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SUMMARY 

 
This document summarizes the results of a small SCRS working group tasked to evaluate the feasibility 

of combining set by set data from the Japan, Canada, Mexico and United States pelagic longline fishing 

fleets to obtain a CPUE index for western Atlantic bluefin tuna, while maintaining data confidentiality. 

In 2016 the group successfully combined datasets, assigned relevant environmental and gear variables 

and produced a dataset of 109,063 individual longline sets over 1992-2015 from the Gulf of Mexico 

and the Atlantic Ocean north of 25oN latitude and west of 45oW longitude. The objective of the second 

meeting was to evaluate whether statistical modeling approaches could account for the very different 

target and non-target fishing strategies of each fleet to create a combined index. The mandate of the 

group was to test the null hypothesis that the fleets were different; rejection of this hypothesis would 

indicate that the fleets, once standardized, gave a similar relative catch rate trend. The group outlined 

three tests: significance of year*Flag interactions; trend, magnitude and randomness of the year*flag 

coefficients and strength of the correlation between an index constructed with and without year*flag 

interactions. The ATL index failed to reject the first two hypotheses indicating significant, non-random 

year*flag interactions and the GOM index failed to reject the second test. Nevertheless, indices 

constructed with and without year*flag interactions showed strong (>80%) correlations. The group 

determined that until the non-random year*flag interactions could be reconciled statistical modeling 

of the combined 3 fleet Atlantic or 2-fleet Gulf of Mexico indies was not warranted.   

 

RÉSUMÉ 

 
Ce document représente les résultats d’un petit groupe de travail du SCRS chargé d’évaluer la 

faisabilité de combiner des données recueillies opération par opération auprès des flottilles 

palangrières pélagiques du Japon, du Canada, du Mexique et des Etats-Unis pour obtenir un indice de 

CPUE pour le thon rouge de l’Atlantique Ouest, tout en maintenant la confidentialité des données. En 

2016, le groupe est parvenu à combiner des jeux de données, à attribuer des variables pertinentes liées 

à l'environnement et à l'engin et à élaborer un jeu de données de 109.063 opérations palangrières 

individuelles de la période 1992-2015 du golfe du Mexique et de l'océan Atlantique au nord de 25ºN 

de latitude et à l'ouest de 45ºW de longitude. L’objectif de la deuxième réunion était d’évaluer si des 

approches de modélisation statistique pourraient expliquer les très différentes stratégies de pêche 

ciblées et non ciblées de chaque flottille pour créer un indice combiné. Le mandat du groupe consistait 

à tester l’hypothèse nulle selon laquelle les flottilles étaient différentes ; le rejet de cette hypothèse 

indiquerait que les flottilles, une fois standardisées, dégageaient une tendance similaire des taux de 

capture relative. Le groupe a décrit trois tests : signification des interactions année*pavillon ; 

tendance, ampleur et effet aléatoire des coefficients année*pavillon et force de la corrélation entre un 

indice construit avec et sans les interactions année*pavillon. L’indice ATL n’a pas réussi à réfuter les 

deux premières hypothèses, ce qui indique de considérables interactions non aléatoires année*pavillon 

et l’indice GOM n’a pas réfuté le deuxième essai. Néanmoins, des indices construits avec ou sans les 

interactions année*pavillon ont montré des corrélations (> 80 %). Le groupe a déterminé que tant que 

les interactions non aléatoires année* pavillon ne pourraient pas être réconciliées, il ne serait pas 

possible de garantir la modélisation statistique des indices combinés des trois flottilles de l’Atlantique 

ou des deux flottilles du golfe du Mexique.  

 

RESUMEN 

 
Este documento resume los resultados de un pequeño grupo de trabajo encargado de evaluar la 

viabilidad de combinar los datos lance por lance de las flotas pesqueras de palangre pelágico de Japón, 

Canadá, México y Estados Unidos para obtener un índice de CPUE para el atún rojo del Atlántico 

occidental, manteniendo a la vez la confidencialidad de los datos. En 2016 el Grupo tuvo éxito a la 

hora de combinar los conjuntos de datos, asignando variables medioambientales y de arte pertinentes, 
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y elaboró un conjunto de datos de 109.063 lances individuales de palangre para el periodo de 1992-

2015 procedentes del golfo de México y del océano Atlántico al norte de 25ºN de latitud y al oeste de 

