REPORT OF THE 2011 ICCAT YELLOWFIN TUNA STOCK ASSESSMENT SESSION

(San Sebastián, Spain - September 5 to 12, 2011)

1. Opening, adoption of agenda and meeting arrangements

The Meeting was held at the INASMET-Tecnalia Center in San Sebastián from September 5 to 12, 2011. Dr. Josu Santiago (SCRS Chair), opened the meeting and welcomed participants ("the Working Group").

Dr. Craig Brown (USA), meeting Chairperson, welcomed meeting participants and thanked AZTI for hosting the meeting and providing all the logistical arrangements. Dr. Brown proceeded to review the Agenda which was adopted without changes (Appendix 1).

The List of Participants is included in Appendix 2. The List of Documents presented at the meeting is attached as Appendix 3. The following participants served as Rapporteurs:

Items 1,9 and 10	P. Pallarés
Item 2	H. Murua and D. Gaertner
Items 3.1, 3.2 and 3.3	J. Ariz, A. Delgado de Molina, and A. Amorin
Item 3.4	M. Ortiz and C. Palma
Item 4	G. Díaz and P. De Bruyn
Item 5.1, 6.1 and 7.1	D. Die, K. Satoh, H. Ijima, E. Chassot
Item 5.2, 6.2 and 7.2	S. Cass-Calay
Item 6.3	G. Scott and C. Brown
Item 8	G. Scott and J. Santiago
Coordinator of model inputs,	
\quad figures and tables	J. Walter

2. Review of Biological historical and new data

Yellowfin tuna is a tropical and subtropical species distributed mainly in the epipelagic oceanic waters of the three oceans. The sizes exploited range from 30 cm to over 170 cm ; maturity occurs at about 100 cm . Smaller fish (juveniles) form mixed schools with skipjack and juvenile bigeye, and are mainly limited to surface waters; while larger fish form schools in surface and sub-surface waters. Reproductive output among females has been shown to be highly variable. The main spawning ground is the equatorial zone of the Gulf of Guinea, with spawning primarily occurring from January to April. Juveniles are generally found in coastal waters off Africa. In addition, spawning occurs in the Gulf of Mexico, in the southeastern Caribbean Sea, and off Cape Verde, although the relative importance of these spawning grounds is unknown. Although such separate spawning areas might imply separate stocks or substantial heterogeneity in the distribution of yellowfin tuna, a single stock for the entire Atlantic is assumed as a working hypothesis, taking into account that data indicates yellowfin is distributed continuously throughout the entire tropical Atlantic Ocean and tag are recovered on a regular base from west to east. Males are predominant in the catches of larger sized fish.

Natural mortality is assumed to be higher for juveniles than for adults as showed from tagging studies in other oceans. The natural mortality rates have been showed to be size-dependant in bigeye, skipjack and yellowfin tuna in the western tropical Pacific Ocean using tagging data (Hampton, 2000). In summary, this work demonstrated that M was an order of magnitude higher in the smallest size-class in comparison to fish of midsized. Moreover, it showed that mortality changed from high to low around 40 cm FL, approximately the size at which the three species recruit to the PS fishery in the western Pacific. The results of this work underline the importance of accounting for size- or age-specific natural mortality rates. In that sense, variable mortality for yellowfin was discussed by the group and it was agreed to continue using variable M in the assessment. Growth rates have been described as relatively slow initially, increasing at the time the fish leave the nursery grounds. Nevertheless, questions remain concerning the most appropriate growth model for Atlantic yellowfin tuna. A recent study (Shuford et al., 2007) developed a new growth curve using daily growth increment counts from otoliths. The results of this study, along with other recent hard part analyses, did not support the concept of the two-stanza growth model (initial slow growth) which is currently used for ICCAT yellowfin tuna stock assessments. This discrepancy should be addressed at inter-sessional meetings.

Only one document (SCRS/2011/141) on the biology of yellowfin was presented during the 2011 Working Group. This preliminary study, using pop-up tags, investigates the habitat use of yellowfin in the Gulf of Mexico. Yellowfin residence time at different depths depending on the difference between the temperature at depths and the surface were studied. Results show that yellowfin tuna spent 25.1% of time in the surface mixed layer in darkness, but only 4.3% during daylight hours. The ranges and means for the observed proportions of time spent at temperatures relative to the surface temperature were reflected in the observed percentage of time spent at depth, with greater exploration of deeper, colder waters during daylight periods. The majority of time was spent at depths shallower than 80 m . Although yellowfin tuna vertical distributions are influenced by temperature (other environmental factors also play a role), this study shows that yellowfin are able to tolerate cooler temperatures for brief periods during the day, which should be taken into account in the standardization of catch rates of different fleets for the assessment. The tabulated Delta-T percentiles reported in the document provide direct input variables required for habitat standardization models.

The Group was also informed that NMFS laboratory in Miami is currently conducting electronic tagging experiments in the Gulf of Mexico. Large yellowfin (around 130 cm FL) were tagged with pop-up tags from longliners. Preliminary results showed different types of movements, including migration outside the Gulf of Mexico. The Group welcomes this type of studies and encourages the authors to continue and to present more conclusive results at future ICCAT tropical species working groups due to their importance for the understanding of stock structure, migration patterns, and other ecological characteristics of yellowfin in the Gulf of Mexico.

The table below summarizes the biological parameters adopted by the SCRS and used in the 2011 Atlantic yellowfin assessments.

Parameter	Yellowfin
Natural mortality	Assumed to be 0.8 for ages 0 and 1, and 0.6 for ages 2+
Assumed "birth date" of age 0 fish	February 14 (approximate mid-point of the peak spawning season).
Plus group	Age 5+
Growth rates	Length at age was calculated from the Gascuel et al. (1992) equation: FL $(\mathrm{cm})=37.8+8.93 * \mathrm{t}+(137.0-8.93 * \mathrm{t}) *[1-\exp (-0.808 * \mathrm{t})]^{7.49}$
Weights -at-age	Average weights-at-age were based on the Gascuel et al. (1992) growth equation and the Caveriviere (1976) length-weight relationship:
Maturity schedule	Assumed to be knife-edge at the beginning of age 3.
Partial recruitment	Based on output from age-structured VPA (see section addressing yield- per-recruit).

3. Review of fishery statistics: Effort and catch data, including size frequencies and fisheries trends

The Secretariat presented, at the beginning of the meeting, updated (as of 2011-09-02) versions of Task I catch statistics and Task II size information of yellowfin tuna available in the ICCAT database. Some specific Task II catch and effort statistics (e.g., Dakar based BB fisheries, European PS fisheries by fishing mode FAD/FSC, etc.) were also prepared to be used in various studies. The information was revised by the Working Group, corrected whenever required, and used in the assessment

3.1 Description of fisheries

Yellowfin tuna are caught in the entire tropical Atlantic, between $45^{\circ} \mathrm{N}$ and $40^{\circ} \mathrm{S}$, by surface gears (purse seine, baitboat and handline) and by longline (Figures 1 and 2.). Table 1 presents the yellowfin landings by flag and gear.

- Baitboat

In the East Atlantic, the baitboat fisheries exploit concentrations of juvenile yellowfin in schools mixed with bigeye and skipjack. There are several baitboat fisheries that operate along the African coast.

The most important, in terms of catch, is the Ghanaian baitboat fishery based at Tema. This fleet began to use FADs (fish aggregating device/floating object, which can be natural or artificial) in the early 1990s to enhance the capture of the species together with other tunas. Over $70-80 \%$ of these catches in recent years are on FADs; the mean weight of the captured fishes has remained relatively stable at around 2 kg (mode around 48 cm).

There is another baitboat fishery based in Dakar that began operation in 1956 in the coastal areas off Senegal and Mauritania. Other baitboat fisheries operate in the various archipelagos in the Atlantic (Azores, Madeira, Canary Islands and Cape Verde), which target different species of tuna, including yellowfin according to the season. The average weight of yellowfin tuna taken by these fleets is highly variable (between 7 and 30 kg); lengths range from 38 cm to 80 cm with the mode around 48 cm . Since the early 1990s, the fleets in Dakar and the Canary Islands have operated using a different method, i.e. using the boat as a FAD, to aggregate various species of tuna, including yellowfin tuna.

In the West Atlantic, Venezuelan and Brazilian baitboats target yellowfin together with skipjack and other small tuna. The sizes of yellowfin are between 45 cm and 175 cm for the Venezuelan fleet and from 45 to 115 cm , with the mode at 65 cm for the Brazilian fleet.

- Purse seine

The East Atlantic purse seine fisheries began in 1963 and developed rapidly in the mid-1970s. They initially operated in coastal areas and gradually extended to the high seas. Purse seiners catch large yellowfin in the Equatorial region in the first quarter of the year, coinciding with the spawning season and area. They also catch small yellowfin in association with skipjack and bigeye. Since the early 1990s, several purse seine fleets (France, Spain and associated fleets) have operated mainly on or associated with fishing aggregating devices (FADs), between 45 and 55% of the total purse seine catch being taken by this method, while previously, the proportion of the catch taken on natural floating objects was around 15% of the total purse seine catch. The Ghanaian purse seine fleet predominantly fishes off FADs $(80 \%-85 \%)$ with fishing collaboration between the purse seine fleet and the baitboats. Frequently, FADs with accumulations of fish are first located by baitboats, who call in a purse seiner to make the set if the accumulation is large. In this situation, the catch is shared between the purse seiner and the baitboat.

Although the fleets are fishing on floating objects throughout the year, the main catches occur in the first and fourth quarter of the year, with skipjack as the dominant species together with lesser quantities of yellowfin and bigeye. The species composition of the schools associated with floating objects is very different from that of free schools. Yellowfin catches from floating object represented between 14% and 21% of the total catch in the years between 1991 and 2010 (16% in 2010) for the French, Spanish and associated fleets.

The East Atlantic purse seine fishery shows a bimodal distribution in the size classes for yellowfin, with modes near 50 cm and 150 cm but with very few intermediate sizes and a high proportion of big fish (more than 160 cm). The average weight of yellowfin tuna caught by the European and associated purse seine fleets was 9.4 kg in 2010 (3.1 kg with FADs and 30.4 kg unassociated fishes). The sizes of yellowfin caught by the Ghanaian purse seiners has ranged around $48-52 \mathrm{~cm}$ for the recent decade.

The catch series available for these stock assessments include catches of "faux poisson" (fish sold in the local markets of the landing ports, which are not reported in the manner of the rest of the catches). The "faux poisson" catches made by the European purse seine fleets from 1981 until now have been calculated by species and reported to ICCAT.

In response to new developments in the purse seine fishery and to concerns over increased fishing mortality rate on bigeye tuna, a voluntary closed season/area for fishing with artificial FADs for a period of three months in a wide area of the equatorial Atlantic was implemented in 1997. In 1998 the Commission formally adopted the area closures [Rec. 98-01] and then extended the closure to all surface fleets in 1999 [Rec. 99-01]. Starting in 2005, those restrictions were discontinued, and instead a new management strategy (Piccolo) was established which prohibited all surface fishing in a much smaller area and only for the month of November [Rec. 04-01].

In the West Atlantic, Venezuela and Brazil have operated purse seine fisheries since 1970 off the coast of Venezuela and in the south of Brazil. Landings were sporadic in the 1970s but increased through the 80s and 90s and have generally been higher than western baitboat landings except in the most recent time period where they are approximately equal. Yellowfin size range caught by western Atlantic purse seiners (35 to 75 cm) is smaller compared to the eastern purse seiners, with the majority of fish being of intermediate size (mode 40 cm).

- Longline

The longline fishery began at the end of the 1950s and soon became important, with significant catches being taken by the early 1960s. Since then the catches have gradually decreased. Longline fisheries capturing yellowfin tuna are found throughout the Atlantic (Figure 2). The degree of targeting toward yellowfin varies across the longline fleets. In the Gulf of Mexico, both U.S. and Mexican longline vessels target yellowfin (the average weight of yellowfin was between 32 and 39 kg during the period from 1994 to 2006). Venezuelan vessels also target yellowfin, at least seasonally. In contrast, Japanese and Chinese Taipei vessels began in the mid-1970s and in the early-1980s to shift targeting away from yellowfin and albacore, respectively, toward bigeye tuna through the use of deep longline. Uruguayan longliners also capture yellowfin in the south western Atlantic, with FL sizes between 52 and 180 cm (mode at 110 cm or 26 kg ; Domingo, et al, 2009).

Since 2000, a small-size fleet off Cabo Frio City, Rio de Janeiro-RJ State, Brazil (22° to $24^{\circ} \mathrm{S}$ and 40° to $44^{\circ} \mathrm{W}$) has started fishing. This fleet is growing in number and in 2010 it had about 350 boats, representing 15% of the RJ total yield. This fleet targets dolphinfish using different equipment and catches yellowfin mainly with handline (55\%) and mid-water longline (8\%) (SCRS/2011/143).

3.2 Catches

The historical Task I catches have not undergone major updates since the 2010 SCRS. Only the most recent three years have changed slightly ($<1 \%$ in total) with various revisions made by several CPCs in accordance with the SCRS revision rules. Some provisional estimates of IUU since 2006, however, could add from 5,000 to 20,000 t per year to the overall catches in the recent past (SCRS/2011/016).

3.2.1 Yellowfin

Table 1 and Figures 3 to $\mathbf{6}$ show the development of yellowfin catches in the total (by area and by gear), East and West Atlantic. Total Atlantic yellowfin catches in 2010 amounted to $108,343 \mathrm{t}$, in the East Atlantic was $86,133 \mathrm{t}$ and in the West was $22,210 \mathrm{t}$.

Yellowfin catches increased from 1950s to an average of $150,000 \mathrm{t}$ in the 1980s, they reached the highest figure in 1990 with catches of $193,536 \mathrm{t}$. Since then the catches had gradually declined, with recent years being at a similar level to those at the beginning of the 1970s. In the recent years, several European purse seiners have returned to the Atlantic Ocean with a resulting increase in catches.

- Baitboat

Total catch by this gear for the whole Atlantic was $9,568 \mathrm{t}$ in 2010 , lower compared to the catch in 1993 of nearly $25,000 \mathrm{t}$.

In the East Atlantic some fleets, with significant catches at the beginning of the fishery ($22,135 \mathrm{t}$ in 1968 , e.g., Angola, Cape Verde or Japan), have decreased landings ($8,132 \mathrm{t}$ in 2010)

In the West Atlantic (Figure 6) baitboat catches started in 1974, increased regularly from 1,300 tin 1974 to $7,000 \mathrm{t}$ in 1994, and later decreased to about 1.450 t in 2010.

- Purse seine

Yellowfin catches by this fleet reached $74.172 \mathrm{t}(68 \%)$ for the entire Atlantic in 2010. In the East Atlantic, catches increased rapidly in the early years of the fishery (Figure 5), from $10,000 \mathrm{t}$ in the 1960s to $100,000 \mathrm{t}$ in 1980, stabilizing at this level until 1983 followed by a sharp decrease in 1984 ($74,173 \mathrm{t}$). This occurred as a result of the drastic decrease in effort which took place following the fall in yield of large sized yellowfin, mainly due to the French, Spanish and associated purse seine fleets abandoning the fishery. Catches later increased, with a record catch in 1990 of over $129,000 \mathrm{t}$, followed by a decreasing trend in subsequent years, reaching $58,319 \mathrm{t}$ in 2006. In the follow years the catch increased again, reaching 69.953 t in 2010 due to re-
entry of purse-seine effort into the Atlantic. For the "faux poisson", the estimates corresponding to yellowfin show that the highest figure was $2,750 \mathrm{t}$ in 1993, with 533 t in 2010.

The Working Group on Ghanaian statistics, which met in 2011, provided new information on the Ghanaian fisheries trends. Based in the data provided by the Ghanaian scientists and with additional information from other sources, the Working Group was able to reconstruct detailed catch, effort and size data as well as detailed information on fleets and geographical distribution of catches. As an example, Figures 7 to 9 show the catch distribution of Ghanaian catches in the historical period (1969-1980), before the development of the FAD fishery, and in the recent period (2008-2010). These figures show the extension of the fishery from a coastal area to an area similar to that of the European and associated fisheries on FADs (Figure 10). Incomplete monitoring of the Ghanaian fleet catches since 2006 may have resulted in a potentially large underreporting of YFT catch.

In the West Atlantic (Figure 6) catches increased since the beginning of the fishery in the early 1960s to 1983 when they reached $25,000 \mathrm{t}$. Catches in the following years show considerable variation as a part of this fleet moved to the Pacific Ocean. Caches in 2010 were $4,219 \mathrm{t}$. Most of the catch in the West Atlantic is taken by the Venezuelan purse seine fishery (in some years being 100% of the total catch).

- Longline

After a maximum of over 50,000 t reached in 1959-1961, longline catches decreased to a level of around 30,000 t in the early 1970s. Longline catch levels in the 2000s have been about $23,000 \mathrm{t}$. Longline catches in 2010 reached $19,302 \mathrm{t}$. The main fisheries are those of Chinese Taipei, Japan, United States, Mexico and Brazil. The appearance of important catches, beginning in 1985, by NEI fleets in unknown areas is of concern as it is uncertain to what extent these catches actually occurred in the Atlantic.

A multi-gear fleet in the western Atlantic fishing from Cabo Frio City, Rio de Janeiro, Brazil caught about 11 t of yellowfin in 2003. Catches increased to 183 t and 137 t in 2006 and 2007, respectively, and decreased to 8 t in 2010 (SCRS/2011/143).

3.3 Fishing effort

In general, in multi-species fisheries such as the surface tropical tunas fisheries, it is difficult to discriminate fishing effort by species. Beginning in the 1990s, important changes have taken place in the East Atlantic main surface fisheries which have further complicated the estimation of effective effort, including the greatly increased in the number of FADs used by purse seiners and baitboats, as well as the use of baitboats as floating objects.

As indicators of the nominal effort in the East Atlantic, the carrying capacity of the purse seine and baitboat fleets has traditionally been used. Figure $\mathbf{1 1}$ shows the development of carrying capacity of the surface fleets in the East Atlantic for the period 1972-2010, including new information from Ghanaian fleets. The baitboat carrying capacity has remained stable since the late 1970 s at around $10,000 \mathrm{t}$. The carrying capacity of the purse seine fleet, on the other hand, has undergone significant changes during the whole period under consideration, with a constant increase from the start of the fishery until 1983, when carrying capacity exceeded $70,000 \mathrm{t}$. After that, carrying capacity decreased considerably to $37,000 \mathrm{t}$ in 1990 , due in part to the fleet abandoning this fishery. There was a slight increase in the following two years (1991 and 1992) followed by a progressive decline, with capacity at around $29,700 \mathrm{t}$ in the year 2006 and then an increase to $39,600 \mathrm{t}$ between 2006 and 2010 due to movement of effort into the Atlantic mainly from the Indian Ocean (SCRS/2011/137, SCRS/2011/130, SCRS/2011/136).

Document SCRS/2011/137 shows the development of both nominal fishing effort measures for EC and associated purse seiners: the number of 1-degree rectangles explored and the number with effort greater than 1 fishing day, and total purse seiners fishing days (1991-2010). It can be observed that, the searching area remained at the same level from 1991 until 2007, after which both searching area and the number of fishing days increased.

For the West Atlantic, there have been substantial recent changes in the amount and distribution of fishing effort in the Brazilian longline fishery. Until 1995, sharks were the primary target species (58% of the total catches). However, since 1993, the proportion of sharks declined, being replaced by swordfish as the dominant species in this fishery (swordfish now represent 48% of the total catches). Effort in the Venezuelan surface fisheries has been high since 1992 (more than 8000 t vessel carrying capacity). Effort in the U.S. longline fishery, which is active in the north western Atlantic and in the Gulf of Mexico, has declined somewhat in the last few years.

Japanese longline effort for yellowfin tuna has also declined in recent years. This fleet mainly targets other species (bigeye and bluefin).In contrast, Venezuelan and Mexican longline effort for yellowfin tuna has increased in recent years.

Effort in the multi-gear fleet fishing out of Rio de Janiero, Brazil is around 350 vessels (SCRS/2011/143).

3.4 CAS and CAA estimations

The Secretariat presented at the beginning of the meeting, an update of the yellowfin catch-at-size (CAS) matrix estimations for the period 1970-2010. The standard proceedings and substitution rules were applied. As a standard procedure, the CAS output is standardised in 1 cm lower limit size frequencies, keeping always the maximum time-area granularity of the size information used. As recommended in the 2008 assessment, the period between 1975 and 1982 was revised and updated, in addition to the years 2007 to 2010. The remaining CAS series (periods 1970-1974 and 1983-2006) were revised and corrected to make the CAS weight equivalent with Task I (by year/fleet/gear/stock combinations). The yellowfin substitution tables (not here included given their sizes) used to build the yellowfin CAS, are available upon an explicit request to the Secretariat.

A CAS revision of Japan was presented during the meeting (SCRS/2011/128) for the period 1995-2010. Upon a detailed explanation for such revision, the Working Group agreed to replace this series in the overall CAS matrix. The Working Group also agreed not to revise the Japanese historical CAS data. This pending issue will be updated by the Secretariat for the next assessment.

A final version of the CAS was made at the meeting (which incorporates the new Japanese CAS and the new Task I figures adopted in Table 1) and finally adopted by the Working Group. Table 2 and Figure 12 presents the overall CAS matrix in number of yellowfin tuna caught by year and 2 cm length classes.

Figure 13 shows the estimated CAS frequency distribution of yellowfin by year and by the main gear groups, purse seine (PS), longline (LL), baitboat (BB) and others (OT). Both BB and PS size frequency shows a catch primarily of fish between 35 and 70 cm , while LL mainly catch larger fish.

The Secretariat informed that after the "Tropical Tuna Species Group Inter-sessional Meeting on the Ghanaian Statistics Analysis (Phase II)" (SCRS/2011/016), some revised data were received. These revisions were pending corrections and harmonization of the catch-at-size data which precluded their use in the current assessment. The Group noted that the final incorporation of these data also needs the review and approval of the other tropical species working groups. For this meeting, only an estimate of the Task I updated from the Ghanaian statistics was considered.

The catch-at-age (CAA) matrix was estimated with a slicing program (SCRS/2011/142) for the final version of the CAS. SCRS/2011/142 describes an alternative slicing technique for estimating the CAA matrix from the CAS matrix. Briefly the method proposed to include observed variance of size at age into the ageing protocol. The observed variance of size was estimated from daily increment reading from yellowfin otoliths (Shuford, et al 1992). Although the size sample is low, these represent fish collected from the Gulf of Guinea and North Carolina fisheries. The Group recommended that further analysis of the ageing protocol be performed, possibly including more hard parts for age samples from other Atlantic fisheries.

The CAA matrix selected by the group was estimated using the slicing protocol as defined in past assessments, with the upper size bounds defined for each age-quarter group (Table 3) based on the predicted growth of yellowfin assuming the two-stanza growth formulation presented by Gascuel et al (1992). During the meeting, the definitions of fisheries fleets that should be associated with a particular index of abundance were also revised (See section 4.1).

Table 4 and Figure 14 summarize the trends of age distribution by year for the total catch of yellowfin for 19702010. Since 1970, there has been an increase in the proportion of ages 0 and 1 in the catch. This primarily due to the increase proportion of catch from the FAD associated fleets. Figure 15 also provides the catch in weight distribution by age class.

3.5 Other information (tagging)

The Secretariat provided a summary of the current tagging data available for yellowfin tuna with maps of its distribution.

4. Review of catch per unit effort series and other fishery indicators

The Group noted that a large number of CPUE series were developed for the previous assessment and that in order for there to be continuity between the assessments, all of these indices should at least be revisited. In many instances, revised/updated CPUE series were available. In the case where no new indices were presented, the indices from the prior (2008) assessment (Anon. 2009) were used. When updated indices were provided, these updated indices were generally used.

4.1 Surface fisheries (purse seine and baitboat indices)

Document SCRS/2011/130 presented data about catches, fishing effort, catch per unit of effort and sampling coverage of the Spanish tropical tuna fleet (purse seiners and baitboats) that fish in the Atlantic Ocean. This paper included a CPUE series calculated for the Spanish PS fleet, while Document SCRS/2011/136 described the fishing activities of the French purse seiners targeting tropical tunas in the Atlantic Ocean between 1991 and 2010. Two major fishing modes were considered for the fishery: log-associated and free swimming schools. Information was provided on fishing effort (fishing days, searching days, and fishing sets), catch, catch rates, and mean weights for the major tropical tuna species with a particular focus on the year 2010. Document SCRS/2011/137 presented statistics for the EU and associated tuna fisheries in the Atlantic Ocean between 1991 and 2010.

For the previous assessment, CPUE indices for the EU PS fleets had been divided into three separate indices. For the sake of continuity, this was again done, with a Tropical Free School Index being developed from the Task II catch and effort data after separating the effort by fishing mode (FAD and free schools). The Tropical Free School Index assumed a 1% increase in catchability over the duration of the time series which begins in 1991 up to 2009. Data are not available to separate by fishing mode prior to this time although log sets represented a rather small portion of the data prior to this time. A FAD series was produced by combining the French, Spanish and associated fleets FAD data resulting in a nominal CPUE series for this sector of the fishery. Lastly, a nominal EU PS series (1970-1990) was created assuming a 3% increase in catchability per year beginning in 1980 through to 1990 . The 3% increase was assumed in the past and thus this was again assumed. This series was revisited using methodology developed in the 2008 assessment session in Florianopolis, taking into account changes in q (coming from a production model using all indices except the PS index and a VPA analysis: The purse seine fleet is known to have increased its efficiency through time. Following the criteria that has been applied for the previous assessment, an assumed 3% annual increase in fishing efficiency was assumed from 1980. There was concern regarding the 3% increase as it was suggested that this may be an under-estimation of q for the years in the middle of the series as indicated by Gascuel, et al (1993). To evaluate this, an analysis was conducted which confirmed that a higher rate increase (7%) prior to the year 2000 would have been consistent with both the CPUE trends from the purse seine fleet and with the estimated biomass trends from production models (Appendix 7). Therefore, it was agreed to use the 7\% increase PS CPUE series from 1970 to 1990. Lastly, a nominal EU PS series (1970-2010) was created assuming a 3% increase in catchability per year beginning in 1980 through to 2010.

The EU Dakar baitboat fishery CPUE was updated during the meeting from the previous assessment. The full details of the standardization are included in Appendix 5.

