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SUMMARY 

 

Nominal catch rate data from multiple fleets were combined to derive relative abundance indices 

for the temporal and spatial strata of bluefin tuna operating models. These indices allow for the 

calculation of standardized effort in any strata where a fleet reports catches. Standardized effort 

allow operating models to be conditioned more rapidly and robustly.  

 

RÉSUMÉ 

 

Les données concernant les taux de capture nominale provenant de plusieurs flottilles ont été 

combinées pour calculer des indices d'abondance relative pour les strates temporelles et 

spatiales des modèles opérationnels consacrés au thon rouge. Ces indices permettent de calculer 

l’effort standardisé dans toutes les strates dans lesquelles une flottille déclare des captures. 

L'effort standardisé permet de conditionner les modèles opérationnels plus rapidement et 

solidement.  

 

RESUMEN 

 

Se combinaron los datos de tasa de captura nominal de varias flotas para derivar los índices de 

abundancia relativa de los estratos temporales y espaciales de los modelos operativos de atún 

rojo. Estos índices permiten el cálculo del esfuerzo estandarizado en cualquier estrato para el 

cual una flota comunique capturas. El esfuerzo estandarizado permite condicionar los modelos 

operativos de un modo más rápido y robusto.  

 

 

KEYWORDS 

 

Population modelling, fishery statistics 

 

 

 

 

 

 

 

 

 

 

  

                                                           
1 IOF, 2202 Main Mall, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z4. t.carruthers@oceans.ubc.ca 



2587 

1 Introduction 

 

A common approach to modelling fishing mortality rates in fisheries stock assessment models is to estimate a 

fishing mortality rate parameter for each strata (e.g. a year and a fishing fleet) for which there are observed catches. 

In a typical stock assessment model for a tuna species (e.g. Pacific bluefin tuna, ISC 2016) this could be 10 fleets 

and 40 years (a total of 400 fishing mortality rate parameters) which is tractable in conventional estimation 

software such as AD Model Builder (Fournier et al. 2012) and Template Model Builder (Kristensen et al. 2016). 

However in the case of the operating models for Atlantic bluefin tuna, the number of strata is substantially higher 

due to the requirement of spatial and seasonal dimensions to account for mixing of Eastern and Western stocks. 

In the most recent operating model specification this includes over 55 years, 13 fleets, 10 areas (Figure 1) and 4 

quarters (e.g. January-March, April-June, etc) requiring a total of 28,600 fishing mortality rate parameters 

assuming catch observations in every strata and still around 10,000 parameters given 1/3 coverage. Since these 

numerous parameters can also be expected to be correlated in many instances (e.g. high estimated exploitation 

rates in one time-period reduce biomass and hence inform higher exploitation rates in subsequent time-periods) 

this constitutes a challenging estimation problem even for the most efficient contemporary software.  

 

An alternative modelling approach is to condition the stock assessment model on effort data, E. In this 

configuration, fishing mortality rates F, are estimated by assuming that fishing mortality rate is proportional to 

effort via the equation F=qE where q is the catchability of the fleet. This is analogous to assuming catch divided 

by effort (C/E or CPUE) is proportional to abundance, a common assumption in the assessment of tuna and billfish 

species: C/A = qE, C/E =qA. The effort data used in this example should be standardized for the same reason that 

CPUE data are standardized: to better preserve the relationship between effort and exploitation rate by accounting 

for confounding factors such as units of measurement, species targeting, gear configuration, location, season and 

year.  

 

This alternative ‘conditioned on effort’ assessment approach has the core advantage that only a single catchability 

parameter q, is estimated per fleet. In the example of Atlantic bluefin tuna operating models above, this requires 

the estimation of just 13 parameters instead of many thousands. There are however two important limitations of 

the approach. (1) Catch and effort can only be used once and therefore the model is fitted to just observed catches; 

given the rearrangement of equations above it would be reusing data to include CPUE indices derived from the 

same effort data used to predict the same catch observations. (2) The standardized effort data required by this 

modelling approach are not available for the fleets of the current bluefin tuna operating model (Table 1).  