45ºW de longitud. El objetivo de la segunda reunión era evaluar si los enfoques de modelación 

estadística podrían tener en cuenta las muy diferentes estrategias de pesca dirigida y no dirigida de 

cada flota para crear un índice combinado. El mandato del Grupo era probar la hipótesis nula de que 

las flotas eran diferentes, el rechazo de esta hipótesis indicaría que las flotas, una vez estandarizadas, 

producen una tendencia similar de la tasa de captura relativa. El Grupo describió tres pruebas: 

importancia de las interacciones año*pabellón, magnitud de la tendencia y aleatoriedad de los 

coeficientes año*pabellón y fuerza de la correlación entre un índice elaborado con interacciones 

año*pabellón y otro elaborado sin dichas interacciones. El índice ATL no descartó las dos primeras 

hipótesis indicando interacciones de año*pabellón importantes y no aleatorias, y el índice del GOM 

no rechazó la segunda prueba. No obstante, los índices construidos con y sin interacciones 

año*pabellón mostraban fuertes correlaciones (>80%). El Grupo determinó que hasta que no puedan 

conciliarse las interacciones año*pabellón no aleatorias, no podría justificarse la modelación 

estadística combinada de las tres flotas del Atlántico o de las dos flotas del golfo de México.  
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Introduction  

 

Similar to the 2016 meeting a small (1-2 representatives from each CPC involved with the western 

bluefin tuna assessment), met for a 5 day intercessional workshop to build upon the positive outputs of 

the Cercedilla workshop (Walter et al., 2017). The objective of the Mexico City meeting was to 

investigate the possibility of statistically modeling combined longline datasets from Mexico, USA, 

Japan and Canada to produce one or more CPUE indices for western Atlantic bluefin tuna. In particular, 

the meeting primary objective was to evaluate the feasibility of statistically modeling combined datasets, 

focusing on whether the disparities between target and non-target fleets can be reconciled through the 

standardization modeling process. If statistical modeling is deemed feasible for 2 or more of the 

fleet/area combinations, then combined indices would be produced in advance of the Data Preparatory 

Working group meeting and considered for use in the 2017 stock assessment. 

 

Prior to the meeting each participant confirmed, cleaned and evaluated all data in the combined dataset, 

noting irregularities. Draft diagnostics, CPUE modeling and hypothesis testing codes were developed 

by the working group at the meeting. 

 

 

2. Methods 

 

Although a major effort was put into updating, cleaning and standardizing each countries data prior to 

arriving at meeting, a number of issues were identified that had to be addressed before the data could be 

combined. Much of the first day was spent getting the data into a common (e.g. standardized column 

labels) and clean (eg., minor errors) format for each country.  Once the revisions were completed, the 

data were combined; Canada, USA, and Japan data were combined for the western Atlantic, and USA 

and Mexico data were combined for the Gulf of Mexico. The group recommended the creation of the 

two separate datasets for exploration of combined indices, given the difference in stock structure and 

mixing rates between the two areas; fish caught in the Gulf of Mexico represent the western BFT 

spawning ground, whereas those along the coast of North America are likely of mixed and variable 

origin. The dataset was for the Northwest Atlantic and ranged between latitude 250 and 500N and west 

of 450W longitude.  The second dataset for the Gulf of Mexico combined data from the USA fleet in the 

northern Gulf and Mexico fleet operating in the southern Gulf. Due to the absence of data for one or 

more years in the overall combined time series, the working group agreed to use only the data starting 

in 1993 for both datasets for the testing of hypotheses.  

 



2786 

Temporal domain of data 

 

As per the SCRS recommendation, data was modeled up to and including 2015. The 2016 data could be 

incorporated if it becomes available without major changes to the code. For the Atlantic dataset, fishing 

year rather than calendar year was used to be consistent with how the Japanese longline fleet operates. 

Fishing year is calculated as the calendar year from May to December and then retains that fishing year 

for the following year data from January to April. This split was determined from looking at the breaks 

in the fishing season for each fleet so as to be consistent with the Japanese longline fishing seasons. The 

group noted that for use in assessment models it would be important to adjust the timing of any potential 

Atlantic index to reflect this timing. As fishing year was used as the year factor, the complete 2016 

fishing year data may not be available until 2017. For the Gulf of Mexico, the year was the calendar 

year and the months used in the analysis were December-June. Note that future treatments of the Gulf 

of Mexico index should shift the year for December to the next year to be consistent with the spawning 

season. 

 

For the purposes of hypothesis testing for the utility of combining data, two years where zero catches of 

BFT for one CPC was removed from the combined dataset as it led to an inability to estimate year*flag 

interactions. For the Gulf of Mexico, the year 1993 was removed as zero BFT were observed in the 

Mexico dataset and for the Atlantic the year 1996 was removed due to zero BFT in the Canada dataset. 