4.2 Recreational fisheries

Document SCRS/2011/139 presented and updated time series of the U.S. rod and reel recreational fishery. The Group discussed that the model was unbalanced because more than 80% of all observations were from one region (mid-Atlantic, state of North Carolina) and one season. Therefore, the estimated index might not reflect yellowfin tuna abundance over the entire area covered by the data. However, the estimated index showed a trend that is consistent with anecdotal information from the entire geographical range covered by the index. The author indicated that an index developed using data only from North Carolina was almost identical to the index developed using all the data. The Group suggested developing separate indexes for each area, but it was indicated that some areas have low sample sizes, therefore, precluding the estimation of such indexes. The Group also suggested examining the residuals estimated for areas other than North Carolina. The author also indicated that the estimate (from a small sample size) average weight of the yellowfin tuna caught by this fishery was approximately 12 kg , but the fishery catches fish ranging from juveniles to fully mature individuals. The Group finally suggested that yellowfin tuna indexes of abundance should also be developed using data from other U.S. data collection surveys to compare the general trends.

4.3 Longline indices

Document SCRS/2011/128 presented a CPUE series for the Japanese longline fleet for the period 1965-2010. The Group observed that the estimated nominal CPUE for year 2007 was very high compared to other values in the same period. The authors indicated that the high value seemed to correspond to high catches recorded for that year off of West Africa. The estimated standardized series did not show a high value for year 2007.

Document SCRS/2011/129 detailed the standardization of catch per unit effort for yellowfin tuna caught by the Chinese Taipei longline fleet as estimated by a general linear mixed model with log-normal error structure on the yearly and quarterly basis. The lowest abundance in the index was calculated to be during the 1970s, and fluctuation occurred after 1990. The current estimated abundance level in 2008 and 2009 was likely equivalent to the levels in 1980s after reaching its recent highest level in 2005. The Group discussed that the data used to estimate the CPUE correspond to four distinct periods with different levels of aggregation and/or levels of information about gear configuration. The author estimated 4 different models (one for each of the four periods mentioned) using the same factors in all four models. It was pointed out that although the CPUE was presented in the paper as one continuous series, it should actually be treated as four temporally distinct series (1968-1980, 1981-1992, 1993-2002 and 2003-2009) due to the way the CPUE was calculated. The author has confirmed this interpretation. The full details of this temporal separation are provided in the document.

A CPUE series for the Brazilian longline fleet was presented in document SCRS/2011/144. The Group noted several concerns with the document. First, the models were developed using data sets differing in the number of observations so that AIC should not be used to guide model selection. There was also concern that a Poisson distribution may not be the best model for continuous data possessing a high proportion of zeroes. The Group also noted that the year effect should be calculated as a balanced mean across all factors, equivalent to the least square means estimator, whereas $\mathrm{SCRS} / 2011 / 144$ calculated the mean of the predicted values for only the sample observations which are not balanced. In response to these concerns, the group agreed to revise the analyses (Appendix 6).

The Group observed that significant changes in fishing effort targeting yellowfin occurred during the course of the fishery (Hazin, et al, 2011). In the original construction of the model there was very little divergence between the nominal and standardized values, despite these changes in targeting strategy, which suggested that the standardization did not adequately account for the changes in targeting. The CPUE series was re-estimated using a delta \log normal model with the index calculated as the least square mean. The resulting model predictions diverged from the nominal values, in a manner more consistent with the changing targeting of the fleet from yellowfin to swordfish and the re-calculated index appeared to have a more plausible trend. The revised delta lognormal model was recommended by the Group, yet concerns remained related to whether the modeling adequately accounted for the substantial changes in targeting.

For future treatments of CPUE data from the very complex Brazilian longline fleets, it was recommended that gear characteristics of fleets/vessels be recorded or, if they are recorded, be used in standardization, when possible. Furthermore, the Group reiterated the need for simulation studies to test different methods to account for changes in targeting. The Group concluded with an observation that CPUE indices for species in other strategies (e.g., BET, BUM) have been very noisy and without a clear trend. However, the indexes estimated for species in strategy 1 (e.g., YFT, WHM) show a very similar trend and the Group wondered if these similarities were a reflection of common population trends or an artifact of the data used and the standardization procedure

The U.S. longline index for the Atlantic Ocean was presented in document SCRS/2011/138. The Group discussed some of the factors included in the model. There was some concern of the use of time (AM and PM) to define time of sets since some captains have been known to record times in logbooks using the time zone of the port of departure instead of that of the fishing area. The author also indicated that some observations had unrealistically high records of the number of hooks between floats (e.g., in the order of 900). The Group indicated that, in the future, those observations should not be used to develop the indexes. The Group also suggested that, given the management changes observed in the U.S. northeast distant fishing area (NED), an index be developed without using data from that area. Given that the observed differences were minimal and that model diagnostics were available only for the original CPUE, it was decided to incorporate only this original index into the assessment process. However, there was a suggestion that future analyses should attempt to address the effect of management actions in order to avoid potential bias. When these effects cannot be estimated with the current data, one approach may be to eliminate data before and after a substantial management action was implemented, such as removing the NED data. The Group noted that CPUE in weight were estimated using the CPUE in numbers and an average weight for each year estimated from Observer data. The Group discussed
that the use of other weight data with higher resolution, such as commercial landings data at the trip level, should also be explored.

Document SCRS/2011/140 provided abundance indices for yellowfin tuna in the Gulf of Mexico for the period 1992-2011. These were estimated using data obtained through pelagic longline observer programs conducted by Mexico and the United States by applying the model developed during prior analyses to the currently available data (through 2010 for the U.S. fishery and through 2006 for Mexico). Standardized catch rates were estimated through generalized linear models by applying a Poisson error distribution assumption. There was a question as to whether there was imbalance in the model as the two fleets (Mexican and U.S.) are effectively separated by area and have little overlap. The way the model selection has been conducted, however, should reduce this problem as collinear factors tend to be removed during the selection procedure. It was also pointed out that although the catch data is dominated by the Mexican fleet, the standardization procedure should account for this and thus this series can be considered a true reflection of the activities of both fleets.

A comparison of the Gulf of Mexico series (USA and Mexico) and the U.S. longline series for the Atlantic Ocean was made. Although the series were largely similar, it was noted that there are some years for which the two series diverge. These years correlate to years when the Mexican catch rate is higher than the US catch. The observer program data covers a broader area and has more factors that can be considered for standardization than the Gulf of Mexico series, but has a shorter temporal coverage. There was a suggestion to exclude the NED) from standardization of the U.S. logbook CPUE series. Differences between the series including NED and excluding it are however very small. Removal of NED will require re-establishing weightings by area as an additional large area will now be excluded (although catch of yellowfin in that area is low). As the regulations in the NED would result in decreased catch rates of yellowfin, it was agreed that removing the NED (throughout the time-series) may be the most appropriate way of standardizing this CPUE series due to the changes in catchability. In the end it was decided to keep the NED in order to prevent having to rerun diagnostics. It must be recommended however that the NED should be removed in the future, or that the issue should be investigated further.

4.4 Indices used for assessment

The various indices proposed for incorporation in the different stock assessment models are provided in Table 5. These indices were chosen by the Group based on continuity from the last assessment as well as changes and needs discussed during the meeting. Where these series have been updated during the present stock assessment session or whether they have merely been carried over from the past assessment is indicated. The stock assessment model which utilized each index is also noted. Fleet definitions used to construct fleet-specific partial catches at age for the VPA and to assign landings in ASPIC are shown in Table 6.

4.5 Other indicators: Non equilibrium Beverton-Holt estimator of total mortality

It is widely admitted that mean length in a fish population is inversely related to the total mortality rate. With this idea in mind, Beverton and Holt (1956) developed a functional relationship between the mean length in the catch and the total mortality rate (Z). Such approach was generalized by Gedamke and Hoenig (2006) to allow mortality rate to change in nonequilibrium situations.

For the sake of simplicity, it was assumed that yellowfin growth curve followed the conventional von Bertalanffy equation with parameters, $K=0.728$ Linf=151.7. Based on visual inspection of yearly catch at size, the size at full recruitment (Lc) was fixed at 48 cm . To access whether there have been multiple changes in the mortality rates of yellowfin, different competing models (i.e., with different breaking dates and resulting number of parameters) were ranked according to the Akaike information criterion.

The selected model fits well with the mean length of the Atlantic yellowfin, even if the situation is less satisfactory in the recent years (Figure 16, left panel). The fitted values decrease gradually from 89.7 cm in the 1970s to 81.3 cm during the period 1983-1996, then at 71.9 cm since 1999. For these three homogeneous periods of time, Z was estimated at $1.08,1.52$ and 2.43 , respectively (Figure 16, right panel). The clear downward trend in the late 1990s suggests an increase in mortality rate, followed however by a possible recovery in the recent period. Potential changes in selectivity by fishing gear over these three homogenous time periods should be explored before drawing definitive conclusions on the absolute change in total mortality over years. Methods and results are provided in greater detail in Appendix 9.

5. Methods and other data relevant to the assessment

5.1 Production models

5.1.1 Data inputs for surplus production models

The development of the combined indices used in the ASPIC model is described in Appendix 4. Table 7 and Figure 17 show the combined indices available for use by the production models. Table 8 and Figure 18 show the indices created by excluding one available index each, in order to evaluate the influence of each of those indices.

5.1.2 ASPIC

In 2008 ASPIC (Prager, 1992) was used to fit production models and four ASPIC cases where used to develop the advice in 2008 (cases 2, 4, 6 and 8 from Table 20, Anon. 2009). They all correspond to Logistic fits of the model with combined indices (cases 2 and 4) or with a set of 9 indices (cases 6 and 8). Cases 2, 6 and 8 had $\mathrm{B} 1 / \mathrm{K}$ fixed to one and not estimated. Case 4 was the only one where $\mathrm{B} 1 / \mathrm{K}$ was estimated. Case 6 used nine indices weighted equally, and case 8 used nine indices (Table 18,0Anon. 2009) weighted by the amount of area occupied by the fishery representing the index.

During the current assessment the version 5.34 of ASPIC was used. ASPIC has a limit of 10 individual indices, and in this assessment there were more than ten available. Therefore the decision was made to develop two types of runs, those with combined indices (Appendix 4) and those with 10 individual indices. Combined index runs had the advantage of allowing the group to use all available indices in the development of the combined index, and thus for all indices to influence the fit. A number of different runs were conducted during the assessment (Table 9).

- Continuity case

To see the effect of recent catches, as well as updating the same indices where possible and applying the index information with the same manner as in the last assessment, four ASPIC runs were developed (runs 05, 06, 07 and 08 , Table 9). These four runs are therefore equivalent to runs $02,04,06$ and 08 in the 2008 assessment (Table 20, Anon. 2009).

- Sensitivity runs

a) Using a single fleet index

Some initial model runs (Runs 1-4) were configured to use a single fleet index (Japanese longline), primarily for the purpose of ascertaining that the models and data were being set up correctly. These runs are detailed in Appendix 8.

b) Catchability increase for purse seine fleet

Beginning in 1991, detailed information on set type is available that permits tracking the catches separately by set type (free school vs. log). The Group decided that separate indices by set type would better reflect abundance trends and would be particularly useful for age-structured analyses. Prior to 1991, indices would be applied representing purse seine catch rates, assuming a particular trend in fishing power (either 3% or 7% annual increases, as described in Appendix 7). In order to estimate the effects of such change in the purse seine index ASPIC was run with a combined index calculated with a purse seine index that includes either a 3% annual increase (cases 9 and 10) or a 7% annual increase (cases 11 and 12).

c) Alternative estimates of Ghana catches

The Tropical Working Group on Ghanaian Statistics estimated alternative total catch for Ghana (SCRS/2011/016), especially during the recent period. To estimate the effects of such new estimated catch in the assessment, an ASPIC run with an update of Ghanaian statistics was carried out. This run (no. 14) uses the same model structure as run 11 (i.e., combined indices developed with the 7% PS index, the logistic model and B1/K fixed to one) but differs in that it uses updated Ghanaian catches.

d) Excluding specific indices

To see the effect of excluding specific fleets when processing the combined index, three runs were made using alternative combined indices each excluding one index. The excluded indices included Chinese Taipei longline index (run 15), Brazilian longline index (run 16) and the EU-purse seine with 7% increasing q (run 17).

- Base case

After examining the continuity cases and sensitivity runs, the Working Group decided to use runs $9,10,11$ and 12 as the basis for providing the advice. They all include combined indices but differ on whether $\mathrm{B} 1 / \mathrm{K}$ is estimated or fixed at 1 and on the rate of catchability increase assumed to have affected the purse seine.

- Retrospective analysis

Retrospective analyses were conducted by sequentially removing a single year of data and re-estimating model outputs. The purpose of this exercise was to determine how the addition of new data changes the perception of the stock.

5.1.3 PROCEAN model

The PROCEAN (PRoduction Catch / Effort ANalysis) model is a multi-fleet non-equilibrium biomass dynamic model developed in a Bayesian framework to conduct stock assessments based on catch and effort time series data (Maury 2000, 2001). The model was used here to run sensitivity analyses on input data and modelling choices made during the Working Group for the runs of ASPIC (section 5.1.2). In a first step, runs were performed on the two combined abundance indices covering the period 1965-2010, i.e., unweighted and weighted by area (run 9 of ASPIC), to assess the sensitivity of the results to the shape parameter (m) of the model. For the combined index weighted by area, the shape parameter m was first estimated and then fixed at 1.5 for comparison with ASPIC runs that considered a logistic model, i.e. making the implicit assumption that m is equal to 2 . The initial value of biomass (1965) was set to 90% of the carrying capacity and a complementary run for the combined index weighted by area was conducted considering a value of 80%. In a second step, sensitivity runs were conducted by considering different selections of the abundance indices included for computing the combined abundance index (runs 15-17 of ASPIC).

In a third step, nine time series of CPUE indices (in weight) were selected during the working group based on objective criteria regarding their spatial representativeness of yellowfin fishing grounds (Table 10). The Uruguayan LL, Venezuelan PS, European-Senegalese Dakar BB, Brazilian BB, U.S. RR, and U.S. LL indices included in the estimate of the combined abundance index were removed because these fisheries do not represent a significant part of the total fishing area of the stock. The Chinese Taipei CPUE index was separated into four distinct indices covering the periods 1968-1980, 1981-1992, 1993-2002, and 2003-2009, respectively (SCRS/2011/129). Three different indices (yellowfin catch per searching day) were considered for the European purse seine fishery: an index for the whole European PS fishery during 1970-1990 assuming a yearly increase in catchability of 7\% (Appendix 7), an index for the fishery on free swimming schools during 1991-2010 assuming a yearly increase in catchability of 1%, and an index for the fishery on log-associated schools during 1991-2010. Sensitivity runs to CPUE inputs were performed by progressively excluding the TAI-LL and BRA-LL indices from the model.

5.2 VPA

The parameter specifications used in the 2011 VPA base models were generally similar to those used in the 2008 base-case VPA model (Anon. 2009). Some exceptions are noted below and in the summary of the model control settings and parameters that appears in Tables 11 and 12.

All of the VPA runs performed during the 2011 assessment used the following specifications:

1. VPA models require the estimation or input (i.e. fixed) for the terminal year fishing mortality rates (F). As in the previous assessment, the 2011 base cases allowed terminal F values to be estimated for Ages 0 4. For the VPA models, the oldest age class represents a plus group (ages 5 and older) and the corresponding terminal fishing mortality rate is specified as the product of $\mathrm{F}_{\text {age } 4}$ and an estimated ' F -ratio' parameter that represents the ratio of $\mathrm{F}_{\text {age }} 5$ to $\mathrm{F}_{\text {age } 4}$.
2. The indices of abundance were fitted assuming a lognormal error structure and equal weighting (i.e., the coefficient of variation was represented by a single estimated parameter for all years and indices).
3. The catchability coefficients for each index were assumed constant over the duration of that index and estimated by the corresponding concentrated likelihood formula.
4. The natural mortality rate was assumed to be age-dependent (Ages 0 and $1=0.8 \mathrm{yr}^{-1}$; Ages $2+=0.6 \mathrm{yr}^{-1}$) as in previous assessments.
5. The maturity vector was assumed to be knife-edged, with 100% maturity at Age-3 (i.e. Age 0-2 $=0$, Ages $3+=1.0$).
6. The fecundity proxy was assumed to be the product of maturity-at-age and weight-at-age at the peak of the spawning season (Feb. 14). The proxy was calculated using the accepted two-stanza growth curve and length-weight conversion parameters. The weight-at-age of the plus group was estimated using ages 5 to 10 and adjusted to account for natural mortality on ages 6-10. The resulting vector was as follows (Ages $0-2=0.000$, Age $3=34.68 \mathrm{~kg}$, Age $4=62.10 \mathrm{~kg}$, Age $5+=86.51 \mathrm{~kg}$).

- Description of model runs

Two VPA base models were used to produce management advice during the 2008 assessment of yellowfin tuna. These were referred to as "Run 5" and "Run 10". The first, Run 5, used the partial catches at age from each fleet to estimate a single selectivity vector for each index (Butterworth and Geromont, 1999 - Eq.4). The second, Run 10 , was identical except that the longline indices were assumed to have fixed "flat-topped" selectivity patterns rather than the steeply "dome-shaped" patterns estimated from the partial catches. To accommodate this assumption, the selectivity patterns were fixed at the values estimated during "Run 5 " until the fully selected age was reached. Then, full selection (1.0) was retained for older ages. These model assumptions were also explored during the 2011 assessment meeting. To simplify the discussion below, "Run 5 " will hereafter be referred to as "USE PCAA" which is an abbreviation of "use partial catches at age". Likewise, "Run 10" will be referred to as "FLAT-TOPPED".

1. DELTA CAA: The "DELTA CAA" runs were performed to examine, in isolation, the effect of the updated catch at size information on the estimates of $\mathrm{SSB} / \mathrm{SSB}_{\mathrm{MSY}}$ and $\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}$ in 2006 (the terminal year of the previous assessment).The years 1970-2006 were included in this model treatment. This comparison also retained the model settings, specifications, and indices of abundance from the previous assessment.
a) As in the 2008 assessment, the "DELTA CAA" runs allowed the initial F-Ratio (1970) to be estimated, while subsequent years were permitted to vary according to a random walk with a standard deviation equal to 0.2 and a prior expectation equal to the previous annual estimate.
b) As in the 2008 assessment, constraints were applied to restrict deviations in recent recruitment and recent vulnerability.
c) As in the 2008 assessment, two VPA model runs were made that contrasted the assumed selectivity of the longline fleets, the "USE PCAA" and "FLAT-TOPPED" run as described above.
2. CONTINUITY: The "CONTINUITY" runs were performed (1970-2010) to examine the combined effects of including information through 2010, the updated catch at size and updated indices of abundance on estimates of $\mathrm{SSB} / \mathrm{SSB}_{\mathrm{MSY}}$ and $\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}$ in 2006. The "continuity" runs retained the model settings, specifications and terminal year (2006) of the previous assessment and the "DELTA CAA" runs. The "USE PCAA" and "FLAT-TOPPED" runs were constructed as described above.
3. BASE: Four "BASE" runs were examined by the working group. These runs contained all of the new and updated data inputs made available to the working group during the 2011 stock assessment session. All four base runs used the available data from 1970-2010. The base runs differed from the "DELTA CAA" and "CONTINUITY" runs as follows:
a) BASE RUN 1 "USE PCAA":
i) All new and updated indices recommended by the 2011 assessment working group were used.
ii) A revised catch-at-age was developed by the Secretariat following adjustments recommended by the Working Group (see Section 3.4).
iii) Partial catch-at age -corresponding to the indices- was constructed using fleet definitions agreed upon by the Working group (Table 6).
iv) The penalty applied to restrict deviations in recruitment was removed from the 2011 base runs. The penalty to restrict deviations in recent vulnerability was retained.
v) "A single selectivity vector for each index was calculated using the partial catches at age (scaled to 1.0) and the Butterworth and Geromont technique.
vi) The initial F-Ratio (1970) was fixed at 0.7 , and then allowed to vary annually according to a random walk with a standard deviation equal to 0.2 and a prior expectation equal to the previous annual estimate.
b) BASE RUN 2 "FLAT-TOPPED": Same as BASE RUN 1 except that annual selectivity vectors for each index were calculated using the partial catches at age (scaled to 1.0). After the first fully selected age, full selection (1.0) was carried through the older ages.
c) BASE RUN 3 "USE PCAA": This run is intended to explore the effect of a different assumed trend in the F-Ratio. For this run, the F-Ratio was fixed at 0.7 from 1970-1999, then allowed to vary annually according to a random walk with a standard deviation equal to 0.2 and a prior expectation equal to the previous annual estimate.
d) BASE RUN 4 "FLAT-TOPPED": Same as BASE RUN 2 except that the F-Ratio was fixed at 0.7 from 1970-1999, then allowed to vary annually according to a random walk with a standard deviation equal to 0.2 and a prior expectation equal to the previous annual estimate.

The indices used during the various model runs are summarized in Table 13. The specifications for the indices and index selectivity are described in Tables 14 to 16.

6. Stock status results

6.1 Production models

6.1.1 ASPIC

- Updates of recent catch and relative abundance indices

Point estimates for population parameters are very similar between runs that only differ on whether the $\mathrm{B} 1 / \mathrm{K}$ is estimated or not (Table 17). Greater differences in benchmarks are related to the assumption regarding the function of the production model.

- Continuity case

Including updated combined index and the same set of nine indices used in the 2008 assessment have strong effects on the benchmarks (Tables 18 and 19) as well as on the historical changes in biomass and fishing mortality ratios (Figure 19).

- Sensitivity runs
a) Using a single fleet index

The results of Runs 1-4, using a single fleet index (Japanese longline), are detailed in Appendix 8.
b) Catchability increase for purse seine fleet

Including an index for the purse seine calculated with a seven percent increase in catchability has a small effect on the benchmarks (Table 20) and on the historical changes in biomass and fishing mortality ratios (Figures 20 and 21).
c) Alternative estimates of Ghana catches

Estimates of benchmarks differ by 5% or less for MSY, $\mathrm{B}_{2010} / \mathrm{B}_{\mathrm{MSY}}$ and equilibrium yield. The greatest changes are estimated for $\mathrm{F}_{\mathrm{MSY}}$ and large changes for $\mathrm{K}, \mathrm{B}_{\mathrm{MSY}}, \mathrm{F}_{2010} / \mathrm{F}_{\mathrm{MSY}}$ and yield at MSY (Table 21).

The pattern of biomass and fishing mortality ratios differ only for the most recent period (Figure 22), but suggest that the higher catches estimated for Ghana would lead to a more pessimistic assessment of the current state of the biomass and fishing mortality. Estimates of the most recent ratios of biomass and fishing mortality are highly uncertain for both runs but generally suggest a more pessimistic view for run 14 (Figure 23).
d) Excluding specific indices

Excluding each specific fleet has effects on the benchmarks (Table 22) and on the historical changes in biomass and fishing mortality ratios (Figures 24 and 25).

- Base case

Results from all four runs are quite similar indicating that neither the ratio of $\mathrm{B} 1 / \mathrm{K}$ nor the rate of increase in q for purse seine has much influence on the fit of the production model. MSY values are similar for all runs, about $140,000 \mathrm{t}$ with bootstrap estimates of the 10% and 90% ranging from about $100,000 \mathrm{t}$ to $150,000 \mathrm{t}$. The median 2010 biomass relative to the $\mathrm{B}_{\mathrm{MSY}}$ is estimated at about 0.7 with bootstrap estimates of the 10% and 90% ranging from about 0.55 to 1,0 , suggesting an overfished stock. The median 2010 fishing mortality relative to the $\mathrm{F}_{\text {MSY }}$ is estimated at about 1.1 with bootstrap estimates of the 10% and 90% ranging from about 0.8 to 1.6 . This suggests there is considerable uncertainty on whether there is overfishing or not.

- Retrospective analysis

The analysis of retrospective patterns indicates that $\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}$ and $\mathrm{B} / \mathrm{B}_{\mathrm{MSY}}$ estimates are relatively stable for the terminal year when successive years of data are removed from the model (Figures 26 and 27). The primary result of increasing years of data is that the estimate of the intrinsic rate of population increase (r) and the carrying capacity (K) varied indicating that the successive addition of new years of data changes the perception of the productivity of the stock (Figure 28). Though the combined index is going up in the recent years, it is not increasing at the rate that would have been expected by the estimated values of intrinsic rate of increase from the 2008 assessment results (~ 0.68) given the observed catch levels since 2006. Hence, as we added years of data to the model, we appear to get a progressive decrease in the estimated intrinsic rate of increase (Figure 28).

6.1.2 PROCEAN model

Overall, model runs for the combined abundance indices yielded results similar to ASPIC for the biomass and fishing mortality trajectories. Ratios of current fishing mortality and biomass relative to MSY were within the range of values estimated with ASPIC, i.e., 1.13-1.18 and 0.65-0.74, respectively (Table 23). Model results were robust to changes in initial biomass assumption. Changes in the shape parameter of function of the production model did not modify the past trends of the stock and current status of overfishing but did affected the value of MSY estimated that were in the range of $139-145,000 \mathrm{t}$ and generally larger than those derived from ASPIC runs. The exclusion of the TAI-LL and BRZ-LL indices when computing the combined index of abundance had little influence on model results. The exclusion of the EUR-PS index did result in a decrease in the MSY and a stock diagnostic in 2010 a little bit more pessimistic (F ratio of 1.24).

The model failed to convergence to a solution when including the 9 CPUE series in the model due to conflicting information between abundance indices. Convergence was reached only when removing the 3 TAI-LL indices after 1981. However, strong patterns were observed in the fishery-specific residuals of the fit to the remaining six CPUE indices (Figure 29). The general annual trends in fishing mortality and biomass were similar to those obtained when fitting the model with the combined abundance index. Changes in fishing mortality were, however, different in the recent years and characterized by a significant decrease in F that became lower than $\mathrm{F}_{\text {MSY }}$ in 2010, indicating a non-overfishing condition of the stock in 2010 (Figure 30).

6.2 VPA

This section summarizes the results from VPA analyses explained in Section 5.2. The executables, inputs, outputs and report files were archived following the assessment meeting and can be obtained through the ICCAT Secretariat.

- Comparison of 2008 and 2011 VPA continuity models

Two sets of model runs were made to examine the impact of updated data, without altering the settings and specifications of the 2008 assessment. The 2011 DELTA-CAA runs were constructed to examine the implications of the revised catch-at-size provided by the Secretariat and the CONTINUITY runs were constructed to examine the implications of the new catch-at-size information and updated indices of abundance.

The annual trends in stock status were compared to the 2008 model results. The results of the "DELTA CAA" models were nearly identical to the 2008 base assessment models (Figure 31) which suggest that revisions to the catch-at-size had very little effect on our perception of stock status from 1970-2006.

The 2006 stock status estimates of the CONTINUITY" models were somewhat more optimistic than the 2008 base assessment models (Figure 32). This indicates that updating the indices and extending the model through 2010 had a significant effect of the perception of stock status when all other model specifications were unchanged.

