avenue Jean Monnet - B.P. 171, 34203 Sète Cedex, France

Tel: +33 4 99 57 32 24, Fax: +33 4 99 57 32 95, E-Mail: Emmanuel.Chassot@ird.fr

De Bruyn, Paul

AZTI - Tecnalia, , Herrera Kaia Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain Tel: +34 943 004800, Fax: +34 943 004801, E-Mail: debruyn@pas.azti.es

Delgado de Molina Acevedo, Alicia

Instituto Español de Oceanografía, C.O. de Canarias, Apartado 1373, 38080 Santa Cruz de Tenerife, Spain Tel: +34 922 549 400, Fax: +34 922 549 554, E-Mail: alicia.delgado@ca.ieo.es

Gaertner. Daniel

I.R.D. UR nº 109 Centre de Recherche Halieutique Méditerranéenne et Tropicale, Avenue Jean Monnet - B.P. 171, 34203 Sète Cedex, France Tel: +33 4 99 57 32 31, Fax: +33 4 99 57 32 95, E-Mail: gaertner@ird.fr

Monteagudo, Juan Pedro

Asesor Científico, ANABAC/OPTUC, c/ Txibitxiaga, 24 - entreplanta, 48370 Bermeo, Vizcaya, Spain Tel: +34 94 688 2806, Fax: +34 94 688 5017, E-Mail: monteagudog@yahoo.es

Murua, Hilario

AZTI - Tecnalia /Itsas Ikerketa Saila, Herrera Kaia Portualde z/g, 20110 Pasaia, Gipuzkoa, Spain Tel: +34 943 004800 ext. 821, Fax: +34 943 004801, E-Mail: hmurua@pas.azti.es

Pereira, Joao Gil

Universidade dos Açores, Departamento de Oceanografía e Pescas, 9900 Horta, Portugal Tel: +351 292 200 431, Fax: +351 292 200 411, E-Mail: pereira@uac.pt

Pereira, Juan Antonio

OPAGAC c/ Ayala 54, 2 A. 28001 Madrid, Spain Tel: +34 91 431 4857, Fax: +34 91 576 1222, E-Mail: opagac@arrakis.es

GHANA

Bannerman, Paul Ministry of Food and Agriculture, Fisheries Department, P.O. Box BT 62, Tema Tel: +233 222 02346, Fax: +233 222 06627, E-Mail: paulbann@hotmail.com

JAPAN

Satoh, Keisuke

Tropical Tuna Section, National Research Institute of Far Seas Fisheries, Fisheries Research Agency of Japan, 7-1, 5 Chome Orido, Shizuoka-Shi, Shimizu-Ku, 424-8633

Tel: +81 543 36 6044, Fax: +81 543 35 9642, E-Mail: kstu21@fra.affrc.go.jp

MEXICO

González Anía, Luis V.

Instituto Nacional de la Pesca, Pitágoras 1320 Col. Santa Cruz Atoyac Tel: +52 54 22 30 49, Fax: +52 56 04 48 87, E-Mail: lgonzalez@inp.semarnap.gob.mx

Ramírez López, Karina

Instituto Nacional de la Pesca - SAGARPA, Av. Ejército Mexicano No.106 - Colonia Exhacienda, Ylang Ylang, 94298 Boca de Río, Veracruz

Tel: +52 22 9130 4518, Fax: +52 22 9130 4519, E-Mail: kramirez inp@yahoo.com; kramirez lopez@yahoo.com.mx

UNITED STATES

Brown, Craig A.

NOAA Fisheries Southeast Fisheries Center Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida 33149-1099

Tel: +1 305 361 4590, Fax: +1 305 361 4562, E-Mail: craig.brown@noaa.gov

Cass-Calay, Shannon

NOAA Fisheries, Southeast Fisheries Center, Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida 33149 Tel: +1 305 361 4231, Fax: +1 305 361 4562, E-Mail: shannon.calay@noaa.gov

Díaz, Guillermo

Office of Science and Technology, National Marine Fisheries Service NOAA, 1315 East-West Highway, Silver Spring, Maryland 20910 Tel: +1 301 713 2363, Fax: +1 301 713 1875, E-Mail: guillermo.diaz@noaa.gov

Restrepo, Victor

NOAA Fisheries, Southeast Fisheries Center, Sustainable Fisheries Division, 75 Virgina Beach Dr., Miami, Florida 33149 Tel: +1 305 361 4484, E-Mail: victor.restrepo@noaa.gov

Walter, John

NOAA Fisheries, Southeast Fisheries Center, Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida 33149-1099

Tel: +1 305 365 4114, Fax: +1 305 361 4562, E-Mail: john.f.walter@noaa.gov

URUGUAY

Domingo, Andres DINARA, 75 Constituyente 1497, Montevideo Tel: +598 400 4689, E-Mail: adomingo@adinet.com.uy; adomingo@dinara.gub.uy

Pons, Maite

DINARA, 75 Constituyente 1497, Montevideo Tel: +598 400 4689, E-Mail: pons.maite@gmail.com

ICCAT SECRETARIAT

C/ Corazón de María, 8-6th floor, 28002 Madrid – Spain Tel: +34 91 416 5600; Fax: +34 91 415 2612; E.Mail: info@iccat.int

> Kebe, Papa Pallarés, Pilar Palma, Carlos

Appendix 3

List of Documents

- SCRS/2008/105 Estadísticas españolas de la pesquería atunera tropical, en el Océano Atlántico, hasta 2007. DELGADO DE MOLINA, A., J.C. Santana and J. Ariz.
- SCRS/2008/106 Datos estadísticos de la pesquería de túnidos de las Islas Canarias durante el periodo 1975 a 2007. DELGADO DE MOLINA, A., J. Ariz, R. Delgado de Molina and J. C. Santana.
- SCRS/2008/108 Japanese longline CPUE for yellowfin tuna (*Thunnus albacares*) in the Atlantic Ocean standardized using GLM up to 2006. OKAMOTO, H.

- SCRS/2008/109 Estandarización de la CPUE del atún aleta amarilla (*Thunnus albacares*) capturados por las flotas de palangre de Brasil y Uruguay (1980-2006). PONS, M., P. Travassos, A. Domingo, H. Hazin and F. Hazin.
- SCRS/2008/110 Estandarización de la CPUE del atún aleta amarilla de la flota palangrera uruguaya (1982-2007). PONS, M. and A. Domingo.
- SCRS/2008/111 Distribución espacio temporal, composición de tallas y relaciones ambientales del atún aleta amarilla (*Thunnus albacares*) en el Atlantico SW. DOMINGO, A., M. Rios and M. Pons.
- SCRS/2008/112 Standardization of (*Thunnus albacares*) CPUE series caught by Brazilian longliners in the Atlantic Ocean. TRAVASSOS, P., H. Hazin, F. Hazin, B. Mourato and F. Carvalho.
- SCRS/2008/113 Standardized catch rate of skipjack tuna (*Katsuwonus pelamis*) caught in the southwest of the South Atlantic Ocean. ANDRADE, H.A.
- SCRS/2008/114 Estimates of total mortality and selectivity for eastern Atlantic skipjack (*Katsuwonus pelamis*) from catch curves based on length composition data (1971-2005). GAERTNER, D.
- SCRS/2008/115 Actualización de la CPUE estandarizada de rabil de la flota de cerco tropical en el océano Atlántico de 1980 a 2006. SOTO, M., P. Pallarés, A. Delgado de Molina and D. Gaertner.
- SCRS/2008/116 Stardardized CPUE for juvenile Atlantic yellowfin and bigeye and skipjack tunas caught by the purse seine fleet fishing with FADs. SOTO, M., D. Gaertner, A. Delgado de Molina and P. Pallarés.
- SCRS/2008/117 A preliminary attempt to estimate tuna discards and by-catch in the French purse seine fishery of the eastern Atlantic Ocean. CHASSOT, E., M.J. Amande, R. Pianet, P. Chavance and R. Dedo.
- SCRS/2008/118 Stardardized CPUE for eastern Atlantic skipjack tuna caught in free school by the purse seine fleet. SOTO, M., D. Gaertner, J. Ariz and P. Pallarés.
- SCRS/2008/119 Standardized catch rates for yellowfin tuna (*Thunnus albacares*) in the Gulf of Mexico longline fishery for 1992-2007 based upon observer programs from Mexico and the United States. BROWN, C.A. and K. Ramírez-López.
- SCRS/2008/120 Standardized catch rate in number and weight of yellowfin tuna (*Thunnus albacares*) from the United States pelagic longline fishery 1986-2007. WALTER, J.
- SCRS/2008/121 Standardized catch rate of skipjack tuna (*Katsuwonus pelamis*) from the United States pelagic longline fishery 1991-2007. WALTER, J.
- SCRS/2008/122 Catch rate indices of yellowfin (*Thunnus albacares*) and skipjack (*Katsuwonus pelamis*) tunas from the United States recreational fishery in the western North Atlantic Ocean, 1986-2007. CASS-CALAY, S. L.
- SCRS/2008/124 Statistiques de la pêcherie thonière Europeenne et assimilée durant la période 1991-2007. PIANET, R., V. Nordström, P. Dewals, A. Delgado, J. Ariz, R. Saralde, R. Gnegoury Dédo and Y. Diatta.
- SCRS/2008/125 Datos estadisticos de la flota palangrera mexicana dedicada a la pesca del atun aleta amarilla en el Golfo de México durante el periodo 1994 a 2007. RAMIREZ LOPEZ, K.
- SCRS/2008/126 Recollection (historical years, 1969-2004) and update (new years, 2005-07) of the skipjack (*Katsuwonus pelamis*) catch-at size for the Atlantic eastern and western stocks.PALMA, C. and P. Kebe.
- SCRS/2008/127 Update (years 2005-06) of yellowfin tuna (*Thunnus albacares*) catch-at-size for the overall Atlantic stock. PALMA, C. and P. Kebe.

Appendices MFCL

Available from the ICCAT Secretariat upon request.

Appendix 5

Estimation of Combined Indices for Yellowfin and Skipjack

Combined indexes were estimated for both species using a GLM approach with the following model formulation:

 $Log(index) = Year + Source + \varepsilon$

Where 'Source' identifies the index (fleet) included in the model and ε is the error term. Indexes expressed as number of fish per unit of effort were transformed into biomass by multiplying the index value times the average weight of the fish. Average weights were estimated from the yield-at-age and weight at age matrices for each specific fishery:

$$\overline{W}_{y,g} = \frac{\sum_{a} C_{y,a,g} * W_{y,a}}{\sum_{a} C_{y,a,g}}$$

Where y, a, and g indentify the year, age, and fishery, respectively. Prior to estimating the combined indexes, individual indexes were scaled to their mean value of the overlapping years. Annual weighting factors were estimated for each fleet by counting the number of $5^{\circ}x5^{\circ}$ squares where each fishery operated and estimating the proportion to the total number of squares fished for each year. This approach allowed to capture the spatial expansion/contraction experienced by different fleets over time. The index weights were re-scaled so that they would add up to 1.0 each year.

$$\phi_{y,g} = \frac{Y_{y,g}}{\sum_{g} Y_{y,g}}$$

Yellowfin tuna

Table Appendix 5.1 shows the values of the indexes used in the GLM to estimate the combined index. The fleets included in the model were the Japanese longline, the combined Mexico and US longline in the Gulf of Mexico, the US rod and reel, the Brazilian longline, the Chinese-Taipei longline, the Canadian baitboat, the Venezuelan purse seine, the Brazilian baitboat, the EC-Dakar baitboat, the Venezuelan longline, and the EC-purse seine assuming a constant annual increase in catchability of 3%. The estimated weighting factos are shown in **Table Appendix 5.2** and the estimated unweighted and weighted combined indexes are presented in **Table Appendix 5.5** and **Figure Appendix 5.1**. Both the unweighted and weighted index showed similar trends with a sharp decrease in the late 1960s followed by a relatively stable period until about 1990. From 1990 onward both indexes showed a continuous declining trend.

Skipjack tuna

Table Appendix 5.3 presents the values of the indexes used in the GLM to estimated combined indexes for each skipjack stock. The fisheries used to estimate the combined index for the ATE stock where the EC-Dakar and EC-FAD purse seine fisheries and the Ghana, Canarian, Portugal and EC-Dakar baitboat fisheries. In the case of the ATW stock they were the Venezuelan purse seine, the US rod and reel and the Brazilian baitboat. The combined index for the skipjack eastern Atlantic stock (ATE) showed a variable but constant increasing trend from the beginning of the time series in 1965 to the end in 2006. The western Atlantic stock (ATW) series

started in 1981 and also showed a series with highly variable values but with a relatively constant trend. The weighting factors for each fishery/year are shown in the **Table Appendix 5.4**. Values of the estimated combined indexes for each stocks and matrices of weighting factors are shown in **Table Appendix 5.5** and **Figure Appendix 5.1**.

Table Appendix 5.1 Yellowfin scaled indexes of abundance used in the GLM to estimate a combined index. The indexes included were the Japanse longline (jp_ll), the combined Mexico and US longline in the Gulf of Mexico (mxus_ll), the US rod and reel (US_rr), the Brazilian longline (br_ll), the Chinese-Taipei longline (tai_ll), the Canarian baitboat (can_bb), the Venezuelan purse seine (ven_ps), the Brazilian baitboat (br_bb), the EC-Dakar baitboat (eudkr_bb), the Venezuelan longline (ven_ll) and the EC-purse seine assuming an constant annual increase in catchability of 3% (ec_ps_3perc).

YEAR	jp_ll	mx_ll	us_rr	br_ll	uru_ll	tai_ll	ca_bb	ve_ps	br_bb	us_ll_atl	Eudkr_bb	ven_ll	ec_ps_3perc
1965	4.16												
1966	2.801												
1967	5.509												
1968	4.557					4.303							
1969	4.01					3.787					0.763		
1970	2.985					3.066					0.746		1.702
1971	2.396					1.745					0.737		1.452
1972	3.24					1.895					0.741		1.612
1973	2.275					2.185					0.682		1.625
1974	3.141					1.128					1.071		1.481
1975	2.334					0.971					0.469		1.595
1976	2.291					1.152					0.519		1.578
1977	1.778					1.038					0.792		1.55
1978	2.611					0.946					0.306		1.411
1979	3.149					0.982					0.577		1.403
1980	1.946					0.918	0.051						1.162
1981	2.456				1.256	0.953	0.103		4.468		1.186		1.247
1982	2.169				1.705	0.716	0.499		0.68		1.131		1.065
1983	2.158				0.735	0.917	0.878	2.199	1.85		1.151		0.924
1984	2.322				0.365	0.916	3.274	0.975	0.9		1.645		0.73
1985	1.484				0.654	0.901	1.422	1.646	0.673		1.264		1.255
1986	1.86		1.503	1.392	1.009	1.046	0.915	0.967	0.673		1.908		1.354
1987	1.961		0.714	1.758	0.973	0.953	2.043	0.74	0.947	2.567	2.152		1.186
1988	1.947		0.357	1.459	1.236	1.835	2.126	1.02	1.05	2.799	2.083		1.123
1989	1.524		0.588	1.477	0.492	1.328	1.257	2.21	0.96	2.218	0.502		1.4
1990	2.064		0.264	2.502	0.449	1.468	3.199	1.133	1.993	1.897	1.92		1.523
1991	1.573		0.424	1.373	1.617	1.233	2.827	1.157	0.602	1.41	1.39	1.114	1.212
1992	1.773		0.289	0.572	2.539	0.925	1.638	0.779	0.947	1.569	2.71	1.634	1.106
1993	0.845	1.124	0.658	0.664	0.485	1.082	0.748	0.892	1.124	0.953	2.2	2.352	1.095
1994	1.437	1.44	1.594	0.738	1.857	1.158	0.445	1.088	0.673	0.995	1.638	1.118	1.05
1995	0.99	0.92	2.164	0.501	0.763	1.283	0.189	0.49	0.333	1.134	0.979	0.765	1.073
1996	1.082	0.868	0.676	1.285	1.446	1.249	2.851	1.097	0.929	0.932	1.6	0.976	1.048
1997	0.821	0.936	0.29	1.017	0.474	0.971	0.341	0.74	1.355	0.999	0.679	0.597	0.971
1998	0.984	0.789	0.493	1.296	0.537	0.978	4.03	0.6	1.038	0.829	0.258	1.021	0.871
1999	0.995	1.198	0.974	1.215	1.088	0.721	0.384	0.879	0.359	0.949	0.74	0.932	0.783
2000	1.104	0.899	1.043	1.268	1.434	0.936	0.012	1.072		1.137	0.349	0.289	1.003
2001	0.743	0.825	1.109	1.017	0.916	0.623	0	2.143	2.189	1.072	0.558	0.95	1.106
2002	0.759	0.817	0.905	0.804	0.869	0.949	0.13	1.324	0.934	1.005	0.847		1.252
2003	0.895	1.02	0.825	1.705	1.32	1.283	0.244	0.647	0.764	0.868	0.967		1.068
2004	1.16	0.809	0.807	2.084	0.95	1.178	0.201	0.387	0.291	1.163	0.737		0.977
2005	0.881	0.766	0.606	0.254	2.002	1.475	0.027	0.198	0.332	1.252	0.601		1.058
2006	1.224	0.738	0.912	0.638	0.787	1.411	0.085		0.376	1.121	0.681		1.291

YEAR	jp_ll	mxus_ll	us_rr	br_ll	usu_ll	tai_ll	ve_ps	br_bb	us_ll_atl	ven_ll	ec_ps_3perc	can_bb	eudkr_bb
1965	1	0	0	0	0	0	0	0	0	0	0	0	0
1966	1	0	0	0	0	0	0	0	0	0	0	0	0
1967	1	0	0	0	0	0	0	0	0	0	0	0	0
1968	0.65	0	0	0	0	0.35	0	0	0	0	0	0	0
1969	0.47	0	0	0	0	0.46	0	0	0	0	0	0	0.07
1970	0.46	0	0	0	0	0.43	0	0	0	0	0.04	0	0.06
1971	0.53	0	0	0	0	0.37	0	0	0	0	0.04	0	0.06
1972	0.49	0	0	0	0	0.41	0	0	0	0	0.03	0	0.06
1973	0.47	0	0	0	0	0.4	0	0	0	0	0.05	0	0.08
1974	0.4	0	0	0	0	0.48	0	0	0	0	0.05	0	0.06
1975	0.48	0	0	0	0	0.42	0	0	0	0	0.06	0	0.05
1976	0.37	0	0	0	0	0.52	0	0	0	0	0.07	0	0.04
1977	0.34	0	0	0	0	0.53	0	0	0	0	0.09	0	0.04
1978	0.35	0	0	0	0	0.52	0	0	0	0	0.1	0	0.02
1979	0.41	0	0	0	0	0.47	0	0	0	0	0.08	0	0.04
1980	0.41	0	0	0	0	0.5	0	0	0	0	0.08	0	
1981	0.44	0	0	0	0.01	0.46	0	0.01	0	0	0.08	0	0
1982	0.43	0	0	0	0	0.47	0	0.02	0	0	0.07	0	0
1983	0.38	0	0	0	0.01	0.42	0.03	0.02	0	0	0.09	0	0.04
1984	0.37	0	0	0	0.03	0.39	0.06	0.03	0	0	0.08	0	0.03
1985	0.43	0	0	0	0.03	0.39	0.04	0.02	0	0	0.06	0	0.02
1986	0.36	0	0.03	0.06	0.03	0.4	0.02	0.02	0	0	0.06	0	0.02
1987	0.33	0	0.03	0.06	0.01	0.32	0.01	0.02	0.15	0	0.05	0	0.02
1988	0.4	0	0.03	0.06	0.01	0.16	0.01	0.01	0.19	0	0.08	0	0.03
1989	0.43	0	0.04	0.04	0	0.16	0.01	0.01	0.22	0	0.05	0	0.03
1990	0.4	0	0.03	0.05	0	0.2	0.02	0.02	0.19	0	0.05	0.02	0.03
1991	0.37	0	0.03	0.05	0	0.31	0.01	0.02	0.14	0.01	0.05	0	0.02
1992	0.35	0	0.03	0.1	0	0.23	0.01	0.02	0.16	0.01	0.06	0	0.03
1993	0.28	0.02	0.03	0.09	0	0.35	0.02	0.02	0.12	0.01	0.05	0	0.01
1994	0.31	0.02	0.03	0.07	0	0.37	0.01	0.01	0.11	0.01	0.04	0	0.01
1995	0.33	0.01	0.02	0.07	0	0.32	0.01	0.02	0.13	0	0.05	0	0.02
1996	0.28	0.02	0.03	0.11	0	0.33	0.02	0.01	0.13	0.01	0.06	0	0.02
1997	0.3	0.02	0.03	0.11	0	0.31	0.01	0.01	0.14	0.01	0.04	0	0.02
1998	0.3	0.02	0.03	0.1	0	0.33	0.01	0.02	0.13	0.01	0.05	0	0.01
1999	0.27	0.01	0.02	0.13	0	0.36	0.01	0.01	0.1	0.02	0.04	0	0.01
2000	0.31	0.01	0.02	0.07	0	0.38	0.01	0.01	0.09	0.03	0.05	0	0.01
2001	0.3	0.01	0.02	0.11	0	0.34	0.01	0.01	0.09	0.03	0.05	0	0.01
2002	0.27	0.01	0.02	0.12	0	0.4	0.01	0.02	0.09	0	0.04	0	0.01
2003	0.3	0.02	0.03	0.12	0	0.37	0.01	0.01	0.07	0	0.06	0	0.02
2004	0.3	0.01	0.02	0.11	0	0.38	0.01	0.01	0.07	0	0.07	0	0.01
2005	0.3	0.02	0.03	0.15	0	0.29	0.02	0.04	0.08	0	0.05	0	0.01
2006	0.41	0.02	0.04	0.19	0	0.11	0	0.03	0.1	0	0.07	0	0.02

Table Appendix 5.2 Weighting factors (by fleet and year) used to estimate the yellowfin weighted combined index.

Table Appendix 5.3 Skipjack indices of abundance values used in the GLM to estimate a combined indexes. The indexes used included for the Eastern Atlantic stock (ATE) the baitboat fisheries from Ghana (ghn_bb), Canary Islands (can1_bb and can2_bb), Portugal (por_bb), and EC-Dakar (eudkr1_bb and eudkr2_bb) and the purse seine fisheries from EC-Dakar (eudkr_ps) and the EC on FADs (ec_ps_fad). In the case of the western stock (ATW) the fisheries were the Brazilian baitboat (br_bb), the Venezuelan purse seine (ven_ps) and the US rod and reel (us_rr).