The Group noted that if a final combined indices were deemed appropriate, these years of data could be 

used in the models, depending upon the nature of interactions that are estimated (i.e. if year*flag 

interaction was determined to be insignificant).  

 

2.1 Preliminary analyses 

 

Distributional assumptions 

 

The working group discussed the need for an objective criteria using goodness of fit tests to determine 

which distributional modeling approach should be used: single negative binomial, two stage (delta-log 

normal) or zero inflated model for either the catch or the catch/effort data. The results of the goodness 

of fit tests for the western Atlantic and the Gulf of Mexico are presented below. 

 

Alternative error distribution hypotheses and goodness of fit test results: Atlantic 

 

1. Single stage discrete negative binomial on number of bluefin tuna observed. Chi square goodness 

 of fit indicated failure to reject the null hypothesis of the observed data as being significantly 

 different from a random sample of equal sample size generated from the best fit negative 

 binomial distribution (Figures 4-6). 

2. Two-stage delta model, continuous gamma distribution fit to the positive catch rates. 

 Kolmogorov-Smirnov test failed due to ties in the data, although fitted gamma distribution 

 comparisons to the observed data indicated a good fit to the positive catch rates. 

3. Two-stage delta model, continuous Gaussian distribution fit to the log-e transformed positive catch 

 rates. Kolmogorov-Smirnov test failed due to ties in the data, however, fitted Gaussian distribution 

 indicated very poor fit to the log-transformed positive catch rates. 

 

Distribution options goodness of fit results: Gulf of Mexico 

 

1.  Single stage discrete negative binomial on number of bluefin tuna observed. Chi-square goodness 

of fit indicated failure to reject the null hypothesis of the observed data as being significantly 

different from a random sample of equal sample size generated from the best fit negative binomial 

distribution. 

2. Two-stage delta model, continuous gamma distribution fit to the positive catch rates. Kolmogorov-

Smirnov test failed due to ties in the data, although fitted gamma distribution comparisons to the 

observed data indicated a good fit to the positive catch rates. 
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3. Two-stage delta model, continuous Gaussian distribution fit to the log transformed positive catch 

rates. Kolmogorov-Smirnov test failed due to ties in the data, however, fitted Gaussian distribution 

indicated very poor fit to the log-transformed positive catch rates. 

 

In the end it was decided to use the negative binomial model for both Atlantic and Gulf of Mexico but 

to test whether a zero-inflated negative binomial (using GLMM.ADMB package for R) or a negative 

binomial gave a better fit to the data. For both the Atlantic and the Gulf datasets the negative binomial 

resulted in a lower bias-corrected Akaike information criterion (AICc) than the zero-inflated model, 

indicating a better fit.    

 

The group also ran the model selection process for factor inclusion for the binomial component of the 

delta models, to examine if the hypothesis test results and overall conclusions differed from those of the 

single-stage negative binomial model.  The group noted that the binomial model selected for the same 

set of fixed factors. Given that frequency of occurrence of bluefin tuna often reflects much of the overall 

relative abundance trend, the group did not discern a statistical advantage to using a two-stage model 

(such as delta lognormal) particularly as the negative binomial model more accurately reflects the count 

nature of catches and can account for both zeros and variable amounts of effort with an offset.    

 

Scope of factors: 

 
Exploratory analysis and evaluation was undertaken for each of the factors to be considered in the 
modeling of the CPUE indices. The factors included: Effort, sea surface temperature as either categorical 
or continuous, Month, year or fishing year, average depth of the gear, sea floor depth, mainline length, 
bait type, hook type and day vs night set. Exploratory analyses were conducted separately for the Gulf 
of Mexico and the Atlantic datasets. These analyses were conducted to determine appropriate factor 
levels for modeling categorical variables, sample sizes at each factor level and overall balance of the 
data at different factor levels across the flags.   
 
Spatial areas 
 
At the Mexico City meeting the group decided to extend the spatial domain of the Atlantic index south 
to 25oN to accommodate additional observations from both Japan and U.S.  Spatial structure for the 
Atlantic was evaluated by applying the glm.tree adaptive area partitioning algorithm (Ichinokawa and 
Brodziak 2010) and also exploring the distribution of samples over time. Considering both analyses, we 
agreed to use the area stratification with 5 splits (Figure 1, one in the south of 35oN, 3 lines in the north 
of 35oN). During the model exercise, we further checked the number of observations, and found there 
are many years with zero BFT observations in the area east of 60oW in the south of 35oN.  Therefore, 
the group decided to use the agreed area stratification without that area. Nonetheless, model testing with 
the use of 5x5 latitude and 5x5 longitude as model factors resulted in improved fit to the models on the 
basis of a substantial reduction in AICc and hence further analysis of spatial structure could improve 
model fits, (see also Figures 11 and 12). 
 