- VPA base models

Four VPA models were initially chosen by the working group to provide management advice. Annual trends in yield, total biomass, apical fishing mortality, recruits (Age 0), and spawning stock biomass (SSB) are shown in Figures 33-36. Management reference points and benchmarks for the VPA base runs are summarized in Table 24.

- Diagnostics

Fits to the CPUE series for the VPA continuity and base models are summarized in Figures 37-40. The fits to the base models show a substantial lack of fit to many indices, this is particularly true of Runs 2 and 4 for which annual index selectivity was fixed each year using information from the fleet-specific catch-at-age.

Early model runs included an index from the Canary Islands bait boats. The VPA model was not able to fit this index without a severe deviation, therefore this index was removed and the models were re-run. The base model fit statistics are summarized in Table 25.

- Retrospectives

A retrospective analysis was completed by sequentially removing inputs of catch and abundance indices from the 2011 base case models. The retrospective analyses showed unstable patterns in fishing mortality at age (Figure 41), numbers at age (Figure 42) and spawning stock biomass (Figure 43) for base run 2. Therefore, the Working Group recommended that this model not be used to develop management advice. The retrospective patterns were acceptably stable for the other base runs.

- Sensitivity runs

Sensitivity of the VPA model to individual indices was evaluated by performing a sequential removal of a single index series from the model (Figures 44 and 45). These plots reinforce the decision to remove model 2 from management advice as the effects of removing single index lead to vastly different model outcomes. For models 3 and 4 the divergence created by sequential removal occurs exclusively in later than 2000 and then only in estimated fishing mortality and recruitment levels. The greatest divergence in estimated recruits results from removal of the EU_FAD fishery index as this is the only index of recruitment in the model. In the absence of an index of recruitment, the VPA predicts much lower recent recruitment levels and, consequently higher fishing mortality rates. Regarding the effect of other indices on patterns of fishing mortality, SSB and recruits, there was no single index, except the EU-FAD that showed a particular influence on the model results.

- Stock status

The results of the three base VPA models are consistent. According to 2011 VPA median results, yellowfin tuna are currently overfished $\left(\mathrm{SSB}_{2010} / \mathrm{SSB}_{\mathrm{MSY}}\right.$ ranged from 0.46 to 0.58$)$ and undergoing overfishing $\left(\mathrm{F}_{\text {Current }} / \mathrm{F}_{\mathrm{MSY}}=\right.$ 1.25 to 1.43). Since 2006, the terminal year of the previous stock assessment, the spawning stock biomass has deteriorated somewhat $\left(\mathrm{SSB}_{2006} / \mathrm{SSB}_{\text {msy }}\right.$ ranged from 0.53 to 0.68$)$. Uncertainty in the stock status was estimated by bootstrapping the index residuals. Five hundred bootstraps were run for each VPA base model. These are summarized in Figure 46.

To account for the effect of changes in selectivity on MSY based reference points, trajectories of annualized stock status were calculated according to the annual selectivity pattern. This method uses the VPA results and allows computation of annual MSY, $\mathrm{F}_{\text {MSY }}$ and $\mathrm{SSB}_{\text {MSY }}$ estimates that are not available from the VPA-2BOX report. The trajectories of stock status and MSY are summarized in Figures 47 and 48.

The results of this assessment do not capture the full degree of uncertainty in the assessments and projections. An important factor contributing to uncertainty is the accuracy of the growth curve and the age-slicing procedure. Age-slicing procedures are sensitive to small changes in slicing limits. Improved methods to estimate catch-at-age (e.g. stochastic approaches and/or directly observed age composition) have the potential to improve the reliability of age-structured models. Another important source of uncertainty is recruitment, both in terms of recent levels (which estimated with low precision in the assessment), and potential future levels. These models assume recruitment would continue at the level observed during 1970-2010. It is possible that changes in fishing pressure or environment could invalidate this assumption.

6.3 Synthesis of assessment results

Results from the various stock assessment models indicate that stock status differs from that estimated during the 2008 assessment. In 2008, the stock status determination was based on a combination of production model results obtained with ASPIC and age-structured (VPA) models. The 2011 stock assessment stock status determination was conducted applying these same types of models, configured in a similar fashion as in 2008 (although some model specifications were changed, as described previously), but with updated information. The bootstrapped results for current status estimates by base case model run are shown in Figure 49. Results from the age-structured models point to a more pessimistic stock status (in terms of spawning stock biomass) than did the production model results (fishable biomass), as shown in Figure 50, with VPA results generally indicating a lower relative biomass (a more overfished status) and a higher relative fishing mortality rate (higher level of overfishing). The final estimate of current stock status relative benchmarks ($\mathrm{F} / \mathrm{F}_{\text {MSY }}$ and $\mathrm{B} / \mathrm{B}_{\text {MSY }}$) and uncertainty around the estimates was derived from the combined joint distribution (Figure 51) from these base cases (ASPIC runs $9,10,11$, and 12 , as well as VPA runs 1,3 , and 4). The various sensitivity runs, which were conducted applying alternative specifications or abundance index combinations, were considered by comparing the resulting point estimates to the base case joint distribution. This was also done for the alternative models that were run (PROCEAN). The estimates of current stock status (in terms of relative F and relative biomass) developed from the combined base runs of ASPIC and VPA are summarized in Table 26.

- Impacts of the recent increased purse seine effort on the Atlantic yellowfin tuna stock

Purse seine fishing effort has increased in the Atlantic (Figure 52) since 2006, as a number of vessels have left the Indian Ocean and have instead been fishing in the Atlantic. These vessels tend to be newer, with a larger carrying capacity, than the typical vessels fishing in the Atlantic. Overall carrying capacity of the European and associated fleet in 2010 has increased to about the same level as in the 1990s and FAD based fishing has accelerated more rapidly than free school fishing (although both have substantially increased), with the number of sets on FADs reaching levels not seen since the mid-1990s. The impacts on yellowfin tuna of this increased purse seine effort was evaluated in several ways. It was noted that this impact is likely different from that on bigeye since only a minor proportion of the yellowfin catch (in tonnage) occurs in FAD fishing.

The overall catches of yellowfin estimated for 2008-2010 were about 10% or higher than the recent low of 2007. The relative contribution of purse seine gear to the total catch has increased by about 20% since 2006 (Figure 53). The current total catch remains below the historical peak, when the overall fishery selectivity was different. Estimates of fishable biomass trends from production modeling indicate a slow, continued rebuilding tendency (Figure 54), but estimates of spawning stock biomass trend from the age-structured assessment indicates recent decline and corresponding increasing F on mature fish (Figure 55). In either case, continued increasing catches are expected to slow or reverse rebuilding of fishable biomass and accelerate decline in spawning stock biomass.

7. Projections

Bootstrap results from ASPIC and VPA were projected into the future for different levels of catch (from 50,000 to $150,000 \mathrm{t}$ in $10,000 \mathrm{t}$ steps). It was assumed that the catch in 2011 would be the same as the catch in 2010 , and the biomass during 2011 constitutes the first projection. Projections for 15 years (until 2026) were carried out. Future selectivity was assumed constant and in the case of VPA it was assumed to be equal to the geometric mean of the selectivity pattern estimated for 2007-2010.

7.1 ASPIC model projections

These were done for each of the 500 bootstraps of runs $09,10,11$ and 12 . For all runs examined median values of projected biomass ratios suggest that in order for the stock biomass to rebuild catches need to be lower than $130,000 \mathrm{t}$ (Figure 56). Catches of $120,000 \mathrm{t}$ only allow a slow rebuilding to $\mathrm{B}_{\mathrm{MSY}}$ by 2023 or 2024. Catches of $100,000 \mathrm{t}$ rebuild the biomass faster, and projected median $\mathrm{B}_{\mathrm{MSY}}$ is reached by 2017. Similarly median fishing mortality ratios only consistently reduce towards $\mathrm{F}_{\mathrm{MSY}}$ for catch levels below 130,000 t (Figure 57). The projected reduction of fishing mortality to $\mathrm{F}_{\text {MSY }}$ is achieved faster than the increase of biomass towards $\mathrm{B}_{\text {MSY }}$. Catches of $120,000 \mathrm{t}$ are projected to reduce fishing mortality below median $\mathrm{F}_{\text {MSY }}$ by 2018, and catches of $100,000 \mathrm{t}$ by 2012 .

7.2 VPA model projections

- Specifications

The projections for yellowfin tuna were based on the 500 bootstrap replicates of the fishing mortality-at-age and numbers-at-age matrices produced by the VPA-2BOX software. The Group agreed that projections and benchmarks should be computed using a re-sampling of observed recruitments during 1970-2009. This resulted in a constant recruitment at the mean value of the time series. This is in agreement with the approach used during the 2008 assessment. Projections that used various levels of constant catch employed a restriction that the fullyselected F was constrained not to exceed $5 \mathrm{yr}^{-1}$.

- Results

VPA projections of total biomass, yield, fishing mortality, SSB and recruitment are shown in Figures 58-61. Projection results of the three base VPA case scenarios indicated that catch of $120,000 \mathrm{t}$ or less would allow with 50% probability, the spawning stock biomass to increase. However, only catches at $110,000 \mathrm{t}$ or below would allow with 50% or greater probability SSB to be at the SBB level corresponding to MSY before 2020. Also, catches of $120,000 t$ or less would reduce fishing mortality from current levels $\left(\mathrm{F}_{2010}\right)$. Similarly, only catches at $110,000 \mathrm{t}$ or below would allow with at least 50% probability, F to be below the fishing mortality at MSY ($\mathrm{F}_{\text {MSY }}$) before 2020 .

8. Recommendations

The Group recommended that historical and present samples of size frequency (in contrast to raised and substituted size-frequency) be recovered and provided to the Secretariat in support of conducting stock evaluations that make use of the sampling fraction in calculations.

The Group recommended the evaluation of market information sources or other alternative ways to improve the accuracy of catch estimates coming from logbooks.

Due to the incidence of the technological improvements of the different fleets in the CPUE standardization the Group recommended consideration of vessel and gear characteristics when conducting this type of analysis.

Recalling the previous SCRS recommendation, the Group reaffirmed that catch and catch at size necessary for fine-scale scientific analysis be reported by CPCs in at most 5×5 degree resolution.

The Group recommended that procedures for collection of size samples should be reviewed to assure that there is no size bias in sampling, as the Group suspects that such size-bias may be occurring in certain fisheries.

The Group recommended that analysis of CPUE should incorporate methods to include the full time-series of catch-effort statistics for fisheries to avoid fore-shortening of time series.

The Group recommended that the sensitivity of assessment to alternative forms of ageing catch at size should be evaluated in advance of the next assessment.

The Group recommended that implications of growth in the plus group used in the VPA should be evaluated in advance of the next assessment.

The Group recommended re-evaluation of the length -weight and associated relationships which were developed on historical information. It is possible that such relationships have changed as the stock condition has changed over time.

In order to accommodate review of these, and other, recommendations, the Group considers advance data preparation work and a preparatory meeting a necessary step to take in advance of the next assessment

9. Other matters

No additional matters were discussed.

10. Adoption of the report and closure

The Group agreed to adopt the report through correspondence. Dr. Brown thanked the participants, the AZTI staff and the Secretariat for their hard work and adjourned the meeting.

Literature cited

Anon. 2009, Report of the 2008 ICCAT Yellowfin and Skipjack Stock Assessments Meeting (Florianópolis, Brazil, July 21 to 29, 2008). Collect Vol. Sci. Pap. ICCAT, 64(3): 669-927.
Anon. 2012, Report of the 2011 Tropical Tuna Species Group Inter-sessional Meeting on the Ghanaian Statistics Analysis (Phase II) (Madrid, Spain, May 30 to June 3, 2011).(SCRS/2011/016).

Beverton, R.J.H. and Holt, S.J. 1956, A review of methods for estimating mortality rates in exploited fish populations with special reference to sources of bias in catch sampling. Rapp. Pr.Verb. Reuns. Cons. Perm. Int. Explor. Mer 140: 67-83.

Butterworth, D. S., and Geromont, H. F. 1999, Some aspects of Adapt VPA as applied to North Atlantic bluefin tuna. Collect. Vol. Sci. Pap. ICCAT, 49(2): 233-241.
Caveriviere, A. 1976, Longueur pr'edorsal, longueur a la fourche et poids des albacores (Thunnus albacares) de l'Atlantique. Cah. ORSTOM, ser. Océanogr., 14(3): 201-208.

Domingo, A. Rios, M. Pons, M. 2009, Spatial and temporal distribution, size and sex composition of the yellowfin tuna (Thunnus albacores) in the southwestern Atlantic Ocean. Collect. Vol. Sci. Pap. ICCAT, 64(3): 999-1010.

Gascuel, D., Fonteneau, A. and Capisano, C. 1992, Modélisation d'une croissance en deux stances chez l'albacore (Thunnus albacares) de l'Atlantique Est. Aquat. Living Resour. 5 (1992) 155-172.
Gascuel, D., Fonteneau, F., Foucher, E. 1993, Analyse de l'évolution des puissances de pêche par l'analyse des cohortes : application aux senneurs exploitant l'albacore (Thunnus albacares) dans l'Atlantique Est. Aquat. Living Resour., 6, 15-30.
Gedamke, T. and Hoenig, J. M. 2006, Estimating mortality from mean length data in non-equilibrium situations, with application to the assessment of goosefish. Trans. Am. Fish. Soc. 135:476-487.

Hampton, J. 2000, Natural mortality rates in tropical tunas: size really does matter. Canadian Journal of fisheries and Aquatic Sciences [Can. J. Fish. Aquat. Sci./J. Can Sci. Halieut. Aquat.], Vol. 57, No. 5, pp. 10021010.

Hazin, H.G., Hazin, F., Travassos, P., Fredou, T. 2011, Standardized CPUE series of blue marlin caught by Brazilian tuna longline fisheries in the southwestern Atlantic Ocean (1980-2008). Collect. Vol. Sci. Pap. ICCAT, 66(4): 1725-1734.

Maury, O. 2000, Multi-fleet non-equilibrium production models including stock surface to estimate catchability trends and fishery dynamics in a Bayesian context. Application to the skipjack tuna's fishery (Katsuwonus pelamis) in the Atlantic Ocean. Collect. Vol. Sci. Pap. ICCAT, 52(5): 1739-1752.
Maury, O. 2001, PROCEAN: A production catch/effort analysis framework to estimate catchability trends and fishery dynamics in a Bayesian context. IOTC Proceedings 4, 228-231.

Prager, M.H. 1992, ASPIC: A Surplus-Production Model Incorporating Covariates. Collect. Vol. Sci. Pap., ICCAT, 28: 218-229.

Shuford, R.L., Dean, J.M., Stequert, B, Morize, E. 2007, Age and growth of yellowfin tuna in the Atlantic Ocean. Collect. Vol. Sci. Pap. ICCAT, 60(1): 330-341.
Shuford R.L., Dean, J.M., Stéquert, B. and Morize, E. 2007, Age and growth of yellowfin tuna in the Atlantic Ocean. Collect. Vol. Sci. Pap. ICCAT, 60(1): 330-341.

Table 1. Task I nominal catch best estimate by the tropical YFT Working Group calculated for the stock assessment 2011.

Table 2．CAS（number of fish by size）matrix for yellowfin tuna 1970－2010 for all gears．

		1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	，	1994	1995	1996	1997	1998	1999	000	2001	02	03	2004	05	006	2007	008	09	
${ }_{32}^{30}$						${ }_{6437}^{2963}$								${ }_{59216}^{2750}$							${ }^{68555}$	${ }_{265368}^{15363}$	132198 28794	14632 30875		${ }^{70737} 14$	${ }^{62076}$										164				
32	4432	166	7602	1634	5990	${ }^{6437}$	238	88	20	${ }^{3198}$	76	57859	38237	59216	5973	1994	16042	119577	${ }^{14344}$	100481	141065	26306	28949	${ }^{3087}$	208173	${ }^{129222}$	142363	${ }^{173393}$	${ }^{184940}$	211357	265238 52492	${ }_{2}^{246876}$	${ }^{97186}$	20621 41034	21116 3853	160851 31593	${ }_{1}^{16525}$	${ }^{144662}$	${ }^{198612}$	${ }^{126767}$	
3	${ }^{8507}$	364	${ }^{137}$	5454	52	${ }^{13209}$	11497	44	10941	${ }^{14860}$	${ }^{2086}$	191	${ }^{81389}$	177711 331398	${ }^{59730}$	${ }^{62441}$	${ }^{60374}$	${ }_{2}^{25027} 4$	241146 41305	254883	${ }_{506363}^{26436}$	${ }^{47458}$	58044 88014 8	${ }_{9}^{59464727}$	381803 52361	26029 35774	260339 34595	385056 40545	333659 485132	${ }_{6}^{402978}$	52492 697866	${ }_{7}^{41888323}$	15274 299742	44034	438853	315893	30183	34785	333511	228881 351193	
$\begin{aligned} & 36 \\ & 38 \end{aligned}$		${ }_{13424}^{4150}$	246	${ }_{6}^{6319} 18807$	${ }_{124524}^{62407}$	32286	70520 43425	${ }_{\text {H11391 }}^{6113}$	23999	${ }_{\text {188701 }} 9$	66651	${ }_{880}^{524}$	180098	331198	172407	308702	${ }_{2}^{122987}$	461316	418305	464675	503633	7091	88014	9074	5238	35747	345915 384535	${ }_{4}^{440545} 4$	4851	640731	697	723823	29974	686453	725600	490467	39732	53447	450574	351193 459729	
	29350																47875	983642	62015	968803	102439	905999	1160365	105790	4420	4488	43964	4752	4829	${ }^{725}$	963775	${ }_{1238}^{1224}$	5648	93037	865446	${ }_{72325}$	441328	${ }_{871355}$		699853	
		5	65612	56366	17824	20986	24502	${ }^{23836}$	17881	22976	316990	859518	57645	952798	61458	674302	676210	116022	881874	B04611	145301	90810	101946	1167036	6905	7404	7356	630017	6740	882752	${ }^{1859}$	1980979	857602	1088109	983994	928459	546996	1231009	117648	794867	
		${ }^{74301}$	72614	57	157500	22365		14396	171933	19735	250996	93449	58888	76354	5614	834907	738884	1137810	1014250	1179284	18274	${ }_{14013}$	${ }_{94167}$	251226	9381	1217	11645	749627	${ }^{980}$	1718169	18864	1953	163816	${ }^{1232}$	${ }^{1376}$	1139899	${ }_{75183}$	14555	2167204	¢123	
			15320	${ }^{2575}$	24470	27 B	346102	187235	266785	395309	645	1362054	134	1548	720936	953	1090229	123598	${ }_{123}$	1580	${ }^{18176}$	187131	，	${ }^{1343}$	${ }^{1356}$	15094	156	1063	254	22836				1714		1552		1540			
4	23374	20929	20024	164175	32471	3075	${ }^{3311893}$	${ }^{193203}$	286883	42494	723604	1066438	${ }^{1398336}$	1026661	74088	${ }^{81417}$	${ }^{1082380}$	994573	12904	12685	1370	10447	${ }^{140}$	${ }^{132612}$	16832	16729	1294	${ }^{14436}$	${ }^{\text {B00 }}$	2537	${ }^{1752}$	18884		硡		11246			${ }^{1833185}$		
	24746	，	187993	1310	7570	282742	213570	171572	231497	242743	473356	539634	851515	445074	581798	515682	595482	49270	591885	46959	911246	6888	6788	6406	10445	98488	10388	1083	12257	22060	${ }^{1332}$	1355	2212	${ }^{13165}$	1305	144	670701		84023	693045	
	${ }^{310085}$		${ }^{204020}$	11616			${ }^{2335}$	25561		291178			${ }_{7}^{7388}$	3548		312	3172		361640	${ }_{2}^{2884}$	326		228				432592 297490	550846	1034		${ }^{5726}$			${ }^{738}$	672	${ }_{5}^{7242}$	283422	376360		453583	
		281	27632	179191 193908	259	$\begin{aligned} & 1381 \\ & 981 \end{aligned}$	349	$\begin{aligned} & 3507 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4151 \\ & 424 \end{aligned}$	393290	$\begin{gathered} 5626 \\ 4502 \end{gathered}$	467553 427922	$\begin{aligned} & 78912 \\ & 6412 \\ & 6 \end{aligned}$	3548	6469	$\begin{aligned} & 3172 \\ & 2797 \end{aligned}$	${ }_{3}^{37256}$	${ }_{3842}^{3920}$	341 3011	${ }_{2}^{2847}$	32681 2724	$\begin{aligned} & 393 \\ & 334 \end{aligned}$	${ }_{2}^{228}$	40523 30484	$\begin{aligned} & 3695 \\ & 3187 \end{aligned}$	$\begin{aligned} & 326184 \\ & 19957 \end{aligned}$	297490 278064	368068 336172	$\begin{aligned} & 6706 \\ & 4465 \end{aligned}$	$\begin{aligned} & 54025 \\ & \hline 297525 \end{aligned}$	434457 249902	102230 69464	$\begin{aligned} & 45546363 \\ & \\ & 253796 \end{aligned}$	439873 26885	386899 183388 1	$\begin{aligned} & 572627 \\ & 255991 \end{aligned}$	332289 23689	$\begin{gathered} 234643 \\ 18501 \end{gathered}$	209356 17390 1	$\begin{aligned} & 331078 \\ & 26284 \end{aligned}$	
			2268													262	361241	326417		106700											${ }_{31}$					219	205198				
		1375	，	，		575	293183		192010	186980	，	，	246187	25813	44606	236351	${ }^{1191}$	197998	2086	66473	1622	2053	1543	2002	1662	1993	¢	164	244	1594	252	374		碞	硣	${ }^{144}$	167				
	${ }^{8558}$	10032	127004	140	147885		${ }_{184331}$	23150	155844	${ }^{10368}$	122754	15493	197762	${ }^{182316}$	365082	16439	206737	${ }^{122512}$	205871	${ }^{73473}$	19493	${ }^{1738}$	15342	2082	2533	275326	2061	1980	3206	2334	2285	3092	1164	${ }^{186414}$	10764	221	163384		84419		
																																${ }^{1348}$									
		5197	7375	59	6097	24		85915		62		66365			278	155		111660		53729	148787	104221	147538	${ }_{18420}$	21637				${ }^{173}$		10910		112292	${ }^{113053}$	87514	160219	96347	469		54	
	49923	3		65739	${ }_{7}^{67732}$	27874	11057	7	${ }^{87294}$	${ }^{60416}$	${ }^{43089}$	${ }^{63913}$	${ }_{113530}$	${ }^{94372}$	304726	192912	${ }^{18022}$	${ }^{126672}$	${ }^{12987}$	47134	20275	${ }_{18}^{1846}$	${ }_{160787}^{1508}$	${ }^{14183}$	${ }^{1124}$	${ }^{1256}$	${ }^{1088}$	1099	${ }^{1603}$	${ }^{103882}$	4772	${ }_{1183}^{118}$	773	${ }^{8053}$	${ }^{63}$	${ }^{74520}$	540	542	502	${ }^{193780}$	
			69		728				83639	63444		65618	10996	${ }^{83232}$	1888	14149	${ }_{8}^{88719}$	12082	1066	53824	179	${ }_{\substack{98732 \\ 10065}}$	1501		1619	1459	1744	147084	${ }_{15549}^{15451}$	134887 13019	53754 49082	$\begin{aligned} & 1299 \\ & 1209 \end{aligned}$		79330		${ }_{7}^{93322}$	67184	3940	${ }_{4}^{50932}$	106705	
			${ }^{6267}$		$\begin{aligned} & 663 \\ & 476 \end{aligned}$																						90		1544	133		688	${ }_{8921}$		42002			56445			
		56627	42		${ }_{3710}^{476}$	275	96570		5356	435	35389 38105	56		${ }^{69576}$	13994		${ }^{629}$	925	689	${ }_{53397}^{33240}$	6062	158834	527	，	${ }^{1354}$	12246	1064	124	${ }^{1788}$	102	6079										
		47		350				40	37					76982							564					73					5										
			${ }^{395}$			320				50483				${ }^{121184}$			${ }_{6}^{67396}$																								
			508 610		57022 6502					42284 42251				68028 8290	${ }^{1286}$	${ }^{843}$	67916 58098	93638 6982	$\begin{gathered} 57400 \\ 545520 \end{gathered}$	40293 4111	31556 43346	78165 59106	357	50803 34786	930					775	$\begin{aligned} & 6500 \\ & 5458 \\ & 545 \end{aligned}$	$\begin{gathered} 5499 \end{gathered}$	$\begin{aligned} & 6392 \\ & 62064 \end{aligned}$								
			752																																						
	3642	585	6980	6886	${ }^{74139}$	469			54876		35281	58	73	6523		101			59663	40035	，		4		4		56			83											
			621	52219	49309	504	43753	6294	6395	39385	40568			67	65934	95	69973	87940	60335		39341	59182	59	447	122	856	61	653		73248											
																	${ }^{10087}$																								
	296	54			442		410	${ }^{728}$														58878		42242			52														
$\begin{aligned} & 100 \\ & 102 \end{aligned}$	$\begin{aligned} & 276 \\ & 256 \end{aligned}$			$\begin{aligned} & 525 \\ & 518 \end{aligned}$	${ }_{467}^{495}$			75	87	393	65	${ }_{73711}^{7311}$	${ }_{7}^{76410}$	72825 65888		106028 10258	58384 54829	62102 68710		${ }_{53971}^{43973}$			${ }_{\text {c }}^{64453}$		${ }^{135}$		52843 5899	515	$\begin{aligned} & 49028 \\ & 77230 \end{aligned}$	59190 58049	${ }_{9}^{54507}$										
104																																									
106			${ }^{848}$		570																																				
108	29		877		716			86857	76	605					75578						42237		69039																		
		61833		64459	785		3739	${ }^{6581}$	68366		88558	99467	56271	7568	81603		450	－708				722	720	66041							${ }^{16}$				63969						
12																																									
${ }^{114}$																																									
116														76348 74944	70305 65225				${ }_{75034}^{7073}$																						
120	3197	36395	54		7077	542		555	6	452				1276		64		${ }_{6} 2887$			533																				
122			5	556	683	57724		56	位	447		56360		146699		57294	86023	59221	90394	76481	50168	71627																			
		39282	609	5714	6958	57311	42446	6192	81235	51242	71764	74199	75830	155673	69776	68604	${ }^{99616}$	${ }^{69417}$	${ }^{9759}$	7799	7158	770	${ }^{832}$	956	747	90	${ }^{89}$	652	552	488	823	77085	517	49285	492	3796	48993	344	74		
	322																																								
${ }_{128}^{128}$	353																${ }_{10259}^{9359}$															86									
	$\begin{aligned} & 438 \\ & 476 \end{aligned}$	${ }_{2644}^{2603}$			502 58												${ }^{1076}$	66270 77366	${ }_{102263}^{11624}$	100999 107264	${ }_{1}^{1044}$					797						86									
	472	2531					650				${ }^{7223}$		1127		62	903		1052	，		133904		978	985		916	1055	76		678	61869										
136	522	2726	5651	527	5		733			1038			121			112		9826																							
					562	6st	81	865	116		784				5		，	106746	10657	－1．	1643	－			96771	10351				硡					62	555	45，	466			
	59237	33425				67000	7752	${ }^{823}$			1			107399	47014	115	1072	1046							102	1020				73829		5925									
142	457	292	4185	50	536		794	88		112	90841	95		，	44590	113	1029	1067												72											
	385	${ }_{2}^{29803}$	40598	49579	54239	${ }^{692}$	1	${ }_{7}^{79855}$	9		76546	${ }_{9}^{92757}$	${ }^{98228}$	94907	${ }^{35460}$	${ }_{0}^{106202}$	－	${ }^{98440}$	7894	200420	${ }^{129330}$	${ }^{105881}$	${ }^{98810}$	${ }^{109641}$	1010	${ }_{9}^{95705}$	${ }_{0}^{1038}$	${ }_{\substack{90750 \\ 8363}}$	${ }_{\substack{9013}}^{93}$	$\begin{aligned} & 742 \\ & 726 \end{aligned}$	$\underset{\substack { 652 \\ \begin{subarray}{c}{6{ 6 5 2 \\ \begin{subarray} { c } { 6 } } \\ {\hline}\end{subarray}}{ }$				5773		${ }_{5}^{5182}$	54047	64136 64603	68889 73843	
		${ }_{\substack{29318 \\ 37065}}$	36205 39619	$\begin{aligned} & 44533 \\ & 49328 \end{aligned}$	${ }_{53884}^{4688}$								978	84799		$\begin{aligned} & 97525 \\ & 96488 \end{aligned}$	${ }_{98720}^{940}$	90865 ${ }^{8967}$	8116		16685 147026				$\begin{gathered} 9764 \\ 1097 \\ 1097 \end{gathered}$				881	$\begin{aligned} & 726 \\ & -7 \end{aligned}$	${ }^{58770}$	7950									
150		39471	42	577	648	95		93420	763			115841	，		32107	，			6649			17		${ }^{1203}$																	
	37254	34		47239	56031	89301	82870	，	65338	80864	82066	10949		0291	29048	82660	83664	，	5	${ }^{11769}$	189960	${ }^{11221}$	${ }^{110}$	112	1058	${ }^{835}$	${ }^{858}$	815	952	649	56269	68941	75018	670	542	6202	64400	6446	75789	86996	
154	3461	35188	${ }^{348}$	46172	5036	${ }^{8911}$	70832	69	50945	65	125	882	742	${ }^{64933}$	22	${ }^{634}$	${ }^{6269}$	5769	425	95845	ㅍ118	${ }^{88}$	919	886	${ }_{84835}$	67088	679	66	${ }^{812}$	56021	47713	54137	417	57680	47513	49473	51515	5319	611	74179	
					374																																				
			2326	${ }_{26661}^{3368}$	30836	${ }_{54793}^{6763}$	54954 4123	${ }_{33957}^{47098}$	33428 23641	${ }_{20180}^{4036}$	${ }_{34535}^{415}$	${ }_{36635}^{59526}$	，	${ }_{33023}^{4913}$	${ }_{\substack{13969 \\ 9587}}$	${ }_{\substack{3281 \\ 2162}}$	${ }_{22652}^{3443}$	$\underbrace{}_{\substack{310109 \\ 27296}}$	1473	${ }^{56273} 36$	${ }_{469387}^{6935}$	38341	${ }^{37308}$	272	300	3514 244	${ }^{354}$	${ }^{35176}$	${ }_{3}^{481}$	33970 24290	31984 2406	32341 22970	${ }_{2}^{3428}$	25504	32542 25404	${ }^{33108}$	37224 30122	36448 29849	${ }_{34368}^{4363}$		
162	23213	1699	20076	23013	23806	4493	${ }^{3755}$	28653	19457	243	22649	32829	29841	24216	7301	${ }^{17596}$	16759	15473	1098	28402	377	264	2511	${ }^{12} 238$		163	113	1	23			1997		20640	21042	1249	25790		24404	－	
164							32849				20	23	24309	1625	4857						26752																				
166																																									
		7947	${ }_{9348}^{1798}$	12037	12307	${ }_{\substack{2686 \\ 1974}}$	19309	${ }^{13608}$	6913	${ }_{9474}^{12132}$	18088	${ }^{953}$	1057	10797	2564	3615	4291	3732	19	7735	1966	908	8070	650	6199	531	4987	3991	8616	596	68	168	6，	${ }^{963}$		675	9322		1406	11345	
							12868		5157					6484	1668	20	2869		1049				5046	3692	365	研	2740	碞	${ }^{5118}$									9509			
	4409	3475	325						23	4688	3770	3834	${ }^{371}$					477	503	2508		362	2502	261	271		1484		3180	2003	289			5502		2852	4549	401			
176		1252	1312	2680	3735	5103	4278	2688	3690	3072	1463		1127	2615	329	385	515	274		${ }^{143}$	160				1462				${ }^{428}$		1594	147	1000			${ }^{166}$	270	15	58	2997	
																																4413									
\％	2826	116	6596	2122	2461	seo	8316	4708	10401	5245	1612	2135	1092	542		62	69	26	35	34	555	999	567	${ }_{136}$	55	424	341	141				25419		221							