Year ghn can1_b can2_b por_b eudkr1_b eudkr2_b ec_ps_fa eudkr_p br_b ven_p 1969 1.13 0.121 0.121 0.161 0.121 0.161 0.121 0.161 0.173 0.190 0.213 0.186 0.193 0.299 0.158 0.793 0.299 0.158 0.453 0.263 0.263 0.1263 0.121	
1969 1.13 0.121 1.61 0.019 0.213 1970 2 0.019 0.213 1.86 0.793 0.299 1.58 0.453 0.263	us_r
1.61 1970 2 0.019 0.213 1.86 1971 5 0.793 0.299 1.58 1972 1 0.453 0.263	
1970 2 0.019 0.213 1.86	
1.86 1971 5 0.793 0.299 1.58 1972 1 0.453 0.263	
1971 5 0.793 0.299 1.58 0.453 0.263	
1972 1 0.453 0.263	
1.13	
1973 8 0.196 0.219	
1.23	
1974 3 0.066 0.319	
1975 4 0.02 0.175	
1976 7 0.39 0.257	
1.20	
1977 1 0.998 0.224	
1.29	
1978 6 1.216 0.296	
1979 8 0.823 0.503	
1980 1 1.439 0.678 0.518 0.147	
1981 2.34 2.035 0.907 0.651 0.612 1.17	
2.05	
1982 5 2.105 1.497 0.62 0.61 1.58 4.08	
1983 0.265 0.133 0.376 0.098 0.62 1.58	
1984 0.883 1.557 0.273 0.363 0.65 1.17	
1985 2.471 0.605 0.311 0.26 0.93 1.41	
1986 0.405 1.149 0.38 0.696 0.94 0.85	1.52
1987 1.191 1.814 0.576 0.395 0.72 1.05	0.65
1988 1.26 3.258 0.663 0.704 0.83 0.85	1.02
1989 1.105 1.821 0.444 0.541 0.76 1.14	0.96
1990 0.811 0.264 0.79 0.765 1.34 1.03	0.95
1991 0.146 0.693 0.505 1.298 1.061 0.83 1.24	1.09
1992 0.16 0.258 0.516 0.838 0.688 0.94 0.87	0.43
1993 0.153 0.255 1.028 1.076 0.786 1.33 0.95	1.64
1994 0.676 0.475 0.966 0.853 0.608 0.82 0.64	0.8
1995 0.379 0.029 0.381 0.947 0.622 1.06 0.5	0.44
1996 1.376 1.569 2.118 0.765 0.286 0.92 1.14	0.53
1997 3.208 1.365 1.037 0.545 0.767 1.26 2	0.71
1998 4.821 0.733 1.732 0.474 0.883 0.81 1.49	1.38
1999 0.808 0.602 1.26 0.572 1.307 0.62 0.51	2.21
2000 0.901 0.208 1.198 0.803 0.861 0.56	0.52
2001 0.263 0.298 1.1 0.658 0.558 0.93 1.3	1.6
2002 0.041 0.827 1.23 0.668 0.272 0.78 0.6	1.29
2003 1.232 0.971 1.169 0.864 0.742 1.37 0.49	1.62
2004 0.605 1.05 1.148 1.008 0.825 0.97 0.51	0.83
2005 0.555 0.651 1.383 0.981 0.469 1.41 0.05	0.45
2006 0.904 2.71 1.376 0.806 0.401 1.37	0.37

				SK	KJ - ATE				SKJ - ATW		
Year	ghn_bb	can1_bb	can2_bb	por_bb	eudkr1_bb	eudkr2_bb	ec_ps_fad	eudkr_ps	br_bb	ven_ps	us_rr
1969	0.21	0.00	0.00	0.00	0.79	0.00	0.00	0.00			
1970	0.17	0.00	0.00	0.08	0.75	0.00	0.00	0.00			
1971	0.17	0.00	0.00	0.09	0.74	0.00	0.00	0.00			
1972	0.19	0.00	0.00	0.10	0.71	0.00	0.00	0.00			
1973	0.22	0.00	0.00	0.11	0.67	0.00	0.00	0.00			
1974	0.24	0.00	0.00	0.12	0.65	0.00	0.00	0.00			
1975	0.25	0.00	0.00	0.17	0.58	0.00	0.00	0.00			
1976	0.25	0.00	0.00	0.17	0.58	0.00	0.00	0.00			
1977	0.47	0.00	0.00	0.12	0.41	0.00	0.00	0.00			
1978	0.30	0.00	0.00	0.20	0.50	0.00	0.00	0.00			
1979	0.23	0.00	0.00	0.15	0.62	0.00	0.00	0.00			
1980	0.25	0.05	0.00	0.10	0.40	0.00	0.00	0.20			
1981	0.21	0.05	0.00	0.11	0.42	0.00	0.00	0.21	1.00	0.00	0.00
1982	0.35	0.04	0.00	0.09	0.35	0.00	0.00	0.17	0.56	0.44	0.00
1983	0.00	0.06	0.00	0.13	0.56	0.00	0.00	0.25	0.57	0.43	0.00
1984	0.00	0.07	0.00	0.13	0.00	0.53	0.00	0.27	0.42	0.58	0.00
1985	0.00	0.08	0.00	0.15	0.00	0.46	0.00	0.31	0.47	0.53	0.00
1986	0.00	0.08	0.00	0.15	0.00	0.46	0.00	0.31	0.38	0.14	0.48
1987	0.00	0.08	0.00	0.17	0.00	0.42	0.00	0.33	0.32	0.16	0.53
1988	0.00	0.06	0.00	0.17	0.00	0.50	0.00	0.28	0.22	0.22	0.56
1989	0.00	0.07	0.00	0.13	0.00	0.53	0.00	0.27	0.24	0.18	0.59
1990	0.00	0.26	0.00	0.11	0.00	0.42	0.00	0.21	0.29	0.24	0.48
1991	0.00	0.03	0.00	0.07	0.00	0.24	0.55	0.10	0.37	0.11	0.53
1992	0.00	0.00	0.03	0.06	0.00	0.18	0.61	0.12	0.29	0.24	0.48
1993	0.00	0.00	0.04	0.07	0.00	0.19	0.63	0.07	0.32	0.28	0.40
1994	0.00	0.00	0.03	0.06	0.00	0.15	0.61	0.15	0.26	0.21	0.53
1995	0.00	0.00	0.03	0.06	0.00	0.20	0.60	0.11	0.32	0.23	0.45
1996	0.00	0.00	0.03	0.06	0.00	0.16	0.63	0.13	0.33	0.19	0.48
1997	0.00	0.00	0.03	0.06	0.00	0.18	0.62	0.12	0.32	0.23	0.45
1998	0.00	0.00	0.03	0.06	0.00	0.21	0.62	0.09	0.38	0.21	0.42
1999	0.00	0.00	0.03	0.05	0.00	0.19	0.62	0.11	0.22	0.22	0.56
2000	0.00	0.00	0.03	0.09	0.00	0.23	0.54	0.11	0.22	0.22	0.56
2001	0.00	0.00	0.03	0.09	0.00	0.13	0.63	0.13	0.30	0.20	0.50
2002	0.00	0.00	0.03	0.09	0.00	0.18	0.61	0.09	0.33	0.19	0.48
2003	0.00	0.00	0.03	0.06	0.00	0.18	0.62	0.12	0.26	0.21	0.53
2004	0.00	0.00	0.03	0.05	0.00	0.16	0.65	0.11	0.29	0.24	0.48
2005	0.00	0.00	0.03	0.06	0.00	0.18	0.64	0.09	0.47	0.24	0.29
2006	0.00	0.00	0.04	0.07	0.00	0.18	0.57	0.14	0.38	0.00	0.63

Table Appendix 5.4 Weighting factors (by fleet and year) used to estimate the skipjack weighted combined indexes.

	Yellov	vfin	Skiniac	k - ATE	Skiniad	-k - ATW
Year	Unweighted	Weighted	Unweighted	Weighted	Unweighted	Weighted
1965	2 5708	2 5708	0 1476	0.220		
1966	1 7311	1 7311	0 1985	0.142		
1967	3 4049	3 4049	0.3608	0.582		
1968	3 2299	3 2299	0.3063	0.438		
1969	1 9136	1 9136	0 2339	0.279		
1970	1 5549	1 5549	0.2681	0.226		
1971	1 2247	1 2247	0.1230	0.102		
1972	1 3862	1 3862	0.2730	0.345		
1973	1 2904	1 2904	0.3052	0.492		
1974	1 2970	1 2970	0 4099	0.593		
1975	0.9611	0.9611	0.5716	0.752		
1976	1 0211	1 0211	0.4586	0.594		
1977	1 0334	1 0334	0 7638	0 994		
1978	0.8556	0.8556	0 7091	1.067		
1979	1 0593	1 0593	0 2645	0.227		
1980	0.5871	0.5871	0.5238	0.694		
1981	1.1711	1.1711	0.4980	0.674	1.1371	1.160
1982	1.0718	1.0718	0.7100	0.677	2.5823	2.420
1983	1 3095	1 3095	0.8498	0.956	1 0104	0.934
1984	1 1961	1 1961	1 1888	1 344	0.8831	0.918
1985	1 1660	1 1660	0 7824	0.953	1 1639	1 170
1986	1 2742	1 2742	0.8196	0.685	1.0632	1.152
1987	1.3523	1.3523	1.1653	0.667	0.7874	0.719
1988	1 4114	1 4114	0.8892	0.532	0.8940	0 929
1989	1.1496	1.1496	1.1556	0.651	0.9410	0.930
1990	1 4176	1 4176	1 0684	0.890	1 0947	1 064
1991	1.2238	1.2238	0.8047	0.387	1.0400	0.992
1992	1.1837	1.1837	1.1339	1.283	0.7074	0.636
1993	0.9902	0.9902	0 9468	1 458	1 2769	1 315
1994	1.0952	1.0952	0.9560	1.548	0.7491	0.763
1995	0.7577	0.7577	0.9832	1.097	0.6162	0.597
1996	1,1553	1.1553	1.0552	0.884	0.8227	0.733
1997	0.7201	0.7201	0.8262	0.643	1.2126	1.073
1998	0.8519	0.8519	0.8533	0.484	1.1828	1.141
1999	0.8140	0.8140	1.2205	1.255	0.8910	1.200
2000	0.6015	0.6015	1.3322	1.161	0.5497	0.532
2001	0.5274	0.5274	1.2468	0.956	1.2446	1.297
2002	0.8007	0.8007	1.1831	1.305	0.8448	0.937
2003	0.8928	0.8928	0.1476	0.220	1.0310	1.202
2004	0.7589	0.7589	0.1985	0.142	0.7431	0.769
2005	0.5288	0.5288	0.3608	0.582	0.3078	0.449
2006	0.6980	0.6980	0.3063	0.438	0.6849	0.592

Table Appendix 5.5 Estimated yellowfin and skipjack weighted and unweighted combined indexes. Refer to text for explanation of the fleets used in the GLM procedure.

Figure Appendix 5.1 Estimated combined weighted and unweighted indexes of abundances for yellowfin and the two stocks of skipjack.

Developing Demographic Priors for Yellowfin and Skipjack Tuna

Demographic priors for r for both yellowfin and skipjack tuna were obtained using methods described in McAllister *et al* (2001) whereby estimates of r are obtained by repeatedly sampling from distributions of basic life history inputs. This method operates by recasting the intrinsic rate of population increase into component parts for which we either have greater knowledge of than r or for which we can place reasonable distributions around. Prior distributions for r were obtained through Monte Carlo sampling of inputs and then numerically solving the Euler-Lotka population growth equation using methods outlined in originally in McAllister (2001) and McAllister & Carruthers (2007). The method proceeds by numerically solving for r from the Euler-Lotka equation (Lotka 1907) with the integration over ages starting at age 0:

$$1 = \int_{a=0}^{\infty} l_a m_a \exp(-a \times r) da \qquad (a1)$$

where l_a is the fraction of animals surviving from age 0 to age *a* where the fraction is set at 1 for l_0 , and m_a is the number of age 0 offspring expected to be produced by an individual of age *a* Equation (a1) can be approximated by the discrete equation below:

$$1 = \sum_{a=0}^{\infty} l_a m_a \exp(-a \times r)$$
 (a2)

Survivorship (l_a) or the fraction of the initial population surviving to age *a* can be obtained as follows:

$$l_a = l_0 \exp\left(-\sum_{i=0}^{a-1} M_i\right)$$
(a3)

Where M_i is natural mortality at age. McAllister & Carruthers (2008) make a particularly useful advancement by starting the integration (or summation if using (a2)) of equation (a1) at age 1 and setting l_1 equal to 1. What follows is a description of this method. Provided that there is no reproduction in the first year of the life ($m_0=0$) and m_a can be specified in terms of age 1 recruits, this bypasses the need to obtain estimates of larval survival and production of larval fish per spawner, making the solution of equation (a1) or (a2) far more tractable.

Estimates of the expected number of recruits produced per adult female of age a, m_a , were obtained by:

$$m_a = \widetilde{R}_S W_a G_a \tag{a4}$$

where \widetilde{R}_S is the number of age 1 recruits produced per unit of spawning potential at spawner abundance approaching zero \widetilde{R}_S), W_a is the mass per fish of age *a* in grams, and G_a is the fraction of animals of age *a* that are mature. (\widetilde{R}_S) was computed using an assumed Beverton-Holt stock recruitment relationship for both skipjack and yellowfin tuna:

$$\widetilde{R}_{S} = \frac{4h}{\widetilde{S}(1-h)} \tag{a5}$$

Where steepness (h) was obtained from a sample from the beta() distributions indicated below in Inputs. Estimates of the spawner biomass produced per single age 1 recruit (\tilde{S}) were obtained as follows:

$$\widetilde{S} = \left(\sum_{a=1}^{a_p - 1} (W_a G_a \exp(-(a-1)M_a))\right) + W_{a_p} G_{a_p} \frac{\exp(-a_p M_a)}{1 - \exp(-M_a)}$$
(a6)

Where W_a and G_a were defined as above, Ma is natural mortality at age, a_p is the age of the plus group. However, as no plus group was used for either species the right side equation (a6) was dropped and a_p equals the last age (10). It is likely more correct to include a plus group on the last age, however, given the high mortality rates for both species including a plus group likely would have little impact upon the resulting *r* values.

Inputs

Inputs into the Euler-Lotka equation take the form of a standard life table representing survivorship, or a natural mortality at age schedule, a fecundity and maturity schedule, lengths at age and weights at age derived from lengths (**Table Appendix 6.1 and Table Appendix 6.2**) (Gotelli & Ellison, 2001). Inputs into the life tables are maturity, survival, weight and reproductive output. Weights at age were computed from lengths using ICCAT length-weight conversions (skipjack: RWT = $7.480*10^{-6}(FL)^{3.2526}$ (Cayré-Laloe, 1986); yellowfin: RWT = $2.1527*10^{-5} * FL^{2.976}$ (Caveriviere, 1976)) where the lengths at age were determined from sampling from distributions of Von Bertalanffy growth equation parameters as shown below. Maturity at age for skipjack was assumed to be 50% at age 2 and 100% at age 3 based on an assumed size at first maturity of either 41 cm (Entire Atlantic: Cayré & Farrugio, 1986), or 51 cm (Southwestern Atlantic: Vilela & Castello, 1993). For yellowfin maturity was assumed to be knife-edged at age 3 (Anon 2003).

<u>1. prior distribution on steepness (*h*) was chosen to be distributed according to a beta() function with a mode of 0.9. This is based upon examination of the prior distribution for h used in the western Pacific skipjack and yellowfin tuna assessments (Hampton, 2002; Langley *et al.* 2003) but allowing a greater density towards lower values of steepness. This chosen beta(18, 4) distribution was used for both yellowfin and skipjack tuna.</u>

2. prior distributions of mortality at age The vector of mortality at age for skipjack was assumed to be constant at 0.8 for all ages (Anon. 1984) which is close to the value (0.77) estimated Vilela & Castello (1993) using the equation of Rikhter and Efanov (1976). Each mortality at age value was assumed to be distributed as a normal (u, 0.04) random variable and a single value for mortality at age was chosen from these distributions for each Monte Carlo simulation. For yellowfin tuna mortality natural mortality was assumed to be 0.8 for ages 1 and 2, and 0.6 for ages 3-10. The life tables were extended out to a maximum age of 10 with no plus group for both yellowfin and skipjack tuna.

<u>3. prior distributions on growth rate paramters.</u> For skipjack prior values of *K* and L_{inf} were chosen from von Bertalannfy *K* and L_{inf} pairs obtained from a meta-analysis (Gaertner *et al.* 2008) of skipjack growth rates. For each iteration a single pair of *K* and L_{inf} was chosen. For yellowfin tuna, an empirical bivariate normal distribution (R code: *rmvnorm* (*n*, *mean* = c(191.30, 0.47), *sigma*= matrix(c(617.4366667, -3.683830769, -3.683830769, 0.033582936), ncol=2)) was constructed from the set of 26 Von Bertalannfy *K* and L_{inf} values found in FISH-BASE. From this distribution a random set of von Bertalannfy *K* and L_{inf} pairs was chosen for each Monto Carlo run. For all samples for yellowfin t_o was set to zero.

For both species 1000 estimates of r were obtained by numerically solving for r from random combinations of h, M_i , and the von Bertalannfy growth rate parameters using the R function "nlminb". Histograms of the prior distributions are shown in **Figure Appendix 6.1** for both yellowfin and skipjack tunas with mean values equal to 0.76 and 1.17, respectively. For input into the catch-free models the empirical histogram values were input into as prior distributions for r. For the BSP and PROCEAN model a N(1.17, 0.25) distribution was used as a prior for r. While the BSP model was not applied to yellowfin tuna during this assessment, the construction of demographic priors for the species will facilitate further analyses that require or can benefit from demographic priors.

Age	Maturity	Mortality	Survival	Survivor-	length	Weight(kg) =
	(G_a)	(M_a)	(<i>exp</i> (-	ship (l_a)	from	0.00000748*
			$M_a))$		Von	length^3.2526
					Bert.	Cayré & Laloê,
					K= .294	1983
					$L_{inf}=91$	
1	0	0.8	0.449	1.000	23.180	0.2061
2	0.5	0.8	0.449	0.449	40.455	1.2611
3	1	0.8	0.449	0.202	53.330	3.0978
4	1	0.8	0.449	0.091	62.926	5.3060
5	1	0.8	0.449	0.041	70.077	7.5304
6	1	0.8	0.449	0.018	75.406	9.5578
7	1	0.8	0.449	0.008	79.378	11.2947
8	1	0.8	0.449	0.004	82.339	12.7232
9	1	0.8	0.449	0.002	84.545	13.8659
10	1	0.8	0.449	0.001	86.189	14.7624

Table Appendix 6.1. Life table analysis for skipjack tuna. Description of inputs are given in the text.

Table Appendix 6.2 Life table analysis for yellowfin tuna. Description of inputs are given in the text. Note that the Von Bertalannfy parameters for this table are from Lessa & Duarte-Neto (2004) but for the Monte-Carlo sampling are chosen from the bivariate normal distribution.

Age	$\begin{array}{c} Maturity\\ (G_a) \end{array}$	Mortality (M _a)	Survival (exp(- M _a))	Survivor- ship (l_a)	$\begin{array}{l} \textit{length from Von} \\ \textit{Bert.} t_o = 0.042, \ \textit{K} = \\ .281 \ \textit{L}_{inf} = 245 \end{array}$	Weight (kg) = 2.153*10 ⁻⁵ * FL ^{2.98} (Caveriviere, 1976)
1	0	0.8	0.449	1.000	57.66	3.74
2	0	0.8	0.449	0.449	98.05	18.18
3	1	0.6	0.549	0.247	128.97	41.09
4	1	0.6	0.549	0.135	152.64	67.86
5	1	0.6	0.549	0.074	170.77	94.76
6	1	0.6	0.549	0.041	184.65	119.57
7	1	0.6	0.549	0.022	195.28	141.24
8	1	0.6	0.549	0.012	203.41	159.48
9	1	0.6	0.549	0.007	209.64	174.46
10	1	0.6	0.549	0.004	214.41	186.55

Table Appendix 6.3 Compilation if L_{inf} and K pairs randomly chosen to obtain lengths at age obtained from a metanalysis of skipjack tuna growth (Gaertner 2008). For each Monte Carlo simulation, a single L_{inf} and K pair was chosen randomly. Rows indicated with an asterisk were not used in the simulations as they were deemed to be outliers.

Linf	K	PhiPrime	Method
62	2.08	3.903	Tagging*
66.5	1.806	3.902	Tagging*
60	1.537	3.743	Tagging*
61.3	1.25	3.672	Tagging
80	0.95	3.784	Length
65.5	0.945	3.608	Tagging
60.6	0.93	3.533	Length
73	0.82	3.64	Tagging
75.5	0.77	3.642	Tagging
60	0.75	3.431	Length
79	0.64	3.601	Tagging
85	0.62	3.651	Length
80	0.601	3.585	Tagging
76.6	0.6	3.547	Length
64.3	0.55	3.357	Tagging
102.2	0.55	3.759	Reading
77	0.52	3.489	Length
96.3	0.515	3.679	Tagging
74.8	0.515	3.46	Length
90	0.49	3.599	Length
82	0.45	3.481	Length
93.6	0.43	3.576	Reading
107	0.42	3.682	Length
94.9	0.34	3.486	Length
80	0.322	3.314	Tagging
86.7	0.307	3.363	Reading
103.6	0.302	3.511	Reading
97.26	0.251	3.376	Tagging
87.12	0.219	3.221	Reading

*Not used

Figure Appendix 6.1 Histograms of prior distributions for r for yellowfin and skipjack obtained from demographic analysis.

VPA Results. Report Files for YFT VPA Base Runs 5 and 10

Run 5. This file contains basic model inputs and results.

VPA-2BOX SUMMARY STATISTICS AND DIAGNOSTIC OUTPUT

YFT 1970-2006 RUN 5 12:48, 26 July 2008

=======================================			
Total objective functio (with constants)	n = =	-25.06 297.49	
Number of parameters (P) =	58	
Number of data points (D)=	351	
AIC : 2*objective+2P	=	710.98	
AICc: 2*objective+2P(.)=	734.42	
BIC : 2*objective+Plog(D)=	934.91	
Chi-square discrepancy	=	421.37	
Loglikelihoods (deviand	e)=	-44.11 (350.36)
effort data	=	-44.11 (350.36)
Log-posteriors	=	56.58	
catchability	=	0.00	
f-ratio	=	56.58	
natural mortality	=	0.00	
mixing coeff.	=	0.00	
Constraints	=	12.59	
terminal F	=	10.17	
stock-rec./sex ratio	=	2.42	
Out of bounds penalty	=	0.00	

TABLE 1. FISHING MORTALITY RATE FOR Yellowfin Tuna 2008

	0	1	2	3	4	5
1970	0.009	0.128	0.093	0.158	0.172	0.039
1971	0.009	0.120	0.174	0.149	0.151	0.034
1972	0.012	0.128	0.217	0.237	0.196	0.044
1973	0.007	0.115	0.186	0.273	0.261	0.058
1974	0.023	0.169	0.224	0.310	0.333	0.073
1975	0.040	0.178	0.298	0.356	0.576	0.124
1976	0.046	0.195	0.219	0.383	0.691	0.146
1977	0.035	0.212	0.232	0.370	0.669	0.139
1978	0.040	0.214	0.265	0.384	0.461	0.095
1979	0.048	0.242	0.147	0.391	0.502	0.105
1980	0.082	0.243	0.205	0.318	0.508	0.109
1981	0.122	0.273	0.233	0.364	0.810	0.183
1982	0.055	0.337	0.247	0.489	0.912	0.217
1983	0.069	0.240	0.228	0.032	1.04/	0.253
1984	0.053	0.291	0.2/1	0.272	0.310	0.071
1006	0.009	0.190	0.240	0.325	0.054	0.136
1007	0.009	0.1/0	0.144	0.371	0.350	0.100
1988	0.113	0.204	0.147	0.200	0.490	0.090
1989	0.110	0.235	0.119	0.200	0.567	0.019
1990	0.134	0.300	0.145	0.392	0.833	0.146
1991	0.129	0.293	0.156	0.384	0.750	0.129
1992	0.117	0.277	0.172	0.404	0.881	0.148
1993	0.154	0.273	0.222	0.467	0.723	0.120
1994	0.114	0.319	0.303	0.386	0.894	0.149
1995	0.125	0.303	0.205	0.347	0.820	0.143
1996	0.130	0.365	0.216	0.364	0.731	0.138
1997	0.107	0.415	0.201	0.315	0.657	0.138
1998	0.085	0.427	0.250	0.364	0.876	0.208
1999	0.135	0.556	0.303	0.394	0.690	0.179
2000	0.178	0.365	0.186	0.545	0.726	0.201
2001	0.157	0.703	0.278	0.456	0.944	0.276
2002	0.173	0.514	0.228	0.393	0.699	0.222
2003	0.177	0.530	0.192	0.462	0.688	0.245
2004	0.150	0.442	0.264	0.401	0.688	0.266
2005	0.156	0.412	0.196	0.320	0.606	0.242
2006	0.137	0.290	0.212	0.402	0.602	0.240

TABLE 2. ABUNDANCE AT THE BEGINNING OF THE YEAR [BY AREA] FOR Yellowfin Tuna 2008

	0	1	2	3	4	5	
1970	56827076.	26816375.	9071802.	5884865.	2793144.	2966660.	
1971	55106729.	25298304.	10606195.	4537515.	2758725.	2856222.	
1972	47054028.	24536455.	10086825.	4889354.	2146497.	2815868.	
1973	51632776.	20900939.	9696256.	4457788.	2116338.	2447425.	
1974	56299245.	23041404.	8369699.	4416666.	1861879.	2162395.	
1975	68100480.	24718895.	8741493.	3673188.	1778511.	1835313.	
1976	70980976.	29394694.	9299178.	3560807.	1411955.	1438214.	
1977	62688538.	30472596.	10865238.	4101046.	1332649.	1070197.	
1978	58214208.	27198591.	11080421.	4727969.	1555082.	885900.	

1979	62168958.	25120192.	9862202.	4666806.	1767372.	980099.
1980	58551869.	26614566.	8861610.	4671485.	1733012.	1071574.
1981	84969788.	24231497.	9378199.	3962195.	1865189.	1099634.
1982	72220041.	33803026.	8283350.	4079113.	1510692.	957699.
1983	93618531.	30722104.	10846076.	3551608.	1373457.	755870.
1984	81032660.	39255938.	10797621.	4739407.	1036099.	586785.
1985	92594770.	34523286.	13189634.	4519391.	1980767.	716953.
1986	80000485.	38831521.	12826872.	5693023.	1792549.	908768.
1987	80414113.	33537951.	14633132.	6093126.	2155891.	1016047.
1988	67810039.	32064870.	12287775.	6933962.	2583632.	1228496.
1989	80687185.	27200090.	11185917.	5918445.	2825847.	1715199.
1990	78485573.	32467672.	9562891.	5452106.	2376462.	1732600.
1991	75078726.	30840093.	10805767.	4540212.	2022515.	1388887.
1992	80528069.	29648712.	10334831.	5074422.	1697735.	1194334.
1993	87100552.	32186810.	10098026.	4777056.	1858795.	951405.
1994	66443625.	33544313.	11011292.	4438584.	1643773.	957994.
1995	63832247.	26626621.	10953309.	4462745.	1655519.	822078.
1996	63898099.	25308041.	8835028.	4895966.	1731451.	791223.
1997	72830487.	25206331.	7895838.	3905446.	1866539.	835581.
1998	93078749.	29412868.	7481199.	3545574.	1564866.	930587.
1999	69538085.	38407535.	8621467.	3197076.	1351838.	772262.
2000	73582135.	27295975.	9900397.	3493399.	1183460.	726455.
2001	73830946.	27667459.	8517649.	4511530.	1111479.	640601.
2002	64995513.	28351317.	6152743.	3539845.	1568726.	504214.
2003	60926366.	24573507.	7615827.	2689564.	1310971.	649440.
2004	73658093.	22937269.	6499403.	3450777.	930406.	640551.
2005	57823827.	28495271.	6626683.	2738768.	1268101.	525862.
2006	52099904.	22238924.	8484458.	2989618.	1091007.	606128.
2007		20415829.	7477540.	3766537.	1097412.	589827.

	0	1	2	3	4	5
 1970	361290.	2229482.	607301.	650369.	335068.	85575.
1971	344448.	1977021.	1287353.	474486.	293744.	72602.
1972	370595.	2052767.	1492978.	786068.	289931.	91172.
1973	243206.	1577104.	1251198.	811921.	370436.	103603.
1974	886952.	2496615.	1274896.	897957.	403301.	115146.
1975	1850686.	2801854.	1719568.	842170.	602660.	162022.
1976	2183572.	3635133.	1388487.	867883.	547868.	148267.
1977	1488116.	4057058.	1711726.	970685.	504842.	105140.
1978	1592943.	3664928.	1963323.	1155362.	441937.	60903.
1979	2028285.	3775358.	1022740.	1156845.	537482.	73775.
1980	3200008.	4016663.	1247358.	972350.	532110.	83719.
1981	6758071.	4062149.	1479983.	926044.	810154.	139639.
1982	2657563.	6800765.	1379253.	1214320.	710570.	142131.
1983	4323476.	4680819.	1680974.	1290371.	704840.	128569.
1984	2901125.	6946804.	1953147.	861417.	211065.	30274.
1985	4268983.	4165569.	2143130.	957578.	738008.	69106.
1986	3706439.	4362541.	1306129.	1351567.	586169.	68951.
1987	6280192.	4318997.	1513905.	1055188.	652139.	65881.
1988	5045170.	5018133.	1138051.	1362108.	479093.	44092.
1989	5844442.	4139343.	946698.	1212904.	945449.	121843.
1990	6840077.	5910204.	977104.	1354542.	1052048.	177816.
1991	6313402.	5500947.	1181880.	1108701.	832673.	126849.
1992	6170239.	5029419.	1236534.	1294467.	780051.	124612.
1993	8654594.	5382283.	1528458.	1371075.	745384.	81507.
1994	4983084.	6443400.	2198100.	1089902.	762615.	100493.
1995	5210909.	4889679.	1543835.	1000446.	724878.	82982.
1996	5415623.	5453178.	1306456.	1144517.	699652.	77460.
1997	5109588.	6051401.	1090160.	805058.	697640.	81796.
1998	5261746.	7237372.	1260581.	828678.	716679.	132870.
1999	6104314.	11684800.	1722161.	797909.	524019.	96085.
2000	8362333.	5878954.	1274923.	1133947.	475691.	100301.
2001	7465211.	10065910.	1576328.	1271341.	534448.	117632.
2002	7175201.	8115388.	952183.	882558.	613958.	76429.
2003	6879341.	7202107.	1008228.	764832.	507098.	107459.
2004	7118910.	5801751.	1149694.	874474.	360014.	114175.
2005	5792990.	6796869.	895413.	573610.	446518.	86079.
2006	4628314.	3926747.	1232116.	759365.	382044.	98240.