For the Gulf of Mexico, five areas were originally defined in (Walter et al., 2017). During data 
exploration there appeared to be substantial year*area interactions within area 3 so this area was split 
south of 26oN resulting in improved model fit. The final areas included 6 different spatial areas (Figure 
2). Note that for area 5 (the U.S. bluefin tuna closure area enacted in 2015, this area was modeled as a 
separate area and included in the modeling as the closure is only for April and May.  
 
Effort: 
 
Comparison of catch and effort indicates a positive, but nonsignificant (r2) relationship (Figure 3) thus 
an offset for effort is justified. Effort data were tested with effort as categorical and log(effort) offset 
with AICc model selection to determine how to model the dependent variable (negative binomial 
model). Visual evaluation of the number of bluefin per effort bin by fleet and AICc were used to 
determine the best sequence of effort breaks and the appropriate number of categories to best capture 
trends in catches. The analysis indicated the best bin breaks for categorical effort (number of hooks) was 
0, 500, 1000, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250, and 5000 hooks.     
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SST 

 

Relationships between nBFT and sst were plotted to determined appropriate category breaks for factors 

(Figures 7 and 8). These indicated a mostly dome shaped relationship between SST and catch rate for 

the Atlantic and declining relationship in the Gulf of Mexico. In the Atlantic, there was a much wider 

range of temperatures fished, whereas in the Gulf of Mexico most temperatures were above 18oC 

reflecting the warmer nature of this region and the fact that this area is assumed to be primarily visited 

by BFT for spawning. Hence it was determined to use different SST categories in the two regions to 

capture the differential effects of temperature on catches.  

 

Temporal domain 

 

For the Atlantic, all months were included in the modeling (Figure 9), however the fishing year was 

determined, as described above. Given the monthly distribution of catch rates of BFT in the Gulf of 

Mexico, we decided to model months December and January to June (Figure 10). For the Gulf of 

Mexico, the months of high catch rates for the U.S. and Mexico fleets were offset indicating that a 

month*fleet interaction might be appropriate. 

 

Hook type  

 

Hook type was originally reported in the combined dataset exactly as recorded by each CPC, or in the 

case of Japan, assumed to be all the Japan tuna hook. To create categories for analysis all hook types 

were assigned to one of four categories: CIRCLE, J, weakcircle or unknown/mix hook type in the 

following proportions: 

 

CIRCLE :J:UNK_MIX:weakcircle equaled 66053:47048:4601:2889. 

The following assignments were made as follows: CIRCLE = "CIRCLE","Circle 

Hook","CIRCULAR","ATUNERO", "bigC" , "smallC", "NORUEGO","AMERICANO" , "GARRA 

DE AGUILA"). 

J=  "TIBURONERO","HUACHINANGERO","J-HOOK","J Hook","RECTO" , "J","JnR", 

"JnR","JR" ,"JAPONES","japan"), weak circle = "L2048LM"  ,  "39988D”. When hook type was 

unknown or a mix of hooks were used the category UNK_MIX was assigned.  

 

Bait type 

 

Bait type was originally reported in the combined dataset exactly as recorded by each CPC. As bait 

type is not recorded in the Japan dataset it was not considered as a model factor for the Atlantic 

dataset, however when possible it was assigned to one of four categories: DEAD FISH, LIVE FISH, 

MIX_UNK, or    SQUID in the following proportions: 

DEAD FISH:LIVE FISH:MIX_UNK:SQUID equaled 11970:43636:51721:13264 

 

The following assignments were made:  

DEAD FISH="DEAD HERRING/MACKEREL", "DEAD HERRING", "DEAD BAIT MIX", "DEAD 

FISH MIX";  

LIVE FISH="LIVE FISH" ,"LIVE MACKEREL","LIVE OTHER" ,"LIVE”;  

SQUID = "DEAD SQUID","LIVE SQUID", "DEAD SQUID/LIGHTS","DEAD SQUID 

MIX","UNKNOWN SQUID" 

MIX_UNK="DEAD OTHER"," DEAD ","DEAD NA","NA NA", "DEAD LIGHTS","DEAD 

LURES", 

        "DEAD LIGHTS"," ", " OTHER","DEAD HERRING/MACKEREL/SQUID","DEAD OTHER", 

        "DEAD HERRING/SQUID", "DEAD MACKEREL/SQUID"," LIVE", "DEAD BAIT (NS)", 

“OTHER","ARTIFICIAL OTHER", "OTHER","UNK","DEAD LIGHT MIX", "DEAD UNK 

   