Table 3. Two model growth stanza formulation of Gascuel et al (1992).
Upper size bin slicing limits

Quarter				
Age	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	42	45	48	53
$\mathbf{1}$	60	69	78	89
$\mathbf{2}$	100	110	120	128
$\mathbf{3}$	136	143	148	153
$\mathbf{4}$	157	161	163	166

Table 4. Two model growth stanza formulation of Gascuel et al (1992).

Year		Age_ 0	Age ${ }_{\text {- }} 1$	Age ${ }^{2}$	Age_3	Age_ 4	Age_5+
	1970	361776	2229282	593364	621980	315542	81372
	1971	344554	1977663	1315680	460985	273141	68834
	1972	370213	2051307	1497373	772718	272525	88296
	1973	242931	1575149	1241212	774961	347241	98839
	1974	886762	2494098	1259808	863172	377903	110350
	1975	892977	1542160	1161517	733661	615604	227896
	1976	1574652	2880496	1021576	765312	572312	193826
	1977	735140	2856105	1381594	792849	620597	151454
	1978	995154	2827661	1388907	1120807	523267	104121
	1979	1507403	2557960	978996	1209609	540212	104912
	1980	1865461	3792223	1070132	1105421	544221	88779
	1981	5812444	4246191	1509157	928273	794654	135181
	1982	2959857	7181640	1446979	1196724	718324	136863
	1983	4332732	4610440	1631049	1233889	697719	126978
	1984	2894182	6654936	1754477	811188	207877	29586
	1985	4261953	4067190	2045252	922916	731009	67933
	1986	3704102	4308330	1247018	1292519	581649	68075
	1987	6279916	4271363	1446399	1027094	644899	67571
	1988	5072132	4970769	1099831	1301054	472094	43260
	1989	5872560	4110454	893590	1165237	935875	120851
	1990	6833164	5882732	954633	1322798	1053288	177889
	1991	6322190	5456945	1142253	1067159	840468	128168
	1992	6174316	4967199	1197647	1245505	782175	124224
	1993	8740693	5765337	1202960	1209268	753292	82589
	1994	5009395	6336340	2127323	1061787	758724	100416
	1995	5362509	5432656	1581459	969994	653248	79338
	1996	5500625	5552249	1252940	1160937	673444	76355
	1997	4994965	5878058	1151428	832959	697806	78889
	1998	5250980	7305716	1357519	828950	707442	129035
	1999	5714767	10764172	1732531	803176	510091	90469
	2000	8683543	6169850	1230563	1063225	462001	96723
	2001	7732917	10813671	1596162	1249154	538304	114164
	2002	7213105	8198565	963157	885666	614047	75185
	2003	6680900	7108788	1031178	783196	503963	104813
	2004	7170668	5818468	1175770	830968	394965	129735
	2005	5795023	6796195	898043	574569	441148	88817
	2006	4581371	3884286	1180028	607500	413828	103043
	2007	7247074	3749663	768822	585943	396546	114446
	2008	10135640	2330743	711240	526007	506027	127693
	2009	5533339	4229168	833232	545769	589537	131250
	2010	6088993	4053330	740386	523963	467021	158608

Table 5. Indices considered in the assessment.

Flag Gear	$\begin{aligned} & \mathrm{JAP}, \mathrm{LL} \\ & \hline(\mathrm{n}) \end{aligned}$	$\begin{gathered} \mathrm{JAP-LL} \\ (\mathrm{w}) \\ \hline \end{gathered}$	$\begin{gathered} \text { EU PS FS } \\ 1 \% \end{gathered}$	$\begin{gathered} \text { TROP_PS } \\ (\mathrm{w}) \end{gathered}$	$\begin{gathered} \text { MEX_USA } \\ \text { _LL (} \mathrm{n} \text {) } \end{gathered}$	$\begin{gathered} \text { MEX_USA_ } \\ \text { LL (w) } \end{gathered}$	$\begin{aligned} & \text { USA_RR } \\ & (\mathrm{n}) \end{aligned}$	$\begin{gathered} \text { USA_RR } \\ (w) \end{gathered}$	$\begin{gathered} \substack{\mathrm{BR}, \mathrm{LL} \\ (\mathrm{n})} \end{gathered}$	$\begin{gathered} \mathrm{BR}(\mathrm{LL} \\ (\mathrm{w}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { URULLL } \\ (\mathrm{n}) \end{gathered}$	URU_LL (w)	$\begin{gathered} \text { TAILLL } \\ (n) \end{gathered}$	TAI_LL (w)	$\begin{gathered} \mathrm{CAN} \mathrm{BB} \\ (\mathrm{w}) \end{gathered}$	$\underset{(\mathrm{wEN})}{\mid(\mathrm{w}}$	$\begin{array}{\|c} \hline \mathrm{BR} \text { BB } \\ (\mathrm{w}) \\ \hline \end{array}$	$\begin{gathered} \text { ES_FAD_PS } \\ (\mathrm{w}) \end{gathered}$	$\begin{gathered} \mathrm{USA} \mathrm{CLL} \\ (\mathrm{n}) \end{gathered}$	$\begin{gathered} \mathrm{USA}(\mathrm{LLD} \\ (\mathrm{w}) \end{gathered}$	$\begin{aligned} & \text { USA_LL Atl } \\ & \text { and Gulf (w) } \end{aligned}$	$\begin{gathered} \hline \text { EUDKR_B } \\ \mathrm{B}(\mathrm{w}) \end{gathered}$	VEN_LL_no	$\begin{gathered} \text { VEN_LL_no } \\ \text { update (w) } \end{gathered}$	EU_PS_3\%	$\begin{aligned} & \text { BR_LL(W) } \\ & \text { continuity } \end{aligned}$	$\begin{array}{ll} \hline \text { BR_LL(N) } \\ \text { continuity } \end{array}$	$\begin{aligned} & \begin{array}{l} \text { EUUPS_7\% } \\ (w) \\ (W) \end{array} \end{aligned}$
Period	$1965-2010$	1965-2010	1991-2009	1980-2006	1992-2010	1992-2010	1986-2010	1986-2010	1980-2010	1980-2010	1981-2007	1981-2007	1968-2009	1968-2009	1980-2007	1983-2005	1981-2006	1991-2010	1987-2010	$1987-210$	1987 -2010	1969-2010	1991-2001	1991-2005	1970-2010	1986-2006	1986-2006 1	1970-1990
Start year	1965	1965	1991	1980	1992	1992	1986	1986	1980	1980	1981	1981	1968	1968	1980	1983	1981	1991	1987	1987	1987	1969	1991	1991	1970	1986	1986	1970
End year	2010	2010	2009	2006	2010	2010	2010	2010	2010	2010	2007	2007	2009	2009	2007	2005	2006	2010	2010	2010	2010	2010	2001	2001	2010	2006	2006	1990
Used in ASPIC model	N	Y	N	N	N	Y - combined Y	Y-combined	Y-combined	Y-combined	N	N	Y-combined	Y	Y-combined	N	Y- combined	Y - combined	Y-combined	N	N								
Used in VPA model	Y	N	Y	N	Y	N	Y	N	Y	N	Y	N	Y	N	Y	Y	Y	Y (ages 0-1)	Y	N	N	Y	Y	N	Y	N	Y	Y
Uphated in 2011	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	N	Y	Y	N	N	N	Y	Y	Y	Y	Y	N	N	Y	N	N	Y
1965	2.58	102.91																										
1966	1.8	71.57																										
1967	3.54	140.87																										
1968	2.9	115.4											4.09	134.51														
1969	2.54	101.34											2.6	99.16								0.95						
1970	1.92	76.38											1.48	62.17								0.92			5.06			2.94
1971	1.55	63.24											1.25	44.79								0.91			4.32			2.35
1972	2.19	${ }^{84.33}$											1.2	33.37								0.92			4.79			2.43
1973	1.53	56.67											1.11	31.27								0.85			4.83			2.29
1974	2	80.62											0.8	18.88								1.31			4.41			1.95
1975	1.42	58.17											0.78	17.89								0.59			4.74			1.97
1976	1.57	60.45											0.63	17.7								0.66			4.69			1.82
1977	1.29	47.04											0.61	15.52								0.98			4.61			1.67
1978	1.85	68.95											0.53	12.05								0.4			4.2			1.42
1979	2.54	83.22											0.63	15.55								0.9			4.17			1.32
1980	1.39	50.27		0.25					1.27	42.5			0.55	11.55	0.01							na			3.46			1.02
1981	1.8	65.42		0.65					0.54	11.85	6.55	144.96	0.83	25.61	0.02		1.39					1.45			3.71			1.06
1982	1.53	56.87		0.39					0.45	12	8.9	196.75	0.95	28.17	0.09		0.21					1.38			3.17			0.87
1983	1.54	54.65		0.49					-	27.41	3.33	84.81	0.7	21.35	0.17	13.59	0.58					1.41			2.75			0.72
1984	1.62	59.17		0.17					0.59	11.71	1.48	42.08	0.89	26.83	0.62	6.03	0.28					,			2.17			0.55
1985	1.03	38.7		0.6					0.35	8.67	3.55	75.43	0.8	22.9	0.27	10.17	0.21					1.54			3.73			0.91
1986	1.37	48.58		0.57			2.21	37.36	0.59	16.93	4.12	116.43	0.9	24.28	0.17	5.98	0.21					2.31			4.03	5.03	1.36	0.95
1987	1.41	50.66		0.62			1.22	20.57	1.03	29.11	3.98	112.29	0.75	19.32	0.39	4.57	0.29		1.35	1.56	1.44	2.6			3.53	${ }_{6} 36$	1.72	0.8
1988	1.47	50.7		0.57			0.7	9.76	0.74	13.78	7.61	142.61	0.79	20.32	0.4	6.3	0.33		1.59	1.85	1.42	2.51			3.34	5.28	2.17	0.73
1989	1.14	40.8		1			0.75	16.9	1.07	21.84	2.08	56.76	1.71	53.58	0.24	13.66	${ }^{0.3}$		1.29	1.48	1.41	0.63			4.16	5.34	2.01	0.87
1990	1.5	52.92		0.96			0.43	6.99	1.15	33.18	1.9	51.86	1.3	47.81	0.61	7	0.62		1.3	1.42	1.27	2.32			4.53	9.04	2.41	1.21
1991	1.13	40.91	7461.9	0.69			0.7	11.39	0.83	23.45	6.85	186.62	1.16	32.08	0.53	7.15	0.19	1.1	1.13	1.2	1.19	0.86	1.04	37.99	4.27	4.96	1.36	
1992	1.21	46.69	9352.89	0.61	1.64	62.8	0.47	7.7	1.23	23.06	6.55	293.02	0.9	28.46	0.31	4.81	0.29	0.81	1.34	1.41	1.34	2.31	1.14	55.7	3.88	2.07	0.84	
1993	0.63	22.25	7506.25	0.5	1.25	48.01	1.25	20.33	2.4	107.41	1.25	55.95	1.21	35.22	0.14	5.51	0.35	1.23	0.96	0.79	0.79	1.97	1.68	80.18	3.73	2.4	0.41	
1994	1.06	37.07	7990.04	0.63	1.79	65.16	2.55	51.8	0.86	24.7	4.85	214.31	1.47	46.77	0.08	6.72	0.21	0.97	1.12	0.75	0.74	1.27	0.63	38.11	3.66	2.67	0.71	
1995	0.72	26.86	7455.48	0.6	1.14	42.68	1.98	64.87	1.59	37.65	3.71	88.01	1.81	53.54	0.04	3.03	0.1	1.19	1.29	1.16	1.06	0.72	0.69	26.08	3.68	1.81	0.59	
1996	0.76	28.73	8032.39	0.56	0.76	28.91	0.45	15.34	2.26	52.7	7.16	166.94	1.94	62.9	0.54	6.78	0.29	1.2	0.87	1.08	0.95	0.9	0.9	33.28	3.5	4.65	1.53	
1997	0.63	22.17	9385.55	0.69	1.1	41.23	0.42	6.93	1.7	38.74	2.4	54.75	1.49	50.65	0.06	4.57	0.42	0.73	0.95	0.96	0.92	0.63	0.5	20.35	3.23	3.68	1.24	
1998	0.72	25.85	8060.58	0.53	1.01	34.74	0.88	12.1	1.1	25.03	2.71	62.02	1.33	42.68	0.76	3.7	0.32	0.56	0.68	0.62	0.64	0.26	0.87	34.8	3.42	4.69	1.58	
1999	0.76	26.8	7494.81	0.44	1.51	51.8	1.56	20.09	1.8	48.12	3.26	125.6	1.03	34.57	0.07	5.43	0.11	1.14	0.81	0.88	1.08	0.66	0.85	31.78	2.83	4.39	1.26	
2000	0.87	29.63	5706.66	0.4	1.04	38.95	1.43	22.66	1.36	41.78	4.27	165.54	1.15	34.2	0	6.62			0.86	0.84	0.96	0.29	0.63	9.85	3.36	4.58	1.15	
2001	0.58	19.9	7368.75	0.51	0.83	36.06	1.41	22.18	1.06	28.66	2.64	NA	0.75	22.99	0	13.24	0.68	0.74	0.77	0.82	0.95	0.45	2.07	32.39	3.65	3.68	1.04	
2002	0.57	19.96	9930.81	0.7	0.86	35.31	1.01	19.3	0.69	24.05	1.8	100.35	0.98	33.57	0.02	8.18	0.29	0.82	0.68	0.56	0.73	0.77			3.99	2.91	0.64	
2003	0.69	23.96	5788.73	0.79	1.05	46.19	1.07	16.69	0.92	40.06	2.56	152.4	1.37	46.66	0.05	4	0.24	1.37	0.62	0.47	0.67	0.81			3.73	6.17	1.09	
2004	0.87	30.91	8673.79	0.53	0.79	32.85	0.86	14.97	0.62	31.18	2.55	109.59	1.43	51.65	0.04	2.39	0.09	0.98	1.06	0.97	1.08	0.7			3.07	7.54	1.16	
2005	0.62	23.01	6225.15	0.5	0.73	31.28	0.84	11.96	0.52	4.92	5.94	231.08	1.74	71	0.01	1.23	0.1	1.04	1.05	0.94	0.99	0.47			3.31	0.92	0.75	
2006	0.89	31.05	7724.12	0.6	0.69	27.38	1.05	16.4	0.66	10.45	2.33	90.83	1	42.01	0.02		0.38	0.9	1.07	1.04	1.15	0.53			4.04	2.31	1.11	
2007	1.01	36.15	${ }^{6967.36}$		0.76	32.02	0.87	16.41	0.7	24.77	0.81		0.76	32.23	0.07			0.99	1.22	1.33	1.21	0.54			3.17			
2008	0.82	32.17	9231.59		0.69	29.03	0.44	8.12	0.83	9.03			0.63	28.84				0.61	0.58	0.64	0.68	0.41			3.86			
2009	0.9	32.29	6899.21		${ }^{0.8}$	33.71	0.21	3.9	0.57	29.59			0.7	30.84				1.25	${ }^{0.6}$	0.51	0.6	0.45			3.22			
2010	0.67	24.61			0.57	21.77	0.24	4.96	0.54	37.37								1.36	0.8	0.72	0.73	0.97			2.76			

Table 6. Fleet definitions used to construct fleet-specific partial catches at age (PCAA).

Table 7. Indices of abundance in weight used to estimate the different combined indices. The indices were scaled to the mean values of the period 1993-2001 (see text for details).

Year	JAP LL	MEX_USA LL	USA RR	BRA LL	URU LL	CH_TAI LL	CAN BB	VEN PS	BRA BB	USA LL	EUDKR BB	VEN LL	EU PS 3\%	BRA LL	EU PS 1\%	EU PS FAD	EU PS 7\%
1965	3.87																
1966	2.69																
1967	5.3																
1968	4.34					3.16											
1969	3.81					2.33					1.2						
1970	2.87					1.46					1.16		1.47				2.94
1971	2.38					1.05					1.15		1.25				2.35
1972	3.17					0.78					1.16		1.39				2.44
1973	2.13					0.73					1.07		1.4				2.29
1974	3.03					0.44					1.65		1.28				1.95
1975	2.19					0.42					0.74		1.37				1.97
1976	2.27					0.42					0.83		1.36				1.82
1977	1.77					0.36					1.23		1.34				1.67
1978	2.59					0.28					0.5		1.22				1.42
1979	3.13					0.36					1.13		1.21				1.32
1980	1.89				0	0.27	0.05				0		1	0.95			1.02
1981	2.46				1.4	0.6	0.1		4.47		1.83		1.07	0.26			1.06
1982	2.14				1.9	0.66	0.5		0.68		1.74		0.92	0.27			0.87
1983	2.06				0.82	0.5	0.88	2.2	1.85		1.77		0.8	0.61			0.73
1984	2.23				0.41	0.63	3.27	0.98	0.9		2.52		0.63	0.26			0.55
1985	1.46				0.73	0.54	1.42	1.65	0.67		1.94		1.08	0.19			0.91
1986	1.83		1.42	1.39	1.12	0.57	0.91	0.97	0.67		2.91		1.17	0.38			0.95
1987	1.91		0.78	1.76	1.08	0.45	2.04	0.74	0.95	1.77	3.27		1.02	0.65			0.80
1988	1.91		0.37	1.46	1.38	0.48	2.13	1.02	1.05	2.11	3.16		0.97	0.31			0.73
1989	1.53		0.64	1.48	0.55	1.26	1.26	2.21	0.96	1.68	0.79		1.21	0.49			0.87
1990	1.99		0.27	2.5	0.5	1.12	3.2	1.13	1.99	1.62	2.92		1.31	0.74			1.21
1991	1.54		0.43	1.37	1.8	0.75	2.83	1.16	0.6	1.37	1.08	1.11	1.24	0.52	0.97	1.14	
1992	1.76	1.46	0.29	0.57	2.83	0.67	1.64	0.78	0.95	1.6	2.91	1.63	1.13	0.51	1.22	0.84	
1993	0.84	1.12	0.77	0.66	0.54	0.83	0.75	0.89	1.12	0.9	2.48	2.35	1.08	2.39	0.98	1.27	
1994	1.39	1.51	1.97	0.74	2.07	1.1	0.45	1.09	0.67	0.85	1.6	1.12	1.06	0.55	1.04	1.00	
1995	1.01	0.99	2.47	0.5	0.85	1.26	0.19	0.49	0.33	1.32	0.91	0.77	1.06	0.84	0.97	1.23	
1996	1.08	0.67	0.58	1.29	1.61	1.48	2.85	1.1	0.93	1.23	1.13	0.98	1.01	1.17	1.05	1.24	
1997	0.83	0.96	0.26	1.02	0.53	1.19	0.34	0.74	1.35	1.09	0.79	0.6	0.94	0.86	1.22	0.75	
1998	0.97	0.81	0.46	1.3	0.6	1	4.03	0.6	1.04	0.71	0.33	1.02	0.99	0.56	1.05	0.57	
1999	1.01	1.2	0.77	1.22	1.21	0.81	0.38	0.88	0.36	1	0.83	0.93	0.82	1.07	0.98	1.18	
2000	1.11	0.9	0.86	1.27	1.6	0.8	0.01	1.07	0	0.96	0.37	0.29	0.97	0.93	0.74		
2001	0.75	0.84	0.84	1.02		0.54	0	2.14	2.19	0.94	0.57	0.95	1.06	0.64	0.96	0.77	
2002	0.75	0.82	0.74	0.8	0.97	0.79	0.13	1.32	0.93	0.64	0.97		1.16	0.54	1.30	0.85	
2003	0.9	1.07	0.64	1.71	1.47	1.09	0.24	0.65	0.76	0.53	1.02		1.08	0.89	0.76	1.41	
2004	1.16	0.76	0.57	2.08	1.06	1.21	0.2	0.39	0.29	1.1	0.88		0.89	0.69	1.13	1.01	
2005	0.87	0.73	0.46	0.25	2.23	1.67	0.03	0.2	0.33	1.07	0.59		0.96	0.11	0.81	1.07	
2006	1.17	0.64	0.62	0.64	0.88	0.99	0.08		1.21	1.19	0.67		1.17	0.23	1.01	0.93	
2007	1.36	0.74	0.62			0.76	0.35			1.52	0.68		0.92	0.55	0.91	1.02	
2008	1.21	0.67	0.31			0.68				0.73	0.52		1.12	0.20	1.20	0.63	
2009	1.21	0.78	0.15			0.72				0.59	0.57		0.93	0.66	0.90	1.29	
2010	0.93	0.51	0.19							0.82	1.22		0.8	0.83		1.40	

Table 8. Estimated weighted combined indexes of abundance. Refer to text for explanation of each index.