TABLE 4. SPAWNING STOCK FECUNDITY AND RECRUITMENT OF Yellowfin Tuna 2008

	spawning	recruits
year	biomass	from VPA
1970	527927.	56827076.
1971	481016.	55106729.
1972	454589.	47054028.
1973	412567.	51632776.
1974	376086.	56299245.
1975	324436.	68100480.
1976	272667.	70980976.
1977	256577.	62688538.
1978	272458.	58214208.
1979	288027.	62168958.
1980	293904.	58551869.
1981	279967.	84969788.
1982	253417.	72220041.
1983	215698.	93618531.
1984	226445.	81032660.
1985	274518.	92594770.
1986	311782.	80000485.
1987	350898.	80414113.
1988	413286.	67810039.
1989	429900.	80687185.
1990	391943.	78485573.
1991	325441.	75078726.

1992	308360.	80528069.
1993	290867.	87100552.
1994	271127.	66443625.
1995	263249.	63832247.
1996	276953.	63898099.
1997	260906.	72830487.
1998	240945.	93078749.
1999	210427.	69538085.
2000	205339.	73582135.
2001	222426.	73830946.
2002	210526.	64995513.
2003	184918.	60926366.
2004	186435.	73658093.
2005	176398.	57823827.
2006	179806.	52099904.

TABLE 5. FITS TO INDEX DATA FOR Yellowfin Tuna 2008

5.1 BRA_BB Lognormal dist. month 6 biomass Ages 0 - 4 log-likelihood = -1.51 deviance = 21.69 Chi-sq. discrepancy= 29.46

Year	Observ	ed	Predicte	Re d (C	esiduals Obs-pred)	Standard Deviation	Q Catchabil.	Untransfrmd Observed	Untransfrmd Predicted	Chi-square Discrepancy
1981	1.	614	-0.0	79	1.693	0.688	0.163E-08	1.391	0.256	17.865
1982	-0.	269	-0.0	76	-0.193	0.688	0.163E-08	0.212	0.257	0.201
1983	0.	/32	0.1	85	0.547	0.688	0.163E-08	0.5/6	0.333	0.218
1984	0.	012	0.1	85	-0.173	0.688	0.163E-08	0.280	0.333	0.187
1985	-0.	279	0.3	59	-0.638	0.688	0.163E-08	0.209	0.396	0.561
1986	-0.	279	0.3	4/	-0.626	0.688	0.163E-08	0.209	0.392	0.551
1000	0.	165	0.4	44 07	-0.381	0.000	0.163E-08	0.295	0.432	0.351
1000	0.	105	0.3	65	-0.189	0.000	0.163E-08	0.327	0.364	0.178
1990	0.	807	0.2	21	0.105	0.000	0.163E-08	0.299	0.301	0.199
1991	-0	390	0.1	45	-0.635	0.000	0.163E-08	0.020	0.312	0.550
1002	-0.	062	0.2	20	-0.055	0.000	0.163E-08	0.107	0.334	0.550
1993	0.	234	-0.0	93	0.000	0.000	0.163E-08	0.255	0.312	0.107
1994	-0	278	0.0	31	-0.410	0.688	0.163E-08	0.550	0.252	0.015
1995	-0.	983	0.1	72	-1 155	0.688	0.163E-08	0.210	0.329	0.374
1996	0.	044	-0.0	02	0 045	0.688	0.163E-08	0.289	0.325	0.051
1997	0.	421	-0.0	13	0.533	0.688	0.163E-08	0.209	0.270	0.050
1998	0.	154	-0.2	47	0 401	0.688	0.163E-08	0 323	0.216	0.052
1000	_0	006 006	-0.2	56	-0.650	0.000	0.1632-08	0.525	0.210	0.052
2001	-0.	900	-0.2	10	1 210	0.688	0.163E-08	0.112	0.214	4 475
2001	0.	049	-0.3	62	0 411	0.688	0.163E-08	0.001	0.203	0.060
2002	-0	151	-0.3	38	0 187	0.688	0.163E-08	0 238	0.197	0.000
2003	-1	118	-0.4	44	-0.674	0.688	0.163E-08	0 091	0.178	0.589
2001	-0	985	-0.4	0.8	-0.577	0.688	0.163E-08	0 103	0.184	0.505
2006	0	305	-0.1	74	0 479	0.688	0.163E-08	0 376	0 233	0 124
2000	۰.	505	0.1	· -	0.1/2	0.000	0.1002 00	0.570	0.255	0.1101
Selecti	vities	bv age								
Year	0	1	2	3	4					
1981	0.007	0.621	1.000	0.196	0.011					
1982	0.007	0.621	1.000	0.196	0.011					
1983	0.007	0.621	1.000	0.196	0.011					
1984	0.007	0.621	1.000	0.196	0.011					
1985	0.007	0.621	1.000	0.196	0.011					
1986	0.007	0.621	1.000	0.196	0.011					
1987	0.007	0.621	1.000	0.196	0.011					
1988	0.007	0.621	1.000	0.196	0.011					
1989	0.007	0.621	1.000	0.196	0.011					
1990	0.007	0.621	1.000	0.196	0.011					
1991	0.007	0.621	1.000	0.196	0.011					
1992	0.007	0.621	1.000	0.196	0.011					
1993	0.007	0.621	1.000	0.196	0.011					
1994	0.007	0.621	1.000	0.196	0.011					
1995	0.007	0.621	1.000	0.196	0.011					
1996	0.007	0.621	1.000	0.196	0.011					
1997	0.007	0.621	1.000	0.196	0.011					
1998	0.007	0.621	1.000	0.196	0.011					
1999	0.007	0.621	1.000	0.196	0.011					
2001	0.007	0.621	1.000	0.196	0.011					
2002	0.007	0.621	1.000	0.196	0.011					
2003	0.007	0.621	1.000	0.196	0.011					
2004	0.007	0.621	1.000	0.196	0.011					
2005	0.007	0.621	1.000	0.196	0.011					
2006	0.007	0.621	1.000	0.196	0.011					
5.2 BRA	_LL									
Lognorm	al dist									
month	6 numbe	rs								
Ages 0	- 5									
log-lik	elihood	=		4.15						
devianc	e.	=		7.39						
Chi-sq.	discre	pancy=		3.63						

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy

1986	0.178	0.310	-0.132	0.688	0.156E-07	0.177	0.201	0.157
1987	0.416	0.348	0.068	0.688	0.156E-07	0.224	0.209	0.040
1988	0.645	0.330	0.315	0.688	0.156E-07	0.282	0.206	0.011
1989	0.571	0.227	0.344	0.688	0.156E-07	0.262	0.185	0.021
1990	0.752	0.159	0.592	0.688	0.156E-07	0.313	0.173	0.301
1991	0.177	0.110	0.067	0.688	0.156E-07	0.176	0.165	0.040
1992	-0.300	0.104	-0.405	0.688	0.156E-07	0.109	0.164	0.370
1993	-1.013	0.102	-1.115	0.688	0.156E-07	0.054	0.164	0.906
1994	-0.468	0.079	-0.548	0.688	0.156E-07	0.093	0.160	0.488
1995	-0.661	0.030	-0.690	0.688	0.156E-07	0.076	0.152	0.603
1996	0.299	-0.024	0.323	0.688	0.156E-07	0.199	0.144	0.013
1997	0.085	-0.100	0.185	0.688	0.156E-07	0.161	0.134	0.004
1998	0.327	-0.097	0.424	0.688	0.156E-07	0.205	0.134	0.070
1999	0.104	-0.065	0.169	0.688	0.156E-07	0.164	0.139	0.007
2000	0.008	-0.095	0.103	0.688	0.156E-07	0.149	0.134	0.026
2001	-0.086	-0.123	0.037	0.688	0.156E-07	0.136	0.131	0.054
2002	-0.573	-0.215	-0.358	0.688	0.156E-07	0.083	0.119	0.332
2003	-0.043	-0.297	0.254	0.688	0.156E-07	0.142	0.110	0.000
2004	0.020	-0.282	0.302	0.688	0.156E-07	0.151	0.112	0.007
2005	-0.415	-0.251	-0.164	0.688	0.156E-07	0.098	0.115	0.180
2006	-0.022	-0.250	0.228	0.688	0.156E-07	0.145	0.115	0.000

Sel	ectivities	bv	a
001	COCTATOTOD	~ 2	~ ~ ;

Selecti	vities	by age				
Year	0	1	2	3	4	5
1986	0.018	0.172	0.407	1.000	0.624	0.237
1987	0.018	0.172	0.407	1.000	0.624	0.237
1988	0.018	0.172	0.407	1.000	0.624	0.237
1989	0.018	0.172	0.407	1.000	0.624	0.237
1990	0.018	0.172	0.407	1.000	0.624	0.237
1991	0.018	0.172	0.407	1.000	0.624	0.237
1992	0.018	0.172	0.407	1.000	0.624	0.237
1993	0.018	0.172	0.407	1.000	0.624	0.237
1994	0.018	0.172	0.407	1.000	0.624	0.237
1995	0.018	0.172	0.407	1.000	0.624	0.237
1996	0.018	0.172	0.407	1.000	0.624	0.237
1997	0.018	0.172	0.407	1.000	0.624	0.237
1998	0.018	0.172	0.407	1.000	0.624	0.237
1999	0.018	0.172	0.407	1.000	0.624	0.237
2000	0.018	0.172	0.407	1.000	0.624	0.237
2001	0.018	0.172	0.407	1.000	0.624	0.237
2002	0.018	0.172	0.407	1.000	0.624	0.237
2003	0.018	0.172	0.407	1.000	0.624	0.237
2004	0.018	0.172	0.407	1.000	0.624	0.237
2005	0.018	0.172	0.407	1.000	0.624	0.237
2006	0.018	0.172	0.407	1.000	0.624	0.237

5.3 JPN_LL		
Lognormal dist. month 6 numbers Ages 0 - 5		
log-likelihood	=	9.12
deviance	=	9.39
Chi-sq. discrepar	ncA=	6.80

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1970	0.526	0.399	0.127	0.688	0.153E-06	1.364	1.201	0.018
1971	0.283	0.299	-0.016	0.688	0.153E-06	1.069	1.087	0.083
1972	0.643	0.231	0.411	0.688	0.153E-06	1.533	1.016	0.060
1973	0.329	0.153	0.176	0.688	0.153E-06	1.119	0.939	0.006
1974	0.566	0.058	0.508	0.688	0.153E-06	1.420	0.854	0.160
1975	0.250	-0.085	0.334	0.688	0.153E-06	1.034	0.740	0.017
1976	0.288	-0.138	0.426	0.688	0.153E-06	1.075	0.702	0.071
1977	0.103	-0.036	0.139	0.688	0.153E-06	0.893	0.777	0.014
1978	0.452	0.065	0.387	0.688	0.153E-06	1.266	0.860	0.043
1979	0.768	0.059	0.709	0.688	0.153E-06	1.737	0.855	0.600
1980	0.190	0.042	0.148	0.688	0.153E-06	0.974	0.840	0.012
1981	0.426	-0.058	0.485	0.688	0.153E-06	1.234	0.760	0.130
1982	0.278	-0.157	0.434	0.688	0.153E-06	1.063	0.689	0.079
1983	0.308	-0.198	0.506	0.688	0.153E-06	1.096	0.661	0.157
1984	0.361	0.039	0.322	0.688	0.153E-06	1.156	0.838	0.013
1985	-0.115	0.138	-0.253	0.688	0.153E-06	0.718	0.925	0.247
1986	0.167	0.246	-0.079	0.688	0.153E-06	0.952	1.030	0.121
1987	0.207	0.382	-0.175	0.688	0.153E-06	0.991	1.180	0.188
1988	0.246	0.449	-0.203	0.688	0.153E-06	1.030	1.262	0.209
1989	-0.032	0.338	-0.370	0.688	0.153E-06	0.780	1.130	0.342
1990	0.277	0.175	0.102	0.688	0.153E-06	1.063	0.960	0.026
1991	-0.011	0.087	-0.098	0.688	0.153E-06	0.797	0.879	0.133
1992	0.034	0.080	-0.046	0.688	0.153E-06	0.833	0.873	0.100
1993	-0.608	0.039	-0.647	0.688	0.153E-06	0.439	0.838	0.568
1994	-0.076	0.003	-0.079	0.688	0.153E-06	0.747	0.808	0.121
1995	-0.500	0.030	-0.530	0.688	0.153E-06	0.489	0.830	0.473
1996	-0.430	0.025	-0.455	0.688	0.153E-06	0.524	0.826	0.411
1997	-0.636	-0.088	-0.548	0.688	0.153E-06	0.426	0.738	0.488
1998	-0.470	-0.220	-0.250	0.688	0.153E-06	0.503	0.646	0.245
1999	-0.440	-0.257	-0.183	0.688	0.153E-06	0.519	0.623	0.194
2000	-0.296	-0.213	-0.083	0.688	0.153E-06	0.599	0.651	0.124
2001	-0.708	-0.145	-0.562	0.688	0.153E-06	0.397	0.697	0.500
2002	-0.708	-0.274	-0.434	0.688	0.153E-06	0.397	0.612	0.394
2003	-0.533	-0.391	-0.142	0.688	0.153E-06	0.473	0.545	0.164
2004	-0.298	-0.362	0.065	0.688	0.153E-06	0.598	0.561	0.041
2005	-0.614	-0.394	-0.219	0.688	0.153E-06	0.436	0.543	0.221
2006	-0.226	-0.321	0.095	0.688	0.153E-06	0.643	0.585	0.029
Selec	tivities by a	ge						

Dercourt	10100	21 age				
Year	0	1	2	3	4	5

 1970
 0.000
 0.003
 0.231
 1.000
 0.964
 0.212

1971	0.000	0.003	0.231	1.000	0.964	0.212
1972	0.000	0.003	0.231	1.000	0.964	0.212
1973	0.000	0.003	0.231	1.000	0.964	0.212
1974	0.000	0.003	0.231	1.000	0.964	0.212
1975	0.000	0.003	0.231	1.000	0.964	0.212
1976	0.000	0.003	0.231	1.000	0.964	0.212
1977	0.000	0.003	0.231	1.000	0.964	0.212
1978	0.000	0.003	0.231	1.000	0.964	0.212
1979	0.000	0.003	0.231	1.000	0.964	0.212
1980	0.000	0.003	0.231	1.000	0.964	0.212
1981	0.000	0.003	0.231	1.000	0.964	0.212
1982	0.000	0.003	0.231	1.000	0.964	0.212
1983	0.000	0.003	0.231	1.000	0.964	0.212
1984	0.000	0.003	0.231	1.000	0.964	0.212
1985	0.000	0.003	0.231	1.000	0.964	0.212
1986	0.000	0.003	0.231	1.000	0.964	0.212
1987	0.000	0.003	0.231	1.000	0.964	0.212
1988	0.000	0.003	0.231	1.000	0.964	0.212
1989	0.000	0.003	0.231	1.000	0.964	0.212
1990	0.000	0.003	0.231	1.000	0.964	0.212
1991	0.000	0.003	0.231	1.000	0.964	0.212
1992	0.000	0.003	0.231	1.000	0.964	0.212
1993	0.000	0.003	0.231	1.000	0.964	0.212
1994	0.000	0.003	0.231	1.000	0.964	0.212
1995	0.000	0.003	0.231	1.000	0.964	0.212
1996	0.000	0.003	0.231	1.000	0.964	0.212
1997	0.000	0.003	0.231	1.000	0.964	0.212
1998	0.000	0.003	0.231	1.000	0.964	0.212
1999	0.000	0.003	0.231	1.000	0.964	0.212
2000	0.000	0.003	0.231	1.000	0.964	0.212
2001	0.000	0.003	0.231	1.000	0.964	0.212
2002	0.000	0.003	0.231	1.000	0.964	0.212
2003	0.000	0.003	0.231	1.000	0.964	0.212
2004	0.000	0.003	0.231	1.000	0.964	0.212
2005	0.000	0.003	0.231	1.000	0.964	0.212
2006	0.000	0.003	0.231	1.000	0.964	0.212

5.4 USMEX_LL Lognormal dist. month 6 numbers Ages 0 - 5 log-likelihood = 4.66 deviance = 1.13 Chi-sq. discrepancy= 1.56

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1993	0.205	0.216	-0.011	0.688	0.213E-06	1.151	1.164	0.080
1994	0.528	0.194	0.334	0.688	0.213E-06	1.589	1.138	0.017
1995	0.077	0.222	-0.145	0.688	0.213E-06	1.012	1.170	0.167
1996	-0.043	0.200	-0.242	0.688	0.213E-06	0.898	1.144	0.239
1997	0.042	0.072	-0.030	0.688	0.213E-06	0.977	1.007	0.091
1998	-0.039	-0.050	0.011	0.688	0.213E-06	0.901	0.891	0.068
1999	0.382	-0.071	0.452	0.688	0.213E-06	1.373	0.873	0.095
2000	0.001	-0.007	0.008	0.688	0.213E-06	0.938	0.930	0.069
2001	-0.232	0.054	-0.286	0.688	0.213E-06	0.743	0.989	0.273
2002	-0.175	-0.110	-0.065	0.688	0.213E-06	0.787	0.840	0.112
2003	-0.025	-0.208	0.183	0.688	0.213E-06	0.914	0.761	0.005
2004	-0.195	-0.174	-0.021	0.688	0.213E-06	0.771	0.787	0.085
2005	-0.285	-0.215	-0.070	0.688	0.213E-06	0.705	0.756	0.115
2006	-0.240	-0.123	-0.118	0.688	0.213E-06	0.737	0.829	0.147

Selecti	vities.	by age				
Year	0	1	2	3	4	5
1993	0.000	0.006	0.281	1.000	0.656	0.052
1994	0.000	0.006	0.281	1.000	0.656	0.052
1995	0.000	0.006	0.281	1.000	0.656	0.052
1996	0.000	0.006	0.281	1.000	0.656	0.052
1997	0.000	0.006	0.281	1.000	0.656	0.052
1998	0.000	0.006	0.281	1.000	0.656	0.052
1999	0.000	0.006	0.281	1.000	0.656	0.052
2000	0.000	0.006	0.281	1.000	0.656	0.052
2001	0.000	0.006	0.281	1.000	0.656	0.052
2002	0.000	0.006	0.281	1.000	0.656	0.052
2003	0.000	0.006	0.281	1.000	0.656	0.052
2004	0.000	0.006	0.281	1.000	0.656	0.052
2005	0.000	0.006	0.281	1.000	0.656	0.052
2006	0.000	0.006	0.281	1.000	0.656	0.052

------5.5 US_RR Lognormal dist. month 6 numbers Ages 0 - 5 log-likelihood = 0.24 deviance = 15.20 Chi-sq. discrepancy= 7.28

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1986	0.789	0.349	0.441	0.688	0.104E-06	1.939	1.248	0.084
1987	0.046	0.429	-0.383	0.688	0.104E-06	0.922	1.352	0.352
1988	-0.456	0.300	-0.757	0.688	0.104E-06	0.558	1.189	0.654
1989	-0.437	0.197	-0.634	0.688	0.104E-06	0.569	1.073	0.558
1990	-0.911	0.086	-0.998	0.688	0.104E-06	0.354	0.960	0.829

1991	-0.437	0.151	-0.587	0.688	0.104E-06	0.569	1.024	0.520
1992	-0.820	0.109	-0.929	0.688	0.104E-06	0.388	0.982	0.781
1993	0.003	0.085	-0.082	0.688	0.104E-06	0.883	0.959	0.123
1994	0.665	0.119	0.546	0.688	0.104E-06	1.712	0.991	0.217
1995	0.490	0.113	0.377	0.688	0.104E-06	1.438	0.986	0.037
1996	-0.717	-0.062	-0.655	0.688	0.104E-06	0.430	0.828	0.575
1997	-0.822	-0.156	-0.666	0.688	0.104E-06	0.387	0.753	0.583
1998	-0.121	-0.191	0.070	0.688	0.104E-06	0.780	0.727	0.039
1999	0.627	-0.071	0.699	0.688	0.104E-06	1.649	0.820	0.568
2000	0.489	0.023	0.466	0.688	0.104E-06	1.436	0.901	0.110
2001	0.556	-0.139	0.695	0.688	0.104E-06	1.536	0.766	0.558
2002	0.168	-0.340	0.508	0.688	0.104E-06	1.042	0.627	0.160
2003	0.283	-0.224	0.507	0.688	0.104E-06	1.169	0.704	0.159
2004	0.156	-0.359	0.515	0.688	0.104E-06	1.029	0.615	0.169
2005	0.063	-0.279	0.342	0.688	0.104E-06	0.938	0.666	0.020
2006	0.383	-0.140	0.523	0.688	0.104E-06	1.291	0.765	0.181
Select	ivities by age							
Year	0 1	2 3	4 5					
				_				

1986	0.000	0.098	1.000	0.188	0.080	0.027
1987	0.000	0.098	1.000	0.188	0.080	0.027
1988	0.000	0.098	1.000	0.188	0.080	0.027
1989	0.000	0.098	1.000	0.188	0.080	0.027
1990	0.000	0.098	1.000	0.188	0.080	0.027
1991	0.000	0.098	1.000	0.188	0.080	0.027
1992	0.000	0.098	1.000	0.188	0.080	0.027
1993	0.000	0.098	1.000	0.188	0.080	0.027
1994	0.000	0.098	1.000	0.188	0.080	0.027
1995	0.000	0.098	1.000	0.188	0.080	0.027
1996	0.000	0.098	1.000	0.188	0.080	0.027
1997	0.000	0.098	1.000	0.188	0.080	0.027
1998	0.000	0.098	1.000	0.188	0.080	0.027
1999	0.000	0.098	1.000	0.188	0.080	0.027
2000	0.000	0.098	1.000	0.188	0.080	0.027
2001	0.000	0.098	1.000	0.188	0.080	0.027
2002	0.000	0.098	1.000	0.188	0.080	0.027
2003	0.000	0.098	1.000	0.188	0.080	0.027
2004	0.000	0.098	1.000	0.188	0.080	0.027
2005	0.000	0.098	1.000	0.188	0.080	0.027
2006	0.000	0.098	1.000	0.188	0.080	0.027

5.6 US_PLL ATL		
Lognormal dist.		
month 6 numbers	3	
Ages 0 - 5		
log-likelihood	=	6.66
deviance	=	1.61
Chi-sq. discrepa	ancy=	2.04
		F
		-

Year	Observed	Predicted	Residuals (Obs-pred)	Standard Deviation	Q Catchabil.	Untransfrmd Observed	Untransfrmd Predicted	Chi-square Discrepancy
1987	0.587	0.446	0.140	0.688	0.200E-06	1.696	1.474	0.014
1988	0.652	0.479	0.174	0.688	0.200E-06	1.811	1.523	0.006
1989	0.588	0.351	0.238	0.688	0.200E-06	1.699	1.339	0.000
1990	0.388	0.200	0.188	0.688	0.200E-06	1.391	1.152	0.004
1991	0.140	0.128	0.012	0.688	0.200E-06	1.085	1.072	0.067
1992	0.210	0.143	0.067	0.688	0.200E-06	1.164	1.088	0.040
1993	-0.279	0.090	-0.369	0.688	0.200E-06	0.713	1.032	0.341
1994	-0.125	0.072	-0.197	0.688	0.200E-06	0.832	1.014	0.205
1995	-0.040	0.100	-0.141	0.688	0.200E-06	0.906	1.043	0.163
1996	-0.298	0.078	-0.376	0.688	0.200E-06	0.700	1.020	0.346
1997	-0.191	-0.059	-0.131	0.688	0.200E-06	0.780	0.889	0.156
1998	-0.316	-0.177	-0.139	0.688	0.200E-06	0.687	0.790	0.162
1999	-0.178	-0.199	0.020	0.688	0.200E-06	0.789	0.773	0.063
2000	-0.091	-0.131	0.040	0.688	0.200E-06	0.861	0.827	0.053
2001	-0.218	-0.059	-0.160	0.688	0.200E-06	0.758	0.889	0.177
2002	-0.293	-0.238	-0.055	0.688	0.200E-06	0.703	0.743	0.106
2003 2004	-0.423 -0.063	-0.340 -0.291	-0.082 0.228	0.688 0.688	0.200E-06 0.200E-06	0.618 0.886	0.671 0.705	0.123
2005 2006	-0.013 -0.036	-0.345 -0.248	0.332 0.211	0.688 0.688	0.200E-06 0.200E-06	0.931 0.910	0.668 0.736	0.016 0.001

Selecti	vities	by age				
Year	0	1	2	3	4	5
1987	0.000	0.006	0.267	1.000	0.477	0.026
1988	0.000	0.006	0.267	1.000	0.477	0.026
1989	0.000	0.006	0.267	1.000	0.477	0.026
1990	0.000	0.006	0.267	1.000	0.477	0.026
1991	0.000	0.006	0.267	1.000	0.477	0.026
1992	0.000	0.006	0.267	1.000	0.477	0.026
1993	0.000	0.006	0.267	1.000	0.477	0.026
1994	0.000	0.006	0.267	1.000	0.477	0.026
1995	0.000	0.006	0.267	1.000	0.477	0.026
1996	0.000	0.006	0.267	1.000	0.477	0.026
1997	0.000	0.006	0.267	1.000	0.477	0.026
1998	0.000	0.006	0.267	1.000	0.477	0.026
1999	0.000	0.006	0.267	1.000	0.477	0.026
2000	0.000	0.006	0.267	1.000	0.477	0.026
2001	0.000	0.006	0.267	1.000	0.477	0.026
2002	0.000	0.006	0.267	1.000	0.477	0.026
2003	0.000	0.006	0.267	1.000	0.477	0.026
2004	0.000	0.006	0.267	1.000	0.477	0.026
2005	0.000	0.006	0.267	1.000	0.477	0.026
2006	0.000	0.006	0.267	1.000	0.477	0.026