Other model factors remained as defined in (Walter et al., 2017).  
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fHookDepth and fSeaFloorDepth 

 

Hook depth (fHookDepth) was used as an approximate proxy in the CPUE standardization to reflect 

whether fishing gear is set deeper or shallower.  It was obtained by averaging the minimum hook depth 

(obtained as the sum of lengths of float (or drop) lines and branch (or gangion + leader) lines) and the 

maximum hook depth (obtained assuming a right triangular shape to the longline set) as outlined in 

(Walter et al., 2017). Visual observation of the depths of fishing were used to determine categories for 

hook depth as below: 0,50, 75,100,115,125,130, 140,1500 meters with the Japan longline generally 

fishing deeper sets and Canada the shallowest. fHookDepth was modeled as a categorical factor. 

 

Seafloor depth was assigned according to Lauretta et al., 2016 and used also as a categorical factor with 

the following cuts determined by visual observation of the data: c(-6500,seq(-5000,-1000,by=500),-

750,-500,-250,0) meters. There was a general tendency towards high catch rates in shallower depths. 

 

Statistical model fitting 

 

Models were fit with the function glm.nb in package MASS in R. Initial models were built starting with 

testing all single factors. Model selection was performed by systematic addition of model terms until no 

remaining term explained more than 1% of the model deviance. This was performed with the R function 

add1(), also contained in the MASS package library.  

 

Additional model terms deemed critical for either analytical, hypothesis testing or to capture known 

changes in the fishery were included even if they did not account for more than 1% of the explained 

deviance. For example, hook type was not significant at the 1% level in the Gulf of Mexico but given 

the implementation of the weak hook regulation in the U.S. fishery it is important to capture and estimate 

this effect. Furthermore, flag was not significant but was also included due to the requirement to evaluate 

flag*year interactions and to obtain predictions for each year for each flag. Given the nature of fishery-

dependent catch rate data and large volume of observations, traditional model selection approaches were 

expected to be of limited utility.   Common model selection thresholds based on AICc (e.g., change in 

AICc by standard thresholds of 2, 7, or 10) resulted in over-parameterized models, and approaches using 

a certain % reduction in deviance (Ortiz and Diaz 2004) required arbitrary determinations of 

significance. However, the group noted that inclusion of some factors resulted in a drastically lower 

AICc value (change in AICc on the order of 100 to 1000s) and also met the deviance reduction criterion 

threshold (2%).  The group also noted that change in AICc by factor inclusion of less than 20 typically 

did not meet the secondary selection criterion of deviance reduction.   

 

Ultimately we determined that model terms deemed important- or empirically determined to be 

important through a priori knowledge such as weak hook effects (Walter and Cass-Calay 2014) should 

be included in the modeling even if they do not meet the model selection criteria. When included as 

model factors the ‘weak hook’ effect could be estimated by the model and resulted in an 51% reduction 

in catch rate relative to standard circle hooks, very similar to the 47% reduction in catch rates observed 

in experimental work Upcoming work from the ICCAT methods working group evaluating this idea of 

including important factors, even if not significant may provide insight into the merits or costs associated 

with this approach.  

 
The group was presented with several different options for modeling effort, either as an offset or as a 
categorical factor. This was also tested by comparing models with effort modeled both ways with the 
model with the lowest AIC chosen. While the AIC model selection criteria was not used for model 
building, as it tended to favor inclusion of the most complicated model structure resulting in likely 
overparameterization of the model, differences in AIC were useful to determine the best treatment of a 
variable.  The same testing process was performed to evaluate how best to model SST. For the Atlantic 
SST was modeled as a categorical factor. For the Atlantic and Gulf, there was a negligible difference 
between modeling effort as a category or as an offset and it was chosen to model it with an offset which 
greatly reduced the number of parameters. Similarly, for SST in the Gulf of Mexico, given that there 
was a generally smooth declining relationship between catch and SST (unlike in the Atlantic), SST was 
modeled as a continuous factor to reduce the number of parameters that needed to be estimated.  
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Model predictions by year were obtained using the lsmeans() package for R, except for the Atlantic 

where these required too much memory so the data and models were exported to SAS to obtain lsmeans. 