Year	Index 1	Index 2	Index 3	Index 4
1965	2.443	2.43	2.537	2.581
1966	1.645	1.69	1.765	1.795
1967	3.235	3.327	3.473	3.533
1968	3.089	3.803	4.019	4.14
1969	2.659	3.21	3.408	3.529
1970	1.913	2.178	2.341	2.521
1971	1.429	1.665	1.785	1.913
1972	1.503	1.754	1.894	2.051
1973	1.217	1.4	1.521	1.654
1974	1.172	1.364	1.484	1.601
1975	1.043	1.173	1.27	1.35
1976	0.971	1.144	1.244	1.319
1977	0.685	0.987	1.079	1.138
1978	0.827	0.97	1.065	1.112
1979	1.017	1.278	1.398	1.437
1980	0.628	0.855	0.928	0.945
1981	1.065	1.212	1.305	1.284
1982	1	1.121	1.202	1.178
1983	1.011	1.069	1.157	1.118
1984	0.986	1.102	1.175	1.146
1985	0.834	0.946	1.004	0.98
1986	0.899	1.114	1.183	1.148
1987	0.926	1.075	1.132	1.1
1988	1.16	1.108	1.169	1.128
1989	1.114	1.11	1.166	1.131
1990	1.399	1.296	1.363	1.348
1991	0.996	1.049	1.002	1.005
1992	0.982	1.046	1.025	1.029
1993	0.757	0.919	0.845	0.852
1994	0.887	0.916	0.908	0.916
1995	0.799	0.911	0.862	0.868
1996	0.932	0.976	0.96	0.968
1997	0.738	0.77	0.806	0.812
1998	0.767	0.736	0.713	0.718
1999	0.769	0.838	0.796	0.802
2000	0.802	0.76	0.745	0.751
2001	0.655	0.607	0.59	0.595
2002	0.741	0.674	0.671	0.676
2003	1.01	0.765	0.76	0.766
2004	1.104	0.781	0.798	0.804
2005	0.754	0.53	0.543	0.546
2006	0.866	0.632	0.631	0.636
2007	1.105	0.727	0.726	0.733
2008	0.91	0.579	0.563	0.569
2009	0.852	0.645	0.677	0.683
2010	0.571	0.676	0.757	0.765

Table 9. Description of ASPIC cases.

$\begin{gathered} \text { Run } \\ \text { number } \end{gathered}$	B1/K	Production function	Abundance index
01	fix	LOGISTIC	Only Japanese longline
02	fix	GENERALISED	
03	estimate	LOGISTIC	
04	estimate	GENERALISED	
05	fix	LOGISTIC	Combined (weighted) - continuity
06	estimate	LOGISTIC	
07	fix	LOGISTIC	Separate nine indices (equal weight, see Table 10)
08	fix	LOGISTIC	Separate nine indices (weighted by area, see Table 10)
09	fix	LOGISTIC	New combined PS 3\% inc. q
10	est	LOGISTIC	
11	fix	LOGISTIC	New combined PS 7\% inc. q
12	est	LOGISTIC	
14	fix	LOGISTIC	New combined 7\% inc.q and new Ghana catch (index up to 2006)
14b	fix	LOGISTIC	New combined 7\% inc.q and new Ghana catch (index up to 2010)
15	fix	LOGISTIC	Excluding TWN-LL index when processing new combined index
16	fix	LOGISTIC	Excluding BR-LL index when processing new combined new combined index
17	fix	LOGISTIC	Excluding EC-PS 7\% inc. q index when processing new combined new combined index

Table 10. Area-weight for ASPIC run 08 in the 2011 assessment. The weight are calculated by coverage of each fleet of 5×5 counts summed by quarter within year (from 1965 to 2010), which is provided during the meeting.

	2011 Assessment weight by area for continuity run 08	2008 Assessment
YFT-JAP-LL(w)	0.3447	0.3770
YFT-USA-RR(n); converted to weight base	0.0282	0.0160
YFT-BRZ-LL(n); converted to weight base	0.0920	0.0560
YFT-USA-LL(w)	0.0609	0.0740
YFT-URU-LL(n); converted to weight base	0.0037	0.0040
YFT-VEN-PS(w)	0.0112	0.0090
YFT-BRZ-BB(w)	0.0243	0.0110
YFT-EUDKR-BB(w)	0.0228	0.0230
EU PS ${ }^{1}$	0.1201	0.0500
Others: remaining catch	0.2920	0.3800

${ }^{1}$ The EUDKR-BB corresponds to the fleets (from 1950 to 1990; EU.ESP-ES-ETRO, EU.FRA, EU.FRA-FR-ETRO, SEN, SEN-SEN-DAKAR. From 1991 to 2011; EU.ESP-ES-ETRO, EU.FRA-FR-ETRO, SEN, SEN-SEN-DAKAR, MIX.FR+ES, NEI that operated in the eastern tropical (NEI.001, NEI.001-ANT, NEI.001-CPV and NEI.001-VCT)) .
${ }^{2}$ The EU-PS corresponds to the fleets (ANT-AN-ETRO, CPV-ETRO, EU.EPS, EU.ESP-ES-ETRO, EU.FRA, EU.FRA-FR-ETRO, GTM.ETRO, MIX.FR+ES, all NEI. 001 (NEI.001-ANT, NEI.001-BLZ, NEI.001-CPV, NEI.001-GHA, NEI.001-GIN, NEI.001GTM, NEI.001-ITA, NEI.001-LBR, NEI.001-MAR, NEI.001-MLT, NEI.001-MUS, NEI.001-MYS, NEI.001-NOR, NEI.001-SEN, NEI.001-SLV, NEI.001-SYC, NEI.001-VCT, NEI.001-VEN, NEI.001-VUT, PAN-PAN-ETRO)).

Table 11. Control file specifications used for VPA model runs.

```
SEARCH ALGORITHM CONTROLS(USED FOR ALL RUNS)
-911 RANDOM NUMBER SEED
5 0 ~ M A X I M U M ~ N U M B E R ~ O F ~ A M O E B A ~ S I M P L E X ~ S E A R C H ~ R E S T A R T S ~
3 NUMBER OF CONSECUTIVE RESTARTS THAT MUST VARY BY LESS THAN 1% TO STOP SEARCH
0.4 PDEV (standard deviation controlling vertices for Initial simplex of each restart)
INDEX WEIGHTING CONTROLS (USED FOR ALL RUNS)
1 SCALE (DIVIDE INDEX VALUES BY THEIR MEAN)- ANY VALUE > 0 = YES
1.0 INDEX WEIGHTING:(0)INPUT CV's, (+)DEFAULT CV, (-)DEFAULT STD. DEV., (999)MLE
0 (0) MULTIPLICATIVE VARIANCE SCALING FACTOR or (1) ADDITIVE VARIANCE SCALING
FACTOR
CONSTRAINT ON VULNERABILITY (PARTIAL RECRUITMENT) - LINKS THE VULNERABILITIES IN
THE LAST N YEARS. (Number of years affected, Standard Deviation, First Age, Last Age)
30.405 (USED FOR ALL RUNS) - PENALTY APPLIED
CONSTRAINTS ON RECRUITMENT - LINKS THE RECRUITMENTS IN THE LAST N YEARS (N Years,
40.4 (USED FOR DELTA-CAA and CONTINUITY RUNS) - PENALTY APPLIED
00.4 (USED FOR ALL 2011 BASE RUNS) - PENALTY APPLIED
PARAMETER ESTIMATION OPTIONS
1 USE F'S AS TERMINAL YEAR PARAMETERS (ALL RUNS)
-1 ESTIMATE Q BY CONCENTRATED MLE's (ALL RUNS)
```

Table 12. Parameter file specifications used for VPA model runs.
\# TERMINAL F PARAMETERS: (lower bound, best estimate, upper bound, indicator, reference age) \#(USED FOR ALL RUNS)

$\#$				X			
$\$$	1	0	0.2	2	1	0.1	first age (AGE 0 in this case)
$\$$	1	0	0.8	2	1	0.1	
$\$$	1	0	0.3	2	1	0.1	
$\$$	1	0	0.3	2	1	0.1	
$\$$	1	0	0.5	2	1	0.1	next to last age
$\#$							

\# NATURAL MORTALITY PARAMETERS: (lower bound, best estimate, upper bound, indicator, std. dev. of prior) \# one parameter (set of specifications) for each age \#(USED FOR ALL RUNS)

$\#$					X	
$\$$	1	0	0.8	1	0	0.1
$\$$	1	0	0.8	1	0	0.1
$\$$	1	0	0.6	1	0	0.1
$\$$	1	0	0.6	1	0	0.1
$\$$	1	0	0.6	1	0	0.1
$\$$	1	0	0.6	1	0	0.1
$\#$				X		

\# MIXING PARAMETERS: (lower bound, best estimate, upper bound, indicator, std. dev. of prior)
\# one parameter (set of specifications) for each age :not used here!
\#(NO MIXING WAS USED FOR ANY 2011 YFT VPA RUN)

$\#$				X		
$\$$	6	0	0	0	0	0
$\#$					X	

\# STOCK-RECRUITMENT PARAMETERS: (lower bound, best estimate, upper bound, indicator, std. dev. of prior)
\# five parameters so 5 sets of specifications : not used here!
\#(THESE SETTINGS ARE USED TO CONTRAINT ON THE ESTIMATED S-R RELATIONSHIP. THIS WAS NOT DONE FOR ANY 2011 YFT VPA RUN)

$\#$				X	
0	0	0	0	0	maximum recruitment
0	0	0	0	0	spawning biomass scaling parameter
0	0	0	0	0	extra parameter (not used yet)
0	0	0	0	0	autocorrelation parameter
0	0	0	0	0	variance for penalty function
$\#$					

\# VARIANCE SCALING PARAMETER (lower bound, best estimate, upper bound, indicator, std. dev.) \#(USED FOR ALL RUNS. THESE SETTINGS ESTIMATE A SINGLE VARIANCE SCALAR FOR ALL INDICES. THE SAME SCALAR IS USED FOR THE INTERANNUAL VARIANCE OF EACH INDEX. (EQUAL WEIGHTING ACROSS YEARS AND INDICES).

$\#$						
$\$ 1$	0	0.5	1.0	1	0.1	X
$\$ 18$	0	1.0	1.0	-0.1	0.1	

Table 13. Indices of abundance used for VPA model runs.

Index	DELTA-CAA	CONTINUITY	BASE RUNS 1-4
Brazilian Baitboat (w)	Used 2008 Index	Used 2008 Index ** Not Updated **	Used 2008 Index ** Not Updated **
Brazilian Longline (n)	Used 2008 Index	Used 2008 Index	Used 2011 Index
Japanese Longline (n)	Used 2008 Index	Used 2011 Index	Used 2011 Index
USA-Mexico GOM Longline (n)	Used 2008 Index	Used 2011 Index	Used 2011 Index
USA Rod and reel (n)	Used 2008 Index	Used 2011 Index	Used 2011 Index
USA Pelagic longline (ATL) (n)	Used 2008 Index	Used 2011 Index	Used 2011 Index
Venezuela Longline (n)	Used 2008 Index	Used 2008 Index ** Not Updated **	$\begin{aligned} & \text { Used } 2008 \text { Index } \\ & \text { ** Not Updated } * * \end{aligned}$
Venezuela Purse seine (w)	Used 2008 Index	Used 2008 Index ** Not Updated **	Used 2008 Index ** Not Updated **
EU FAD Purse seine (w)	Used 2008 Index	Used 2011 Index	Used 2011 Index
EU PS 3\% Annual increase in Q (w)	Used 2008 Index 1970-1979	Used 2011 Index 1970-1979	Used 2011 Index
EU TROP Purse seine (w)	Used 2008 Index	Used 2008 Index	
EU Dakar (w)	Used 2008 Index	Used 2011 Index	Used 2011 Index
Uruguay Longline (n)	Used 2008 Index		
Chinese Taipei Longline (n)	Used 2008 Index	Used 2011 Index	Used 2011 Index
		Single time period	Broken into 4 time periods
Canary Islands Baitboat (w)	Used 2008 Index	Used 2008 Index	Not Used

Table 14. Index specifications for VPA DELTA-CAA models.

Table 15. Index specifications for VPA CONTINUITY models.

Index Number								
\|	PDF (0=do not use, 1=lognormal, 2=normal)							
1	\|	UNITS (1 = numbers, 2 = biomass)						
1	1	\|	SELECTIVITY (1 = fixed, 2 = fractional catches, 3 = Powers and Restrepo partial catches,4=Butterworth and Geromont eq 4)					
1	\|	\\|	\|	TIMING (-1 = AVERAGE DURING YEAR, POSITIVE INTEGER = NUMBER OF MONTHS ELAPSED)				
1	1	1	1	\|	FIRST AGE			
1	1	1	1	1	\|			
1	1	\|	1	1	1	1	title	
CONTINUITY "Run 5 - USE PCAA"								
1	1	2	4	6	0	4	BRA_BB'	
2	1	1	4	6	0	5	BRA_LL'	
3	1	1	4	6	0	5	JPN_LL'	
4	1	1	4	6	0	5	USMEX_LL	
5	1	1	4	6	0	5	US_RR'	
6	1	1	4	6	0	5	US_PLL_A ${ }^{\text {- }}$	
7	1	1	4	6	0	5	VEN_LL'	
8	1	2	4	6	0	4	VEN_PS'	
9	1	2	4	6	0	1	EUR-FAD-I applies to YFT < 10kg	
10	1	2	4	6	0	5	EUR-PS-3\%	
11	1	2	4	6	0	4	EU-DAKAF	
12	1	1	4	6	0	5	URU-LL'	
13	0	1	4	6	0	5	BRA-URU-	
14	1	1	4	6	0	5	CHIN-TAI-	
15	1	1	1	6	3	5	TROP-PS' applies to > 30 kg (SSB)	
16	1	2	4	6	0	4	CAN-IS-BB'	
CONTINUITY "Run 10 - FLAT-TOPPED"								
1	1	2	4	6	0	4	BRA_BB'	
2	1	1	1	6	0	5	BRA_LL'	
3	1	1	1	6	0	5	JPN_LL'	
4	1	1	1	6	0	5	USMEX_LL	
5	1	1	4	6	0	5	US_RR'	
6	1	1	1	6	0	5	US_PLL_A ${ }^{-}$	
7	1	1	1	6	0	5	VEN_LL'	
8	1	2	4	6	0	4	VEN_PS'	
9	1	2	4	6	0	1	EUR-FAD-I applies to YFT < 10kg	
10	1	2	4	6	0	5	EUR-PS-3\%	
11	1	2	4	6	0	4	EU-DAKAF	
12	1	1	1	6	0	5	URU-LL'	
13	0	1	1	6	0	5	BRA-URU-	
14	1	1	1	6	0	5	CHIN-TAI-	
15	1	1	1	6	3	5	TROP-PS' applies to > 30 kg (SSB)	
16	1	2	4	6	0	4	CAN-IS-BB'	

Table 16. Index specifications for VPA BASE models.

Table 17. Effects of updating recent catches and Japanese abundance index. Model parameters (median estimates from bootstraps) estimated by ASPIC for runs 01 (logistic, $\mathrm{B} 1 / \mathrm{K}=1$), 02 (generalized, $\mathrm{B} 1 / \mathrm{K}$ $=1$), 03 (logistic, $\mathrm{B} 1 / \mathrm{K}=$ est.) and 04 (generalized, $\mathrm{B} 1 / \mathrm{K}=$ est.). The 10% and 90% percentiles are shown in parenthesis.

	Run 01		Run 02	
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t }) \end{gathered}$	142	(131.6-149)	135	(110-136.7)
$\begin{gathered} \mathrm{K} \\ (1000 \mathrm{st}) \end{gathered}$	1051	(703.8-1,703)	1505	(1,401-3162.)
$\begin{gathered} \mathrm{B}_{\mathrm{MSY}} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	526	(351.9-851)	527	(448-807.9)
$\mathrm{F}_{\text {MSY }}$	0.27	0.15-0.42)	0.26	(0.15-0.31)
$\mathrm{B}_{2006} / \mathrm{B}_{\mathrm{MSY}}$	1.15		0.80	
$\mathrm{F}_{2006} / \mathrm{F}_{\text {MSY }}$	0.63		0.96	
$\mathrm{B}_{2010} / \mathrm{B}_{\text {MSY }}$	0.86	(0.7-1.02)	1.03	(0.92-1.21)
$\mathrm{F}_{2010} / \mathrm{F}_{\text {MSY }}$	0.92	(0.75-1.16)	0.80	(0.68-0.93)
$\begin{gathered} \text { Y equilibrium } \\ (1000 \mathrm{~s} t) \\ \hline \end{gathered}$	140	(122.2-148)	112	(108-113.1)
$\begin{gathered} \text { Y F }_{\text {MSY }} \\ (1000 \mathrm{~s} \text { t }) \end{gathered}$	140	(122.2-148)	112	(108-113.1)
	Run 03		Run 04	
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t) } \end{gathered}$	142	(130.9-148)	135	(104-135.4)
$\begin{gathered} \mathrm{K} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	1051	(717.8-1,790)	1511	(1,511-4414.)
$\begin{gathered} \mathrm{B}_{\mathrm{MSY}} \\ (1000 \mathrm{st}) \end{gathered}$	526	(358.9-895)	529	(486-1356.)
$\mathrm{F}_{\text {MSY }}$	0.27	$0(.15-0.41)$	0.26	(0.07-0.28)
$\mathrm{B}_{2006} / \mathrm{B}_{\text {MSY }}$	0.63		0.91	
$\mathrm{F}_{2006} / \mathrm{F}_{\text {MSY }}$	1.16		0.86	
$\mathrm{B}_{2010} / \mathrm{B}_{\mathrm{MSY}}$	0.86	(0.69-1.)	1.02	(0.89-1.2)
$\mathrm{F}_{2010} / \mathrm{F}_{\text {MSY }}$	0.92	(0.77-1.19)	0.81	(0.68-0.97)
$\begin{aligned} & \text { Y equilibrium } \\ & (1000 \mathrm{~s} t) \\ & \hline \end{aligned}$	140	(121.2-147)	135	(95-136.5)
$\begin{gathered} \text { Y F }_{\mathrm{MSY}} \\ (1000 \mathrm{~s}) \end{gathered}$	140	(121.2-147)	135	(95-136.5)

Table 18. Effects of simply updating the same data used in the last assessment. Model parameters (median estimates from bootstraps) estimated by ASPIC for runs 05 (logistic, $\mathrm{B} 1 / \mathrm{K}=1$, combined index), 06 (logistic, $\mathrm{B} 1 / \mathrm{K}=$ est., combined index), 07 (logistic, $\mathrm{B} 1 / \mathrm{K}=1$, separate indices.) and 08 (logistic, $\mathrm{B} 1 / \mathrm{K}$ $=1$, separate indices), which are corresponding runs $02,04,06$ and 08 in 2008 assessment, respectively. In parenthesis are shown the 10% and 90% percentiles. Last column represent the percent difference between estimated median values of each runs.

	Run 05 in 2011		Run 02 in 2008		Percent diff.
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t) } \end{gathered}$	136	(89-145)	147	(120-154)	-7\%
$\mathrm{B}_{2006} / \mathrm{B}_{\mathrm{MSY}}$	0.965	(-)	0.834	(0.745-0.965)	14\%
$\mathrm{F}_{2006} / \mathrm{F}_{\text {MSY }}$	0.799	(-)	0.845	(0.615-1.149)	-6\%
	Run 06 in 2011		Run 04 in 2008		
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	136	(90-144)	147	(96-153)	-7\%
$\mathrm{B}_{2006} / \mathrm{B}_{\mathrm{MSY}}$	0.965	(-)	0.834	(0.733-0.963)	14\%
$\mathrm{F}_{2006} / \mathrm{F}_{\text {msy }}$	0.801	(-)	0.845	(0.631-1.206)	-5\%
	Run 07 in 2011		Run 06 in 2008		
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	75	(-)	120	(99-142)	-38\%
$\mathrm{B}_{2006} / \mathrm{B}_{\text {MSY }}$	0.845	(-)	0.944	(0.871-1.044)	-12\%
$\mathrm{F}_{2006} / \mathrm{F}_{\text {MSY }}$	1.680	(-)	0.955	(0.749-1.308)	57\%
	Run 08 in 2011		Run 08 in 2008		
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t }) \end{gathered}$	135	(-)	150	(144-1.54)	-10\%
$\mathrm{B}_{2006} / \mathrm{B}_{\mathrm{MSY}}$	0.677	(-)	0.707	(0.669-0.764)	-4\%
$\mathrm{F}_{2006} / \mathrm{F}_{\text {MSY }}$	1.190	(-)	0.948	(0.828-1.105)	20\%

Table 19. Effects of simply updating the same data used in the last assessment. Model parameters (median estimates from bootstraps) estimated by ASPIC for runs 05 (logistic, $\mathrm{B} 1 / \mathrm{K}=1$, combined index), 06 (logistic, $\mathrm{B} 1 / \mathrm{K}=$ est., combined index), 07 (logistic, $\mathrm{B} 1 / \mathrm{K}=1$, separate indices.) and 08 (logistic, $\mathrm{B} 1 / \mathrm{K}$ $=1$, separate indices). The 10% and 90% percentiles are shown in parentheses.

	Run 05 in 2011		Run 06 in 2011	
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t }) \end{gathered}$	136	(89-145)	136	(89-144)
$\begin{gathered} \mathrm{K} \\ (1000 \mathrm{st}) \end{gathered}$	1,930	(1,140-6,070)	1,970	$(1,240-6,120)$
$\begin{gathered} \mathrm{B}_{\text {MSY }} \\ (1000 \mathrm{st}) \end{gathered}$	967	(571-3,040)	983	(620-3,060)
$\mathrm{F}_{\text {MSY }}$	0.141	(0.030-0.246)	0.138	(0.029-0.226)
$\mathrm{B}_{2010} / \mathrm{B}_{\text {MSY }}$	1.108	(0.862-1.298)	1.104	(0.865-1.339)
$\mathrm{F}_{2010} / \mathrm{F}_{\text {MSY }}$	0.728	(0.577-1.179)	0.732	(0.563-1.119)
$\begin{gathered} \text { Y equilibrium } \\ (1000 \mathrm{~s} t) \\ \hline \end{gathered}$	134	(130-142)	134	(125-141)
$\begin{gathered} \text { Y F }_{\mathrm{MSY}} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	111	(109-113)	111	(108-113)
	Run 07 in 2011		Run 08 in 2011	
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t) } \end{gathered}$	75	(65-88)*	135	(125-142)*
$\begin{gathered} \mathrm{K} \\ (1000 \mathrm{~s}) \end{gathered}$	584	(573-6,020)*	1,500	(542-1,070)*
$\begin{gathered} \mathrm{B}_{\mathrm{MSY}} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	2,920	(2,870-3,010)*	749	(1,080-2,150)*
$\mathrm{F}_{\text {MSY }}$	0.026		0.180	
$\mathrm{B}_{2010} / \mathrm{B}_{\mathrm{MSY}}$	0.785	(0.685-0.906)*	0.795	(0.709-0.905)*
$\mathrm{F}_{2010} / \mathrm{F}_{\text {MSY }}$	1.821	(1.348-2.448)*	1.027	(0.880-1.210)*
$\begin{gathered} \text { Y equilibrium } \\ (1000 \mathrm{~s} t) \\ \hline \end{gathered}$	71.4		129	
$\begin{gathered} \text { Y F }_{\mathrm{MSY}} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	59.2		109	

*These values were not derived from .bot file due to lack of output of these values. Therefore, these values were calculated from another output files (.det file) using simple percentile.

Table 20. Effects of different assumptions about the rate of catchability increases for the purse seine fishery. Model parameters (median estimates from bootstraps) estimated by ASPIC for runs 09 (logistic, $\mathrm{B} 1 / \mathrm{K}=1$ and 3% increase in purse seine q), 11 (same as 09 but for a 7% increase in purse seine q), 10 (logistic, $\mathrm{B} 1 / \mathrm{K}=$ estimated and 3% increase in purse seine q), and 12 same as 09 but for a 7% increase in purse seine q). In parenthesis are shown the 10% and 90% percentiles. The last column represents the percent difference between estimated median values of each run.

	Run 09 (EU-PS 3\% inc. q)		Run 11 (EU-PS 7\% inc. q)		Percent diff
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t }) \end{gathered}$	138.4	(107.3-148)	139.2	(97.6-149)	-1\%
$\begin{gathered} \mathrm{K} \\ (1000 \mathrm{st}) \end{gathered}$	1251	(741.4-3,037)	1204	(704.-3,554)	4\%
$\begin{gathered} \mathrm{B}_{\mathrm{MSY}} \\ (1000 \mathrm{st}) \\ \hline \end{gathered}$	625.6	(370.7-1,519)	602.1	(352.-1,777)	4\%
$\mathrm{F}_{\text {MSY }}$	0.2213	(0.07-0.4)	0.231	(0.06-0.42)	-5\%
$\mathrm{B}_{2010} / \mathrm{B}_{\text {MSY }}$	0.6968	(0.570.9)	0.692	(0.570-.93)	1\%
$\mathrm{F}_{2010} / \mathrm{F}_{\text {MSY }}$	1.144	(0.85-1.66)	1.147	$0(.83-1.62)$	0\%
$\begin{aligned} & \text { Y equilibrium } \\ & (1000 \mathrm{~s} \text { t) } \\ & \hline \end{aligned}$	125.7	(92.3-146)	126	(92.5-146)	0\%
$\begin{gathered} \text { Y F }_{\text {MSY }} \\ (1000 \mathrm{~s} \text { t }) \\ \hline \end{gathered}$			112.5	(106.4-120)	
	Run 10 (EU-PS 3\% inc. q)		Run 12 (EU-PS 7\% inc. q)		
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t) } \end{gathered}$	138.4	(107-148.3)	139.2	(102-148.1)	-1\%
$\begin{gathered} \mathrm{K} \\ (1000 \mathrm{~s}) \end{gathered}$	1251	(726-3223.)	1204	(735-3474.)	4\%
$\begin{gathered} \mathrm{B}_{\mathrm{MSY}} \\ (1000 \mathrm{st}) \end{gathered}$	625.6	(363-1611.)	602.2	(368-1737.)	4\%
$\mathrm{F}_{\mathrm{MSY}}$	0.2213	(0.06-0.41)	0.231	(0.06-0.4)	-4\%
$\mathrm{B}_{201} 0 / \mathrm{B}_{\mathrm{MSY}}$	0.6968	(0.58-0.92)	0.692	(0.57-0.98)	1\%
$\mathrm{F}_{2010} / \mathrm{F}_{\text {MSY }}$	1.144	$0(.84-1.51)$	1.146	(0.85-1.63)	0\%
Y equilibrium (1000s t	125.7	(93-143.9)	126	(92-143.4)	0\%
$\begin{gathered} \text { Y F }_{\text {MSY }} \\ (1000 \mathrm{~s} \text { t }) \end{gathered}$			112.5	(106-118.5)	

Table 21. Effects of revision of Ghana catch. Model parameters (median estimates from bootstraps) estimated by ASPIC for runs 11 (Task I catch) and 14 (including estimated revisions for Ghana). In parenthesis are shown the 10% and 90% percentiles. The last column represents the percent difference between estimated median values of run 14 and run 11.