880

5.7 VE	N_LL										
Lognor	mal dist		-								
Ages	0 - 5										
log-li	kelihood	1 =	=	2.19							
devian	ce	-	=	3.83							
Chi-sq	. discre	pancy	=	3.45							
				F	Residuals	St	andard	0	Untransfrmd	Untransfrmd	Chi-square
Year	Observ	red	Predicte	d (Obs-pred) De	eviation	Catchabil.	Observed	Predicted	Discrepancy
1991	0.	132	0.1	50	-0.01	7	0.688	0.206E-06	1.045	1.063	0.083
1992	0.	218	0.1	38	0.08	0	0.688	0.206E-06	1.138	1.051	0.035
1993	_0.	279	0.1	61	-0.49	9	0.688	0.206E-06	1.0/0	1.018	0.148
1995	-0.	277	0.0	70	-0.34	6	0.688	0.206E-06	0.694	0.981	0.322
1996	-0.	011	0.0	86	-0.09	7	0.688	0.206E-06	0.905	0.997	0.133
1997	-0.	604	-0.0	16	-0.58	8	0.688	0.206E-06	0.500	0.901	0.521
1998	-0.	051	-0.1	38	0.08	7	0.688	0.206E-06	0.870	0.797	0.032
1999	-0.	075	-0.1	78	0.10	3	0.688	0.206E-06	0.849	0.766	0.026
2000	-0.	3/5	-0.1	/9	-0.19	6 4	0.688	0.206E-06	0.629	0.765	0.204
2001	υ.	010	-0.0	55	0.91	-	0.000	0.2008-00	2.007	0.025	1.51/
Select	ivities	by age	2								
Year	0	1	2	3	4	5					
							-				
1991	0.000	0.018	5 0.132	0.906	5 1.000	0.322	2				
1992	0.000	0.018	S 0.132	0.906	5 1.000	0.322	2				
1994	0.000	0.018	3 0.132	0.906	5 1.000	0.322	2				
1995	0.000	0.018	3 0.132	0.906	5 1.000	0.322	2				
1996	0.000	0.018	3 0.132	0.906	5 1.000	0.322	2				
1997	0.000	0.018	3 0.132	0.906	5 1.000	0.322	2				
1998	0.000	0.018	3 0.132	0.906	5 1.000	0.322	2				
1999	0.000	0.018	3 0.132	0.906	5 1.000	0.322	2				
2000	0.000	0.010	5 U.132	0.906	1 000	0.344	2				
2001	0.000	0.010	5 0.132	0.900	1.000	0.322	2				
			-								
5.8 VE	N_PS										
Lognor	mal dist		-								
month	ь bioma	ISS									
log_li	u - 4 kelihood		=	2 60							
devian	ce		=	11.97							
Chi-sq	. discre	pancy	=	8.72							
	Olere		Decaddar	- F	Residuals	, St	andard	Q	Untransfrmd	Untransfrmd	Chi-square
iear	upserv	νeα 	Prealcte	a (ops-pred) De 	eviation	catenabil.	opserved	Predicted	Discrepancy
1983	0.	863	0.0	03	0.86	0	0.688	0.222E-07	13.589	5.750	1.233

1983	0.863	0.003	0.860	0.688	0.222E-07	13.589	5.750	1.233
1984	0.050	0.144	-0.094	0.688	0.222E-07	6.027	6.618	0.131
1985	0.573	0.269	0.304	0.688	0.222E-07	10.170	7.505	0.008
1986	0.042	0.321	-0.279	0.688	0.222E-07	5.977	7.901	0.268
1987	-0.226	0.421	-0.646	0.688	0.222E-07	4.574	8.731	0.568
1988	0.095	0.395	-0.300	0.688	0.222E-07	6.304	8.511	0.285
1989	0.868	0.312	0.556	0.688	0.222E-07	13.656	7.831	0.233
1990	0.200	0.187	0.013	0.688	0.222E-07	7.002	6.915	0.067
1991	0.221	0.169	0.052	0.688	0.222E-07	7.151	6.790	0.047
1992	-0.175	0.109	-0.284	0.688	0.222E-07	4.812	6.395	0.272
1993	-0.040	-0.037	-0.002	0.688	0.222E-07	5.511	5.523	0.075
1994	0.159	0.071	0.088	0.688	0.222E-07	6.720	6.156	0.032
1995	-0.639	0.113	-0.752	0.688	0.222E-07	3.025	6.416	0.650
1996	0.167	0.045	0.122	0.688	0.222E-07	6.777	5.998	0.019
1997	-0.227	-0.103	-0.124	0.688	0.222E-07	4.569	5.173	0.151
1998	-0.437	-0.227	-0.209	0.688	0.222E-07	3.704	4.567	0.214
1999	-0.054	-0.288	0.235	0.688	0.222E-07	5.434	4.297	0.000
2000	0.144	-0.174	0.318	0.688	0.222E-07	6.624	4.818	0.012
2001	0.837	-0.215	1.052	0.688	0.222E-07	13.243	4.623	2.621
2002	0.356	-0.297	0.653	0.688	0.222E-07	8.181	4.259	0.439
2003	-0.360	-0.405	0.045	0.688	0.222E-07	3.999	3.822	0.050
2004	-0.874	-0.405	-0.469	0.688	0.222E-07	2.393	3.824	0.423
2005	-1.543	-0.405	-1.138	0.688	0.222E-07	1.226	3.824	0.921

Selecti	vities.	by age			
Year	0	1	2	3	4
1983	0.014	0.622	0.865	1.000	0.204
1984	0.014	0.622	0.865	1.000	0.204
1985	0.014	0.622	0.865	1.000	0.204
1986	0.014	0.622	0.865	1.000	0.204
1987	0.014	0.622	0.865	1.000	0.204
1988	0.014	0.622	0.865	1.000	0.204
1989	0.014	0.622	0.865	1.000	0.204
1990	0.014	0.622	0.865	1.000	0.204
1991	0.014	0.622	0.865	1.000	0.204
1992	0.014	0.622	0.865	1.000	0.204
1993	0.014	0.622	0.865	1.000	0.204
1994	0.014	0.622	0.865	1.000	0.204
1995	0.014	0.622	0.865	1.000	0.204
1996	0.014	0.622	0.865	1.000	0.204
1997	0.014	0.622	0.865	1.000	0.204
1998	0.014	0.622	0.865	1.000	0.204
1999	0.014	0.622	0.865	1.000	0.204
2000	0.014	0.622	0.865	1.000	0.204
2001	0.014	0.622	0.865	1.000	0.204
2002	0.014	0.622	0.865	1.000	0.204
2003	0.014	0.622	0.865	1.000	0.204
2004	0.014	0.622	0.865	1.000	0.204
2005	0.014	0.622	0.865	1.000	0.204

5.9 EUR	-FAD-PS										
Lognorm	al dist. 6 biomas										
Ages 0 log-lik	- 1 elihood	=		4.80							
devianc Chi-sq.	e discrep	= ancy=		2.35 1.90							
Year	Observe	ed .	Predicte	F d (Residuals (Obs-pred	Sta) Dev	ndard viation	Q Catchabil.	Untransfrmd Observed	Untransfrmd Predicted	Chi-square Discrepancy
1991 1992	0.0	54 80	0.1	.54	-0.10) 3	0.688	0.173E-07 0.173E-07	1.960	2.166	0.135
1993 1994	0.0	65 02	0.1	.43	-0.07	3	0.688	0.173E-07 0.173E-07	1.980	2.141 2.125	0.120
1995 1996	0.1	.61 129	0.0	08	0.15	3	0.688	0.173E-07 0.173E-07	2.180	1.871	0.011
1997 1998	-0.1	.30	0.0	40	-0.17	5	0.688	0.173E-07 0.173E-07	1.630	1.933	0.185
1999	0.0	34 180	0.0	122	0.01	- 1 7	0.688	0.173E-07 0.173E-07	1.920	1.898	0.067
2001	-0.0	14	-0.1	.35	0.12	L 4	0.688	0.173E-07 0.173E-07	1.830	1.622	0.020
2003	0.1	.61 97	-0.2	28	0.37	3	0.688	0.173E-07 0.173E-07	2.180	1.494	0.038
2005	0.2	10 .24	-0.1	.01	0.31	- 1 3	0.688	0.173E-07 0.173E-07	2.290	1.677	0.010
Selecti Year	vities b	y age 1	2								
 1991	 0.788	1.000									
1992 1993	0.788 0.788	1.000									
1994 1995	0.788 0.788	1.000									
1996 1997	0.788 0.788	1.000									
1998 1999	0.788 0.788	1.000									
2000 2001	0.788 0.788	1.000									
2002 2003	0.788 0.788	1.000									
2004 2005	0.788 0.788	1.000									
2006	0.788	1.000									
5.10 EU	R-PS 3%										
Lognorm month	al dist. 6 biomas	IS									
Ages 0 log-lik	- 5 elihood	=		3.47							
devianc Chi-sq.	e discrep	= ancy=		0.53 0.93							
Year	Observe	d	Predicte	H d (Residuals (Obs-pred	Sta) Dev	ndard Viation	Q Catchabil.	Untransfrmd Observed	Untransfrmd Predicted	Chi-square Discrepancy
1970	0.1	.01	0.2	90	-0.18	3	0.688	0.187E-07	5.061	6.111	0.198
1971	-0.0	157 147	0.2	41	-0.09	5 4	0.688	0.187E-07 0.187E-07	4.318 4.795	5.672	0.263
1974	-0.0	138	-0.0	33	-0.00	5 4	0.688	0.187E-07 0.187E-07	4.833	4.894 4.424	0.080
1976	0.0	126	-0.2	138	0.26	1	0.688	0.187E-07	4.693	3.604	0.001
1978	-0.0	186	-0.0	80	-0.00	7 1	0.688	0.187E-07 0.187E-07	4.010 4.195 4.171	4.223	0.000
Selecti Year	vities b 0	y age 1	2	3	4	5	0.000	0.10/11 07	1.1/1	1.511	0.095
 1970	0.040	0.273	0.422	0.632	2 1.000	0.227					
1971 1972	0.040 0.040	0.273	0.422	0.632	2 1.000 2 1.000	0.227 0.227					
1973 1974	0.040 0.040	0.273	0.422	0.632	2 1.000 2 1.000	0.227 0.227					
1975 1976	0.040 0.040	0.273	0.422	0.632	2 1.000 2 1.000	0.227 0.227					
1977 1978	0.040 0.040	0.273	0.422	0.632	2 1.000 2 1.000	0.227 0.227					
1979	0.040	0.273	0.422	0.632	2 1.000	0.227					
5.11 EU											
Lognorm	al dist.										
month Ages 0	6 biomas - 4	s									
log-lik devianc	elihood	=		3.24							
	e			20.11							
Chi-sq.	discrep	ancy=		12.29				c			

Untransfrmd Untransfrmd Chi-square

Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1970	-0.200	0.070	0.271	0.688	0.477E-08	0.644	0.844	0.261
1971	-0.213	0.051	-0.264	0.688	0.477E-08	0.636	0.828	0.256
1972	-0.207	0.053	-0.260	0.688	0.477E-08	0.640	0.830	0.253
1973	-0.290	-0.008	-0.282	0.688	0.477E-08	0.589	0.781	0.270
1974	0.162	-0.068	3 0.229	0.688	0.477E-08	0.925	0.735	0.000
1975	-0.664	-0.057	-0.608	0.688	0.477E-08	0.405	0.744	0.536
1976	-0.563	0.004	-0.567	0.688	0.477E-08	0.448	0.790	0.503
1977	-0.140	0.137	-0.277	0.688	0.477E-08	0.684	0.902	0.266
1978	-1.092	0.130) -1.222	0.688	0.477E-08	0.264	0.896	0.972
1001	-0.457	0.047	0.305	0.000	0.477E-08	1 0 2 4	0.825	0.432
1982	0.205	-0.037	0.301 0.241	0.000	0.477E-08	0 976	0.714	0.029
1983	0.215	0.153	0.081	0.688	0.477E-08	0.994	0.917	0.034
1984	0.590	0.253	0.338	0.688	0.477E-08	1.420	1.013	0.019
1985	0.327	0.334	-0.007	0.688	0.477E-08	1.091	1.099	0.077
1986	0.739	0.350	0.389	0.688	0.477E-08	1.647	1.117	0.044
1987	0.859	0.400	0.459	0.688	0.477E-08	1.858	1.174	0.102
1988	0.826	0.286	5 0.541	0.688	0.477E-08	1.798	1.047	0.208
1989	-0.597	0.183	-0.781	0.688	0.477E-08	0.433	0.945	0.673
1990	0.745	0.118	3 0.627	0.688	0.477E-08	1.658	0.886	0.375
1002	0.422	0.196	0.226	0.688	0.477E-08	1.200	0.957	0.000
1002	1.090	0.074	1.015	0.688	0.477E-08	2.340	0.848	2.289
1993	0.001	-0.070	0.951	0.088	0.477E-08	1 414	0.734	0 120
1995	0.000	0.094	4 -0.023	0.688	0.477E-08	0 845	0.864	0.120
1996	0.562	-0.046	0.609	0.688	0.477E-08	1.381	0.751	0.334
1997	-0.295	-0.131	-0.164	0.688	0.477E-08	0.586	0.690	0.180
1998	-1.261	-0.187	7 -1.074	0.688	0.477E-08	0.223	0.653	0.880
1999	-0.208	-0.222	0.013	0.688	0.477E-08	0.639	0.630	0.066
2000	-0.961	-0.096	-0.865	0.688	0.477E-08	0.301	0.715	0.736
2001	-0.490	-0.317	7 -0.173	0.688	0.477E-08	0.482	0.573	0.187
2002	-0.074	-0.322	2 0.248	0.688	0.477E-08	0.731	0.570	0.000
2003	0.059	-0.366	5 0.425	0.688	0.477E-08	0.835	0.546	0.071
2004	-0.213	-0.448	3 0.235	0.688	0.477E-08	0.636	0.503	0.000
2005	-0.416	-0.359	-0.05/	0.688	0.47/E-08	0.519	0.550	0.107
2006	-0.291	-0.226	-0.066	0.088	0.4//E-08	0.588	0.628	0.113
Select	ivities by ag	le						
Year	0 1	2	3 4					
1070	0.062 1.00							
1970	0.062 1.00	0 0.665 0	0.201 0.047					
1972	0.062 1.00	0 0.005 0) 201 0.047					
1973	0.062 1.00	0 0.665 0	0.201 0.047					
1974	0.062 1.00	0 0.665 0	0.201 0.047					
1975	0.062 1.00	0 0.665 0	0.201 0.047					
1976	0.062 1.00	0 0.665 0	0.201 0.047					
1977	0.062 1.00	0 0.665 0	0.201 0.047					
1978	0.062 1.00	0 0.665 0	0.201 0.047					
1979	0.062 1.00	0 0.665 0	0.201 0.047					
1981	0.062 1.00	0 0.665 0	0.201 0.047					
1002	0.062 1.00		0.047					
1984	0.062 1.00	0 0.665 0) 201 0.047					
1985	0.062 1.00	0 0.665 0	0.201 0.047					
1986	0.062 1.00	0 0.665 0	0.201 0.047					
1987	0.062 1.00	0 0.665 0	0.201 0.047					
1988	0.062 1.00	0 0.665 0	0.201 0.047					
1989	0.062 1.00	0 0.665 0	0.201 0.047					
1990	0.062 1.00	0 0.665 0	0.201 0.047					
1991	0.062 1.00	0 0.665 0	0.201 0.047					
1992	0.062 1.00	U U.665 C	J.∠U⊥ U.047					
1901 1901	0.062 1.00	0 0.665 0	J.∠UI U.U47 201 0 047					
1995	0.002 1.00	0 0 665 0) 201 0.047					
1996	0 062 1 00	0 0 665 0	201 0 047					
1997	0.062 1.00	0 0.665 0	0.201 0.047					
1998	0.062 1.00	0 0.665 0	0.201 0.047					
1999	0.062 1.00	0 0.665 0	0.201 0.047					
2000	0.062 1.00	0 0.665 0	0.201 0.047					
2001	0.062 1.00	0 0.665 0	0.201 0.047					
2002	0.062 1.00	0 0.665 0	0.201 0.047					
2003	0.062 1.00	0 0.665 0	0.201 0.047					
2004	0.062 1.00	U U.665 C	0.201 0.047					
2005	0.062 1.00	U U.665 0	J.∠U⊥ U.047					
2000	0.002 1.00		.201 U.U4/					
		-						
5.12 U		_						

Lognormal dist. month 6 numbers Ages 0 - 5 log-likelihood = deviance = Chi-sq. discrepancy=

1.86 15.70 10.38

Year	Observed	Predicted	Residuals (Obs-pred)	Standard Deviation	Q Catchabil.	Untransfrmd Observed	Untransfrmd Predicted	Chi-square Discrepancy
1981	0.627	-0.040	0.667	0.688	0.470E-06	6.554	3.365	0.475
1982	0.932	-0.106	1.038	0.688	0.470E-06	8.896	3.149	2.490
1983	-0.050	-0.043	-0.007	0.688	0.470E-06	3.330	3.353	0.077
1984	-0.858	0.117	-0.975	0.688	0.470E-06	1.485	3.936	0.814
1985	0.012	0.221	-0.209	0.688	0.470E-06	3.546	4.368	0.213
1986	0.164	0.309	-0.145	0.688	0.470E-06	4.124	4.769	0.166
1987	0.127	0.419	-0.292	0.688	0.470E-06	3.976	5.324	0.278
1988	0.777	0.400	0.376	0.688	0.470E-06	7.613	5.225	0.037
1989	-0.519	0.285	-0.804	0.688	0.470E-06	2.085	4.657	0.690
1990	-0.609	0.148	-0.757	0.688	0.470E-06	1.904	4.059	0.654

1991	0.672	0.122	0.549	0.688	0.470E-06	6.854	3.957	0.222
1992	0.626	0.112	0.514	0.688	0.470E-06	6.545	3.915	0.168
1993	-1.028	0.071	-1.100	0.688	0.470E-06	1.252	3.760	0.897
1994	0.325	0.071	0.254	0.688	0.470E-06	4.845	3.758	0.000
1995	0.058	0.084	-0.026	0.688	0.470E-06	3.711	3.809	0.088
1996	0.715	0.009	0.707	0.688	0.470E-06	7.159	3.532	0.593
1997	-0.379	-0.109	-0.270	0.688	0.470E-06	2.396	3.140	0.261
1998	-0.255	-0.198	-0.057	0.688	0.470E-06	2.715	2.874	0.107
1999	-0.073	-0.165	0.092	0.688	0.470E-06	3.255	2.969	0.030
2000	0.198	-0.092	0.290	0.688	0.470E-06	4.268	3.195	0.005
2001	-0.283	-0.113	-0.170	0.688	0.470E-06	2.638	3.128	0.185
2002	-0.667	-0.291	-0.376	0.688	0.470E-06	1.796	2.617	0.347
2003	-0.314	-0.311	-0.002	0.688	0.470E-06	2.558	2.564	0.075
2004	-0.318	-0.337	0.019	0.688	0.470E-06	2.547	2.499	0.063
2005	0.528	-0.336	0.864	0.688	0.470E-06	5.937	2.502	1.255
2006	-0.406	-0.226	-0.179	0.688	0.470E-06	2.333	2.792	0.191
Selectiv	vities by age							
Year	0 1	2 3	4	5				

1981	0.000	0.039	0.572	1.000	0.586	0.120
1982	0.000	0.039	0.572	1.000	0.586	0.120
1983	0.000	0.039	0.572	1.000	0.586	0.120
1984	0.000	0.039	0.572	1.000	0.586	0.120
1985	0.000	0.039	0.572	1.000	0.586	0.120
1986	0.000	0.039	0.572	1.000	0.586	0.120
1987	0.000	0.039	0.572	1.000	0.586	0.120
1988	0.000	0.039	0.572	1.000	0.586	0.120
1989	0.000	0.039	0.572	1.000	0.586	0.120
1990	0.000	0.039	0.572	1.000	0.586	0.120
1991	0.000	0.039	0.572	1.000	0.586	0.120
1992	0.000	0.039	0.572	1.000	0.586	0.120
1993	0.000	0.039	0.572	1.000	0.586	0.120
1994	0.000	0.039	0.572	1.000	0.586	0.120
1995	0.000	0.039	0.572	1.000	0.586	0.120
1996	0.000	0.039	0.572	1.000	0.586	0.120
1997	0.000	0.039	0.572	1.000	0.586	0.120
1998	0.000	0.039	0.572	1.000	0.586	0.120
1999	0.000	0.039	0.572	1.000	0.586	0.120
2000	0.000	0.039	0.572	1.000	0.586	0.120
2001	0.000	0.039	0.572	1.000	0.586	0.120
2002	0.000	0.039	0.572	1.000	0.586	0.120
2003	0.000	0.039	0.572	1.000	0.586	0.120
2004	0.000	0.039	0.572	1.000	0.586	0.120
2005	0.000	0.039	0.572	1.000	0.586	0.120
2006	0.000	0.039	0.572	1.000	0.586	0.120

5.13 BRA-URU-LL Not used

5.14 CHIN-TAI-LL		
Lognormal dist. month 6 numbers Ages 0 - 5		
log-likelihood	=	11.65
deviance	=	4.33
Chi-sq. discrepand	zy=	4.53

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1970	0.772	0.369	0.403	0.688	0.141E-06	1.712	1.145	0.054
1971	0.251	0.275	-0.024	0.688	0.141E-06	1.017	1.042	0.087
1972	0.328	0.211	0.116	0.688	0.141E-06	1.098	0.978	0.021
1973	0.435	0.133	0.302	0.688	0.141E-06	1.223	0.904	0.008
1974	-0.252	0.041	-0.293	0.688	0.141E-06	0.615	0.824	0.279
1975	-0.212	-0.090	-0.121	0.688	0.141E-06	0.641	0.723	0.149
1976	-0.041	-0.126	0.085	0.688	0.141E-06	0.760	0.698	0.033
1977	-0.145	-0.022	-0.122	0.688	0.141E-06	0.685	0.774	0.150
1978	-0.238	0.066	-0.304	0.688	0.141E-06	0.624	0.846	0.288
1979	-0.200	0.054	-0.255	0.688	0.141E-06	0.648	0.836	0.249
1980	0.006	0.033	-0.027	0.688	0.141E-06	0.796	0.818	0.089
1981	-0.133	-0.061	-0.072	0.688	0.141E-06	0.693	0.745	0.117
1982	-0.394	-0.147	-0.248	0.688	0.141E-06	0.534	0.684	0.244
1983	-0.403	-0.169	-0.234	0.688	0.141E-06	0.529	0.668	0.233
1984	-0.033	0.054	-0.088	0.688	0.141E-06	0.766	0.836	0.127
1985	-0.133	0.149	-0.282	0.688	0.141E-06	0.693	0.919	0.270
1986	0.083	0.254	-0.171	0.688	0.141E-06	0.860	1.021	0.185
1987	-0.009	0.381	-0.391	0.688	0.141E-06	0.784	1.159	0.358
1988	0.342	0.432	-0.091	0.688	0.141E-06	1.114	1.220	0.129
1989	-0.020	0.320	-0.340	0.688	0.141E-06	0.776	1.090	0.317
1990	-0.020	0.166	-0.186	0.688	0.141E-06	0.776	0.935	0.196
1991	0.110	0.088	0.022	0.688	0.141E-06	0.884	0.865	0.062
1992	-0.199	0.082	-0.280	0.688	0.141E-06	0.649	0.859	0.269
1993	0.092	0.042	0.050	0.688	0.141E-06	0.868	0.825	0.048
1994	0.407	0.013	0.394	0.688	0.141E-06	1.189	0.802	0.047
1995	0.391	0.034	0.357	0.688	0.141E-06	1.170	0.819	0.027
1996	0.251	0.016	0.235	0.688	0.141E-06	1.017	0.804	0.000
1997	-0.018	-0.098	0.080	0.688	0.141E-06	0.778	0.718	0.035
1998	-0.010	-0.217	0.207	0.688	0.141E-06	0.783	0.637	0.001
1999	-0.315	-0.238	-0.077	0.688	0.141E-06	0.578	0.624	0.120
2000	-0.023	-0.194	0.170	0.688	0.141E-06	0.773	0.652	0.007
2001	-0.277	-0.144	-0.134	0.688	0.141E-06	0.600	0.686	0.158
2002	-0.101	-0.279	0.178	0.688	0.141E-06	0.715	0.599	0.005
2003	-0.096	-0.380	0.284	0.688	0.141E-06	0.719	0.541	0.004
2004	-0.099	-0.360	0.261	0.688	0.141E-06	0.717	0.552	0.001
2005	0.108	-0.383	0.491	0.688	0.141E-06	0.882	0.540	0.138
2006	-0.201	-0.308	0.106	0.688	0.141E-06	0.647	0.582	0.025
Selecti	vities	bv age						
---------	--------	--------	-------	-------	-------	-------		
Year	0	1	2	3	4	5		
1970	0.000	0.013	0.272	1.000	0.890	0.204		
1971	0.000	0.013	0.272	1.000	0.890	0.204		
1972	0.000	0.013	0.272	1.000	0.890	0.204		
1973	0.000	0.013	0.272	1.000	0.890	0.204		
1974	0.000	0.013	0.272	1.000	0.890	0.204		
1975	0.000	0.013	0.272	1.000	0.890	0.204		
1976	0.000	0.013	0.272	1.000	0.890	0.204		
1977	0.000	0.013	0.272	1.000	0.890	0.204		
1978	0.000	0.013	0.272	1.000	0.890	0.204		
1979	0.000	0.013	0.272	1.000	0.890	0.204		
1980	0.000	0.013	0.272	1.000	0.890	0.204		
1981	0.000	0.013	0.272	1.000	0.890	0.204		
1002	0.000	0.013	0.272	1.000	0.890	0.204		
1983	0.000	0.013	0.272	1 000	0.890	0.204		
1095	0.000	0.013	0.272	1 000	0.000	0.204		
1986	0.000	0.013	0.272	1 000	0.000	0.204		
1987	0.000	0.013	0.272	1 000	0.890	0.204		
1988	0 000	0 013	0 272	1 000	0 890	0 204		
1989	0.000	0.013	0.272	1.000	0.890	0.204		
1990	0.000	0.013	0.272	1.000	0.890	0.204		
1991	0.000	0.013	0.272	1.000	0.890	0.204		
1992	0.000	0.013	0.272	1.000	0.890	0.204		
1993	0.000	0.013	0.272	1.000	0.890	0.204		
1994	0.000	0.013	0.272	1.000	0.890	0.204		
1995	0.000	0.013	0.272	1.000	0.890	0.204		
1996	0.000	0.013	0.272	1.000	0.890	0.204		
1997	0.000	0.013	0.272	1.000	0.890	0.204		
1998	0.000	0.013	0.272	1.000	0.890	0.204		
1999	0.000	0.013	0.272	1.000	0.890	0.204		
2000	0.000	0.013	0.272	1.000	0.890	0.204		
2001	0.000	0.013	0.272	1.000	0.890	0.204		
2002	0.000	0.013	0.272	1.000	0.890	0.204		
2003	0.000	0.013	0.272	1.000	0.890	0.204		
2004	0.000	0.013	0.272	1.000	0.090	0.204		
2005	0.000	0.013	0.272	1 000	0.890	0.204		
2006	0.000	0.013	0.2/2	T.000	0.890	0.204		