 

Interactions 

 

It was also decided to use a logical approach to deal with interactions rather than to test every possible 

interaction. This was done by evaluating specific hypothesis regarding interactions, which are detailed 

in the section hypothesis testing. Specific interactions tested were year*flag, year*area, month*area and 

SST*area, SST*month, and SST *area*month. The year*area and month*area interactions were tested 

to capture the migratory patterns of the fish (year*area was modeled to examine the hypothesis that the 

distribution of the fish has changed over time, e.g., poleward shifts; while month*area was modeled to 

account for the known change in distribution during seasonal migrations between spawning and foraging 

grounds). Interactions were modeled as fixed effects for the purposes of hypothesis testing. Any ultimate 

construction of combined indices would require a decision process for how to model year*factor 

interactions which make the year effect non-unique. One recommendation is to weight year*area 

interactions by the area in square kilometers of each spatial cell, while accounting for the fact that 

degrees of longitude represent smaller distances with increasing latitude. 

 

The full initial models tested were as follows: 

 

Atlantic 

Full_Model= 

glm.nb(nBFT~Flag+fYear+fMonth+fSST+fHookDepth+fSeaFloorDepth+DAY_NIGHT+ fEffort 

+ fLon + fLat) 

 

Gulf of Mexico 

Full_Model =   glm.nb(nBFT~Flag + fYear +fMonth+GOM_AREA+BAIT+ SST 

+fHookDepth+DAY_NIGHT +Hook_Type2 + offset (log(effort) ) 

 

Note that for the Gulf of Mexico fSeaFloorDepth was not calculated for all of the data and effort was 

modeled with an offset of log (hooks) and SST was modeled as a linear factor. All factors were modeled 

as categorical factors except SST in the Gulf of Mexico models.  

 

Hypothesis testing criteria 

 

The mandate of the working group was to test the null hypothesis that the datasets were different and 

could not be combined. Rejection of the null hypothesis would be that the different fleets were tracking 

the same time series of relative abundance when seasonality, spatial stratification, environmental 

conditions (i.e. SST, seafloor depth, and seafloor gradient) and gear effects were standardized, and hence 

that a combined index could be produced from the 2 (Mexico-US) or 3 datasets (CAN-JPN-US). The 

hypothesis testing proceeded in 3 steps: 

 

1. Test year*fleet interactions for significance according to reduction in model deviance (significant 

if greater than 2% reduction in deviance when compared to best model without year*fleet 

interaction) 

2. Plot year*fleet coefficients to evaluate whether they are random (and if random, model as random 

effects) or whether they have trends. Rejection of null hypothesis based on visual observation of 

coefficients. 

3. Compare predicted index with and without year*flag interactions and compare correlation. 

Correlation above 80% indicates rejection of null hypothesis. 
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Results   

 

Final selected models after model selection and expert opinion about inclusion of model factors were 

as follows (Tables 1 and 3): 

 

Atlantic 

single=glm.nb(nBFT~fSST+fFishYear+fMonth+fLat+fLon+Flag+offset(log(Effort)),data=atl,ma

xit=200) 

 

Model with year*flag interactions 

 

yr_flag=glm.nb(nBFT~fSST+fFishYear+fMonth+fLat+fLon+Flag+offset(log(Effort))+Flag*fFis

hYear,data=atl,init.theta=0.4,maxit=300)  

 

Gulf of Mexico 

 

Single=  glm.nb(nBFT~ GOM_AREA  + Flag +  fMonth + fYear +  SST +   DAY_NIGHT 

+Hook_Type2  + offset(log(Effort) ) , data=gomNo1993 )  

 

Model with year*flag interactions 

YearFlag=  glm.nb(nBFT~ GOM_AREA  + Flag +  fMonth + fYear +  SST +  DAY_NIGHT 

+Hook_Type2 + fYear* Flag + offset(log(Effort) ) , data=gomNo1993 ) 

 

The results of the hypothesis testing are as follows: 

 

1. Significance of year*flag interactions  

(a) ATL: Yes: 3.83% reduction in deviance over the model without year*flag- fail to reject 

H0; 

(b) GOM: 1.6% over the model without year*flag= reject H0. 

2. Are year*flag interactions random?  

(a) ATL: Pattern is not random (Figure 13) due to shift after 1997, after this the pattern 

does look random and mostly without trend, though from 1997-2005 there is some 

difference in magnitude between USA and Japan- fail to reject H0. 

(b) GOM: Pattern is not random and there is trend (Figure 14) and substantial divergence 

between US and Mexico- fail to reject H0.  

3. Compare predicted index with and without interactions and compare correlation. Correlation 

above 80% indicates rejection of null hypothesis. 

(a) ATL: R2 = 0.81 significant correlation between indices with and without year*flag 

interactions (Figure 13). Reject H0. 

(b) GOM: R2 = 0.83 significant correlation between indices with and without year*flag 

interactions (Figure 14). Reject H0. 