		Run 11		Run 14	Percent diff.
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t) } \end{gathered}$	139	(97.6-149)	144	(113-151.6)	-3\%
$\begin{gathered} \mathrm{K} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	1204	(704.-3,554)	975	(584-2806.)	19\%
$\begin{gathered} \mathrm{B}_{\mathrm{MSY}} \\ (1000 \mathrm{~s} \text { t }) \end{gathered}$	602	(352.-1,777)	487	(292-1403.)	19\%
$\mathrm{F}_{\mathrm{MSY}}$	0.23	(0.06-0.42)	0.30	(0.08-0.52)	-28\%
$\mathrm{B}_{2010} / \mathrm{B}_{\mathrm{MSY}}$	0.69	(0.57-0.93)	0.66	(0.54-0.87)	5\%
$\mathrm{F}_{2010} / \mathrm{F}_{\text {MSY }}$	1.15	(0.83-1.62)	1.34	(0.96-1.7)	-17\%
$\begin{aligned} & \text { Y equilibrium } \\ & (1000 \mathrm{~s} \text { t) } \\ & \hline \end{aligned}$	126	(92.5-146)	127	(104-148.)	-1\%
$\begin{gathered} \text { Y F }_{\mathrm{MSY}} \\ (1000 \mathrm{~s} \text { t }) \end{gathered}$	113	(106.4-120)	127	(122-135.1)	-13\%

Table 22. Effects of the exclusion of specific indices. Model parameters (median estimates from bootstraps) estimated by ASPIC for runs 11 (Task I catch), 15 (excluding TAI-LL)), 15 (excluding BRALL), 17 (excluding EU-PS\%7). The 10% and 90% percentiles are shown in parentheses.

	Run 11		$\begin{gathered} \text { Run } 15 \\ \text { (no TAI-LL) } \end{gathered}$		$\begin{gathered} \text { Run 16 } \\ \text { (no BRA-LL) } \end{gathered}$		$\begin{gathered} \text { Run } 17 \\ \text { (no EU-PS7\%) } \end{gathered}$	
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t }) \end{gathered}$	139	(97.6-149)	142	(125-148)	139	(94-148)	136	(74-149)
$\begin{gathered} \mathrm{K} \\ (1000 \mathrm{~s}) \end{gathered}$	1204	(704.-3,554)	1,070	(759-2,010)	1,240	(742-4,020)	1,380	(693-4,930)
$\begin{gathered} \mathrm{B}_{\mathrm{MSY}} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	602	(352.-1,777)	536	(379-1,010)	487	(292-1403.)	691	$(346-2,470)$
$\mathrm{F}_{\text {MSY }}$	0.23	(0.06-0.42)	0.264	(0.122-0.388)	0.225	(0.046-0.398)	0.197	(0.029-0.430)
$\mathrm{B}_{2010} / \mathrm{B}_{\text {MSY }}$	0.69	(0.57-0.93)	0.716	(0.608-0.871)	0.694	(0.577-0.976)	0.608	(0.48-0.74)
$\mathrm{F}_{2010} / \mathrm{F}_{\mathrm{MSY}}$	1.15	(0.83-1.62)	1.096	(0.889-1.338)	1.147	(0.769-1.521)	1.322	(0.98-2.346)
$\begin{aligned} & \text { Y equilibrium } \\ & (1000 \mathrm{~s} t) \end{aligned}$	126	(92.5-146)	130	(113-146)	126	(97-146)	115	(63-139)
$\begin{gathered} \text { Y F }_{\mathrm{MSY}} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	113	(106.4-120)	114	(109-120)	112	(106-119)	110	(104-119)

Table 23. Maximum posterior estimates for PROCEAN parameters and fishery-derived indicators. CAI = Combined abundance index. * indicates that the parameters were fixed.

	m	r	B0/K	K	MSY	$F / F_{M S Y}$	$B / B_{M S Y}$
Base case runs							
CAI unweighted	2.3	0.81	0.9*	602224	145416	1.18	0.65
CAI weighted by area	1.85	0.76	0.9*	844301	143494	1.16	0.68
Initial biomass	1.93	0.84	0.8*	737754	146441	1.16	0.68
Shape parameter	1.5*	1.05	0.9*	896992	139065	1.13	0.74
Data inputs in the CAI							
Index without TAI	1.85*	0.64	0.9*	1020000	145052	1.08	0.68
Index without BRZ	1.85*	0.57	0.9*	1150000	145848	1.14	0.68
Index without EUR-PS	1.85*	0.5	0.9*	1230000	137451	1.24	0.62
Multiple indices							
6 CPUE indices	1.85*	0.51	0.9*	1310000	148245	0.89	0.78
5 CPUE indices (excl. TAI-LL 1968-2010)	1.85*	0.52	0.9*	1320000	148000	0.89	0.78
4 CPUE indices (excl. TAI-LL and BRA-LL)	1.26	0.67	0.9*	2350000	134237	0.9	0.86

Table 24. VPA estimates of management benchmarks and reference points.

BASE RUN 1

BASE RUN 1					
MEASURE	LOWER 80\% CI	MEDIAN	UPPER $\mathbf{8 0 \%}$ CI	Deterministic	
F at MSY	0.827	1.115	1.425	1.448	
MSY	129,904	135,518	141,568	140,880	
Y/R at MSY	2.228	2.324	2.409	2.412	
S/R at MSY	2.310	2.456	2.577	2.551	
SPR AT MSY	0.222	0.237	0.248	0.246	
SSB AT MSY	135,529	143,591	150,429	148,986	
F at max. Y / R	0.827	1.115	1.425	1.448	
Y/R maximum	2.228	2.324	2.409	2.412	
S/R at $F m a x$	2.310	2.456	2.577	2.551	
SPR at $F \max$	0.222	0.237	0.248	0.246	
SSB at $F m a x$	135,529	143,591	150,429	148,986	
F O.1	0.504	0.626	0.738	0.745	
Y/R at $F 0.1$	2.085	2.150	2.200	2.202	
S/R at $F 0.1$	3.859	4.168	4.436	4.428	
SPR at $F 0.1$	0.372	0.401	0.427	0.426	
SSB at $F 0.1$	226,518	243,532	258,609	258,589	

BASE RUN 3

BASE RUN					B
measure	LOWER 80\% CI	MEDIAN	UPPER 80\% CI	Deterministic	M
F at MSY	0.774	0.897	1.083	1.181	F
MSY	125,263	129,884	134,989	135,917	
Y/R at MSY	2.191	2.260	2.333	2.359	Y/
S/R at MSY	2.255	2.347	2.441	2.448	S/
SPR AT MSY	0.217	0.226	0.235	0.236	SPR
SSB AT MSY	129,733	135,036	140,234	141,047	
F at max. Y / R	0.774	0.897	1.083	1.181	F
Y/R maximum	2.191	2.260	2.333	2.359	Y/
S/R at Fmax	2.255	2.347	2.441	2.448	S/
SPR at Fmax	0.217	0.226	0.235	0.236	SPR
SSB at Fmax	129,733	135,036	140,234	141,047	
F 0.1	0.476	0.530	0.613	0.650	F
Y/R at F0.1	2.058	2.111	2.164	2.177	Y/
S/R at F0.1	3.751	3.941	4.122	4.191	S/R
SPR at F0.1	0.361	0.380	0.397	0.404	SPR
SSB at F0.1	215,614	226,339	237,522	241,450	

MEASURE	LOWER 80\% CI	MEDIAN	UPPER 80\% CI	Deterministic
F at MSY	0.771	0.823	0.880	0.874
MSY	130,326	136,842	143,451	141,066
Y/R at MSY	2.012	2.101	2.174	2.172
S/R at MSY	1.975	2.045	2.104	2.056
SPR AT MSY	0.190	0.197	0.203	0.198
SSB AT MSY	128,673	133,555	138,176	133,586
F at max. Y / R	0.771	0.823	0.880	0.874
Y/R maximum	2.012	2.101	2.174	2.172
S/R at Fmax	1.975	2.045	2.104	2.056
SPR at Fmax	0.190	0.197	0.203	0.198
SSB at Fmax	128,673	133,555	138,176	133,586
F 0.1	0.511	0.541	0.572	0.568
Y/R at F0.1	1.916	1.994	2.059	2.059
S/R at F0.1	3.278	3.384	3.487	3.416
SPR at F0.1	0.316	0.326	0.336	0.329
SSB at F0.1	213,472	221,025	228,657	221,927
BASE RUN 4				
MEASURE	LOWER 80\% CI	MEDIAN	UPPER 80\% CI	Deterministic
F at MSY	0.755	0.801	0.934	0.819
MSY	121,278	126,628	131,870	130,809
Y/R at MSY	2.113	2.197	2.280	2.266
S/R at MSY	2.141	2.259	2.378	2.283
SPR AT MSY	0.206	0.218	0.229	0.220
SSB AT MSY	123,875	129,918	136,714	131,815
F at max. Y / R	0.755	0.801	0.934	0.819
Y/R maximum	2.113	2.197	2.280	2.266
S/R at Fmax	2.141	2.259	2.378	2.283
SPR at Fmax	0.206	0.218	0.229	0.220
SSB at Fmax	123,875	129,918	136,714	131,815
F 0.1	0.473	0.499	0.549	0.493
Y/R at F0.1	1.997	2.066	2.127	2.122
S/R at F0.1	3.548	3.752	3.986	3.833
SPR at F0.1	0.342	0.361	0.384	0.369
SSB at F0.1	204,911	5,775	9,975	1,2

Table 25. VPA base model fit statistics.

BASE RUN 1

Total objective function $=$ (with constants) =	$\begin{array}{r} -210.09 \\ 125.32 \end{array}$	
Number of parameters (P) -	63	
Number of data point.s (D) -	365	
AIC : 2 *objective +2 P	376.64	
AICc: 2 *objective $+2 \mathrm{P}(. .)=$.	403.43	
BIC : 2^{*} objective+Plog (D$)=$	622.33	
Chi-square discrepancy	363.14	
Loglikelihoods (deviance)-	141.70	$364.65)$
effort data -	141.70	361.65)
Log-posteriors	60.40	
catchability	0.00	
f-ratio	60.40	
natural mortality	0.00	
mixing coeff.	0.00	
Constraints	7.98	
terminal F	7.98	
stock-rec./sex ratio	0.00	
Out of bounds penalty	0.00	

BASE RUN 2

Total objective function $=$ (with constants) =	$\begin{array}{r} -153.71 \\ 181.70 \end{array}$	
Number of parameters (P) =	63	
Number of data points (D) =	365	
AIC : 2 *objective+2P -	489.40	
AICc: 2*objective+2P(...)-	516.19	
BIC : 2 *objective+Plog (D)-	735.10	
Chi-square discrepancy =	396.30	
Loglikelihoods (deviance) =	88.37	365.80)
effort data =	88.37	$365.80)$
Log-posteriors	56.92	
catchability	0.00	
f-ratio	56.92	
natural mortality	0.00	
mixing coeff.	0.00	
Constraints	8.43	
terminal F	8.43	
stock-rec./sex ratio	0.00	
Out of bounds penalty	0.00	

BASE RUN 4

Total object.ive function - (with constants)	$\begin{aligned} & -75.88 \\ & 259.53 \end{aligned}$	
Number of parameters (P) =	30	
Number of data points (D) $=$	365	
AIC : 2*objective+2P -	579.06	
AICc: 2*objective+2P(...)-	584.62	
BIC : 2 *objective+Plog(D) $=$	696.05	
Chi-square discrepancy -	407.11	
Loglikelihoods (deviance)-	56.51	$364.98)$
effort data	56.51	364.98)
Log-posteriors	10.91	
catchability	0.00	
f-ratio	10.91	
natural mortality	0.00	
mixing coeff.	0.00	
Constraints	8.46	
terminal F	8.46	
stock-rec./sex ratio	0.00	
Out of bounds penalty	0.00	

Table 26. Management benchmarks and references developed from the ASPIC/VPA joint distribution.

	Relative Biomass (SSB 2010 $^{\text {/SSB }}$ MSY for VPA, $B_{2011} / B_{M S Y}$ for ASPIC)		
Method	Median	$10^{\text {th }}$ percentile	90 ${ }^{\text {th }}$ percentile
Production model (ASPIC)	0.6946	0.5701	0.9243
Age-Structured model (VPA)	0.5248	0.4253	0.6722
Combined distribution (ASPIC and VPA)	0.6123	0.4551	0.8451
	Relative Fishing Mortality ($F_{\text {current }} / F_{\text {MSY }}$ for VPA, $F_{2010} / F_{\text {MSY }}$ for ASPIC)		
Method	Median	$10^{\text {th }}$ percentile	90 ${ }^{\text {th }}$ percentile
Production model (ASPIC)	1.0861	0.7466	1.6255
Age-Structured model (VPA)	1.3222	1.1462	1.5056
Combined distribution (ASPIC and VPA)	1.2540	0.8545	1.5329

Figure 1. Geographical distribution of yellowfin catch (t) by major gears, for the entire 1960-2009 period. [e] For 1991-2009 catches are split by free school and FADs.

e. YFT (2000-09)

Figure 2. Geographical distribution of yellowfin catch by major gear and decade.

Figure 3. Atlantic yellowfin tuna catch by area.

Figure 4. Atlantic yellowfin tuna catch by gear.

Figure 5. Catch by gear east.

Figure 6. Catch by gear west.

Figure 7. Catch distribution of Ghanaian catches in the historical period (1969-1980).

Figure 8. Ghanaian catches in free schools in the recent period (2008-2010).

Figure 9. Ghanaian catches in FADs in the recent period (2008-2010).

Figure 10. European and associated fishery catch on FADs in 2009.

Figure 11. Carrying capacity of the surface fleets in the East Atlantic for the period 1972-2010.

Figure 12. Catch at size frequency distribution of YFT by year (1970-2010).

Figure 13. Estimated CAS frequency distribution of yellowfin by year and by main gear groups, PS (upper left), LL (upper right), BB (lower left) and others (lower right).

CAA yellowfin tuna slicing Gascuel growth model (age 5+)

Circle Size \square
Figure 14. Catch at age of yellowfin tuna 1970-2010 estimated as input for the age structure model(s).

Figure 15. Catch at age distribution in numbers of fish (top row) and weight (bottom row) for yellow fin 1970-2010.

Figure 16. Mean lengths (left) and Beverton-Holt total mortality (right) for Atlantic yellowfin from 1970 to 2010 , observed and predicted values by the transitional model of Gedamke-Hoenig in non-equilibrium situations

Figure 17. Estimated weighted combined indexes of abundance. For comparison purposes, each series was scaled to their average value. Refer to text for explanation of each series.

Figure 18. Weighted estimated indexes of abundance. The series labeled 'Tai' corresponds to the 'Index 4' estimated without the Chinese-Taipei longline index. Similarly, the series labeled 'BRA' and 'EC7\%' correspond to the 'Index 4' estimated without the Brazilian longline and all EC PS fisheries, respectively. For comparison purposes, each series was scaled to their average value. Refer to text for explanation of the 'Index 4'.

Figure 19. Effects of simply updating the same data used in the last assessment. Biomass ratios and fishing mortality ratios by year from ASPIC for runs 9 (3% increase in catchability for purse seine) and 11 (7% increase in catchability for purse seine).

Figure 20. Effects of assumption on percent increase catchability in purse seine fleet . Biomass ratios and fishing mortality ratios by year from ASPIC for runs 9 (3% increase in catchability for purse seine) and 11 (7% increase in catchability for purse seine). Left panel (whole time series 1950 to 2010), right panel (recent years 2006 to 2010).

Figure 21. Results of bootstrap examination for Run 09 to Run 12.

Figure 22. Effects of revision of Ghana catch. Biomass ratios and fishing mortality ratios by year from ASPIC for runs 11 (Task I catch) and 14 (including estimated revisions for Ghana).

Figure 23. Effects of revision of Ghana catch. Biomass ratios and fishing mortality ratios for most recent year of assessment (2010) from ASPIC for runs 11 (Task I catch) and 14 (including estimated revisions for Ghana). Points represent 500 bootstraps, triangles correspond to median.

Comparison Run11 and excluding TWN-LL, BR-LL and EU-PS inc. q 7\%

Figure 24. Effects of excluding of specific fleets when processing a combined index. Biomass ratios and fishing mortality ratios by year from ASPIC for excluding Chinese Taipei-LL (run 15), Brazilian-LL (run 16) and EU-PS 7\% inc. q (run 17).

Figure 25. Effects of excluding of specific fleets when processing a combined index. Biomass ratios and fishing mortality ratios by year from ASPIC for excluding Chinese Taipei-LL (run 15), Brazilian-LL (run 16) and EU-PS 7\% inc. q (run 17). Points represent 500 bootstraps, triangles correspond to median.

Figure 26. Retrospective patterns of $\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}$ obtained by successively removing a single year of data from ASPIC run 11.

Figure 27. Retrospective patterns of $\mathrm{B} / \mathrm{B}_{\mathrm{MSY}}$ obtained by successively removing a single year of data from ASPIC run 11.

ASPIC, run 11 (comb CPUE), retrospective view of

Figure 28. Retrospective view of r and K obtained by progressively eliminating successive years for ASPIC run 11 (combined CPUE with 7\% increase in q on EU-PS)

Figure 29. Fit of PROCEAN to the 6 time series of abundance indices

Figure 30. Phase diagram ("Kobe plot") representing the evolution of the annual fishing mortality relative to the fishing mortality at MSY ($\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}$) as a function of the annual biomass relative to the biomass at MSY ($\mathrm{B} / \mathrm{B}_{\mathrm{MSY}}$). PROCEAN fits to the combined abundance index weighted by area (upper figure) and the abundance indices for the JPN-LL, TAI-LL (1968-1980), BRZ-LL, EUR-PS (1979-1990), EUR-PS-FSC(1991-2010) and EUR-PS-FAD (1991-2010) (lower figure).

Figure 31. Comparison of the stock status trajectories from the 2011 "DELTA-CAA" and 2008 base runs. The 2006 stock status is shown by the filled circle.

Figure 32. The stock status trajectory of the 2011 VPA "CONTINUITY" runs. The 2006 stock status is shown by the black X, the 2010 stock status by the filled circle.

Figure 33. Results of VPA Base Run 1: annual trends in recruits (Age 0), total biomass, apical fishing mortality with regard to $\mathrm{F}_{\mathrm{MSY}}$, spawning stock biomass with regard to $\mathrm{SSB}_{\mathrm{MSY}}$ and yield (t).

Figure 34. Results of VPA Base Run 2: annual trends in recruits (Age 0), total biomass, apical fishing mortality with regard to $\mathrm{F}_{\mathrm{MSY}}$, spawning stock biomass with regard to $\mathrm{SSB}_{\mathrm{MSY}}$ and yield (t).

Figure 35. Results of VPA Base Run 3: annual trends in recruits (Age 0), total biomass, apical fishing mortality with regard to $\mathrm{F}_{\mathrm{MSY}}$, spawning stock biomass with regard to $\mathrm{SSB}_{\mathrm{MSY}}$ and yield (t).

Figure 36. Results of VPA Base Run 4: annual trends in recruits (Age 0), total biomass, apical fishing mortality with regard to $\mathrm{F}_{\mathrm{MSY}}$, spawning stock biomass with regard to $\mathrm{SSB}_{\mathrm{MSY}}$ and yield (t).

Figure 37. Fits to the indices of abundance for VPA base run 1.

Figure 38. Fits to the indices of abundance for VPA base run 2.

Figure 39. Fits to the indices of abundance for VPA base run 3.

Figure 40. Fits to the indices of abundance for VPA base run 4.

Base Run1

Figure 41. Retrospective patterns in fishing mortality at age for the VPA base runs.

Retrospective Analysis: Numbers at Age
Base Run1
Base Run 2
Base Run 3
Base Run 4

Figure 42. Retrospective patterns in numbers at age for the VPA base runs.

Retrospective Analysis : Spawning Stock Biomass

Figure 43. Retrospective patterns in spawning stock biomass for the VPA base runs.

Figure 44. Jacknife analysis of average fishing mortality, recruits and SSB for the four VPA models obtained by sequential removal of a single index.

Figure 45. Results of the jackknife analysis on apical F for VPA runs 1,3, and 4.

Figure 46. Phase plots indicating the median stock status of the VPA base runs (red circle) and the 500 bootstraps analyses.

Figure 47. "Annualized" trajectories of stock status 1972-2010 (i.e., adjusted for the annual selectivity pattern). The 2010 stock status is indicated with a red circle.

Figure 48. "Annualized" trajectories of MSY (i.e. adjusted for the annual selectivity pattern) compared to the MSY from VPA-2BOX using the 2006-2010 selectivity pattern.

Figure 49. Phase plots of current stock status by bootstrapped assessment run; the medians for each run are indicated by a grey dot. Quadrants are defined for the stock and fishing mortality relative to $\mathrm{B}_{\mathrm{MSY}}$ and $\mathrm{F}_{\mathrm{MSY}}$; i.e. red $\mathrm{B}<\mathrm{B}_{\mathrm{MSY}}$ and $\mathrm{F}>\mathrm{F}_{\mathrm{MSY}}$, green red $\mathrm{B} \geq \mathrm{B}_{\mathrm{MSY}}$ and $\mathrm{F} \leq \mathrm{F}_{\mathrm{MSY}}$ yellow otherwise.

Figure 50. Phase plots of current stock status bootstrap results across runs for each method; Production model results (ASPIC) are on the left, and the results of the age-structured model (VPA) are shown on the right. The medians for each method are indicated by a grey dot. Quadrants are defined for the stock amd fishing mortality relative to $B_{M S Y}$ and $F_{M S Y}$; i.e. red $B<B_{M S Y}$ and $F>F_{M S Y}$, green red $B \geq B_{M S Y}$ and $F \leq F_{M S Y}$ yellow otherwise.

Figure 51. Biomass ratios and fishing mortality ratios describing current stock status from the combined joint distribution of ASPIC and VPA base case runs. Points represent a total of 4000 bootstraps. The median of the joint distribution is indicated by a grey dot. Quadrants are defined for the stock and fishing mortality relative to $B_{M S Y}$ and $F_{M S Y}$; i.e. red $B<B_{M S Y}$ and $F>F_{M S Y}$, green red $B \geq B_{M S Y}$ and $F \leq F_{M S Y}$ yellow otherwise.

Figure 52. Fishing effort of the European and associated purse seine fleet : a) Number of vessels by TRB category, b) Number of $1^{\circ} \mathrm{x} 1^{\circ} \mathrm{CWP}$ explored , c) Carrying capacity in tones and fishing days, d) Number of sets and percentage of nul sets by fishing mode.

Figure 53. Proportional catch of YFT by gear expressed relative to 2006 catch levels by gear. In this case, only purse seine catch levels are higher (by about 20\%) than 2006 catch levels.

Figure 54. Upper Plate: Estimated fishable biomass in 2011 relative to estimated fishable biomass in 2006 from 2011 production model assessment bootstraps. Values above 1 indicate increase in fishable biomass relative to 2006; the median ratio indicates a 15% increase in fishable biomass since 2006. Bottom Plate: Projected biomass in 2011 considering only catches since 2006 expressed as a ratio to biomass estimated in 2011 considering catch and effort since 2006 across 500 bootstraps of the 2008 and 2011 production model assessments. In this case, the projections from the 2008 assessment are consistent with the estimates of biomass resulting from the 2011 assessment.

Figure 55. Estimated spawning stock biomass from the age-structured analysis indicating recent declines. Histograms on the right represent the bootstrap outcomes from the analysis

Figure 56. ASPIC projections of median biomass ratios for runs $09,10,11$ and 12. Projections are conducted from 2011 until 2025. Catch levels vary from 50,000 until $150,000 \mathrm{t}$ in 10,000 steps.

Figure 57. ASPIC projections of median fishing mortality ratios for runs $09,10,11$ and 12. Projections are conducted from 2011 until 2025. Catch levels vary from 50,000 until $150,000 \mathrm{t}$ in 10,000 steps.

Figure 58. Projection results for the VPA RUN 1 base case.

Figure 59. Projection results for the VPA RUN 2 base case.

Figure 60. Projection results for the VPA RUN 3 base case.

Figure 61. Projection results for the VPA RUN 4 base case.