5.15 TROP-PS Lognormal dist. month 6 numbers Ages 3 - 5 log-likelihood = 5.99 deviance = 8.19 Chi-sq. discrepancy= 4.61

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1980	-0.780	0.164	-0.945	0.688	0.320E-08	0.250	0.643	0.793
1981	0.175	0.061	0.114	0.688	0.320E-08	0.650	0.580	0.022
1982	-0.336	-0.071	-0.265	0.688	0.320E-08	0.390	0.508	0.257
1983	-0.108	-0.283	0.175	0.688	0.320E-08	0.490	0.411	0.006
1984	-1.166	-0.067	-1.100	0.688	0.320E-08	0.170	0.510	0.897
1985	0.095	0.061	0.034	0.688	0.320E-08	0.600	0.580	0.055
1986	0.044	0.204	-0.160	0.688	0.320E-08	0.570	0.669	0.177
1987	0.128	0.350	-0.223	0.688	0.320E-08	0.620	0.775	0.224
1988	0.044	0.538	-0.494	0.688	0.320E-08	0.570	0.934	0.444
1989	0.606	0.539	0.067	0.688	0.320E-08	1.000	0.936	0.040
1990	0.565	0.405	0.160	0.688	0.320E-08	0.960	0.818	0.009
1991	0.235	0.229	0.006	0.688	0.320E-08	0.690	0.686	0.070
1992	0.112	0.158	-0.046	0.688	0.320E-08	0.610	0.639	0.100
1993	-0.087	0.095	-0.183	0.688	0.320E-08	0.500	0.600	0.194
1994	0.144	0.024	0.120	0.688	0.320E-08	0.630	0.559	0.020
1995	0.095	0.005	0.090	0.688	0.320E-08	0.600	0.548	0.031
1996	0.026	0.060	-0.034	0.688	0.320E-08	0.560	0.580	0.093
1997	0.235	0.015	0.220	0.688	0.320E-08	0.690	0.554	0.000
1998	-0.029	-0.098	0.069	0.688	0.320E-08	0.530	0.494	0.039
1999	-0.215	-0.215	0.000	0.688	0.320E-08	0.440	0.440	0.073
2000	-0.310	-0.272	-0.039	0.688	0.320E-08	0.400	0.416	0.096
2001	-0.068	-0.203	0.135	0.688	0.320E-08	0.510	0.446	0.015
2002	0.249	-0.234	0.484	0.688	0.320E-08	0.700	0.432	0.129
2003	0.370	-0.368	0.738	0.688	0.320E-08	0.790	0.377	0.700
2004	-0.029	-0.341	0.312	0.688	0.320E-08	0.530	0.388	0.010
2005	-0.087	-0.383	0.296	0.688	0.320E-08	0.500	0.372	0.006
2006	0.095	-0.371	0.466	0.688	0.320E-08	0.600	0.376	0.110

Select Year	ivities 3	by age 4	5
1980	29.518	54.953	78.542
1981	29.518	54.953	78.542
1982	29.518	54.953	78.542
1983	29.518	54.953	78.542
1984	29.518	54.953	78.542
1985	29.518	54.953	78.542
1986	29.518	54.953	78.542
1987	29.518	54.953	78.542
1988	29.518	54.953	78.542
1989	29.518	54.953	78.542
1990	29.518	54.953	78.542
1991	29.518	54.953	78.542
1992	29.518	54.953	78.542
1993	29.518	54.953	78.542
1994	29.518	54.953	78.542
1995	29.518	54.953	78.542

1996	29.518	54.953	78.542
1997	29.518	54.953	78.542
1998	29.518	54.953	78.542
1999	29.518	54.953	78.542
2000	29.518	54.953	78.542
2001	29.518	54.953	78.542
2002	29.518	54.953	78.542
2003	29.518	54.953	78.542
2004	29.518	54.953	78.542
2005	29.518	54.953	78.542
2006	29.518	54.953	78.542

5.16 CAN-IS-BB		
Lognormal dist. month 6 biomass Ages 0 - 4		
log-likelihood	=	-103.24
deviance	=	226.64
Chi-sq. discrepar	ncy=	323.79

			Re	siduals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	1 (C	bs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1980	-1.991	0.07	78	-2.070	0.688	0.282E-09	0.010	0.076	1.337
1981	-1.284	-0.06	56	-1.218	0.688	0.282E-09	0.020	0.066	0.969
1982	0.289	-0.06	51	0.350	0.688	0.282E-09	0.094	0.066	0.024
1983	0.855	0.08	36	0.769	0.688	0.282E-09	0.166	0.077	0.814
1984	2.171	0.17	76	1.995	0.688	0.282E-09	0.620	0.084	38.064
1985	1.338	0.31	LG	1.022	0.688	0.282E-09	0.269	0.097	2.344
1986	0.896	0.33	35	0.561	0.688	0.282E-09	0.173	0.099	0.241
1987	1.700	0.42	26	1.274	0.688	0.282E-09	0.387	0.108	5.468
1988	1.740	0.37	76	1.363	0.688	0.282E-09	0.402	0.103	7.169
1989	1.214	0.29	95	0.920	0.688	0.282E-09	0.238	0.095	1.582
1990	2.148	0.16	57	1.981	0.688	0.282E-09	0.605	0.084	36.747
1991	2.025	0.20	19	1.815	0.688	0.282E-09	0.535	0.087	24.419
1002	1.4/9	0.05	10	1.380	0.688	0.282E-09	0.310	0.078	7.531
1004	0.095	-0.04	±0	0.735	0.688	0.282E-09	0.142	0.068	0.000
1005	-0.679	0.03	70 I Q	-0.797	0.000	0.282E-09	0.034	0.078	0.030
1996	2 033	0.11	10	2 022	0.000	0.282E-09	0.030	0.000	40 634
1997	-0.092	-0.08	37	-0.005	0.688	0.282E-09	0.064	0.071	0.076
1998	2.379	-0.20	08	2.587	0.688	0.282E-09	0.763	0.057	148.409
1999	0.029	-0.24	13	0.271	0.688	0.282E-09	0.073	0.055	0.002
2000	-3.439	-0.11	18	-3.321	0.688	0.282E-09	0.002	0.063	1.557
2001	-7.484	-0.28	36	-7.198	0.688	0.282E-09	0.000	0.053	1.648
2002	-1.054	-0.29	94	-0.760	0.688	0.282E-09	0.025	0.053	0.657
2003	-0.426	-0.35	53	-0.073	0.688	0.282E-09	0.046	0.050	0.117
2004	-0.618	-0.43	36	-0.182	0.688	0.282E-09	0.038	0.046	0.193
2005	-2.617	-0.36	56	-2.250	0.688	0.282E-09	0.005	0.049	1.387
2006	-1.481	-0.23	33	-1.249	0.688	0.282E-09	0.016	0.056	0.987
Select	ivities by age	2							
Year	0 1	2	3	4					
1980	0.006 0.97	1 1.000	0.519	0.457					
1981	0.006 0.97	1 1.000	0.519	0.457					
1982	0.006 0.97	1 1.000	0.519	0.457					
1983	0.006 0.97	1 1.000	0.519	0.457					
1984	0.006 0.97	1 1.000	0.519	0.457					
1985	0.006 0.97	1 1.000	0.519	0.457					
1007	0.006 0.97	1 1.000	0.519	0.457					
1000	0.006 0.97	1 1.000	0.519	0.457					
1989	0.006 0.97	1 1 000	0.519	0.457					
1990	0.006 0.97	1 1 000	0.519	0.457					
1991	0.006 0.97	1 1.000	0.519	0.457					
1992	0.006 0.97	1 1.000	0.519	0.457					
1993	0.006 0.97	1 1.000	0.519	0.457					
1994	0.006 0.97	1 1.000	0.519	0.457					
1995	0.006 0.97	1 1.000	0.519	0.457					
1996	0.006 0.97	1 1.000	0.519	0.457					
1997	0.006 0.97	1 1.000	0.519	0.457					
1998	0.006 0.97	1 1.000	0.519	0.457					
1999	0.006 0.97	1 1.000	0.519	0.457					
2000	0.006 0.97	1 1.000	U.519	U.457					
2001	0.006 0.97	1 1.000	0.519	0.457					
2002	0.006 0.97	1 1 000	0.519	0.457					
2003	0 006 0 97	1 1 000	0.519	0.457					
2005	0.006 0.97	1 1.000	0.519	0.457					
2006	0.006 0.97	1 1.000	0.519	0.457					

Not used TOTAL NUMBER OF FUNCTION EVALUATIONS =

Not used

-----5.17 NOT-USED

------5.18 NOT-USED

11363

Run 10. This file contains basic model inputs and results.

VPA-2BOX

YFT 1970-2006 RUN 10 12:55, 27 July 2008

Total objective function		25.19	
(with constants)	= 2	97.36	
Number of parameters (P)	=	58	
Number of data points (D)	=	351	
AIC : 2*objective+2P	= 7	10.72	
AICc: 2*objective+2P()	= 7	34.16	
BIC : 2*objective+Plog(D)	= 9	34 65	
Chi-square discrepancy	= 4	18.18	
Loglikelihoods (deviance)		44.16 (352.21)
effort data		44.16 (352.21)
Log-posteriors	=	56.79	
catchability	=	0.00	
f-ratio	=	56.79	
natural mortality	=	0.00	
mixing coeff. =		0.00	
5			
Constraints	=	12.56	
terminal F	=	10.19	
stock-rec./sex ratio	=	2.37	
Out of bounds penalty	=	0.00	

TABLE 1. FISHING MORTALITY RATE FOR Yellowfin Tuna 2008

	0	1	2	3	4	5
1970	0.009	0.131	0.097	0.173	0.194	0.050
1971	0.009	0.122	0.181	0.157	0.169	0.042
1972	0.012	0.129	0.222	0.248	0.209	0.052
1973	0.007	0.115	0.188	0.282	0.276	0.066
1974	0.023	0.169	0.224	0.312	0.347	0.082
1975	0.040	0.177	0.298	0.356	0.585	0.136
1976	0.045	0.193	0.218	0.383	0.692	0.157
1977	0.035	0.210	0.229	0.368	0.670	0.147
1978	0.040	0.213	0.263	0.378	0.458	0.099
1979	0.048	0.241	0.146	0.387	0.489	0.106
1980	0.082	0.243	0.204	0.316	0.500	0.108
1981	0.121	0.272	0.232	0.362	0.800	0.180
1982	0.055	0.334	0.245	0.488	0.904	0.213
1983	0.069	0.245	0.226	0.626	1.046	0.247
1984	0.053	0.290	0.270	0.269	0.306	0.070
1985	0.069	0.191	0.240	0.323	0.640	0.134
1986	0.070	0.177	0.145	0.371	0.546	0.103
1987	0.119	0.205	0.148	0.260	0.497	0.088
1988	0.112	0.252	0.131	0.301	0.281	0.048
1989	0.109	0.243	0.118	0.314	0.5/6	0.099
1001	0.133	0.296	0.143	0.389	0.839	0.147
1002	0.127	0.289	0.153	0.3//	0.741	0.130
1002	0.115	0.272	0.109	0.395	0.692	0.140
1994	0.112	0.207	0.217	0.450	0.095	0.110
1995	0.122	0.294	0.200	0.333	0 774	0 135
1996	0.122	0.251	0.198	0.335	0.685	0.128
1997	0 105	0 401	0 191	0 299	0 609	0 126
1998	0.083	0.416	0.239	0.342	0.804	0.186
1999	0.131	0.535	0.292	0.370	0.623	0.156
2000	0.175	0.352	0.176	0.516	0.652	0.171
2001	0.155	0.687	0.265	0.424	0.846	0.229
2002	0.171	0.503	0.219	0.367	0.616	0.180
2003	0.175	0.525	0.186	0.439	0.615	0.197
2004	0.149	0.435	0.260	0.385	0.631	0.214
2005	0.160	0.410	0.192	0.314	0.567	0.197
2006	0.143	0.299	0.211	0.391	0.584	0.204

TABLE 2.	ABUNDANCE AT	THE BEGINN:	ING OF THE YEA	AR [BY AREA]	FOR Yellowf	in Tuna 2008	
	0	1	۷	3	4	5	
1970	55754410.	26075935.	8662439.	5399353.	2498986.	2339937.	
1971	54790348.	24816407.	10273896.	4312957.	2492624.	2351162.	
1972	47032848.	24394085.	9870486.	4707253.	2023399.	2392913.	
1973	51598339.	20891423.	9632340.	4339346.	2016684.	2147944.	
1974	56438414.	23025933.	8365393.	4381645.	1797126.	1943515.	
1975	68711754.	24781423.	8734544.	3670825.	1759384.	1679888.	
1976	71327404.	29669227.	9327187.	3557013.	1410672.	1342659.	
1977	62955983.	30628402.	10988247.	4116392.	1330592.	1017118.	
1978	58377594.	27318799.	11150183.	4795328.	1563444.	855697.	
1979	62184709.	25193650.	9916057.	4704961.	1804084.	968079.	
1980	58772998.	26621652.	8894440.	4701033.	1753795.	1084888.	
1981	85481877.	24330807.	9381395.	3980181.	1881324.	1118207.	
1982	72408502.	34032890.	8327789.	4080841.	1520495.	976462.	
1983	93679565.	30806698.	10948583.	3575910.	1374388.	771317.	
1984	80672423.	39283432.	10835469.	4795516.	1049181.	595718.	
1985	92044266.	34361419.	13201992.	4540072.	2011466.	728987.	
1986	79828955.	38584252.	12754302.	5699738.	1803848.	931880.	
1987	80704010.	33460991.	14522197.	6053296.	2159538.	1034850.	
1988	68444054.	32195035.	12253292.	6873186.	2561852.	1240796.	
1989	81583256.	27484742.	11244101.	5899569.	2792645.	1709998.	
1990	79323441.	32869875.	9690246.	5484003.	2366162.	1711798.	

1991	76193992.	31215988.	10985457.	4610022.	2039879.	1372014.	
1992	81923536.	30149307.	10502783.	5172922.	1735774.	1194360.	
1993	88889455.	32813290.	10321825.	4869105.	1912447.	971569.	
1994	68017359.	34346748.	11291498.	4561154.	1693772.	997793.	
1995	65603142.	27333214.	11311567.	4615868.	1722308.	870360.	
1996	65500438.	26103018.	9150664.	5092199.	1815019.	853260.	
1997	74239906.	25925386.	8250134.	4078295.	1973589.	914371.	
1998	95693809.	30045552.	7800932.	3739637.	1659292.	1031432.	
1999	71457060.	39581840.	8902601.	3372047.	1457695.	877607.	
2000	74638276.	28157126.	10418232.	3647024.	1278811.	841102.	
2001	74939431.	28141072.	8901403.	4795272.	1194655.	754572.	
2002	65424217.	28848665.	6359189.	3749685.	1723013.	610520.	
2003	61595949.	24765699.	7835700.	2802582.	1425323.	790609.	
2004	73837594.	23237480.	6584292.	3571242.	991828.	779340.	
2005	56463887.	28575638.	6759904.	2785189.	1333723.	634829.	
2006	49948365.	21628769.	8520186.	3062598.	1116358.	701217.	
2007		19450311.	7204902.	3786102.	1137160.	655569.	
==========							

	0	1	2	3	4	5
1970	361290.	2229482.	607301.	650369.	335068.	85575.
1971	344448.	1977021.	1287353.	474486.	293744.	72602.
1972	370595.	2052767.	1492978.	786068.	289931.	91172.
1973	243206.	1577104.	1251198.	811921.	370436.	103603.
1974	886952.	2496615.	1274896.	897957.	403301.	115146.
1975	1850686.	2801854.	1719568.	842170.	602660.	162022.
1976	2183572.	3635133.	1388487.	867883.	547868.	148267.
1977	1488116.	4057058.	1711726.	970685.	504842.	105140.
1978	1592943.	3664928.	1963323.	1155362.	441937.	60903.
1979	2028285.	3775358.	1022740.	1156845.	537482.	73775.
1980	3200008.	4016663.	1247358.	972350.	532110.	83719.
1981	6758071.	4062149.	1479983.	926044.	810154.	139639.
1982	2657563.	6800765.	1379253.	1214320.	710570.	142131.
1983	4323476.	4680819.	1680974.	1290371.	704840.	128569.
1984	2901125.	6946804.	1953147.	861417.	211065.	30274.
1985	4268983.	4165569.	2143130.	957578.	738008.	69106.
1986	3706439.	4362541.	1306129.	1351567.	586169.	68951.
1987	6280192.	4318997.	1513905.	1055188.	652139.	65881.
1988	5045170.	5018133.	1138051.	1362108.	479093.	44092.
1989	5844442.	4139343.	946698.	1212904.	945449.	121843.
1990	6840077.	5910204.	977104.	1354542.	1052048.	177816.
1991	6313402.	5500947.	1181880.	1108701.	832673.	126849.
1992	6170239.	5029419.	1236534.	1294467.	780051.	124612.
1993	8654594.	5382283.	1528458.	1371075.	745384.	81507.
1994	4983084.	6443400.	2198100.	1089902.	762615.	100493.
1995	5210909.	4889679.	1543835.	1000446.	724878.	82982.
1996	5415623.	5453178.	1306456.	1144517.	699652.	77460.
1997	5109588.	6051401.	1090160.	805058.	697640.	81796.
1998	5261746.	7237372.	1260581.	828678.	716679.	132870.
1999	6104314.	11684800.	1722161.	797909.	524019.	96085.
2000	8362333.	5878954.	1274923.	1133947.	475691.	100301.
2001	7465211.	10065910.	1576328.	1271341.	534448.	117632.
2002	7175201.	8115388.	952183.	882558.	613958.	76429.
2003	6879341.	7202107.	1008228.	764832.	507098.	107459.
2004	7118910.	5801751.	1149694.	874474.	360014.	114175.
2005	5792990.	6796869.	895413.	573610.	446518.	86079.
2006	4628314.	3926747.	1232116.	759365.	382044.	98240.

TABLE 4. SPAWNING STOCK FECUNDITY AND RECRUITMENT OF Yellowfin Tuna 2008

	spawning	recruits
year	biomass	from VPA
1970	452061.	55754410.
1971	423048.	54790348.
1972	411420.	47032848.
1973	381632.	51598339.
1974	355344.	56438414.
1975	311738.	68711754.
1976	265347.	71327404.
1977	252932.	62955983.
1978	272542.	58377594.
1979	290143.	62184709.
1980	296829.	58772998.
1981	282729.	85481877.
1982	255400.	72408502.
1983	217599.	93679565.
1984	229378.	80672423.
1985	277632.	92044266.
1986	314297.	79828955.
1987	351375.	80704010.
1988	411351.	68444054.
1989	427222.	81583256.
1990	390735.	79323441.
1991	327078.	76193992.
1992	313194.	81923536.
1993	297839.	88889455.
1994	280258.	68017359.
1995	274757.	65603142.
1996	291581.	65500438.
1997	277349.	74239906.
1998	259041.	95693809.
1999	228871.	71457060.
2000	223352.	74638276.
2001	243476.	74939431.
2002	232604.	65424217.
2003	204756.	61595949.

2004	203493.	73837594.	
2005	189337.	56463887.	
2006	190327.	49948365.	

TABLE 5. FITS TO INDEX DATA FOR Yellowfin Tuna 2008

-1.43 21.65 30.04

------5.1 BRA_BB Lognormal dist. month 6 biomass Ages 0 - 4 log-likelihood = deviance = Chi-sq. discrepancy=

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1981	1.614	-0.096	1.711	0.687	0.160E-08	1.391	0.251	18.855
1982	-0.269	-0.089	-0.180	0.687	0.160E-08	0.212	0.253	0.192
1983	0.732	0.176	0.556	0.687	0.160E-08	0.576	0.330	0.237
1984	0.012	0.171	-0.159	0.687	0.160E-08	0.280	0.328	0.177
1985	-0.279	0.340	-0.619	0.687	0.160E-08	0.209	0.389	0.548
1986	-0.279	0.323	-0.602	0.687	0.160E-08	0.209	0.382	0.534
1987	0.063	0.418	-0.355	0.687	0.160E-08	0.295	0.421	0.331
1988	0.165	0.305	-0.139	0.687	0.160E-08	0.327	0.375	0.162
1989	0.076	0.251	-0.174	0.687	0.160E-08	0.299	0.356	0.188
1990	0.807	0.115	0.692	0.687	0.160E-08	0.620	0.310	0.555
1991	-0.390	0.243	-0.633	0.687	0.160E-08	0.187	0.353	0.560
1992	0.062	0.120	-0.057	0.687	0.160E-08	0.295	0.312	0.107
1993	0.234	-0.088	0.322	0.687	0.160E-08	0.350	0.253	0.013
1994	-0.278	0.142	-0.420	0.687	0.160E-08	0.210	0.319	0.384
1995	-0.983	0.188	-1.171	0.687	0.160E-08	0.104	0.334	0.947
1996	0.044	0.019	0.025	0.687	0.160E-08	0.289	0.282	0.060
1997	0.421	-0.086	0.506	0.687	0.160E-08	0.422	0.254	0.160
1998	0.154	-0.221	0.376	0.687	0.160E-08	0.323	0.222	0.037
1999	-0.906	-0.233	-0.673	0.687	0.160E-08	0.112	0.219	0.591
2001	0.900	-0.279	1.180	0.687	0.160E-08	0.681	0.209	4.094
2002	0.049	-0.343	0.391	0.687	0.160E-08	0.291	0.197	0.047
2003	-0.151	-0.328	0.176	0.687	0.160E-08	0.238	0.200	0.006
2004	-1.118	-0.444	-0.674	0.687	0.160E-08	0.091	0.178	0.592
2005	-0.985	-0.410	-0.575	0.687	0.160E-08	0.103	0.184	0.512
2006	0.305	-0.193	0.498	0.687	0.160E-08	0.376	0.228	0.149

2006	0.	305	-0.1	93	0.4
Select	ivities	by age			
Year	0	1	2	3	4
1001	0 007	0 6 2 4	1 000	0 104	0 010
1092	0.007	0.024	1 000	0.194	0.010
1983	0.007	0.624	1.000	0.194	0.010
1984	0.007	0.624	1.000	0.194	0.010
1985	0.007	0.624	1.000	0.194	0.010
1986	0.007	0.624	1.000	0.194	0.010
1987	0.007	0.624	1.000	0.194	0.010
1988	0.007	0.624	1.000	0.194	0.010
1989	0.007	0.624	1.000	0.194	0.010
1990	0.007	0.624	1.000	0.194	0.010
1002	0.007	0.624	1 000	0.194	0.010
1993	0.007	0.624	1 000	0.194	0.010
1994	0.007	0.624	1.000	0.194	0.010
1995	0.007	0.624	1.000	0.194	0.010
1996	0.007	0.624	1.000	0.194	0.010
1997	0.007	0.624	1.000	0.194	0.010
1998	0.007	0.624	1.000	0.194	0.010
1999	0.007	0.624	1.000	0.194	0.010
2001	0.007	0.624	1.000	0.194	0.010
2002	0.007	0.624	1.000	0.194	0.010
2003	0.007	0.624	1.000	0.194	0.010
2004	0.007	0.024	1 000	0.194	0 010
2005	0.007	0.624	1.000	0.194	0.010

1991	0.007	0.024	1.000	0.194	
1998	0.007	0.624	1.000	0.194	
1999	0.007	0.624	1.000	0.194	
2001	0.007	0.624	1.000	0.194	
2002	0.007	0.624	1.000	0.194	
2003	0.007	0.624	1.000	0.194	
2004	0.007	0.624	1.000	0.194	
2005	0.007	0.624	1.000	0.194	
2006	0.007	0.624	1.000	0.194	

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

5.2 BRA_LL Lognormal dist. month 6 numbers Ages 0 - 5 log-likelihood = deviance = Chi-sq. discrepancy=

4.25 7.29 3.57

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1986	0.178	0.262	-0.084	0.687	0.140E-07	0.177	0.192	0.125
1987	0.416	0.307	0.109	0.687	0.140E-07	0.224	0.201	0.024
1988	0.645	0.311	0.334	0.687	0.140E-07	0.282	0.202	0.018
1989	0.571	0.238	0.333	0.687	0.140E-07	0.262	0.188	0.017
1990	0.752	0.171	0.581	0.687	0.140E-07	0.313	0.175	0.281
1991	0.177	0.115	0.062	0.687	0.140E-07	0.176	0.166	0.042
1992	-0.300	0.099	-0.399	0.687	0.140E-07	0.109	0.163	0.367
1993	-1.013	0.096	-1.109	0.687	0.140E-07	0.054	0.163	0.908
1994	-0.468	0.076	-0.544	0.687	0.140E-07	0.093	0.159	0.487
1995	-0.661	0.031	-0.692	0.687	0.140E-07	0.076	0.152	0.607
1996	0.299	-0.011	0.310	0.687	0.140E-07	0.199	0.146	0.010
1997	0.085	-0.070	0.155	0.687	0.140E-07	0.161	0.138	0.010