 

Conclusions 

 

The working group determined that combining the individual CPC datasets into combined indices was 

not recommended at the present time. The decision to not combine datasets for indices was based upon 

the failure to reject the three null hypotheses regarding the significance and trend in year*flag 

interactions. In both cases, the non-random year*flag interaction could not be explained, nor could they 

simply be modeled as random effects. Nonetheless, indices constructed with and without year*flag 

interactions were very similar, largely due to the relatively limited impact of these interactions on the 

overall model fit (% deviance reduction between 1.6-3.8 %).  Further, the ‘Flag’ effects, or differences 

in the absolute catch rate for the different fleets were not significant, indicating that once gear, area, 

month, effort and other factors were considered, the models predicted similar catch rates even for very 

different fleets.    
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The divergence between Canada and Japan and the United States warrants further exploration, 

particularly because this seemed to occur in a single year and may be indicative of some change in the 

data. Similarly, the divergence between the US and Mexico in the Gulf of Mexico warrants further 

exploration and may be due to differences in the availability of the fish by month rather than true 

differences between the fleets over time. In the Atlantic, the remaining year*flag interactions, after the 

year 2000 were not as severe and may actually reflect more year*area interactions as the fleets fish in 

slightly different spatial areas rather than true differences between the fleets. This is particularly true as 

year*area interactions reduced a larger fraction of the deviance even though models with year*area 

interactions did not converge due to missing year*area cells or no BFT positive catch in some cells. 

Further investigation of the sources of the year*flag interactions and continued work to determine 

whether their significance can be reduced by modeling year*area or month*area or Flag*month effects 

may allow for the creation of joint longline indices for some or all of the available flags in the future.  

However, until the non-random and severe year*flag interactions can be reconciled or their significance 

reduced, the group recommends not creating combined indices for the 2017 data preparatory meeting. 

 

Nonetheless there are some important lessons learned that have bearing on both how standardized 

indices are created as well as the upcoming stock assessment. First the explicit hypothesis testing 

framework for evaluating year*factor interactions is particularly informative for any CPUE 

standardization situation. In any CPUE standardization it is critical to examine a) how well the 

year*factor estimates are determined b) their magnitude and c) the trend to determine whether the 

patterns are random or have systematic patterns. This is extremely important for determining whether 

the year*factor interactions need to be considered in models, whether they can be assumed to be random 

or whether they have trends or patterns that would necessitate alternative treatments. One such 

alternative treatment recommended by Campbell (2015) would be to weight year*area interactions by 

area. Alternatively, in situations where year*factor interactions show non-random patterns this may be 

indicative of a need to examine why these exist or whether the index should be split.   

 

A second important lesson for CPUE standardizations is that there is a need to develop further the 

methodology for spatial gap filling to allow for year*factor interactions (Carruthers et al. 2010). This is 

particularly true as the year*area interactions explained substantially more of the model deviance than 

year*flag interactions, though the year*area interaction models demonstrated poor convergence. In 

situations where there are strong year*area interactions, for example a shifting of the population in time 

and space (Schirripa et al. 2016) or when a fleet shifts location, vacating former fishing grounds it is 

essential that some means of spatial gap filling (Walters 2006, Carruthers et al. 2010, Carruthers et al. 

2011) be conducted. This is necessary partly as a modeling necessity to allow models with year*factor 

interactions to converge and provide well determined model coefficients (Campbell 2015) but, 

additionally, to be able to accurately evaluate population trends.  

  

Finally, this modeling has indicated a potentially important trend in year*area interactions that may have 

bearing on the assessment. For both indices year*area interactions explained substantially greater 

deviance than year*flag interactions indicating that there may be changes in local abundance of the 

population in different spatial locations over time. This may be reflective of changing spatial distribution 

of bluefin tuna over time due warming temperatures and a moving prey base, a hypothesis postulated 

by Golet et al. (2013) and Mackenzie et al. (2014) and also postulated for swordfish by Schirripa et al. 

(2016). 

 

While the ultimate decision of the group was not to combine data to produce indices, the meeting was 

successful in combining the datasets to conduct a joint statistical analysis. These results do not preclude 

individual CPCs from bi-laterally deciding to combine datasets to create joint indices for consideration 

by the SCRS. The group re-iterates the previous caveat (Walter et al., 2017) related to this combined 

dataset that it not be shared outside of the small working group and that it not be used for purposes 

outside of the working group terms of reference.  
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Table 1. Deviance table for Gulf of Mexico data describing the percent reduction in deviance obtained 

from testing all single factors, then entering this in the model and iteratively testing additional factors 

until no factors meet the 1% inclusion criterion.  