AGENDA

1. Opening, adoption of the Agenda and meeting arrangements
2. Review of Biological historical and new data.
3. Review of basic information
2.1 Task I (catches)
2.2 Task II (catch-effort and size samples)
2.3 Other information (tagging)
4. Review of catch per unit effort series and other fishery indicators
5. Conversion of catch-at-size to catch-at-age
6. Stock assessment
7.1 Methods and other data relevant to the assessment
7.2 Stock status
7.3 Projections
7. Evaluation of management scenarios
8. Recommendations
9.1 Research and statistics
9.2 Management
9. Other matters
10. Adoption of the report and closure

Appendix 2

LIST OF PARTICIPANTS

SCRS CHAIRMAN

Santiago Burrutxaga, Josu

Head of Tuna Research Area, AZTI-Tecnalia, Txatxarramendi z/g, 48395 Sukarrieta (Bizkaia), Spain
Tel: +34946574000 (Ext. 497); 664303631, Fax: +3494 6572555, E-Mail: jsantiago@azti.es

CONTRACTING PARTIES

BRAZIL

Agrelli Andrade, Humber
Universidade Federal de Santa Catarina - UFSC Depto. Informática e Estatística,INE/CTC Caixa Postal 476, Florianópolis Santa Catarina
Tel: + 55483721 9942, Fax: + 55483721 9566, E-Mail: humber@inf.ufsc.br; humber.andrade@gmail.com

EUROPEAN UNION

Ariz Tellería, Javier

Ministerio de Ciencia e Innovación Instituto Español de Oceanografía, C.O. de Canarias, Apartado 1373, 38080 Santa Cruz de Tenerife, Islas Canarias, Spain
Tel: +34 922549 400, Fax: +34 922549 554, E-Mail: javier.ariz@oceanografia.es
De Bruyn, Paul
AZTI - Tecnalia,Herrera Kaia Portualdea z/g, 20110 Pasaia Gipuzkoa, Spain
Tel: +34 9465740 00, Fax: +34 946572 555, E-Mail: pdebruyn@pas.azti.es
Chassot, Emmanuel
IRD, Centre de Recherche Halieutique Méditerranéenne et Tropicale, Ave. Jean Monnet, B.P. 171, 34203 Sète Cedex, France
Tel: +33 499573 224, Fax: +33 499573 295, E-Mail: emmanuel.chassot@ird.fr

Delgado de Molina Acevedo, Alicia

Ministerio de Ciencia e Innovación Instituto Español de Oceanografía, C.O. de Canarias, Apartado 1373, 38080 Santa Cruz de Tenerife Islas Canarias, Spain
Tel: +34 922549 400, Fax: +34 922549 554, E-Mail: alicia.delgado@ca.ieo.es
Gaertner, Daniel
I.R.D. UR No. 109 Centre de Recherche Halieutique Méditerranéenne et Tropicale, Avenue Jean Monnet - B.P. 171, 34203 Sète Cedex, France
Tel: +33 4995732 31, Fax: +33 4995732 95, E-Mail: gaertner@ird.fr
Murua, Hilario
AZTI - Tecnalia /Itsas Ikerketa Saila,Herrera Kaia Portualde z/g, 20110 Pasaia Gipuzkoa, Spain
Tel: +34 9465740 00, Fax: +34 943 004801, E-Mail: hmurua@azti.es

Pereira, Joao Gil

Universidade dos Açores, Departamento de Oceanografia e Pescas, 9900 Horta, Portugal
Tel: +351 292207 806, Fax: +351 292 207811, E-Mail: pereira@uac.pt

JAPAN

Ijima, Hirotaka

Associate Researcher, Tuna Fisheries Resources Group; Tuna an Skipjack Resources Division, National Research Institute of Far Seas Fisheries, 5-7-1, Chome Orido, Shizuoka-Shi Shimizu-Ku 424-8633
Tel: +81543 36 6044, Fax: +81 54335 9642, E-Mail:

Satoh, Keisuke

Tropical Tuna Section, Tuna and Skipjack Resources Division, National Research Institute of Far Seas Fisheries, Fisheries Research Agency of Japan, 7-1, 5 Chome Orido, Shizuoka-Shi Shimizu-Ku
Tel: +81543366044, Fax: +81 54335 9642, E-Mail: kstu21@fra.affrc.go.jp

SENEGAL

Ngom Sow, Fambaye
Chargé de Recherches, Centre de Recherches Océanographiques de Dakar Thiaroye, CRODT/ISRA, LNERV, Route du Front de Terre, B.P. 2241, Dakar
Tel: +221 33832 8265, Fax: +221 33832 8262, E-Mail: famngom@yahoo.com

UNITED STATES

Brown, Craig A.
NOAA Fisheries Southeast Fisheries Center, Sustainable Fisheries Div., 75 Virginia Beach Drive, Miami, Florida 33149
Tel: +1 305361 4590, Fax: +1 305361 4562, E-Mail: craig.brown@noaa.gov

Cass-Calay, Shannon

NOAA Fisheries, Southeast Fisheries Center, Sustainable Fisheries Div., 75 Virginia Beach Drive, Miami, Florida 33149
Tel: +1 305361 4231, Fax: +1 305361 4562, E-Mail: shannon.calay@noaa.gov
Díaz, Guillermo
Office of Science and Technology (ST4), National Marine Fisheries Service, 1315 East-West Highway, Silver Spring, Maryland 20910
Tel: +1 301713 2363, Fax: +1 301713 1875, E-Mail: guillermo.diaz@noaa.gov
Die, David
Cooperative Unit for Fisheries Education and Research University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149
Tel: +1 305421 4607, Fax: +1 305421 4221, E-Mail: ddie@rsmas.miami.edu
Scott, Gerald P.
SCRS Chairman, NOAA Fisheries, Southeast Fisheries Science Center Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida 33149
Tel: +1 305361 4261, Fax: +1 305361 4219, E-Mail: gerry.scott@noaa.gov

Walter, John

NOAA Fisheries, Southeast Fisheries Center, Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, Florida 33149
Tel: +305365 4114, Fax: +1 305361 4562, E-Mail: john.f.walter@noaa.gov

OBSERVERS FROM COOPERATING NON-CONTRACTING PARTIES, ENTITIES, FISHING ENTITIES

SURINAME REP.

Lieveld, Rene

Deputy Director of Fisheries of Surinam

ICCAT SECRETARIAT

C/ Corazón de María, 8-6 Planta, 28002 Madrid, Spain Tel: + 3491416 5600, Fax: +34 91415 2612, E-Mail: info@iccat.int

Kell, Laurie
Ortiz, Mauricio
Palma, Carlos
Pallarés, Pilar

Appendix 3

LIST OF DOCUMENTS

SCRS/2010/090

SCRS/2011/087 Review of the available Ghana statistics on tropical fisheries. Palma C., Pallares P., Ortiz, M. and Kell, L.

SCRS/2011/127 Attempt to modify creating procedure of catch-at-size of yellowfin caught by Japanese longline tuna fishery in the Atlantic Ocean. Ijima, H., Satoh, K., Okamoto, H.

SCRS/2011/128 Japanese longline CPUE for yellowfin tuna (Thunnus albacares) in the Atlantic Ocean using GLM up to 2010. Satoh, K., Okamoto, H., Ijima, H.

SCRS/2011/129 Standardized abundance index of yellowfin tuna by the Taiwanese longline fleet in the Atlantic Ocean for 1968-2009. Hus, C.C.

SCRS/2011/130 Estadísticas españolas de la pesquería atunera tropical en el océano Atlántico hasta 2010. Delgado de Molina, A., Ariz, J., Santana, J.C. y Sabaté, I.

SCRS/2011/131 Datos estadísticos de la pesquería de túnidos de las Islas Canarias durante el periodo 1975 a 2010. Delgado de Molia, A., Delgado de Molina, R., Santana, J.C. y Ariz. J.

SCRS/2011/136 Statistics of the French purse seine fleet targeting tropical tunas in the Atlantic Ocean (1991-2010). Floch, L., Chassot, E., Damiano, A., Kouassi, Y., Pianet, R. and Chavance, P.

SCRS/2011/137 Statistiques de la pêcherie thonière Europeenne et assimilée dans l'océan Atlantique durant la période 1991-2010. Pianet, R., Delgado, A., Floch, L., Ariz, A., Damiano, A., Sabate, I., Kouassi, Y. et N'Gom Sow, F.

SCRS/2011/138 Standardized catch rates for yellowfin tuna (Thunnus albacares) from the U.S. pelagic longline fishery based upon vessel logbook data (1990-2010). Walter, J.F.

SCRS/2011/139 Standardized catch rates for yellowfin tuna (Thunnus albacares) from the U.S. recreational fishery in the western North Atlantic Ocean, 1986-2010. Cass-Calay, S.L., Walter, J.F. and Brown, C.A.

SCRS/2011/140 Standardized catch rates for yellowfin tuna (Thunnus albacares) in the Gulf of Mexico longline fishery for 1992-2010 based upon observer programs from Mexico and the United States. Brown, C. and Ramírez-López K.

SCRS/2011/141 Preliminary analysis of time spent at temperature relative to the surface temperature for yellowfin tuna monitored with pop-up satellite archival tags in the Gulf of Mexico. Hoolihan, J.P., Wells, R.J.D., Luo, J., Rooker, J.R. and Prince E.D.

SCRS/2011/142 Review ageing protocols for Atlantic yellowfin tuna (Thunnus albacares). Ortiz, M. and Palma, C.

SCRS/2011/143 Fishery analysis of yellowfin caught by Cabo Frio, Rio de Janeiro-Brazil small-size fleet (2003-2010). Pimenta, E.G., Rezende, M., Hazin, H.G., Hazin, F.H.V. and Amorim, A.F.

SCRS/2011/144 Standardization of a CPUE series of yelowfin tuna, Thunnus albacares, caught by Brazilian longliners in the southwestern Atlantic Ocean by generalized linear mixed models. Hazin, H., Hazin, F.H.V., Amorim, C.A., Travassos, P., Freduo, T.

SCRS/2011/145 Preliminary results on the catch composition in small-scale tuna fisheries associated to an offshore buoy in the western equatorial Atlantic. Silva, G.B., Azevedo, D.V.D., Chaves, D. C.B., Fonteles-Filho, A.A., Hazin, H.

SCRS/2011/146 An evaluation of a harvest control rule based on limits and targets: An example based on yellowfin tuna. Kell, L., Magnusson, De Bruyn, P. and Mosqueira, I.

SCRS/2011/147 An evaluation of the performance of the Kobe Strategy Matrix; An example based upon a biomass dynamic assessment mode. Kell, L., Magnusson, A., De Bruyn, P. and Mosqueira, I.

SCRS/2011/148 A Kobe Strategy Matrix Based upon Probabilistic Reference Points; An Example Using a Biomass Dynamic Assessment Model. Kell, L., Magnusson, A., De Bruyn, P. and Mosqueira, I.

Appendix 4

Estimation of Combined Indexes

Combined indexes were estimated using a GLM approach with the following model formulation:

$$
\log (\text { index })=\text { Year }+ \text { Source }+\varepsilon
$$

Where 'Source' identifies the index (fleet) included in the model and ε is the error term. Original indexes estimated as number of fish per unit of effort were transformed into biomass by multiplying the index value times the fleet specific annual average weight of the fish estimated from catch-at-size data expanded to the Task I data (file SOP_casYFT7010_v2.xsls provided by the Secretariat). Annual weighting factors (Table Appendix 4.1) were estimated for each fleet by counting the number of $5^{\circ} \times 5^{\circ}$ squares where each fishery operated and estimating the proportion to the total number of squares fished for each year. This approach allowed capturing the spatial expansion/contraction experienced by different fleets over time. The index weights were re-scaled so that they would add up to 1.0 each year.

Four different combined indexes were estimated. Values of the indexes used as input for the estimation of the different combined indexes are presented in Table Appendix 4.2. When possible, the input indexes were scaled to their respective mean value for the period 1993-2001. The first estimated combined index (Index 1) was prepared to run in the ASPIC continuity case. The 13 indexes used to estimate this combined index were the following:

Fleet	Period
Japan longline	$1965-2010$
Gulf of Mexico longline	$1993-2010$
U.S. rod and reel recreational	$1986-2010$
Brazil longline	$1986-2006$
Uruguay longline	$1981-2006$
Chinese Taipei longline	$1968-2009$

Canarias Islands baitboat	$1980-2006$
Venezuela purse seine	$1983-2005$
Brazil baitboat	$1981-2006$
U.S. longline (Atl. only)	$1987-2010$
EU Dakar baitboat	$1969-2010$
Venezuela longline	$1991-2001$
EU purse seine 3\%	$1970-2010$

A second combined index (Index 2) was estimated by replacing the Brazil Longline index with an updated version that covered the period 1980-2010 and by splitting the Chinese Taipei into 4 different time periods (and, therefore, defining 4 new different fisheries): 1968-1980, 1981-1992, 1993-2002, and 2003-2009. However, by splitting the Chinese Taipei series into four different series, it was not possible to scale all of them to their mean value of the period 1993-2001. To scale those Chinese Taipei series that did not overlap with 1993-2001, an average value for all scaled series in each one of those time periods was estimated. The average value of the unscaled Chinese Taipei index for that time period was then divided by the estimated average for the other fleets. Finally, each individual value of the Chinese Taipei index was divided by the ratio obtained in the previous step.

The third index (Index 3) was constructed with the same indexes used in the second case except for the EU purse seine index with a 3% increase in catchability (EU PS 3\%). The original EU PS 3\% covered the entire period 1970-2010. For this index only the period 1970-1990 was used, and for the period 1991-2010 two new indexes were introduced: an EU PS (free school) with a 1% increase in catchability and an EU-Spain PS FAD. Both new indexes were equally weighted using the same weighting factors previously applied to the EU PS 3\% index.

The final combined index (Index 4) used the same indexes as in the third case, except that the EU PS 3\% was replaced by an EU PS 7\% index. All weighted combined indexes are shown in Figure Appendix 4.1 and their values are presented in Table Appendix 4.3.

To better assess the influence of some indexes on the combined index (fourth case), 3 combined indexes were estimated by removing the Chinese Taipei (all four series), the Brazil Longline, and the EU PS 7\% together with the EU PS 1% and the EU-Spain PS FAD indexes one at the time. The results indicated that of all those indexes, the Chinese Taipei index had the biggest influence of the estimated combine index (Figure Appendix 4.2).

Table Appendix 4.1. Weighting factors used in the calculation of the different combined indexes.

	LL							$B B$				PS	
Year	$J A P$	BRA	$\begin{aligned} & \text { Chi- } \\ & \text { Tai } \\ & \hline \end{aligned}$	GOM	USA Atl	URU	VEN	BRA	DKR	CAN	$U S R R$	$\begin{aligned} & E U P S \\ & 3 \% \end{aligned}$	VEN
1965	1												
1966	1												
1967	1												
1968	0.6580		0.3420										
1969	0.4723		0.4383						0.0894				
1970	0.4946		0.4219						0.0835				
1971	0.5393		0.3081						0.0770			0.0756	
1972	0.4808		0.3276						0.0843			0.1073	
1973	0.4444		0.3171						0.1003			0.1382	
1974	0.3778		0.4099						0.0815			0.1309	
1975	0.5011		0.3244						0.0492			0.1253	
1976	0.3869		0.4453						0.0389			0.1290	
1977	0.3366		0.4703						0.0421			0.1510	
1978	0.3451		0.4457						0.0299			0.1793	
1979	0.4265		0.3529						0.0500			0.1706	
1980	0.4038		0.3654						0.0470	0.0171		0.1325	0.0342
1981	0.4241		0.3298			0.0070		0.0297	0.0070	0.0140		0.1606	0.0279
1982	0.4360		0.3316			0.0067		0.0354	0.0067	0.0135		0.1431	0.0269
1983	0.3779		0.2939			0.0076		0.0305	0.0382	0.0153		0.1947	0.0420
1984	0.4032		0.2842			0.0071		0.0586	0.0355	0.0142		0.1208	0.0764
1985	0.4438		0.2695			0.0058		0.0461	0.0173	0.0115		0.0965	0.1095
1986	0.3705	0.0372	0.3497			0.0060		0.0268	0.0253	0.0119	0.0595	0.0967	0.0164
1987	0.3305	0.0470	0.2564		0.1396	0.0057		0.0356	0.0171	0.0114	0.0570	0.0855	0.0142
1988	0.3959	0.0509	0.1063		0.1907	0.0058		0.0320	0.0291	0.0116	0.0582	0.1063	0.0131
1989	0.4401	0.0404	0.0952		0.1905	0.0058		0.0390	0.0231	0.0115	0.0577	0.0851	0.0115
1990	0.4149	0.0432	0.1432		0.1676	0.0054		0.0311	0.0270	0.0108	0.0541	0.0878	0.0149
1991	0.3638	0.0509	0.2380		0.1008	0.0042	0.0062	0.0239	0.0125	0.0083	0.0416	0.1414	0.0083
1992	0.3072	0.0937	0.1667		0.1155	0.0044	0.0065	0.0370	0.0163	0.0087	0.0436	0.1863	0.0142
1993	0.2522	0.1429	0.1970	0.0236	0.1044	0.0039	0.0069	0.0266	0.0099	0.0079	0.0394	0.1724	0.0128
1994	0.2733	0.1320	0.2422	0.0226	0.0924	0.0038	0.0075	0.0160	0.0113	0.0075	0.0377	0.1433	0.0104
1995	0.2700	0.1240	0.2181	0.0211	0.1003	0.0035	0.0070	0.0176	0.0132	0.0070	0.0352	0.1733	0.0097
1996	0.2693	0.0873	0.2702	0.0223	0.0947	0.0037	0.0074	0.0149	0.0139	0.0074	0.0371	0.1606	0.0111
1997	0.2814	0.0932	0.2690	0.0228	0.1093	0.0038	0.0076	0.0095	0.0124	0.0076	0.0380	0.1369	0.0086
1998	0.2647	0.1373	0.2683	0.0214	0.1007	0.0036	0.0062	0.0143	0.0080	0.0071	0.0357	0.1275	0.0053
1999	0.2301	0.2190	0.2827	0.0204	0.0628	0.0034	0.0195	0.0042	0.0102	0.0068	0.0340	0.0985	0.0085
2000	0.2619	0.1456	0.3166	0.0185	0.0562	0.0031	0.0254	0.0108	0.0108	0.0062	0.0308	0.1063	0.0077
2001	0.2652	0.1518	0.2700	0.0192	0.0615	0.0032	0.0264	0.0112	0.0096	0.0064	0.0319	0.1350	0.0088

2002	0.2093	0.2257	0.3034	0.0196	0.0564	0.0033	0.0147	0.0114	0.0065	0.0327	0.1112	0.0057
2003	0.2621	0.1379	0.2825	0.0233	0.0485	0.0039	0.0350	0.0146	0.0078	0.0388	0.1369	0.0087
2004	0.2389	0.1639	0.3114	0.0198	0.0445	0.0033	0.0371	0.0115	0.0066	0.0329	0.1219	0.0082
2005	0.1988	0.1715	0.2471	0.0163	0.0980	0.0027	0.1307	0.0095	0.0054	0.0272	0.0803	0.0123
2006	0.2510	0.2181	0.2693	0.0232	0.0569	0.0039	0.0290	0.0106	0.0077	0.0386	0.0917	
2007	0.2354	0.1188	0.2915	0.0269	0.0650	0.0045	0.0370	0.0157	0.0090	0.0448	0.1513	
2008	0.2639	0.1298	0.2425	0.0258	0.0590	0.0086	0.0279	0.0236	0.0086	0.0429	0.1674	
2009	0.2639	0.1298	0.2425	0.0258	0.0590	0.0086	0.0279	0.0236	0.0086	0.0429	0.1674	
2010	0.2639	0.1298	0.2425	0.0258	0.0590	0.0086	0.0279	0.0236	0.0086	0.0429	0.1674	

Table Appendix 4.2. Indices of abundance in weight used to estimate the different combined. The indexes were scaled to the mean values of the period 1993-2001 (see text for details).

Year	$\begin{aligned} & \hline J A P \\ & L L \end{aligned}$	$\begin{aligned} & \hline G O M \\ & L L \end{aligned}$	$\begin{gathered} \hline U S A \\ R R \end{gathered}$	$\begin{gathered} \hline B R A \\ L L \end{gathered}$	$\begin{gathered} \hline U R U \\ L L \end{gathered}$	$\begin{gathered} \hline T A I \\ L L \end{gathered}$	$\begin{gathered} C A N \\ B B \end{gathered}$	$\begin{gathered} \hline V E N \\ P S \end{gathered}$	$\begin{gathered} \hline B R A \\ B B \end{gathered}$	$\begin{gathered} \hline U S A \\ L L \end{gathered}$	$\begin{gathered} E U D K R \\ B B \end{gathered}$	$\begin{gathered} \hline V E N \\ L L \end{gathered}$	$\begin{gathered} E U \\ P S 3 \% \end{gathered}$	$\begin{gathered} \hline B R A \\ L L \end{gathered}$	$\begin{gathered} E U \\ P S 1 \% \end{gathered}$	$\begin{gathered} \hline E U \\ P S F A D \end{gathered}$	$\begin{array}{r} E U \\ P S 7 \% \end{array}$
1965	3.87																
1966	2.69																
1967	5.30																
1968	4.34					3.16											
1969	3.81					2.33					1.20						
1970	2.87					1.46					1.16		1.47				2.943
1971	2.38					1.05					1.15		1.25				2.347
1972	3.17					0.78					1.16		1.39				2.435
1973	2.13					0.73					1.07		1.40				2.294
1974	3.03					0.44					1.65		1.28				1.954
1975	2.19					0.42					0.74		1.37				1.967
1976	2.27					0.42					0.83		1.36				1.818
1977	1.77					0.36					1.23		1.34				1.669
1978	2.59					0.28					0.50		1.22				1.420
1979	3.13					0.36					1.13		1.21				1.319
1980	1.89				0.00	0.27	0.05				0.00		1.00	0.945			1.022
1981	2.46				1.40	0.60	0.10		4.47		1.83		1.07	0.263			1.055
1982	2.14				1.90	0.66	0.50		0.68		1.74		0.92	0.267			0.867
1983	2.06				0.82	0.50	0.88	2.20	1.85		1.77		0.80	0.609			0.725
1984	2.23				0.41	0.63	3.27	0.98	0.90		2.52		0.63	0.260			0.551
1985	1.46				0.73	0.54	1.42	1.65	0.67		1.94		1.08	0.193			0.912
1986	1.83		1.42	1.39	1.12	0.57	0.91	0.97	0.67		2.91		1.17	0.377			0.947
1987	1.91		0.78	1.76	1.08	0.45	2.04	0.74	0.95	1.77	3.27		1.02	0.647			0.798
1988	1.91		0.37	1.46	1.38	0.48	2.13	1.02	1.05	2.11	3.16		0.97	0.306			0.728
1989	1.53		0.64	1.48	0.55	1.26	1.26	2.21	0.96	1.68	0.79		1.21	0.486			0.873
1990	1.99		0.27	2.50	0.50	1.12	3.20	1.13	1.99	1.62	2.92		1.31	0.738			1.211
1991	1.54		0.43	1.37	1.80	0.75	2.83	1.16	0.60	1.37	1.08	1.11	1.24	0.521	0.973	1.138	
1992	1.76	1.46	0.29	0.57	2.83	0.67	1.64	0.78	0.95	1.60	2.91	1.63	1.13	0.513	1.220	0.837	
1993	0.84	1.12	0.77	0.66	0.54	0.83	0.75	0.89	1.12	0.90	2.48	2.35	1.08	2.388	0.979	1.265	
1994	1.39	1.51	1.97	0.74	2.07	1.10	0.45	1.09	0.67	0.85	1.60	1.12	1.06	0.549	1.042	0.995	
1995	1.01	0.99	2.47	0.50	0.85	1.26	0.19	0.49	0.33	1.32	0.91	0.77	1.06	0.837	0.972	1.231	
1996	1.08	0.67	0.58	1.29	1.61	1.48	2.85	1.10	0.93	1.23	1.13	0.98	1.01	1.172	1.048	1.235	
1997	0.83	0.96	0.26	1.02	0.53	1.19	0.34	0.74	1.35	1.09	0.79	0.60	0.94	0.861	1.224	0.754	
1998	0.97	0.81	0.46	1.30	0.60	1.00	4.03	0.60	1.04	0.71	0.33	1.02	0.99	0.557	1.051	0.573	
1999	1.01	1.20	0.77	1.22	1.21	0.81	0.38	0.88	0.36	1.00	0.83	0.93	0.82	1.070	0.978	1.179	
2000	1.11	0.90	0.86	1.27	1.60	0.80	0.01	1.07	0.00	0.96	0.37	0.29	0.97	0.929	0.744		
										96							

2001	0.75	0.84	0.84	1.02		0.54	0.00	2.14	2.19	0.94	0.57	0.95	1.06	0.637	0.961	0.767
2002	0.75	0.82	0.74	0.80	0.97	0.79	0.13	1.32	0.93	0.64	0.97		1.16	0.535	1.295	0.848
2003	0.90	1.07	0.64	1.71	1.47	1.09	0.24	0.65	0.76	0.53	1.02		1.08	0.891	0.755	1.408
2004	1.16	0.76	0.57	2.08	1.06	1.21	0.20	0.39	0.29	1.10	0.88		0.89	0.693	1.131	1.006
2005	0.87	0.73	0.46	0.25	2.23	1.67	0.03	0.20	0.33	1.07	0.59		0.96	0.109	0.812	1.074
2006	1.17	0.64	0.62	0.64	0.88	0.99	0.08		1.21	1.19	0.67		1.17	0.232	1.007	0.933
2007	1.36	0.74	0.62			0.76	0.35			1.52	0.68		0.92	0.551	0.909	1.018
2008	1.21	0.67	0.31			0.68				0.73	0.52		1.12	0.201	1.204	0.628
2009	1.21	0.78	0.15			0.72				0.59	0.57		0.93	0.658	0.900	1.293
2010	0.93	0.51	0.19							0.82	1.22		0.80	0.831		1.404

Table Appendix 4.3. Estimated weighted combined indexes of abundance. Refer to text for explanation of each index.

Year	Index 1	Index 2	Index 3	Index 4
1965	2.443	2.430	2.537	2.581
1966	1.645	1.690	1.765	1.795
1967	3.235	3.327	3.473	3.533
1968	3.089	3.803	4.019	4.140
1969	2.659	3.210	3.408	3.529
1970	1.913	2.178	2.341	2.521
1971	1.429	1.665	1.785	1.913
1972	1.503	1.754	1.894	2.051
1973	1.217	1.400	1.521	1.654
1974	1.172	1.364	1.484	1.601
1975	1.043	1.173	1.270	1.350
1976	0.971	1.144	1.244	1.319
1977	0.685	0.987	1.079	1.138
1978	0.827	0.970	1.065	1.112
1979	1.017	1.278	1.398	1.437
1980	0.628	0.855	0.928	0.945
1981	1.065	1.212	1.305	1.284
1982	1.000	1.121	1.202	1.178
1983	1.011	1.069	1.157	1.118
1984	0.986	1.102	1.175	1.146
1985	0.834	0.946	1.004	0.980
1986	0.899	1.114	1.183	1.148
1987	0.926	1.075	1.132	1.100
1988	1.160	1.108	1.169	1.128
1989	1.114	1.110	1.166	1.131
1990	1.399	1.296	1.363	1.348
1991	0.996	1.049	1.002	1.005
1992	0.982	1.046	1.025	1.029
1993	0.757	0.919	0.845	0.852
1994	0.887	0.916	0.908	0.916
1995	0.799	0.911	0.862	0.868
1996	0.932	0.976	0.960	0.968
1997	0.738	0.770	0.806	0.812
1998	0.767	0.736	0.713	0.718
1999	0.769	0.838	0.796	0.802
2000	0.802	0.760	0.745	0.751
2001	0.655	0.607	0.590	0.595
2002	0.741	0.674	0.671	0.676
2003	1.010	0.765	0.760	0.766
2004	1.104	0.781	0.798	0.804
2005	0.754	0.530	0.543	0.546
2006	0.866	0.632	0.631	0.636
2007	1.105	0.727	0.726	0.733
2008	0.910	0.579	0.563	0.569
2009	0.852	0.645	0.677	0.683
2010	0.571	0.676	0.757	0.765

Figure Appendix 4.1. Estimated weighted combined indexes of abundance. For comparison purposes, each series was scaled to their average value. Refer to text for explanation of each series.

Figure Appendix 4.2. Weighted estimated indexes of abundance. The series labeled 'Tai' corresponds to the 'Index 4' estimated without the Chinese Taipei longline index. Similarly, the series labeled 'BRA' and 'EU7\%' correspond to the 'Index 4' estimated without the Brazilian longline and all EU PS fisheries, respectively. For comparison purposes, each series was scaled to their average value. Refer to text for explanation of the 'Index 4'.