1998	0.327	-0.071	0.398	0.687	0.140E-07	0.205	0.138	0.052
1999	0.104	-0.048	0.152	0.687	0.140E-07	0.164	0.141	0.011
2000	0.008	-0.080	0.088	0.687	0.140E-07	0.149	0.136	0.031
2001	-0.086	-0.114	0.028	0.687	0.140E-07	0.136	0.132	0.058
2002	-0.573	-0.197	-0.376	0.687	0.140E-07	0.083	0.121	0.348
2003	-0.043	-0.279	0.236	0.687	0.140E-07	0.142	0.112	0.000
2004	0.020	-0.285	0.305	0.687	0.140E-07	0.151	0.111	0.009
2005	-0.415	-0.268	-0.147	0.687	0.140E-07	0.098	0.113	0.168
2006	-0.022	-0.283	0.261	0.687	0.140E-07	0.145	0.111	0.001

Selecti	vities	by age				
Year	0	1	2	3	4	5
1986	0.018	0.172	0.407	1.000	1.000	1.000
1987	0.018	0.172	0.407	1.000	1.000	1.000
1988	0.018	0.172	0.407	1.000	1.000	1.000
1989	0.018	0.172	0.407	1.000	1.000	1.000
1990	0.018	0.172	0.407	1.000	1.000	1.000
1991	0.018	0.172	0.407	1.000	1.000	1.000
1992	0.018	0.172	0.407	1.000	1.000	1.000
1993	0.018	0.172	0.407	1.000	1.000	1.000
1994	0.018	0.172	0.407	1.000	1.000	1.000
1995	0.018	0.172	0.407	1.000	1.000	1.000
1996	0.018	0.172	0.407	1.000	1.000	1.000
1997	0.018	0.172	0.407	1.000	1.000	1.000
1998	0.018	0.172	0.407	1.000	1.000	1.000
1999	0.018	0.172	0.407	1.000	1.000	1.000
2000	0.018	0.172	0.407	1.000	1.000	1.000
2001	0.018	0.172	0.407	1.000	1.000	1.000
2002	0.018	0.172	0.407	1.000	1.000	1.000
2003	0.018	0.172	0.407	1.000	1.000	1.000
2004	0.018	0.172	0.407	1.000	1.000	1.000
2005	0.018	0.172	0.407	1.000	1.000	1.000
2006	0.018	0.172	0.407	1.000	1.000	1.000

5.3 JPN_LL Lognormal dist. month 6 numbers Ages 0 - 5 log-likelihood = deviance = Chi-sq. discrepancy=

9.03 9.75 6.99

Year	Observed	Predicted	Residuals (Obs-pred)	Standard Deviation	Q Catchabil.	Untransfrmd Observed	Untransfrmd Predicted	Chi-square Discrepancy
1970	0.526	0.350	0.176	0.687	0.134E-06	1.364	1.143	0.006
1971	0.283	0.290	-0.007	0.687	0.134E-06	1.069	1.077	0.077
1972	0.643	0.253	0.390	0.687	0.134E-06	1.533	1.038	0.046
1973	0.329	0.180	0.149	0.687	0.134E-06	1.119	0.965	0.012
1974	0.566	0.097	0.470	0.687	0.134E-06	1.420	0.888	0.115
1975	0.250	-0.042	0.292	0.687	0.134E-06	1.034	0.773	0.006
1976	0.288	-0.119	0.407	0.687	0.134E-06	1.075	0.715	0.058
1977	0.103	-0.054	0.157	0.687	0.134E-06	0.893	0.763	0.009
1978	0.452	0.032	0.419	0.687	0.134E-06	1.266	0.832	0.067
1979	0.768	0.038	0.731	0.687	0.134E-06	1.737	0.837	0.680
1980	0.190	0.029	0.161	0.687	0.134E-06	0.974	0.830	0.009
1981	0.426	-0.063	0.490	0.687	0.134E-06	1.234	0.756	0.139
1982	0.278	-0.170	0.448	0.687	0.134E-06	1.063	0.680	0.092
1983	0.308	-0.227	0.535	0.687	0.134E-06	1.096	0.642	0.202
1984	0.361	-0.017	0.378	0.687	0.134E-06	1.156	0.792	0.039
1985	-0.115	0.084	-0.199	0.687	0.134E-06	0.718	0.876	0.206
1986	0.167	0.195	-0.029	0.687	0.134E-06	0.952	0.979	0.090
1987	0.207	0.324	-0.118	0.687	0.134E-06	0.991	1.115	0.147
1988	0.246	0.401	-0.155	0.687	0.134E-06	1.030	1.203	0.174
1989	-0.032	0.333	-0.365	0.687	0.134E-06	0.780	1.124	0.339
1990	0.277	0.194	0.083	0.687	0.134E-06	1.063	0.979	0.033
1991	-0.011	0.100	-0.111	0.687	0.134E-06	0.797	0.890	0.142
1992	0.034	0.083	-0.050	0.687	0.134E-06	0.833	0.876	0.102
1993	-0.608	0.033	-0.641	0.687	0.134E-06	0.439	0.833	0.566
1994	-0.076	0.008	-0.084	0.687	0.134E-06	0.747	0.812	0.124
1995	-0.500	0.028	-0.528	0.687	0.134E-06	0.489	0.829	0.474
1996	-0.430	0.030	-0.460	0.687	0.134E-06	0.524	0.830	0.417
1997	-0.636	-0.060	-0.576	0.687	0.134E-06	0.426	0.759	0.513
1998	-0.470	-0.164	-0.307	0.687	0.134E-06	0.503	0.684	0.291
1999	-0.440	-0.212	-0.228	0.687	0.134E-06	0.519	0.652	0.229
2000	-0.296	-0.176	-0.120	0.687	0.134E-06	0.599	0.676	0.149
2001	-0.708	-0.117	-0.590	0.687	0.134E-06	0.397	0.716	0.525
2002	-0.708	-0.246	-0.462	0.687	0.134E-06	0.397	0.630	0.419
2003	-0.533	-0.347	-0.186	0.687	0.134E-06	0.473	0.570	0.196
2004	-0.298	-0.340	0.042	0.687	0.134E-06	0.598	0.573	0.051
2005	-0.614	-0.396	-0.218	0.687	0.134E-06	0.436	0.542	0.220
2006	-0.226	-0.331	0.105	0.687	0.134E-06	0.643	0.579	0.025
Select	ivities by a	ge						
Year	0 1	2 3	3 4	5				

ICAL	0	1	4	5	т	5
1970	0.000	0.003	0.231	1.000	1.000	1.000
1971	0.000	0.003	0.231	1.000	1.000	1.000
1972	0.000	0.003	0.231	1.000	1.000	1.000
1973	0.000	0.003	0.231	1.000	1.000	1.000
1974	0.000	0.003	0.231	1.000	1.000	1.000
1975	0.000	0.003	0.231	1.000	1.000	1.000
1976	0.000	0.003	0.231	1.000	1.000	1.000
1977	0.000	0.003	0.231	1.000	1.000	1.000
1978	0.000	0.003	0.231	1.000	1.000	1.000
1979	0.000	0.003	0.231	1.000	1.000	1.000
1980	0.000	0.003	0.231	1.000	1.000	1.000
1981	0.000	0.003	0.231	1.000	1.000	1.000
1982	0.000	0.003	0.231	1.000	1.000	1.000

1983	0.000	0.003	0.231	1.000	1.000	1.000
1984	0.000	0.003	0.231	1.000	1.000	1.000
1985	0.000	0.003	0.231	1.000	1.000	1.000
1986	0.000	0.003	0.231	1.000	1.000	1.000
1987	0.000	0.003	0.231	1.000	1.000	1.000
1988	0.000	0.003	0.231	1.000	1.000	1.000
1989	0.000	0.003	0.231	1.000	1.000	1.000
1990	0.000	0.003	0.231	1.000	1.000	1.000
1991	0.000	0.003	0.231	1.000	1.000	1.000
1992	0.000	0.003	0.231	1.000	1.000	1.000
1993	0.000	0.003	0.231	1.000	1.000	1.000
1994	0.000	0.003	0.231	1.000	1.000	1.000
1995	0.000	0.003	0.231	1.000	1.000	1.000
1996	0.000	0.003	0.231	1.000	1.000	1.000
1997	0.000	0.003	0.231	1.000	1.000	1.000
1998	0.000	0.003	0.231	1.000	1.000	1.000
1999	0.000	0.003	0.231	1.000	1.000	1.000
2000	0.000	0.003	0.231	1.000	1.000	1.000
2001	0.000	0.003	0.231	1.000	1.000	1.000
2002	0.000	0.003	0.231	1.000	1.000	1.000
2003	0.000	0.003	0.231	1.000	1.000	1.000
2004	0.000	0.003	0.231	1.000	1.000	1.000
2005	0.000	0.003	0.231	1.000	1.000	1.000
2006	0.000	0.003	0.231	1.000	1.000	1.000

5.4 USMEX_LL Lognormal dist. month 6 numbers Ages 0 - 5 log-likelihood = 4.74 deviance = 1.04 Chi-sq. discrepancy= 1.52

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1993	0.205	0.196	0.009	0.687	0.173E-06	1.151	1.140	0.068
1994	0.528	0.175	0.353	0.687	0.173E-06	1.589	1.116	0.026
1995	0.077	0.196	-0.119	0.687	0.173E-06	1.012	1.140	0.148
1996	-0.043	0.185	-0.228	0.687	0.173E-06	0.898	1.128	0.228
1997	0.042	0.095	-0.054	0.687	0.173E-06	0.977	1.031	0.105
1998	-0.039	-0.005	-0.034	0.687	0.173E-06	0.901	0.932	0.093
1999	0.382	-0.043	0.425	0.687	0.173E-06	1.373	0.898	0.072
2000	0.001	0.001	0.000	0.687	0.173E-06	0.938	0.938	0.073
2001	-0.232	0.043	-0.275	0.687	0.173E-06	0.743	0.978	0.265
2002	-0.175	-0.093	-0.082	0.687	0.173E-06	0.787	0.854	0.123
2003	-0.025	-0.178	0.153	0.687	0.173E-06	0.914	0.785	0.011
2004	-0.195	-0.183	-0.013	0.687	0.173E-06	0.771	0.781	0.080
2005	-0.285	-0.230	-0.055	0.687	0.173E-06	0.705	0.745	0.105
2006	-0.240	-0.159	-0.081	0.687	0.173E-06	0.737	0.800	0.123

Selecti	vities	by age				
Year	0	1	2	3	4	5
1993	0.000	0.006	0.281	1.000	1.000	1.000
1994	0.000	0.006	0.281	1.000	1.000	1.000
1995	0.000	0.006	0.281	1.000	1.000	1.000
1996	0.000	0.006	0.281	1.000	1.000	1.000
1997	0.000	0.006	0.281	1.000	1.000	1.000
1998	0.000	0.006	0.281	1.000	1.000	1.000
1999	0.000	0.006	0.281	1.000	1.000	1.000
2000	0.000	0.006	0.281	1.000	1.000	1.000
2001	0.000	0.006	0.281	1.000	1.000	1.000
2002	0.000	0.006	0.281	1.000	1.000	1.000
2003	0.000	0.006	0.281	1.000	1.000	1.000
2004	0.000	0.006	0.281	1.000	1.000	1.000
2005	0.000	0.006	0.281	1.000	1.000	1.000
2006	0.000	0.006	0.281	1.000	1.000	1.000

5.5 US_RR		
Lognormal dist.		
month 6 numbers		
Ages 0 - 5		
log-likelihood	=	0.40
deviance	=	14.99
Chi-sq. discrepan	су=	7.18

Year	Observed	Predicted	Residuals (Obs-pred)	Standard Deviation	Q Catchabil.	Untransfrmd Observed	Untransfrmd Predicted	Chi-square Discrepancy
1986	0 789	0 319	0 470	0 697	0 1028-06	1 0 2 0	1 212	0 116
1987	0.046	0.397	-0.351	0.687	0.102E-06	0.922	1.310	0.327
1988	-0.456	0.273	-0.730	0.687	0.102E-06	0.558	1.157	0.636
1989	-0.437	0.178	-0.615	0.687	0.102E-06	0.569	1.052	0.544
1990	-0.911	0.076	-0.987	0.687	0.102E-06	0.354	0.950	0.826
1991	-0.437	0.143	-0.580	0.687	0.102E-06	0.569	1.016	0.516
1992	-0.820	0.103	-0.923	0.687	0.102E-06	0.388	0.976	0.781
1993	0.003	0.086	-0.083	0.687	0.102E-06	0.883	0.959	0.124
1994	0.665	0.124	0.541	0.687	0.102E-06	1.712	0.997	0.211
1995	0.490	0.124	0.366	0.687	0.102E-06	1.438	0.997	0.032
1996	-0.717	-0.046	-0.670	0.687	0.102E-06	0.430	0.841	0.590
1997	-0.822	-0.134	-0.688	0.687	0.102E-06	0.387	0.770	0.604
1998	-0.121	-0.171	0.049	0.687	0.102E-06	0.780	0.742	0.048
1999	0.627	-0.054	0.681	0.687	0.102E-06	1.649	0.834	0.523
2000	0.489	0.052	0.437	0.687	0.102E-06	1.436	0.928	0.083
2001	0.556	-0.114	0.671	0.687	0.102E-06	1.536	0.785	0.493
2002	0.168	-0.326	0.494	0.687	0.102E-06	1.042	0.636	0.144

2003	0.283	-0.218	0.501	0.687	0.102E-06	1.169	0.708	0.154
2004	0.156	-0.365	0.521	0.687	0.102E-06	1.029	0.611	0.180
2005	0.063	-0.284	0.347	0.687	0.102E-06	0.938	0.663	0.023
2006	0.383	-0.165	0.547	0.687	0.102E-06	1.291	0.747	0.222

Select	ivities	by age				
Year	0	1	2	3	4	5
1986	0.000	0.100	1.000	0.186	0.076	0.02
1987	0.000	0.100	1.000	0.186	0.076	0.02
1988	0.000	0.100	1.000	0.186	0.076	0.02
1989	0.000	0.100	1.000	0.186	0.076	0.02
1990	0.000	0.100	1.000	0.186	0.076	0.02
1991	0.000	0.100	1.000	0.186	0.076	0.02
1992	0.000	0.100	1.000	0.186	0.076	0.02
1993	0.000	0.100	1.000	0.186	0.076	0.02
1994	0.000	0.100	1.000	0.186	0.076	0.02
1995	0.000	0.100	1.000	0.186	0.076	0.02
1996	0.000	0.100	1.000	0.186	0.076	0.02
1997	0.000	0.100	1.000	0.186	0.076	0.02
1998	0.000	0.100	1.000	0.186	0.076	0.02
1999	0.000	0.100	1.000	0.186	0.076	0.02
2000	0.000	0.100	1.000	0.186	0.076	0.02
2001	0.000	0.100	1.000	0.186	0.076	0.02
2002	0.000	0.100	1.000	0.186	0.076	0.02
2003	0.000	0.100	1.000	0.186	0.076	0.02
2004	0.000	0.100	1.000	0.186	0.076	0.02
2005	0.000	0.100	1.000	0.186	0.076	0.02
2006	0 000	0 1 0 0	1 000	0 186	0 076	0 03

5.6 US_PLL ATL Lognormal dist. month 6 numbers Ages 0 - 5 log-likelihood = 6.65 deviance = 1.74 Chi-sq. discrepancy= 2.11

Vear	Observ	red	Predicte	Re Ind (C	esiduals) Dei	andard	Q Catchabil	Untransfrmd Observed	Untransfrmd	Chi-square
1987	0.	587	0.3	70	0.21	7	0.687	0.156E-06	1.696	1.365	0.001
1988	0.	652	0.4	36	0.21	6	0.687	0.156E-06	1.811	1.459	0.001
1989	0.	588	0.3	67	0.22	1	0.687	0.156E-06	1.699	1.361	0.000
1990	0.	388	0.2	30	0.15	9	0.687	0.156E-06	1.391	1.187	0.009
1991	0.	210	0.1	.44	-0.00	3 F	0.687	0.156E-06	1.085	1.089	0.075
1002	-0	210	0.1	. 25	-0.35	5	0.687	0.156E-06	1.104	1 019	0.033
1994	-0.	125	0.0	155	-0.35	n n	0.687	0.156E-00	0.713	0 997	0.331
1995	-0	040	0.0	175	-0.11	5	0.687	0.156E-06	0.052	1 017	0.192
1996	-0.	298	0.0	67	-0.36	5	0.687	0.156E-06	0.700	1.009	0.338
1997	-0.	191	-0.0	23	-0.16	8	0.687	0.156E-06	0.780	0.922	0.183
1998	-0.	316	-0.1	.23	-0.19	3	0.687	0.156E-06	0.687	0.834	0.202
1999	-0.	178	-0.1	.63	-0.01	5	0.687	0.156E-06	0.789	0.801	0.082
2000	-0.	091	-0.1	.21	0.03	0	0.687	0.156E-06	0.861	0.835	0.057
2001	-0.	218	-0.0	76	-0.14	2	0.687	0.156E-06	0.758	0.874	0.164
2002	-0.	293	-0.2	10	-0.08	4	0.687	0.156E-06	0.703	0.765	0.124
2003	-0.	423	-0.2	98	-0.12	4	0.687	0.156E-06	0.618	0.700	0.152
2004	-0.	063	-0.3	01	0.23	8	0.687	0.156E-06	0.886	0.698	0.000
2005	-0.	013	-0.3	50	0.33	6	0.687	0.156E-06	0.931	0.665	0.019
2006	-0.	030	-0.2	80	0.24	4	0.08/	0.150E-00	0.910	0.713	0.000
Selecti	lvities	by age	2								
Year	0	1	2	3	4	5					
1987	0.000	0.000	0.270	1.000	1.000	1.000					
1988	0.000	0.006	0.270	1.000	1.000	1.000					
1909	0.000	0.000	0.270	1 000	1 000	1 000					
1001	0.000	0.000	0.270	1 000	1 000	1 000					
1992	0.000	0.000	0.270	1.000	1.000	1.000					
1993	0.000	0.006	0.270	1.000	1.000	1.000					
1994	0.000	0.006	0.270	1.000	1.000	1.000					
1995	0.000	0.006	0.270	1.000	1.000	1.000					
1996	0.000	0.006	0.270	1.000	1.000	1.000					
1997	0.000	0.006	0.270	1.000	1.000	1.000					
1998	0.000	0.006	0.270	1.000	1.000	1.000					
1999	0.000	0.006	0.270	1.000	1.000	1.000					
2000	0.000	0.000	0.270	1.000	1.000	1.000					
2001	0.000	0.000	0.270	1.000	1.000	1.000					
2002	0.000	0.000	0.270	1 000	1 000	1 000					
2003	0.000	0.000	0.270	1.000	1.000	1.000					
2005	0.000	0.006	0.270	1.000	1.000	1.000					
2006	0.000	0.006	0.270	1.000	1.000	1.000					
5.7 VEN	 л т.т.										
Lognorn month Ages (log-lik	nal dist 6 numbe) - 5 celihood	ers 1 =		2.22							
deviand	ce ,	=	:	3.82							
Chi-sq.	. discre	pancy=		3.43							
											c1. '

	01	n	(chard)	Scandar u	Q		Dictanstinu	CIII-Square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy

1991	0.	132	0.1	40	-0.00	8	0.687	0.179E-06	1.045	1.053	0.078
1992	0.	218	0.1	22	0.09	6	0.687	0.179E-06	1.138	1.034	0.028
1993	Ο.	605	0.0	79	0.52	6	0.687	0.179E-06	1.676	0.991	0.188
1994	-0.	378	0.0	46	-0.42	4	0.687	0.179E-06	0.627	0.959	0.388
1995	-0.	277	0.0	51	-0.32	8	0.687	0.179E-06	0.694	0.963	0.308
1996	-0.	011	0.0	72	-0.08	3	0.687	0.179E-06	0.905	0.983	0.124
1997	-0.	604	-0.0	10	-0.59	4	0.687	0.179E-06	0.500	0.906	0.528
1998	-0.	051	-0.1	04	0.05	4	0.687	0.179E-06	0.870	0.825	0.046
1999	-0.	075	-0.1	52	0.07	7	0.687	0.179E-06	0.849	0.786	0.036
2000	-0.	375	-0.1	58	-0.21	8	0.687	0.179E-06	0.629	0.782	0.221
2001	Ο.	815	-0.0	87	0.90	2	0.687	0.179E-06	2.067	0.839	1.486
Select	ivities	by age									
Year	0	1	2	3	4	5					
1991	0.000	0.018	0.132	0.906	1.000	1.000					
1992	0.000	0.018	0.132	0.906	1.000	1.000					

1993	0.000	0.018	0.132	0.906	1.000	1.000
1994	0.000	0.018	0.132	0.906	1.000	1.000
1995	0.000	0.018	0.132	0.906	1.000	1.000
1996	0.000	0.018	0.132	0.906	1.000	1.000
1997	0.000	0.018	0.132	0.906	1.000	1.000
1998	0.000	0.018	0.132	0.906	1.000	1.000
1999	0.000	0.018	0.132	0.906	1.000	1.000
2000	0.000	0.018	0.132	0.906	1.000	1.000
2001	0.000	0.018	0.132	0.906	1.000	1.000

5.8 VEN_PS Lognormal dist. month 6 biomass Ages 0 - 4 log-likelihood = 2.77 deviance = 11.76 Chi-sq. discrepancy= 8.48

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1983	0.863	-0.014	0.877	0.687	0.216E-07	13.589	5.654	1.341
1984	0.050	0.125	-0.075	0.687	0.216E-07	6.027	6.499	0.119
1985	0.573	0.246	0.328	0.687	0.216E-07	10.170	7.329	0.015
1986	0.042	0.292	-0.250	0.687	0.216E-07	5.977	7.676	0.246
1987	-0.226	0.387	-0.613	0.687	0.216E-07	4.574	8.444	0.543
1988	0.095	0.362	-0.267	0.687	0.216E-07	6.304	8.231	0.259
1989	0.868	0.285	0.583	0.687	0.216E-07	13.656	7.621	0.286
1990	0.200	0.170	0.030	0.687	0.216E-07	7.002	6.796	0.058
1991	0.221	0.160	0.061	0.687	0.216E-07	7.151	6.728	0.043
1992	-0.175	0.104	-0.279	0.687	0.216E-07	4.812	6.360	0.269
1993	-0.040	-0.039	0.000	0.687	0.216E-07	5.511	5.512	0.073
1994	0.159	0.076	0.082	0.687	0.216E-07	6.720	6.188	0.034
1995	-0.639	0.124	-0.763	0.687	0.216E-07	3.025	6.489	0.662
1996	0.167	0.062	0.105	0.687	0.216E-07	6.777	6.101	0.025
1997	-0.227	-0.081	-0.146	0.687	0.216E-07	4.569	5.289	0.167
1998	-0.437	-0.201	-0.236	0.687	0.216E-07	3.704	4.691	0.235
1999	-0.054	-0.262	0.208	0.687	0.216E-07	5.434	4.412	0.001
2000	0.144	-0.144	0.289	0.687	0.216E-07	6.624	4.963	0.005
2001	0.837	-0.179	1.016	0.687	0.216E-07	13.243	4.795	2.318
2002	0.356	-0.269	0.624	0.687	0.216E-07	8.181	4.383	0.374
2003	-0.360	-0.391	0.031	0.687	0.216E-07	3.999	3.877	0.057
2004	-0.874	-0.401	-0.473	0.687	0.216E-07	2.393	3.839	0.428
2005	-1.543	-0.412	-1.131	0.687	0.216E-07	1.226	3.798	0.922
Select	ivities by a	ge						
Year	0 1	2	3 4					
1004	0.015 0.6	29 U.869 1. 29 0.869 1	000 0.198					

1984	0.015	0.629	0.869	1.000	0.198
1985	0.015	0.629	0.869	1.000	0.198
1986	0.015	0.629	0.869	1.000	0.198
1987	0.015	0.629	0.869	1.000	0.198
1988	0.015	0.629	0.869	1.000	0.198
1989	0.015	0.629	0.869	1.000	0.198
1990	0.015	0.629	0.869	1.000	0.198
1991	0.015	0.629	0.869	1.000	0.198
1992	0.015	0.629	0.869	1.000	0.198
1993	0.015	0.629	0.869	1.000	0.198
1994	0.015	0.629	0.869	1.000	0.198
1995	0.015	0.629	0.869	1.000	0.198
1996	0.015	0.629	0.869	1.000	0.198
1997	0.015	0.629	0.869	1.000	0.198
1998	0.015	0.629	0.869	1.000	0.198
1999	0.015	0.629	0.869	1.000	0.198
2000	0.015	0.629	0.869	1.000	0.198
2001	0.015	0.629	0.869	1.000	0.198
2002	0.015	0.629	0.869	1.000	0.198
2003	0.015	0.629	0.869	1.000	0.198
2004	0.015	0.629	0.869	1.000	0.198
2005	0.015	0.629	0.869	1.000	0.198

------5.9 EUR-FAD-PS Lognormal dist. month 6 biomass Ages 0 - 1 log-likelihood = deviance = Chi-sq. discrepancy=