 Df Deviance AIC 

Percent 

reduction in 

deviance  

GOM_AREA 5 6257.7 19882 25.9743  

fMonth 6 8084.3 18490 10.3915  

fYear 22 8356.7 18233 3.2867  

DAY_NIGHT 1 8516.4 17972 1.5576  

SST 1 8565.3 18105 1.4228  

fHookDepth 7 8589.8 17931 0.6222 * 

Hook_Type2 3 8604.2 17937 0.4562 * 

BAIT 3 8627 17960 0.1924 * 

Flag 1 8643.1 17972 0.0057 * 

<none>  8643.6 17971 0  
* Note that successive addition of model factors was stopped when none explained greater than 1% of deviance so estimates that are less than 

1% do not account for inclusion of the factor above it. 

 

Table 2. Gulf of Mexico deviance table for Atlantic model test 1: Are year*flag interactions significant? 

 

 Df Deviance AIC 

Percent 

reduction in 

deviance 

<none> 8701.5 17914 0  

fYear:GOM_AREA 104 8258.3 17679 5.093 

Flag:fYear 21 8560.2 17815 1.623 

fMonth:GOM_AREA 30 8121.2 17394 6.668 

 

Table 3. Deviance table for Atlantic data describing the percent reduction in deviance obtained from 

testing all single factors, then entering this in the model and iteratively testing additional factors until 

no factors meet the 1% inclusion criterion. 

 Df Deviance AIC 

Percent 

reduction 

in deviance  

fSST 11 21519 106718 15.7637  

fMonth 11 22529 100594 11.167  

fFishYear 22 22719 103590 10.8071  

fLat 4 24519 99594 3.15  

fLon 6 24731 99158 1.7388  

fSeaDepth 12 24926 98987 0.7594 * 

fHookDepth 7 25044 99096 0.2867 * 

Flag 2 25079 99120 0.1498 * 

fNight 1 25116 99155 0.0021 * 

<none> 25116 99154 0   
 
* Note that successive addition of model factors was stopped when none explained greater than 1% of deviance so estimates that are less than 

1% do not account for inclusion of the factor above it. 
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Table 4. Atlantic deviance table for Atlantic model test 1: Are year*flag interactions significant? 

 Df Deviance AIC 

Percent 

reduction 

in deviance 

<none>  25133 99120 0 

Flag:fFishYear 44 24170 98244 3.8342 

fFishYear:fLat 85 22910 97067 8.844 

fMonth:fLat 38 24267 98330 3.4457 

fFishYear:fLon 132 23207 97458 7.6629 

fMonth:fLon 65 23668 97785 5.8314 

  

 

 

 
 

 

Figure 1. Western Atlantic area stratification. 
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Figure 2.  Spatial partitioning for Gulf of Mexico. 
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Figure 3. Relationship between BFT catch in number and effort (hooks). 
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A) ATLANTIC 

 

B) GULF OF MEXICO 

 

Figure 4. Negative binomial model fits to annual catches of BFT. 

 

 

 



2799 

A) ATLANTIC 

 

B) GULF OF MEXICO 

 

Figure 5. Gamma model fits to annual positive CPUE of BFT. 

  



2800 

B) ATLANTIC 
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Figure 6. Gaussian model fits to annual loge-transformed positive CPUE of BFT. 
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Figure 7. Plot of number of BFT vs SST, percent positive by SST and number of operations by SST for 

the Atlantic dataset. 
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Figure 8. Plot of number of BFT vs SST, percent positive by SST and number of operations by SST for 

the Atlantic dataset. 
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Figure 9. Plot of number of BFT vs month, percent positive by month and number of operations by 

month for the Atlantic dataset. 
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Figure 10. Plot of number of BFT vs month, percent positive by month and number of operations by 

month for the GOM dataset. 
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Figure 11. Plot of number of BFT vs latitude, percent positive by latitude and number of operations 

by latitude for the Atlantic dataset. 
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Figure 12. Plot of number of BFT, percent positive and number of operations by area for the GOM 

dataset. 
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Figure 13. A. Year*flag interaction coefficients for the Atlantic index, noting that Canada is modeled 

as a baseline of 0, so Japan and USA coefficients are offsets from Canada. B. Correlation between 

indices constructed with and without year*flag interactions.  
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Figure 14. A. Year*flag interaction coefficients for the Gulf of Mexico index noting that Mexico is 

modeled as a baseline of 0, so USA coefficients are offsets from Mexico. B. Correlation between indices 

constructed with and without year*flag interactions.  

 