STANDARDIZATION OF THE CATCH RATES OF THE EUROPEAN AND ASSOCIATED BAITBOAT FISHERY BASED IN DAKAR

Response variable: $\log (\mathrm{CPUE}+0.1)$
Explanatory variables:

Year $=c(1969,1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1981,1982,1983,1984,1985,1986,1987$, 1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006, 2007,2008,2009,2010),

Quarter=1:4,
Fleet=c("MIXFIS","ESPETRO","FRAETRO","NEISEN")))
Model

Mtot $<-$ glm $(\log ($ UYFT +0.1$) \sim$ Year + Quarter + Fleet + Year:Quarter, family $=$ gaussian $)$

Model selection with library(MASS)
Mtot.step<-stepAIC(Mtot)
Mtot.step\$anova (original model selected)
Predicted values performed with an R Lsmeans procedure

Figure Appendix 5.1. Standardized CPUE for baitboats operating from Dakar.

Figure Appendix 5.2. Diagnostics for standardized model.

Appendix 6

STANDARDIZATION OF BRAZILIAN LONGLINE CPUE SERIES CONDUCTED DURING THE ASSESSMENT MEETING

Recently, cluster analysis has been applied in the analysis of fishing data in Brazilian tuna longline fishery, aiming at categorizing fishing effort based on the proportion of the several species in the catches, as a way to detect changes in fishing tactics (target species). Presented for the first time in 2007, this approach generated a good discussion about its use in the standardizations performed by the Brazilian Delegation. The main advantage of such methods, instead of using the percentage of a single species as an expression of the targeting strategy, relies on the fact that they consider the frequency distribution of all species in each set, thus potentially avoiding spurious patterns caused by trends in a single species. However, this method could overestimate catch rates since fishing sets with low catches of the target species could be placed in a separate cluster rather than simply representing low catch rates.

During previous meetings, the working group recognized the diverse characteristics of longline vessels fishing under the Brazilian flag and it was recognized that common standardization methods might not be appropriate for the Brazilian CPUE. While cluster analysis to account for the targeting strategy in CPUE standardization might induce bias, resulting in an artificially higher CPUE failing to account for changes in targeting strategy may cause an opposite bias since some part of the fishing effort deployed might not have been directed to the target species. To mitigate such biases, we used cluster analyses to identify specific fishing strategies and then used these clusters as factors in the CPUE modeling.

Fleet strategy methodology

Since 1956, when longline operations in the Southern Atlantic begun, several changes in fishing technology and strategies have occurred, strongly influencing catch composition. A number of models, such as GLM (Generalized Linear Model), have been applied to minimize the effects of operational variables on the estimation of CPUE, through standardization. However, information on fishing tactics and even technological changes is often not available, leading to serious errors in the estimation of abundance indices.

Previous analyses of the Brazilian longline fishery (Hazin, 2006, Carvalho et al. 2011) indicated that the different fleets operating in the Southwest Atlantic choose different fishing strategies targeting different resources and hence have a different catch composition. This analysis uses two different methods to partition the longline sets into different strategies: (i) identification from the species composition alone and (ii) identification from species composition and operational and gear characteristics combined (Figure Appendix 6.1).

Two methods were used to determine fishing strategy. The first one, Fleet Strategy I, followed the clustering procedures described in Hazin et al. 2011. In the second method (Fleet Strategy 2) a matrix was constructed similar to the first method but now considering the seasonal (month) and operational factors (time fishing: night and day, boat length: $<25 \mathrm{~m}$ and $>25 \mathrm{~m}$, hooks/basket: 3-6; 7-10; >10) using Multidimensional Scaling (MDS).

Figure Appendix 6.1 Method used to partition the longline sets into different strategies.

Results and discussion

During the 2008 yellowfin tuna stock assessment meeting, the Brazilian CPUE series presented were estimated using the target species as a factor in the GLM. CPUE predictions were obtained for every year, fixing the level of remaining factors at the level with the highest number of observations. After years of discussion regarding the topic, now a consensus has been reached. The use of the current fleet-strategy factor in the Brazilian standardizations should be replaced

A new standardized CPUE series was built using GLMM. Three data sets were used for standardized CPUE: all data; fleets with 5 years of operations and fleets with 7 years of operations. The initial analyses obtained predicted values for each observation and then took the mean of these for each year. After some discussion, the Group suggested that the estimates should be calculated by creating a balanced prediction matrix similar to the SAS lsmeans so that the estimates are not unduly influenced by the unbalanced data. Both standardized series showed a decline after the year 2000 (Figure Appendix 6.2) but the new estimated CPUE presented a significant difference from the previous one, most notable in the divergences from the nominal in the early years. In the future it is recommended to use a balanced prediction matrix to calculate the year effect in a balanced manner.

Figure Appendix 6.2. Standardized catch rate of yellowfin tuna in the South Western Atlantic by model 1 (paper) and model 1(pred matrix).

To compare the effect of using the prediction matrix in R or lsmeans in SAS, a comparison was performed using the two software packages and the same delta lognormal model structure. The two CPUE estimates were similar but did show some divergence which was likely because the R dataset was slightly different and included all of the data rather than a subset of the vessels (Figure Appendix 6.3). The Group decided to use the model constructed in R and this model was used in the VPA and ASPIC runs. The diagnostics for the Delta lognormal model (models 1 and 2) are presented in Figures Appendix 6.4-6.6.

Subsequently, the index constructed in R was revised to use the same dataset used in the SAS model which was subset for vessels that had at least 5 or 7 years of effort (Figure Appendix 6.7). The SAS and R models are almost exactly the same in this case. Unfortunately, this revision occurred too late in the modeling process to be included in the VPA or ASPIC runs; however, it is likely the model run most consistent with the decisions made by the Group.

Figure Appendix 6.3. Standardized catch rates of yellowfin tuna in the South Western Atlantic by different delta lognormal models using SAS with lsmeans and R with a prediction matrix.

Figure Appendix 6.4. Residual analysis of the log-normal model fitting. Left: Model 1 delta lognormal and Right: Model 2 delta lognormal.

Figure Appendix 6.5. Residual analysis of the log-normal model fitting. Left: Model 1 delta lognormal and Right: Model 2 delta lognormal.

Figure Appendix 6.6. Plot standardized deviance residuals and explanatory variable of the linear predictor. Left: Model 1 delta lognormal and Right: Model 2 delta lognormal.

Figure Appendix 6.7. Standardized catch rate of yellowfin tuna in the South Western Atlantic revised to include only vessels with either a 5 or 7 year history.

Appendix 7

CHANGES IN FISHING POWER OF THE TROPICAL PURSE SEINE FLEET

Background

Many studies have reported that changes in technology and fishing strategy of the tropical tuna purse seine fleets have led to significant changes in capacity and fishing power of individual vessels (Gaertner and Sachi 2000, Suzuki et al 2003, Joseph 2005). Few studies, however, have estimated the magnitude of these changes for the entire fleet and calculated the increased catchability of tuna resulting from such fishing power increases. Gascuel et al (1993) estimated increases of 17% per year and 9% per year for the period of 1980-1990 for the French fleet and the Spanish fleet, respectively by using a VPA. Reid et al (2005) estimated with the data
envelopment analysis method of Charnes, Cooper and Rhodes (1978) a 60% increase in the period 1994-2002 for the eastern tropical Pacific purse seine fleet that also targets tropical tunas.

The Tropical Working Group assumed in its 2008 yellowfin tuna assessment that a 3% annual increase in q would be an appropriate correction for the nominal CPUE purse seine indices. During that meeting, however, it was discussed that this assumption did not make these indices totally consistent with the indices from other fleets possibly indicating that the assumed rate in q increase was underestimated. During the 2008 yellowfin assessment meeting, the Working Group attempted to estimate which rate of catchability increase would generate a purse seine CPUE index that was more consistent with the biomass trend estimated by the assessment models. The estimate in the increase in q obtained during the 2008 assessment was of 5%. This Appendix reports further analyses of the type initiated by the Group in 2008.

Methods

The Working Group made the following assumptions:

- Production models and VPA provide an accurate description of fishing mortality and stock abundance of yellowfin,
- Nominal CPUE from the purse seine fishery provides a biased relative abundance index, with the amount of bias related to the unaccounted annual changes in catchability,
- Annual percent changes in catchability are approximately constant, for certain periods of the development of the fishery, so that:

$$
\begin{equation*}
q_{\text {year }}^{\prime}=q_{\text {year }-1}^{\prime}(1+\Delta q) \tag{1}
\end{equation*}
$$

Note that the above equation is the same used by Gascuel et al (1993) to estimate increases in q and it generates an exponential increase in the absolute value of q as a function of year, not a linear increase (Figure Appendix 7.1).

Figure Appendix 7.1. Changes in catchability for different annual rates of exponential increase.

Results from VPA run5 from the 2008 assessment were used to estimate relative q by year for the purse seine. This was accomplished by:

$$
\begin{align*}
& q_{\text {year }, p s}=\frac{F_{\text {year }, p s}}{f_{\text {year }, p s}} \tag{2}\\
& F_{y \text { year }, a g e, p s}=F_{\text {year }, a g e} \frac{C_{\text {year }, a g e, p s}}{C_{\text {year }, a g e}} \tag{3}\\
& F_{y e a r, p s}=\sum_{\text {age }} F_{\text {year }, a g e} \tag{4}\\
& r e l q_{\text {year }, p s}=\frac{q_{\text {year }, p s}}{\operatorname{mean}\left(q_{y e a r, p s}\right)} \tag{5}
\end{align*}
$$

Where	$f_{\text {year }, p s}$	nominal fishing effort (fishing days) in the purse seine for a given year
rel $_{\text {year }, p s}$	relative catchability of the purse seine scaled to its mean for a given year	
$F_{\text {year }, p s}$	fishing mortality produced by the purse seine in a given year for all age groups	
$C_{\text {year }, p s}$	catch of the purse seine for a given year for all age groups	
$F_{\text {year,age,ps }}$	fishing mortality by the purse seine in a given year for a given age	
$C_{\text {year }, \text { age }, p s}$	catch of the purse seine in a given year for a given year	

Similarly relative catchability of the purse seine was calculated from production model estimates of biomass obtained in (2008) by using a logistic production model with MSY $=150,000, \mathrm{~B}_{\text {MSY }}=237,131$ and $\mathrm{B}_{1949}=\mathrm{K}=$ 644,588 . These parameters represent approximately case 08 from the 2008 yellwofin assessment.

$$
\begin{align*}
& F_{\text {year }, p s}=F_{y \text { year }} \frac{C_{\text {year }, p s}}{C_{\text {year }}} \tag{6}\\
& F_{\text {year }}=\frac{C_{\text {year }}}{\bar{B}_{\text {year }}} \tag{7}\\
& \bar{B}_{\text {year }}=\frac{B_{\text {year }+1}+B_{\text {year }}}{2} \tag{8}
\end{align*}
$$

Where,
$B_{\text {year }}$ is the estimated biomass by the production model for a given year which corresponds to the biomass at the end of the calendar year, and
$\bar{B}_{\text {year }}$ is the average biomass during the year.
The relative catchability for the purse seine from a given year was then calculated from equation (1), as it was the case for the VPA results.

Note that in the production model case, estimates of F and B were partially conditioned by the assumption made in 2008 that the annual increase in q for the purse seine was of 3%. Estimates of q obtained from the VPA were partially conditioned by the same assumption but only for the period 1970-because for the later period the free school and FAD indices were used and those indices were not corrected by an annual increase in q. Although it would be best to have used estimates of q not conditioned by the old assumption of the 3% annual rate of increase in q such estimates were not available. It is hoped that given that in both the production model and the VPA implementations conducted in 2008 purse seine indices did not fit the models well that those indices were not very influential in the model fit and the final estimates of biomass and fishing mortality.

Once the two sets of relative q were estimated, one from the VPA and one from the production model, the data were broken up into three periods where it was assumed that there would be a constant annual increase in q . The first period corresponded to the period prior to substantial development of the FAD fishery 1970-1989; the second the period of fast development of the FAD fishery 1990-1999 and the third the most recent period 20002006.

A single $\quad \Delta q_{\text {period }} \quad$ was estimated for each period by minimizing the joined sum of squares:

$$
S S Q=\sum_{\text {period }} \sum_{\text {year }}\left(q_{\text {year }}-q_{y \text { year }}^{\prime}\right)_{V P A}^{2}+\left(q_{\text {year }}-q_{y \text { year }}^{\prime}\right)_{P M}^{2}
$$

Where $q_{y e a r}^{\prime}$ was calculated from equation (1) for each period. It was assumed that the q calculated for the end of each period was the q for the beginning of the next period. As a result only two additional nuisance
parameters were to be estimated, the q_{1970} for each the VPA estimates and the production model. Parameters were estimated with the non linear minimization routine provided by the SIMPLEX method (SOLVER) on Microsoft Excel. A total of six different models were attempted depending which parameters were considered to be period or method specific (Table Appendix 7.1). These models represent alternative nested hypotheses about model complexity and are thus suited for hypothesis testing with likelyhood ratio tests (Figure Appendix 7.2).

Table Appendix 7.1. List of models considered depending on the level of complexity considered and estimates of catchability parameters for each model.

								Delta q		
Model	Delta q method specific	$q 1970$ method specific	No of periods	SSQ	No. of params	Method	$\begin{gathered} 1970- \\ 1989 \end{gathered}$	$\begin{gathered} 1990- \\ 1999 \end{gathered}$	$\begin{gathered} 2000- \\ 2006 \end{gathered}$	q1970
A	no	no	2	2.013	3	Prod mod	0.073		0.017	0.226
						VPA				
B	no	yes	2	1.852	4	Prod mod	0.073		0.016	0.232
						VPA				0.214
C	no	no	3	2.013	4	Prod mod	0.072	0.073	0.016	0.228
						VPA				
D	no	yes	3	1.852	5	Prod mod	0.073	0.074	0.016	0.233
						VPA				0.214
E	yes	yes	2	1.440	6	Prod mod	0.088		0.009	0.164
						VPA	0.058		0.025	0.306
F	yes	yes	3	1.404	8	Prod mod	0.102	0.080	0.013	0.134
						VPA	0.053	0.064	0.021	0.329

Results

The most parsimonious model is one where the q_{1970} and the increase in catchability are different between the VPA estimates and the production model estimates but not between the first and second period. This model explains about 95% of the variance in relative catchability. It suggest an increase in catchability for the period 1970-1999 of 9% from the production model and 6% from the VPA. For the most recent period the estimates are of 1% from the production model and 2% for the VPA. A much simpler model, however, with a common q_{1970} and the same rate of increase in q for all periods and both data types explains 91% of the variance. This model suggests an annual increase in q of 6% per year.

Figure Appendix 7.2. Schematic representation of the complexity and nested relationship between different models considered.

Table Appendix 7.2. Likelihood ratio test for competing models in Table Appendix 7.1.

Likehood ratio tests				Increase in variance explained (\%)
	$d f$	x^{2}	p	
A vs B	1	4.36	0.037	0.55
A vs C	1	0.00	0.946	0.00
B vs D	1	0.00	0.976	0.00
C vs D	1	4.35	0.037	0.55
B vs E	2	13.07	0.001	1.40
E vs F	2	1.31	0.520	0.12
C vs F	4	18.73	0.001	2.07
A vs F	5	18.74	0.002	2.07
A vs E	3	17.43	0.001	1.95
B vs E	2	13.07	0.001	1.40

Figure Appendix 7.3. Estimates of annual relative catchability of purse seine from VPA (diamonds) and production models (squares). Fit corresponds to model B with a rate of annual increase of 7% for the period 1970-1999 and 1.5\% from 2000 to 2006.

Discussion

Our estimates of annual increase in fishing power are similar to the 6% annual rates obtained by Reid et al (2005) for the purse seine fleet of the tropical eastern Pacific and much lower than the rates obtained by Gascuel et al in 1993. Both of these studies were conducted over a smaller range of years, and we do not discount that at certain periods the rate of increase may be greater than the average rate calculated herein. In addition, the study of Gascuel et al (1993) acknowledge that part of the gains in efficiency estimated in their study relate to the area fished, which tipically are not considered by other studies and are certainly not part of the non-spatially structured models used in the assessment of Atlantic yellowfin tuna. Finally, the study of Gascuel et al (1993) was conducted at a time where the data for 1980-1990 were recently obtained and it has been shown repeatedly in yellowfin assessment that the most recent estimates of biomass and fishing mortality from VPA suffer from retrospective trends, thus such estimates are less reliable than those obtained at a later time when more data have accumulated

Given that the purpose of this analysis was to determine period specific estimates of change in catchability, the Working Group decided to use the results from model B which explains 94% of the variance (Figure Appendix 7.3). This model suggests that the annual rate of increase in q was 7% from 1970 to 1999 and has been at about 1.5\% from 2000-2006.

References

Charnes, A., Cooper, W.W. and Rhodes, E. 1978, Measuring the efficiency of decision making units. European Journal of Operational Research, 2: 429-444.
Gaertner, D. and Sacchi, J. 2000, Changes over time in net dimensions in French tropical purse seiners operating in the Atlantic Ocean. Collect. Vol. Sci. Pap. ICCAT, 51(2): 571-580.

Gascuel, D., Fonteneau, A. and Foucher, E. 1993, Analyse de l'évolution des puissances de pêche par l'analyse des cohortes: application aux senneurs exploitant l'albacore (Thunnus albacares) dans l'Atlantique Est. Aquatic Living Resources, 6(1): pp.15-30.

Joseph, J. 2005, Past developments and future options for managing tuna fishing capacity, with special emphasis on purse-seine fleets. In: Bayliff, W.H., Leiva Moreno, J.I. de, Majkowski, J. (eds.) Second Meeting of the Technical Advisory Committee of the FAO Project "Management of Tuna Fishing Capacity: Conservation and Socio-economics". Madrid, Spain, 15-18 March 2004. FAO Fisheries Proceedings. No. 2. Rome, FAO. 2005. p 281-323.

Reid, C., Kirkley, J.E., Squires, D., Ye, J. 2005, An analysis of the fishing capacity of the global tuna purseseine fleet. In: Bayliff, W.H.;,Leiva Moreno, J.I. de, Majkowski, J. (eds.) Second Meeting of the Technical Advisory Committee of the FAO Project "Management of Tuna Fishing Capacity: Conservation and Socio-economics". Madrid, Spain, 15-18 March 2004. FAO Fisheries Proceedings. No. 2. Rome, FAO. 2005. pp 117-157.

Suzuki, Z., Miyabe, N., Ogura, M., Shono, H. and Uozumi, Y. 2003, Some important factors in controlling fishing capacity in tuna fisheries Pascoe, S., Gréboval, D. (eds.) Measuring capacity in fisheries. FAO Fisheries Technical Paper. No. 445. Rome, FAO. p 91-98.

Appendix 8

ASPIC PRODUCTION MODELS RUN WITH ONLY THE JAPANESE LONGLINE INDEX

The most influential abundance index for the production model fit is the Japanese longline index, both because of its length, and the relative high weight given to it in production models that use multiple indices. Four ASPIC models were run with updated catch estimates and updated Japanese longline index for the period 1965-2010. These four models differ in the type of production model function used (logistic or generalized) and in the initial biomass ratio in 1950/K (fixed to one or estimated)).

Point estimates for population parameters are very similar between runs that only differ on whether the $\mathrm{B} 1 / \mathrm{K}$ is estimated or not (Appendix Table 8.1). Greater differences in benchmarks are caused by the choice of production function used.

Table Appendix 8.1. Effects of updating recent catches and Japanese abundance index. Model parameters (median estimates from bootstraps) estimated by ASPIC for runs 01 (logistic, $\mathrm{B} 1 / \mathrm{K}=1$), 02 (generalized, $\mathrm{B} 1 / \mathrm{K}$ $=1$), 03 (logistic, $\mathrm{B} 1 / \mathrm{K}=$ est.) and 04 (generalized, $\mathrm{B} 1 / \mathrm{K}=$ est.). In parenthesis are shown the 10% and 90% percentiles.)

	Run 01		Run 02	
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t }) \end{gathered}$	142	(131.6-149)	135	(110-136.7)
$\begin{gathered} \mathrm{K} \\ (1000 \mathrm{~s}) \end{gathered}$	1051	(703.8-1,703)	1505	(1,401-3162.)
$\begin{gathered} \mathrm{B}_{\mathrm{MSY}} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	526	(351.9-851)	527	(448-807.9)
$\mathrm{F}_{\text {MSY }}$	0.27	0.15-0.42)	0.26	(0.15-0.31)
$\mathrm{B}_{2006} / \mathrm{B}_{\mathrm{MSY}}$	1.15		0.80	
$\mathrm{F}_{2006} / \mathrm{F}_{\text {MSY }}$	0.63		0.96	
$\mathrm{B}_{2010} / \mathrm{B}_{\mathrm{MSY}}$	0.86	(0.7-1.02)	1.03	(0.92-1.21)
$\mathrm{F}_{2010} / \mathrm{F}_{\mathrm{MSY}}$	0.92	(0.75-1.16)	0.80	(0.68-0.93)
$\begin{aligned} & \text { Y equilibrium } \\ & (1000 \mathrm{~s} \mathrm{t}) \\ & \hline \end{aligned}$	140	(122.2-148)	112	(108-113.1)
$\begin{gathered} \mathrm{Y} \mathrm{~F} \mathrm{~F}_{\mathrm{MSY}} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	140	(122.2-148)	112	(108-113.1)

	Run 03		Run 04	
$\begin{gathered} \text { MSY } \\ (1000 \mathrm{~s} \text { t }) \end{gathered}$	142	(130.9-148)	135	(104-135.4)
$\begin{gathered} \mathrm{K} \\ (1000 \mathrm{~s}) \end{gathered}$	1051	(717.8-1,790)	1511	(1,511-4414.)
$\begin{gathered} \mathrm{B}_{\mathrm{MSY}} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	526	(358.9-895)	529	(486-1356.)
$\mathrm{F}_{\text {MSY }}$	0.27	(0.15-0.41)	0.26	(0.07-0.28)
$\mathrm{B}_{2006} / \mathrm{B}_{\text {MSY }}$	0.63		0.91	
$\mathrm{F}_{2006} / \mathrm{F}_{\text {MSY }}$	1.16		0.86	
$\mathrm{B}_{2010} / \mathrm{B}_{\mathrm{MSY}}$	0.86	(0.69-1.)	1.02	(0.89-1.2)
$\mathrm{F}_{2010} / \mathrm{F}_{\mathrm{msy}}$	0.92	(0.77-1.19)	0.81	(0.68-0.97)
$\begin{aligned} & \text { Y equilibrium } \\ & (1000 \mathrm{~s}) \end{aligned}$	140	(121.2-147)	135	(95-136.5)
$\begin{gathered} \mathrm{Y} \mathrm{~F}_{\text {msy }} \\ (1000 \mathrm{~s} \mathrm{t}) \end{gathered}$	140	(121.2-147)	135	(95-136.5)

Appendix 9

Z BEVERTON-HOLT BASED ON LENGTH SIZE FREQUENCIES (GEDAMKE-HOENIG TRANSITIONAL METHOD FOR ACCOUNTING NON-EQUILIBRIUM CONDITION)

Beverton and Holt (1956) developed a functional relationship between the mean length in the catch and the total mortality rate (Z):

$$
Z=K \frac{(L \infty-\bar{L})}{(\bar{L}-L c)}
$$

where $L \infty$ and K represent the conventional parameters of the von Bertalanffy's growth curve, $L c$ represents the length at which fishes are fully recruited, and \bar{L} the average length for fish fully recruited.

However, this simple estimator requires some important assumptions, mainly that recruitments are constant over time and that mortality rates are constant as regards to age and also constant over time. Recently, Gedamke and Hoenig (2006) generalized the approach of Beverton and Holt to allow mortality rate to change in nonequilibrium situations.

From the simple expression of the mean length:

$$
\bar{L}=\frac{\int_{t c}^{\infty} N_{t} L_{t} d t}{\int_{t c}^{\infty} N_{t} d t}
$$

where $N t$ and $L t$ represent the abundance and body length of fish at age t , respectively, Gedamke and Hoenig (2006) stated that when a stock experiences a change in total mortality the mean length depicts a transitional phase before gradually approaching the new true value as the new equilibrium is reached. Thus, both in the numerator and in the denominator, the integrals should be broken down into a sum of two integrals respectively representing: (1) fish recruited after the change in mortality (these fish have experienced only the second mortality rate) and (2) fish recruited before the change (and consequently exposed to the old and to the new mortality rates). For example after a change in the total mortality from Z_{1} to Z_{2}, the mean length in the population d years, after the change has occurred, is as follows:

$$
\bar{L}=\frac{\int_{t c}^{t c+d} R e^{\left[-z_{2}\left(t-t_{c}\right)\right]} L_{t} d t+\int_{t c+d}^{\infty} R e^{\left[-z_{2} d\right]} e^{\left[-z_{1}\left(t-\left(t_{c}+d\right)\right)\right]} L_{t} d t}{\int_{t c}^{t c+d} R e^{\left[-z_{2}\left(t-t_{c}\right)\right]} d t+\int_{t c+d}^{\infty} R e^{\left[-z_{2} d\right]} e^{\left[-Z_{1}\left(t-\left(t_{c}+d\right)\right)\right]} d t}
$$

(for a general expression for the mean length after multiple changes in the mortality rate, see Appendix 2 in Gedamke and Hoenig, 2006).

Therefore, given a series of annual observations of mean length over time it is possible to estimate the original total mortality rate, the year in which it changed and the new mortality rate (possibly even the next breaking date and resulting change in mortality rate, etc.).

To assess whether there have been multiple changes in the mortality rates of yellowfin, different competing models (i.e., with different breaking dates and resulting number of parameters) were ranked according to the Akaike information criterion. The top-ranking model (i.e., smallest AIC) from this set was reported as the most parsimonious model, which is the model that best explains the variation in the data while using the fewest parameters.

Results

N. breaks	N. par.	AIC	Breaking dates
2	6	523.36	1979,1996
3	8	533.11	$1979-1980,1996,2005$
1	4	536.01	1994
4	10	621.64	$1979,1984,1995-1996,2005$

Model selection for determining mortality rates from mean length data in non-equilibrium situations for Atlantic yellowfin (1970-2010), with (N. breaks) number of change points in total mortality, (N. par.) number of parameters, (AIC) Akaike Information Criterion and breaking dates

Parameter	Estimate	$S E$	t
Z1	1.081	0.063	17.14
Z2	1.519	0.057	26.67
Z3	2.429	0.123	19.76
Y1	1978.623	0.655	14.69
Y2	1996.052	0.590	45.85
SD	310.044	34.267	9.05

Summary statistics for the best model estimating mortality from mean length data in non-equilibrium situations for Atlantic yellowfin (1970-2010) when three different levels of mortality and two years of change are estimated simultaneously.

Reference

Gedamke, T. and Hoenig, J. M. 2006, Estimating mortality from mean length data in non-equilibrium situations, with application to the assessment of goosefish. Trans. Am fish. Soc. 135: 476-487.