0 - 1		
.kelihood	=	4.77
ice	=	2.48
 discrepand 	y=	1.95

Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1991	0.054	0.152	-0.098	0.687	0.170E-07	1.960	2.161	0.133
1992	-0.380	0.061	-0.440	0.687	0.170E-07	1.270	2.153	0.401
1994	0.002	0.145	-0.143	0.687	0.170E-07	1.860	2.145	0.165
1995	0.161	0.021	0.140	0.687	0.170E-07	2.180	1.896	0.014
1990	-0.130	0.051	-0.181	0.687	0.170E-07	1.630	1.953	0.193
1998	-0.428	0.257	-0.685	0.687	0.170E-07	1.210	2.401	0.601
1999 2000	0.034	0.041	-0.007	0.687	0.170E-07 0.170E-07	1.920	1.933	0.077
2001	-0.014	-0.131	0.117	0.687	0.170E-07	1.830	1.628	0.021
2002	0.085	-0.011	0.096	0.687	0.170E-07	2.020	1.836	0.028
2003	0.161	-0.223	0.383	0.687	0.170E-07	2.180	1.486	0.042
2005	0.210	-0.129	0.339	0.687	0.170E-07	2.290	1.632	0.019
2006	-0.124	-0.258	0.134	0.687	0.170E-07	1.640	1.435	0.016
Select Year	ivities by ag	le						
		-						
1991 1992	0.795 1.00	0						
1993	0.795 1.00	0						
1994	0.795 1.00	0						
1995	0.795 1.00	0						
1997	0.795 1.00	0						
1998	0.795 1.00	0						
2000	0.795 1.00	0						
2001	0.795 1.00	0						
2002	0.795 1.00	0						
2004	0.795 1.00	00						
2005	0.795 1.00	0						
		-						
5.10 E	SUR-PS 3%	-						
Lognor	rmal dist. 6 biomass							
Ages	0 - 5							
log-li	ikelihood	= 3.5	57					
Chi-so	4. discrepancy	- 0.8	8					
			Dociduala	Ctandard	0	In two of frend	Untwordford	Chi amano
Year	Observed	Predicted	(Obs-pred)	Deviation	Q Catchabil.	Observed	Predicted	Discrepancy
1070	0 101	0 212	0 112	0 697	0 1025 07	 E 061	E 662	0 142
1970	-0.057	0.162	-0.220	0.687	0.192E-07	4.318	5.379	0.222
1972	0.047	0.116	-0.069	0.687	0.192E-07	4.795	5.135	0.114
1973	-0.038	-0.028	-0.002	0.687	0.192E-07 0.192E-07	4.833	4.845	0.075
1975	0.037	-0.116	0.152	0.687	0.192E-07	4.744	4.075	0.011
1976 1977	0.026	-0.211	0.237	0.687	0.192E-07 0.192E-07	4.693 4.610	3.702	0.000
1978	-0.086	-0.042	-0.045	0.687	0.192E-07	4.195	4.388	0.099
1979	-0.092	-0.016	-0.076	0.687	0.192E-07	4.171	4.503	0.119
Select	ivities by ag	je 2 3	е л	5				
1970 1971	0.040 0.27 0.040 0.27	1⊥ 0.420 0.6 1 0.420 0.6	31 1.000 31 1.000	U.243 0.243				
1972	0.040 0.27	1 0.420 0.6	31 1.000	0.243				
1973	0.040 0.27	1 0.420 0.6	531 1.000	0.243				
1975	0.040 0.27	1 0.420 0.6	31 1.000	0.243				
1976	0.040 0.27	1 0.420 0.6	531 1.000	0.243				
1978	0.040 0.27	1 0.420 0.6	531 1.000	0.243				
1979	0.040 0.27	1 0.420 0.6	31 1.000	0.243				
 5 11 F								
Lognor	mal dist.							
Ages	0 - 4							
log-li	ikelihood	= 3.3	1					
Chi-so	nce 4. discrepancy	= 20.4 r= 12.1	.6					
Year	Observed	Predicted	Residuals (Obs-pred)	Standard Deviation	Q Catchabil.	Untransfrmd Observed	Untransfrmd Predicted	Chi-square Discrepancy
 1970	-0 200	0 007		0 687	0.472〒-09	0 644	0 702	0 21 2
1971	-0.213	0.006	-0.219	0.687	0.472E-08	0.636	0.791	0.213
1972	-0.207	0.020	-0.227	0.687	0.472E-08	0.640	0.803	0.228
1973 1974	-U.290 0.162	-0.029 -0.082	-0.261 0.244	0.687	U.472E-08 0.472E-08	U.589 0.925	0.764 0.725	0.254
1975	-0.664	-0.068	-0.597	0.687	0.472E-08	0.405	0.735	0.530
1976 1977	-0.563	-0.002	-0.561	0.687	0.472E-08	0.448	0.785	0.501
1978	-1.092	0.126	-1.218	0.687	0.472E-08	0.264	0.892	0.975
1979 1981	-0.457	0.041	-0.499	0.687	0.472E-08	0.498	0.820	0.449
1701			0.369	/ 80.0	0.4/25-08	1.024	0.708	0.034
	0.263	01100			80/			

1982	0.215	-0.031	0.247	0.687	0.472E-08	0.976	0.763	0.000
1983	0.234	0.149	0.085	0.687	0.472E-08	0.994	0.913	0.033
1984	0.590	0.245	0.346	0.687	0.472E-08	1.420	1.005	0.022
1985	0.327	0.322	0.005	0.687	0.472E-08	1.091	1.086	0.070
1986	0.739	0.333	0.405	0.687	0.472E-08	1.647	1.098	0.057
1987	0.859	0.383	0.477	0.687	0.472E-08	1.858	1.154	0.123
1988	0.826	0.272	0.554	0.687	0.472E-08	1.798	1.033	0.233
1989	-0.597	0.177	-0.774	0.687	0.472E-08	0.433	0.939	0.671
1990	0.745	0.119	0.626	0.687	0.472E-08	1.658	0.887	0.378
1991	0.422	0.201	0.221	0.687	0.472E-08	1.200	0.962	0.000
1992	1.090	0.082	1.008	0.687	0.472E-08	2.340	0.854	2.248
1993	0.881	-0.058	0.939	0.687	0.472E-08	1.899	0.743	1.725
1994	0.586	0.129	0.457	0.687	0.472E-08	1.414	0.895	0.102
1995	0.071	0.117	-0.046	0.687	0.472E-08	0.845	0.885	0.100
1996	0.562	-0.018	0.580	0.687	0.472E-08	1.381	0.773	0.281
1997	-0.295	-0.099	-0.196	0.687	0.472E-08	0.586	0.713	0.204
1998	-1.261	-0.158	-1.103	0.687	0.472E-08	0.223	0.672	0.904
1999	-0.208	-0.190	-0.018	0.687	0.472E-08	0.639	0.651	0.084
2000	-0.961	-0.057	-0.904	0.687	0.472E-08	0.301	0.743	0.768
2001	-0.490	-0.282	-0.208	0.687	0.472E-08	0.482	0.593	0.213
2002	-0.074	-0.296	0.223	0.687	0.472E-08	0.731	0.585	0.000
2003	0.059	-0.350	0.409	0.687	0.472E-08	0.835	0.555	0.059
2004	-0.213	-0.439	0.226	0.687	0.472E-08	0.636	0.507	0.000
2005	-0.416	-0.357	-0.059	0.687	0.472E-08	0.519	0.550	0.108
2006	-0.291	-0.243	-0.048	0.687	0.472E-08	0.588	0.617	0.101

Year	0	1	2	3	4
1970	0.062	1.000	0.666	0.200	0.047
1971	0.062	1.000	0.666	0.200	0.047
1972	0.062	1.000	0.666	0.200	0.047
1973	0.062	1.000	0.666	0.200	0.047
1974	0.062	1.000	0.666	0.200	0.047
1975	0.062	1.000	0.666	0.200	0.047
1976	0.062	1.000	0.666	0.200	0.047
1977	0.062	1.000	0.666	0.200	0.047
1978	0.062	1.000	0.666	0.200	0.047
1979	0.062	1.000	0.666	0.200	0.047
1981	0.062	1.000	0.666	0.200	0.047
1982	0.062	1.000	0.666	0.200	0.047
1983	0.062	1.000	0.666	0.200	0.047
1984	0.062	1.000	0.666	0.200	0.047
1985	0.062	1.000	0.666	0.200	0.047
1986	0.062	1.000	0.666	0.200	0.047
1987	0.062	1.000	0.666	0.200	0.047
1988	0.062	1.000	0.666	0.200	0.047
1989	0.062	1.000	0.666	0.200	0.047
1990	0.062	1.000	0.666	0.200	0.047
1991	0.062	1.000	0.666	0.200	0.047
1992	0.062	1.000	0.666	0.200	0.047
1993	0.062	1.000	0.666	0.200	0.047
1994	0.062	1.000	0.666	0.200	0.047
1995	0.062	1.000	0.666	0.200	0.047
1996	0.062	1.000	0.666	0.200	0.047
1997	0.062	1.000	0.666	0.200	0.047
1998	0.062	1.000	0.666	0.200	0.047
1999	0.062	1.000	0.666	0.200	0.047
2000	0.062	1.000	0.666	0.200	0.047
2001	0.062	1.000	0.666	0.200	0.047
2002	0.062	1.000	0.666	0.200	0.047
2003	0.062	1.000	0.666	0.200	0.047
2004	0.062	1.000	0.666	0.200	0.047
2005	0.062	1.000	0.666	0.200	0.047
2006	0.062	1.000	0.666	0.200	0.047

Selectivities by age

5.12 URU-LL Lognormal dist. month 6 numbers Ages 0 - 5 log-likelihood = 1.92 deviance = 15.71 Chi-sq. discrepancy= 10.54

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1981	0.627	-0.041	0.668	0.687	0.408E-06	6.554	3.361	0.484
1982	0.932	-0.121	1.053	0.687	0.408E-06	8.896	3.102	2.658
1983	-0.050	-0.083	0.033	0.687	0.408E-06	3.330	3.222	0.056
1984	-0.858	0.058	-0.916	0.687	0.408E-06	1.485	3.709	0.776
1985	0.012	0.174	-0.162	0.687	0.408E-06	3.546	4.169	0.179
1986	0.164	0.259	-0.095	0.687	0.408E-06	4.124	4.537	0.132
1987	0.127	0.369	-0.242	0.687	0.408E-06	3.976	5.064	0.240
1988	0.777	0.378	0.399	0.687	0.408E-06	7.613	5.109	0.052
1989	-0.519	0.302	-0.821	0.687	0.408E-06	2.085	4.737	0.707
1990	-0.609	0.176	-0.785	0.687	0.408E-06	1.904	4.174	0.679
1991	0.672	0.136	0.536	0.687	0.408E-06	6.854	4.012	0.203
1992	0.626	0.110	0.516	0.687	0.408E-06	6.545	3.907	0.173
1993	-1.028	0.072	-1.100	0.687	0.408E-06	1.252	3.761	0.902
1994	0.325	0.069	0.255	0.687	0.408E-06	4.845	3.754	0.001
1995	0.058	0.082	-0.024	0.687	0.408E-06	3.711	3.800	0.087
1996	0.715	0.022	0.693	0.687	0.408E-06	7.159	3.581	0.557
1997	-0.379	-0.065	-0.314	0.687	0.408E-06	2.396	3.280	0.297
1998	-0.255	-0.146	-0.109	0.687	0.408E-06	2.715	3.027	0.141
1999	-0.073	-0.133	0.060	0.687	0.408E-06	3.255	3.066	0.043
2000	0.198	-0.071	0.269	0.687	0.408E-06	4.268	3.263	0.002
2001	-0.283	-0.099	-0.184	0.687	0.408E-06	2.638	3.171	0.195
2002	-0.667	-0.254	-0.414	0.687	0.408E-06	1.796	2.717	0.379
2003	-0.314	-0.279	-0.035	0.687	0.408E-06	2.558	2.649	0.093

2004	-0.	318	-0.3	30	0.01	2	0.687	0.408E-06	2.547	2.517	0.067
2005	0.	100	0.5	55	0.00	<i>c</i>	0.007	0.1000 00	0.000	2.505	0.174
2000	-0.	400	-0.2	50	-0.15	0	0.007	0.4005-00	2.333	2.121	0.1/4
Select	ivities	by age									
Year	0	1	2	3	4	5					
1981	0.000	0.039	0.572	1.000	1.000	1.000					
1982	0.000	0.039	0.572	1.000	1.000	1.000					
1983	0.000	0.039	0.572	1.000	1.000	1.000					
1984	0.000	0.039	0.572	1.000	1.000	1.000					
1985	0.000	0.039	0.572	1.000	1.000	1.000					
1986	0.000	0.039	0.572	1.000	1.000	1.000					
1987	0.000	0.039	0.572	1.000	1.000	1.000					
1988	0.000	0.039	0.572	1.000	1.000	1.000					
1989	0.000	0.039	0.572	1.000	1.000	1.000					
1990	0.000	0.039	0.572	1.000	1.000	1.000					
1991	0.000	0.039	0.572	1.000	1.000	1.000					
1992	0.000	0.039	0.572	1.000	1.000	1.000					
1993	0.000	0.039	0.572	1.000	1.000	1.000					
1994	0.000	0.039	0.572	1.000	1.000	1.000					
1995	0.000	0.039	0.572	1.000	1.000	1.000					
1996	0.000	0.039	0.572	1.000	1.000	1.000					
1997	0.000	0.039	0.572	1.000	1.000	1.000					
1998	0.000	0.039	0.572	1.000	1.000	1.000					
1999	0.000	0.039	0.572	1.000	1.000	1.000					
2000	0.000	0.039	0.572	1.000	1.000	1.000					
2001	0.000	0.039	0.572	1.000	1.000	1.000					
2002	0.000	0.039	0.572	1.000	1.000	1.000					
2003	0.000	0.039	0.572	1.000	1.000	1.000					
2004	0.000	0.039	0.572	1.000	1.000	1.000					
2005	0.000	0.039	0.572	1.000	1.000	1.000					
2006	0.000	0.039	0.572	1.000	1.000	1.000					

-----5.13 BRA-URU-LL Not used

------5.14 CHIN-TAI-LL Lognormal dist. month 6 numbers Ages 0 - 5 log-likelihood = deviance = Chi-sq. discrepancy=

11.89 4.03 4.45

			Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
Year	Observed	Predicted	(Obs-pred)	Deviation	Catchabil.	Observed	Predicted	Discrepancy
1970	0.772	0.327	0.445	0.687	0.123E-06	1.712	1.098	0.089
1971	0.251	0.274	-0.023	0.687	0.123E-06	1.017	1.041	0.086
1972	0.328	0.236	0.092	0.687	0.123E-06	1.098	1.002	0.030
1973	0.435	0.164	0.272	0.687	0.123E-06	1.223	0.933	0.002
1974	-0.252	0.081	-0.333	0.687	0.123E-06	0.615	0.858	0.312
1975	-0.212	-0.048	-0.163	0.687	0.123E-06	0.641	0.754	0.180
1976	-0.041	-0.111	0.070	0.687	0.123E-06	0.760	0.709	0.039
1977	-0.145	-0.043	-0.102	0.687	0.123E-06	0.685	0.758	0.136
1978	-0.238	0.034	-0.272	0.687	0.123E-06	0.624	0.819	0.263
1979	-0.200	0.034	-0.234	0.687	0.123E-06	0.648	0.819	0.233
1980	0.006	0.022	-0.016	0.687	0.123E-06	0.796	0.809	0.082
1981	-0.133	-0.066	-0.067	0.687	0.123E-06	0.693	0.741	0.113
1982	-0.394	-0.161	-0.233	0.687	0.123E-06	0.534	0.674	0.233
1983	-0.403	-0.202	-0.202	0.687	0.123E-06	0.529	0.647	0.208
1984	-0.033	-0.004	-0.030	0.687	0.123E-06	0.766	0.789	0.090
1985	-0.133	0.097	-0.230	0.687	0.123E-06	0.693	0.872	0.230
1986	0.083	0.204	-0.121	0.687	0.123E-06	0.860	0.970	0.149
1987	-0.009	0.325	-0.334	0.687	0.123E-06	0.784	1.096	0.314
1988	0.342	0.389	-0.048	0.687	0.123E-06	1.114	1.168	0.101
1989	-0.020	0.319	-0.339	0.687	0.123E-06	0.776	1.089	0.317
1990	-0.020	0.186	-0.206	0.687	0.123E-06	0.776	0.953	0.211
1991	0.110	0.101	0.009	0.687	0.123E-06	0.884	0.876	0.068
1992	-0.199	0.083	-0.281	0.687	0.123E-06	0.649	0.860	0.271
1993	0.092	0.037	0.055	0.687	0.123E-06	0.868	0.821	0.045
1994	0.407	0.016	0.391	0.687	0.123E-06	1.189	0.804	0.047
1995	0.391	0.031	0.360	0.687	0.123E-06	1.170	0.817	0.029
1996	0.251	0.022	0.229	0.687	0.123E-06	1.017	0.809	0.000
1997	-0.018	-0.067	0.049	0.687	0.123E-06	0.778	0.740	0.048
1998	-0.010	-0.163	0.153	0.687	0.123E-06	0.783	0.673	0.011
1999	-0.315	-0.196	-0.119	0.687	0.123E-06	0.578	0.651	0.148
2000	-0.023	-0.161	0.138	0.687	0.123E-06	0.773	0.674	0.014
2001	-0.277	-0.121	-0.157	0.687	0.123E-06	0.600	0.702	0.175
2002	-0.101	-0.250	0.149	0.687	0.123E-06	0.715	0.617	0.012
2003	-0.096	-0.339	0.243	0.687	0.123E-06	0.719	0.564	0.000
2004	-0.099	-0.342	0.243	0.687	0.123E-06	0.717	0.562	0.000
2005	0.108	-0.385	0.493	0.687	0.123E-06	0.882	0.539	0.143
2006	-0.201	-0.322	0.120	0.687	0.123E-06	0.647	0.574	0.020

0-1		lass				
Year	0 O	by age 1	2	3	4	5
1970	0.000	0.013	0.272	1.000	1.000	1.000
1971	0.000	0.013	0.272	1.000	1.000	1.000
1972	0.000	0.013	0.272	1.000	1.000	1.000
1973	0.000	0.013	0.272	1.000	1.000	1.000
1974	0.000	0.013	0.272	1.000	1.000	1.000
1975	0.000	0.013	0.272	1.000	1.000	1.000
1976	0.000	0.013	0.272	1.000	1.000	1.000
1977	0.000	0.013	0.272	1.000	1.000	1.000
1978	0.000	0.013	0.272	1.000	1.000	1.000

1979	0.000	0.013	0.272	1.000	1.000	1.000
1980	0.000	0.013	0.272	1.000	1.000	1.000
1981	0.000	0.013	0.272	1.000	1.000	1.000
1982	0.000	0.013	0.272	1.000	1.000	1.000
1983	0.000	0.013	0.272	1.000	1.000	1.000
1984	0.000	0.013	0.272	1.000	1.000	1.000
1985	0.000	0.013	0.272	1.000	1.000	1.000
1986	0.000	0.013	0.272	1.000	1.000	1.000
1987	0.000	0.013	0.272	1.000	1.000	1.000
1988	0.000	0.013	0.272	1.000	1.000	1.000
1989	0.000	0.013	0.272	1.000	1.000	1.000
1990	0.000	0.013	0.272	1.000	1.000	1.000
1991	0.000	0.013	0.272	1.000	1.000	1.000
1992	0.000	0.013	0.272	1.000	1.000	1.000
1993	0.000	0.013	0.272	1.000	1.000	1.000
1994	0.000	0.013	0.272	1.000	1.000	1.000
1995	0.000	0.013	0.272	1.000	1.000	1.000
1996	0.000	0.013	0.272	1.000	1.000	1.000
1997	0.000	0.013	0.272	1.000	1.000	1.000
1998	0.000	0.013	0.272	1.000	1.000	1.000
1999	0.000	0.013	0.272	1.000	1.000	1.000
2000	0.000	0.013	0.272	1.000	1.000	1.000
2001	0.000	0.013	0.272	1.000	1.000	1.000
2002	0.000	0.013	0.272	1.000	1.000	1.000
2003	0.000	0.013	0.272	1.000	1.000	1.000
2004	0.000	0.013	0.272	1.000	1.000	1.000
2005	0.000	0.013	0.272	1.000	1.000	1.000
2006	0.000	0.013	0.272	1.000	1.000	1.000

6.38
7.55
4.21

	Observed	Due di sta d	Residuals	Standard	Q	Untransfrmd	Untransfrmd	Chi-square
rear	Observea	Predicted	(Obs-pred)	Deviation	Catchabii.	Observed	Predicted	Discrepancy
1980	-0.780	0.167	-0.948	0.687	0.245E-08	0.250	0.645	0.799
1981	0.175	0.023	0.152	0.687	0.245E-08	0.650	0.558	0.011
1982	-0.336	-0.092	-0.244	0.687	0.245E-08	0.390	0.498	0.241
1983	-0.108	-0.315	0.207	0.687	0.245E-08	0.490	0.398	0.001
1984	-1.166	-0.093	-1.073	0.687	0.245E-08	0.170	0.497	0.884
1985	0.095	0.059	0.036	0.687	0.245E-08	0.600	0.579	0.054
1986	0.044	0.194	-0.150	0.687	0.245E-08	0.570	0.662	0.170
1987	0.128	0.318	-0.190	0.687	0.245E-08	0.620	0.750	0.200
1988	0.044	0.470	-0.426	0.687	0.245E-08	0.570	0.873	0.389
1989	0.606	0.485	0.121	0.687	0.245E-08	1.000	0.886	0.020
1990	0.565	0.369	0.196	0.687	0.245E-08	0.960	0.789	0.002
1991	0.235	0.190	0.045	0.687	0.245E-08	0.690	0.659	0.050
1992	0.112	0.129	-0.018	0.687	0.245E-08	0.610	0.621	0.083
1993	-0.087	0.080	-0.167	0.687	0.245E-08	0.500	0.591	0.183
1994	0.144	0.011	0.133	0.687	0.245E-08	0.630	0.552	0.016
1995	0.095	0.025	0.070	0.687	0.245E-08	0.600	0.560	0.039
1996	0.026	0.088	-0.062	0.687	0.245E-08	0.560	0.596	0.110
1997	0.235	0.018	0.217	0.687	0.245E-08	0.690	0.555	0.001
1998	-0.029	-0.072	0.043	0.687	0.245E-08	0.530	0.508	0.051
1999	-0.215	-0.192	-0.023	0.687	0.245E-08	0.440	0.450	0.086
2000	-0.310	-0.272	-0.038	0.687	0.245E-08	0.400	0.416	0.095
2001	-0.068	-0.107	0.040	0.687	0.245E-08	0.510	0.490	0.053
2002	0.249	-0.160	0.409	0.687	0.245E-08	0.700	0.465	0.060
2003	0.370	-0.300	0.670	0.687	0.245E-08	0.790	0.404	0.492
2004	-0.029	-0.295	0.266	0.687	0.245E-08	0.530	0.406	0.002
2005	-0.087	-0.345	0.258	0.687	0.245E-08	0.500	0.386	0.001
2006	0.095	-0.380	0.475	0.687	0.245E-08	0.600	0.373	0.121

Select	lvities	by age	
Year	3	4	5
1980	1.000	1.000	1.000
1981	1.000	1.000	1.000
1982	1.000	1.000	1.000
1983	1.000	1.000	1.000

1983	1.000	1.000	1.000
1984	1.000	1.000	1.000
1985	1.000	1.000	1.000
1986	1.000	1.000	1.000
1987	1.000	1.000	1.000
1988	1.000	1.000	1.000
1989	1.000	1.000	1.000
1990	1.000	1.000	1.000
1991	1.000	1.000	1.000
1992	1.000	1.000	1.000
1993	1.000	1.000	1.000
1994	1.000	1.000	1.000
1995	1.000	1.000	1.000
1996	1.000	1.000	1.000
1997	1.000	1.000	1.000
1998	1.000	1.000	1.000
1999	1.000	1.000	1.000
2000	1.000	1.000	1.000
2001	1.000	1.000	1.000
2002	1.000	1.000	1.000
2003	1.000	1.000	1.000
2004	1.000	1.000	1.000
2005	1.000	1.000	1.000
2006	1.000	1.000	1.000

AN-IS-BB				
rmal dist. 6 biomass 0 - 4				
.kelihood	= -104.6	54		
ice	= 229.5	58		
discrepancy	y= 320.6	58		
Observed	Predicted	Residuals (Obs-pred)	Standard Deviation	Q Catchabil.
-1.991	0.060	-2.052	0.687	0.275E-09
-1.284	-0.085	-1.199	0.687	0.275E-09
0.289	-0.078	0.368	0.68/	0.275E-09
0.000	0.071	0.764	0.007	0.275E-09
2.1/1	0.159	2.013	0.687	0.275E-09
1.550	0.295	1.045	0.007	0.275E-09
1 700	0.305	1 202	0.007	0.275E-09
1 740	0.349	1 391	0.687	0.275E-09
1 214	0.313	0 942	0.687	0.275E-09
2.148	0.154	1.994	0.687	0.275E-09
2.025	0.203	1.822	0.687	0.275E-09
1.479	0.097	1.382	0.687	0.275E-09
0.695	-0.037	0.732	0.687	0.275E-09
0.176	0.107	0.069	0.687	0.275E-09
-0.679	0.133	-0.812	0.687	0.275E-09
2.033	0.031	2.001	0.687	0.275E-09
-0.092	-0.060	-0.032	0.687	0.275E-09
2.379	-0.180	2.559	0.687	0.275E-09
0.029	-0.214	0.243	0.687	0.275E-09
-3.439	-0.084	-3.355	0.687	0.275E-09
-7.484	-0.250	-7.234	0.687	0.275E-09
-1.054	-0.263	-0.792	0.687	0.275E-09
-0.426	-0.335	-0.091	0.687	0.275E-09
-0.618	-0.430	-0.188	0.687	0.275E-09
-2.617	-0.368	-2.249	0.687	0.275E-09
-1.481	-0.252	-1.229	0.687	0.275E-09
	AN-IS-BB 	AN-IS-BB 	AN-IS-BB 	AN-IS-BB

Untransfrmd Untransfrmd Chi-square Observed Predicted Discrepancy

0.075 0.065

0.065

0.083 0.095 0.096

0.105

0.093 0.082

0.087

0.078

0.079

0.073

0.067

0.057

0.055 0.054 0.051

0.046

0.055

1.340 0.963

0.033 0.886

40.044 2.556 0.294

6.037 7.851

1.747 38.279

25.050

7.650

0.039 0.700 38.979

0.092

0.000

1.658 0.684

0.129

0.198 1.395

0.981

0.010 0.020

0.094 0.166

0.620 0.269 0.173

0.387

0.238

0.805 0.535 0.310 0.142 0.084 0.036

0.539

0.064

0.073

0.002 0.025 0.046 0.038 0.005

0.016

Selectiv	vities	by age				
Year	0	1	2	3	4	
1980	0.006	0.971	1.000	0.520	0.455	
1981	0.006	0.971	1.000	0.520	0.455	
1982	0.006	0.971	1.000	0.520	0.455	
1983	0.006	0.971	1.000	0.520	0.455	
1984	0.006	0.971	1.000	0.520	0.455	
1985	0.006	0.971	1.000	0.520	0.455	
1986	0.006	0.971	1.000	0.520	0.455	
1987	0.006	0.971	1.000	0.520	0.455	
1988	0.006	0.971	1.000	0.520	0.455	
1989	0.006	0.971	1.000	0.520	0.455	
1990	0.006	0.971	1.000	0.520	0.455	
1991	0.006	0.971	1.000	0.520	0.455	
1992	0.006	0.971	1.000	0.520	0.455	
1993	0.006	0.971	1.000	0.520	0.455	
1994	0.006	0.971	1.000	0.520	0.455	
1995	0.006	0.971	1.000	0.520	0.455	
1996	0.006	0.971	1.000	0.520	0.455	
1997	0.006	0.971	1.000	0.520	0.455	
1998	0.006	0.971	1.000	0.520	0.455	
1999	0.006	0.971	1.000	0.520	0.455	
2000	0.006	0.971	1.000	0.520	0.455	
2001	0.006	0.971	1.000	0.520	0.455	
2002	0.006	0.971	1.000	0.520	0.455	
2003	0.006	0.971	1.000	0.520	0.455	
2004	0.006	0.971	1.000	0.520	0.455	
2005	0.006	0.971	1.000	0.520	0.455	
2006	0.006	0.971	1.000	0.520	0.455	

5.17 NOT-USED -----Not used

------5.18 NOT-USED

Not used

TOTAL NUMBER OF FUNCTION EVALUATIONS =

9774

Detailed Results of the Application of the Catch Only Model to the Assessment of the Atlantic Skipjack Tuna

Table Appendix 8.1. Quantiles for the posterior distributions for *MSY* for COM runs C.1 to C.6 fitted to catch data from 1985 to 2006 for SKJ-E.

Quantile	RUN C.1	RUN C.2	RUN C.3	RUN C.4	RUN C.5	RUN C.6
5%	114 351	114 042	115 711	114 422	116 969	117 642
10%	119 585	119 402	121 736	119 598	121 763	122 714
25%	129 206	129 400	133 617	128 595	131 181	133 591
50%	143 633	145 005	155 552	142 865	146 103	156 326
75%	174 250	176 562	201 661	175 652	178 324	223 066
80%	188 831	189 313	219 754	192 134	191 662	247 780
95%	314 115	294 163	414 574	331 800	283 543	437 924

Table Appendix 8.2 Quantiles for the posterior distributions for B/B_{MSY} for COM runs C.1 to C.6 fitted to catch data from 1985 to 2006 for SKJ-E.

Quantile	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6
5%	0.64	0.65	0.70	0.64	0.64	0.67
10%	0.74	0.76	0.82	0.74	0.75	0.78
25%	0.94	0.98	1.07	0.92	0.96	1.01
50%	1.20	1.24	1.37	1.17	1.21	1.32
75%	1.47	1.47	1.57	1.45	1.47	1.60
80%	1.52	1.52	1.61	1.52	1.52	1.65
95%	1.74	1.71	1.80	1.75	1.70	1.81

Figure Appendix 8.1 Pre-data, post-model priors (top row) and posteriors (middle row) and relative priors and posteriors (bottom row) for the COM run A.1 fitted to catch data from 1976 to 2006 for western skipjack. The priors (dashed boxes) and posteriors (solid boxes) were relativised to be in the same scale. The dashed boxes for management quantities are the values obtained by runing the model only with the priors. The combinations of parameters from the priors that do not cause extintion of the population are called pre-data post-model priors.

Figure Appendix 8.2 Pre-data, post-model priors (top row) and posteriors (middle row) and relative priors and posteriors (bottom row) for the COM run A.2 fitted to catch data from 1976 to 2006 for western skipjack. See **Figure Appendix 5.1** for explanations.

Figure Appendix 8.3 Pre-data, post-model priors (top row) and posteriors (middle row) and relative priors and posteriors (bottom row) for the COM run A.3 fitted to catch data from 1976 to 2006 for SKJ-W. See **Figure Appendix 5.1** for explanations.

Figure Appendix 8.4. Pre-data, post-model priors (top row) and posteriors (middle row) and relative priors and posteriors (bottom row) for the COM run A.4 fitted to catch data from 1976 to 2006 for SKJ-W. See **Figure Appendix 5.1** for explanations.

Figure Appendix 8.5 Pre-data, post-model priors (top row) and posteriors (middle row) and relative priors and posteriors (bottom row) for the COM run A.5 fitted to catch data from 1976 to 2006 for SKJ-W. See **Figure Appendix 5.1** for explanations.

Figure Appendix 8.6 Pre-data, post-model priors (top row) and posteriors (middle row) and relative priors and posteriors (bottom row) for the COM run A.6 fitted to catch data from 1976 to 2006 for SKJ-W. See **Figure Appendix 5.1** for explanations.

Figure Appendix 8.7 Relative priors and posteriors for the COM run B.1 fitted to catch data from 1976 to 2006 for SKJ-W. See **Figure Appendix 5.1** for explanations.

Figure Appendix 8.8 Relative priors and posteriors for the COM run B.4 fitted to catch data from 1976 to 2006 for SKJ-W. See **Figure Appendix 5.1** for explanations.

Figure Appendix 8.9 Relative priors and posteriors for the COM run B.5 fitted to catch data from 1976 to 2006 for SKJ-W. See **Figure Appendix 5.1** for explanations.

Figure Appendix 8.10 Relative priors and posteriors for the COM run B.6 fitted to catch data from 1976 to 2006 for SKJ-W. See Figure Appendix 5.1 for explanations.

Figure Appendix 8.11 Relative priors and posteriors for the COM run A.1 fitted to catch data from 1950 to 2006 for SKJ-E. See Figure Appendix 5.1 for explanations.

Figure Appendix 8.12. Relative priors and posteriors for the COM run A.2 fitted to catch data from 1950 ro 2006 for SKJ-E. See Figure Appendix 5.1 for explanations.

Figure Appendix 8.13 Relative priors and posteriors for the COM run A.3 fitted to catch data from 1950 to 2006 for SKJ-E. See Figure Appendix 5.1 for explanations.

Figure Appendix 8.14 Relative priors and posteriors for the COM run A.4 fitted to catch data from 1950 to 2006 for SKJ-E. See Figure Appendix 5.1 for explanations.

Figure Appendix 8.15 Relative priors and posteriors for the COM run A.5 fitted to catch data from 1950 to 2006 for SKJ-E. See Figure Appendix 5.1 for explanations.

Figure Appendix 8.16 Relative priors and posteriors for the COM run A.6 fitted to catch data from 1950 to 2006 for SKJ-E. See **Figure Appendix 5.1** for explanations.

Figure Appendix 8.17 Posterior distributions for *K* for COM runs A.1 to A.6 fitted to catch data from 1950 to 2006 for SKJ-E.

Figure Appendix 8.18. Posterior distributions for r for COM runs A.1 to A.6 fitted to catch data from 1950 to 2006 for SKJ-E.

Figure Appendix 8.19 Posterior distributions for x for COM runs A.1 to A.6 fitted to catch data from 1950 to 2006 for SKJ-E.

Figure Appendix 8.20 Posterior distributions for *a* for COM runs A.1 to A.6 fitted to catch data from 1950 to 2006 for SKJ-E.

Figure Appendix 8.21 Posterior distributions for K for COM runs B.1 to B.6 fitted to catch data from 1965 to 1984 for SKJ-E.

Figure Appendix 8.22 Posterior distributions for r for COM runs B.1 to B.6 fitted to catch data from 1965 to 1984 for SKJ-E.

Figure Appendix 8.23 Posterior distributions for COM runs B.1 to B.6 fitted to catch data from 1965 to 1984 for SKJ-E.

Figure Appendix 8.24 Posterior distributions for x for COM runs B.1 to B.6 fitted to catch data from 1965 to 1984 for SKJ-E.

Figure Appendix 8.25 Posterior distributions for *MSY* for COM runs B.1 to B.6 fitted to catch data from 1965 to 1984 for SKJ-E.

Figure Appendix 8.26 Relative priors and posteriors for the COM runs C.1 to C.6 fitted to catch data from 1985 to 2006 for SKJ-E. See **Figure Appendix 5.1** for explanations.

Figure Appendix 8.27 Posterior distributions for K for COM runs C.1 to C.6 fitted to catch data from 1985 to 2006 for SKJ-E.

Figure Appendix 8.28 Posterior distributions for r for COM runs C.1 to C.6 fitted to catch data from 1985 to 2006 for SKJ-E.

Figure Appendix 8.28 Posterior distributions for x for COM runs C.1 to C.6 fitted to catch data from 1985 to 2006 for SKJ-E.

Figure Appendix 8.28 Posterior distributions for *a* for COM runs C.1 to C.6 fitted to catch data from 1985 to 2006 for SKJ-E.

Figure Appendix 8.29. Posterior distributions for *MSY* for COM runs C.1 to C.6 fitted to catch data from 1985 to 2006 for SKJ-E.

Figure Appendix 8.30. Pre-data, post-model priors (top row) and posteriors (bottom row) for run C.6 fitted to catch data from 1985 to 2006 for SKJ-E.

Yield-Per-Recruit and Spawning Biomass-Per-Recruit of the Tropical Tunas with Modification of Fleet-Specific Fishing Mortality

TROPICAL TUNA SPECIES GROUP

1. Introduction

During the 2008 ICCAT Yellowfin and Skipjack Stock Assessments Meeting (Florianópolis, Brazil, July 21 to 29, 2008) The Tropical Species Group reviewed the 2007 Report of Panel 1, which included as part of the discussions, the suggestion that the SCRS analyze and present a range of options to the Commission, in time for consideration at the 2008 Special Meeting, to increase the yield per recruit and MSY of bigeye tuna by reducing mortality on small bigeye tuna through the use of such measures as closed areas (i.e. total closure of all surface fisheries) and moratoriums on the use of fish aggregating devices (FADs). In addition it was also suggested that the SCRS analyze the impacts of such measures on the catches of yellowfin tuna and skipjack tuna.

This report contains the results of one such analysis, as presented and discussed during the 2008 Tropical Tunas Species Group meeting (September 24 to 26, 2008) and described in document SCRS/2008/170. This report discusses the effect of reducing or increasing the effective fishing mortality of two fleets, the equatorial surface fleet and an aggregate fleet (all others) on the yield-per-recruit (YPR) and spawning stock biomass-per-recruit (SPR) of yellowfin and bigeye tunas.

2. Methods

The analyses presented in this report used a method developed in response to the Commissions' concerns, and described in SCRS/2008/170. This method can be used to estimate the effects of changes in fishing mortality (F) by age, fleet, gear and/or area on estimates of YPR and SPR. For this analysis, the effective fishing mortality of the equatorial surface fleet (EU PS + Ghana PS + Ghana BB) and an aggregated fleet (all others) was varied from 0% to 200% of recent values (YFT: 2003-2005; BET: 2002-2004). Age-specific biological inputs (weight of catch, weight of spawning stock, maturity and natural mortality at age) and the resulting fishing mortality at age from the most recent virtual population analysis models (YFT: 2008; BET:2007) were used to parameterize the models.

3. Results

3.1 Yellowfin tuna

Two VPA base models were used to provide management advice during the 2008 assessment of yellowfin tuna, Runs 5 and 10. The results of the runs are quite similar. According to these runs, the recent YPR (kg) of yellowfin is 1.73 to 1.78 (**Table Appendix 9.1 and Table Appendix 9.2**, both F multipliers = 1.0). The greatest increases in YPR (>1.9) are achieved by reducing the equatorial surface fleet by 40-100% and increasing the effective F of the other fleets by a similar amount (**Table Appendix 9.1 and Table Appendix 9.2**). The current SPR (kg) of yellowfin is 3.11 to 3.22 (**Table Appendix 9.3 and 4**). Simultaneous increases in YPR and SPR can occur with certain fleet modifications. These cases are summarized in **Table Appendix 9.5**. YPR and SPR (expressed as a percentage of SPR_{MAX}) results are also illustrated in **Figure Appendix 9.1**.

3.2 Bigeye tuna

According to the base VPA run, the recent YPR (kg) of bigeye is 1.82 (**Table Appendix 9.6**, both F multipliers = 1.0). The greatest increases in YPR (>2.0) are achieved by reducing the equatorial surface fleet by 20-100% and increasing the effective F of the other fleets by a similar amount (**Table Appendix9.6**). The current SPR (kg) of bigeye is 8.3 (**Table Appendix 9.7**). Simultaneous increases in YPR and SPR can occur with certain fleet modifications. These cases are summarized in **Table Appendix 9.8**. YPR and SPR (expressed as a percentage of SPR_{MAX}) results are also illustrated in **Figure Appendix 9.2**.

4. Discussion

The results of these analyses indicate that modest gains in yield-per-recruit for yellowfin and bigeye can be obtained by simultaneously decreasing considerably the surface fleet fishing mortality and noticeably increasing the fishing mortality exerted by the other fleets (**Table Appendix 9.5 and Table Appendix 9.8**). At this time, no analyses were attempted regarding skipjack tuna. The 2008 stock assessment models conducted for skipjack did not provide estimates of fishing mortality-at-age which are required for this analysis. The Tropical Species Group recommends that analyses of skipjack be conducted in the near future. The group also recommends the development of multi-species approaches.

The Tropical Species Group emphasizes that this analysis is a simplified treatment of the data. A more detailed analysis would separate surface fleet catches under floating aggregation devices (FADs) from those targeting free schools. The selectivity of the two fleet components differs substantially; FAD catches are dominated by the youngest animals. This may be particularly important for yellowfin because a substantial fraction of the equatorial catches of this species are older animals captured in free schools. Unfortunately, this analysis could not be accomplished since no estimates of catch-at-age for the free school and FAD components were available at the time of the meeting. The group recommends that this analysis be conducted in the near future.

The Tropical Species Group notes that these results are very sensitive to the assumed natural mortality vectors, which are quite high on ages 0 and 1 (M=0.8) and also poorly known. Also, changes in the method used by ICCAT to convert catch-at-size to catch-at-age may result in important differences in the fishing mortality-at-age vectors used for these analyses. Noting these concerns and the time constraints imposed by a three day meeting, the Tropical Species Group acknowledges that these results do not represent a full range of management options, and should be considered preliminary. Therefore, the group did not recommend any particular management measure. The Group suggested that this topic be explored in more detail at a future Intersessional Meeting.
YPR		F Multiplier of Equatorial Surface Fleet														
Rur	n 5															
		0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2				
	0	0.00	0.51	0.88	1.14	1.31	1.43	1.51	1.56	1.58	1.59	1.58				
10	0.2	0.47	0.86	1.14	1.33	1.46	1.54	1.59	1.61	1.62	1.62	1.60				
leets	0.4	0.84	1.14	1.35	1.49	1.57	1.63	1.65	1.66	1.65	1.64	1.61				
er F	0.6	1.15	1.37	1.51	1.61	1.66	1.69	1.70	1.69	1.67	1.65	1.62				
Othe	0.8	1.39	1.55	1.65	1.70	1.73	1.74	1.73	1.71	1.69	1.66	1.63				
fo.	1	1.58	1.69	1.75	1.78	1.78	1.78	1.75	1.73	1.69	1.66	1.63				
olien	1.2	1.73	1.79	1.83	1.83	1.82	1.80	1.77	1.74	1.70	1.66	1.62				
ultij	1.4	1.84	1.88	1.89	1.87	1.85	1.82	1.78	1.74	1.70	1.66	1.62				
$E M_{I}$	1.6	1.93	1.94	1.93	1.90	1.87	1.83	1.78	1.74	1.70	1.65	1.61				
	1.8	2.00	1.99	1.96	1.92	1.88	1.83	1.78	1.74	1.69	1.65	1.60				
	2	2.05	2.02	1.98	1.93	1.88	1.83	1.78	1.73	1.68	1.64	1.59				

Table Appendix 9.1. YFT VPA RUN 5: Yield per recruit (kg) with modification of fleet-specific fishing mortality. Current YPR (2003-2005) is highlighted.

Table Appendix 9.2. YFT VPA RUN 10: Yield per recruit (kg) with modification of fleet-specific fishing mortality. Current YPR (2003-2005) is highlighted.

YPR			F Multiplier of Equatorial Surface Fleet													
Rur	n 10															
		0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2				
	0	0.00	0.47	0.82	1.06	1.24	1.37	1.45	1.50	1.53	1.54	1.55				
	0.2	0.44	0.80	1.07	1.26	1.39	1.48	1.53	1.56	1.58	1.58	1.57				
leets	0.4	0.79	1.08	1.28	1.42	1.51	1.57	1.60	1.61	1.61	1.60	1.59				
of Other Fl	0.6	1.08	1.30	1.44	1.54	1.60	1.64	1.65	1.65	1.64	1.62	1.60				
	0.8	1.32	1.47	1.58	1.64	1.68	1.69	1.69	1.68	1.66	1.63	1.60				
	1	1.51	1.62	1.68	1.72	1.73	1.73	1.72	1.69	1.67	1.64	1.61				
əlier	1.2	1.66	1.73	1.77	1.78	1.78	1.76	1.74	1.71	1.68	1.64	1.61				
ultiļ	1.4	1.78	1.82	1.83	1.83	1.81	1.78	1.75	1.71	1.68	1.64	1.60				
F Mı	1.6	1.87	1.89	1.88	1.86	1.83	1.80	1.76	1.72	1.68	1.64	1.60				
	1.8	1.94	1.94	1.91	1.88	1.85	1.80	1.76	1.72	1.67	1.63	1.59				
	2	2.00	1.97	1.94	1.90	1.85	1.81	1.76	1.71	1.67	1.63	1.59				

SPR	ł		F Multiplier of Equatorial Surface Fleet													
Rur	n 5															
		0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2				
	0	12.42	10.39	8.75	7.39	6.28	5.36	4.59	3.94	3.40	2.94	2.55				
10	0.2	10.89	9.15	7.72	6.55	5.58	4.78	4.10	3.54	3.06	2.65	2.30				
leets	0.4	9.57	8.07	6.84	5.82	4.98	4.27	3.68	3.18	2.75	2.39	2.08				
of Other Fl	0.6	8.44	7.14	6.08	5.19	4.45	3.83	3.31	2.86	2.49	2.17	1.89				
	0.8	7.46	6.34	5.41	4.64	3.99	3.44	2.98	2.59	2.25	1.96	1.72				
	1	6.62	5.64	4.83	4.15	3.58	3.10	2.69	2.34	2.04	1.78	1.56				
olier	1.2	5.89	5.04	4.33	3.73	3.22	2.80	2.43	2.12	1.85	1.62	1.42				
ultij	1.4	5.25	4.51	3.88	3.36	2.91	2.53	2.20	1.92	1.69	1.48	1.30				
$F M_{l}$	1.6	4.70	4.04	3.49	3.03	2.63	2.29	2.00	1.75	1.54	1.35	1.19				
	1.8	4.21	3.64	3.15	2.74	2.38	2.08	1.82	1.60	1.40	1.23	1.09				
	2	3.79	3.28	2.85	2.48	2.16	1.89	1.66	1.46	1.28	1.13	1.00				

Table Appendix 9.3. YFT VPA RUN 5: Spawning biomass per recruit (kg) with modification of fleet-specific fishing mortality. Current SPR (2003-2005) is highlighted.

Table Appendix 9.4. YFT VPA RUN 10: Spawning biomass per recruit (kg) with modification of fleet-specific fishing mortality. Current SPR (2003-2005) is highlighted.

SPR		F Multiplier of Equatorial Surface Fleet												
Kur	10	0	0.2	0.4	0.6	0.0	1	10	14	1.6	10	2		
		U	0.2	0.4	0.0	0.8	1	1.2	1.4	1.0	1.8	2		
	0	12.42	10.47	8.87	7.54	6.43	5.51	4.73	4.07	3.52	3.05	2.65		
	0.2	10.95	9.26	7.87	6.71	5.74	4.93	4.24	3.66	3.17	2.75	2.39		
leets	0.4	9.68	8.21	7.00	5.98	5.13	4.41	3.81	3.30	2.86	2.49	2.17		
er Fl	0.6	8.58	7.30	6.24	5.35	4.60	3.97	3.43	2.98	2.59	2.25	1.97		
of Othe	0.8	7.62	6.50	5.57	4.79	4.13	3.57	3.09	2.69	2.34	2.05	1.79		
	1	6.79	5.81	4.99	4.30	3.72	3.22	2.80	2.44	2.13	1.86	1.63		
əlier	1.2	6.06	5.20	4.48	3.87	3.35	2.91	2.53	2.21	1.93	1.69	1.49		
ultij	1.4	5.42	4.67	4.03	3.49	3.03	2.63	2.30	2.01	1.76	1.54	1.36		
$^{c}M_{1}$	1.6	4.86	4.20	3.63	3.15	2.74	2.39	2.09	1.83	1.60	1.41	1.24		
	1.8	4.37	3.78	3.28	2.85	2.49	2.17	1.90	1.67	1.47	1.29	1.14		
	2	3.94	3.41	2.97	2.59	2.26	1.98	1.73	1.52	1.34	1.18	1.04		

YFT:	Run 5		F Multiplier of Equatorial Surface Fleet								YFT: Run 10		F Multiplier of Equatorial Surface Fleet												
		0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	11 1.1	Xull 10	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
	0.0													0.0											
2	0.2												2	0.2											
leet	0.4												leet	0.4											
er F	0.6												er F	0.6											
Othe	0.8												Othe	0.8											
fo.	1.0												fo .	1.0											
olien	1.2						<i></i>						əlien	1.2											
ultij	1.4												ultij	1.4					iiiii						
ΕM	1.6				1111.								FΜ	1.6											
	1.8				1111.									1.8											
	2.0													2.0											

Table Appendix 9.5. YFT: Fleet-specific multipliers that result in increases in YPR (medium grey with diagonal bar), SPR (light grey) and both YPR and SPR (black) over 2003-2005 levels.

Y	PR		F Multiplier of Equatorial Surface Fleet													
		0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2				
	0	0.00	0.16	0.31	0.44	0.56	0.67	0.77	0.86	0.93	1.01	1.07				
	0.2	0.50	0.62	0.73	0.83	0.91	0.99	1.06	1.12	1.18	1.23	1.27				
leets	0.4	0.92	1.00	1.08	1.15	1.21	1.26	1.31	1.35	1.38	1.42	1.44				
er Fl	0.6	1.27	1.32	1.37	1.41	1.45	1.48	1.51	1.53	1.55	1.57	1.58				
Othe	0.8	1.55	1.58	1.61	1.63	1.65	1.66	1.68	1.69	1.69	1.70	1.70				
fo.	1	1.79	1.80	1.81	1.81	1.82	1.82	1.82	1.81	1.81	1.80	1.80				
əlier	1.2	1.99	1.98	1.97	1.97	1.95	1.94	1.93	1.92	1.91	1.89	1.88				
ultip	1.4	2.15	2.13	2.11	2.09	2.07	2.05	2.03	2.01	1.98	1.96	1.94				
EM	1.6	2.29	2.26	2.22	2.19	2.16	2.13	2.10	2.08	2.05	2.02	2.00				
	1.8	2.40	2.36	2.32	2.28	2.24	2.20	2.17	2.13	2.10	2.07	2.04				
	2	2.49	2.44	2.39	2.35	2.30	2.26	2.22	2.18	2.15	2.11	2.08				

Table Appendix 9.6. BET: Yield per recruit (kg) with modification of fleet-specific fishing mortality. Current SPR (2002-2004) is highlighted.

Table Appendix 9.7. BET: Spawning biomass per recruit (kg) with modification of fleet-specific fishing mortality.

SI	SPR		F Multiplier of Equatorial Surface Fleet													
		0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2				
	0	22.0	20.2	18.5	17.0	15.6	14.3	13.1	12.0	11.0	10.1	9.3				
	0.2	19.6	18.0	16.5	15.1	13.9	12.7	11.7	10.7	9.8	9.0	8.3				
eets	0.4	17.5	16.0	14.7	13.5	12.4	11.4	10.4	9.6	8.8	8.1	7.4				
r Fl	0.6	15.7	14.4	13.2	12.1	11.1	10.2	9.4	8.6	7.9	7.2	6.6				
lier of Othe	0.8	14.1	12.9	11.9	10.9	10.0	9.2	8.4	7.7	7.1	6.5	6.0				
	1	12.7	11.7	10.7	9.8	9.0	8.3	7.6	7.0	6.4	5.9	5.4				
	1.2	11.5	10.6	9.7	8.9	8.2	7.5	6.9	6.3	5.8	5.3	4.9				
ultip	1.4	10.4	9.6	8.8	8.1	7.4	6.8	6.2	5.7	5.3	4.8	4.4				
$^{t}M^{t}$	1.6	9.5	8.7	8.0	7.3	6.7	6.2	5.7	5.2	4.8	4.4	4.0				
1	1.8	8.7	8.0	7.3	6.7	6.2	5.7	5.2	4.8	4.4	4.0	3.7				
	2	7.9	7.3	6.7	6.1	5.6	5.2	4.8	4.4	4.0	3.7	3.4				

BET		F Multiplier of the Equatorial Surface Fleet												
		0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2		
	0													
ts	0.2													
Flee	0.4													
her .	0.6													
Oti	0.8													
fthe	1													
er oj	1.2						////							
iplia	1.4		Ì											
nult	1.6		Ì											
F_{I}	1.8													
	2													

Table Appendix 9.8. BET: Fleet-specific multipliers that result in increases in YPR (medium grey diagonal bar), SPR (light grey) and both YPR and SPR (black) over 2002-2004 levels.

Figure Appendix 9.1. YFT: YPR and SPR with modification of fleet-specific F multipliers. (A) YPR VPA Run 5, (B) YPR VPA Run 10, (C) SPR VPA Run 5 and (D) SPR VPA Run 10. The solid lines are at F Multiplier = 1 (current F) for each fleet. The black circle is the current status quo.

Figure Appendix 9.2. BET: YPR (A) and SPR (B) with modification of fleet-specific F multipliers. The solid lines are at F Multiplier = 1 (current F) for each fleet. The black circle is the current status quo.