 

To enable Atlantic bluefin tuna operating models to be conditioned on effort, I investigate the derivation of a 

combined ‘master index’ that represents bluefin tuna vulnerable biomass over all time and area strata (i.e. an index 

data point for the 55 years, 4 quarters and 10 areas of the model). If such a master index can be calculated, a 

standardized effort datum can be calculated by dividing the observed catches of any fleet by the master index I, 

i.e: 𝐸 = 𝐶 𝑞𝐴 ∝ 𝐶/𝐼⁄ . This approach has the merit that even if a fleet reports effort in many different units or does 

not report covariate effort at the appropriate spatio-temporal resolution, as long as catches are reported a 

standardized effort can be calculated. It follows that rapid changes in fleet definitions are possible that do not 

require the recalculation of standardized indices for each fleet which are typically carried out on confidential trip-

level data by government scientists.  

 

 

2 Methods 

2.1 A generalized linear model 

 

It has been become common practice to conduct CPUE standardization by considering multiple linear models and 

using model selection criteria to pick the most parsimonious model from a large set. There are a number of 

potential problems with this approach: 

 

(1) statistical model selection criteria such as AIC generally aim to identify a model that parsimoniously 

predicts the next CPUE observation and are inconsiderate of the principal objective of CPUE 

standardization: to extract a reliable marginal year effect; 

(2) in most CPUE standardizations the statistical assumptions of model selection are invalid particularly the 

assumption of non-independence in observations of catch per unit effort; 

(3) model selection criteria such as AIC require the assumption that one of the candidate models is a close 

approximation to the model generating the data, which is quite unlikely given that few standardizations 

account for prevailing fishery characteristics such as changes in fishing efficiency, shifts in species 

targeting etc;  
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(4) there are typically much narrower set of models that meet simple logical requirements for approximating 

trends in relative abundance and fishery dynamics. 

  

In this application, the absence of detailed trip-level data provides little scope for elaborate investigation of 

covariates of CPUE such as gear configuration, vessel specific catchability and continuous spatial-temporal 

models (e.g. splines, GAMs etc). The CPUE considered in this analysis are the nominal Task II catch and effort 

data reported to ICCAT and published online (ICCAT 2016). It follows that the potential limitations of model 

selection in points 1-3 above do not apply here. In this analysis I derive a master index based on the most complex 

model that can be fitted to data that also meets the logical requirements of a multi-stock, mixing model for bluefin 

tuna: 

 

- there must be year – area interactions allowing for differing temporal trends among areas to account for 

multiple stocks (e.g. a declining CPUE in the Gulf of Mexico and increasing trend in Mediterranean or 

vice versa); 

- there must be season – area interactions to account for seasonal migrations of fish; 

- it is desirable to include fleet – area interactions to account for variable seasonal fishing behaviour (e.g. 

targeting). 

 

To reflect these requirements the preliminary master index was constructed based on the linear model: 

 

log(𝐶𝑃𝑈𝐸𝑦,𝑟,𝑚,𝑓) = 𝛼𝑦,𝑟 + 𝛽𝑚,𝑟 + 𝛿𝑓,𝑟 + 𝜀        (1) 

 

where the subscripts y, r, m and f refer to years, areas, seasons and fleets, respectively. The α terms are year – area 

interactions, β terms are season (quarter) – area interactions, δ terms are fleet-area interactions. A total of 12 fleets 

were originally considered that may have CPUE that can be expected to inform relative density of fish (e.g. non 

purse seine gears). From this larger group, an initial index was calculated from 9 fleets including the US longline 

and Spanish trap fisheries. However following review by the MSE Core Modelling Group, the fleets were limited 

to just 4 which were closer to those used in the stock assessment and would produce comparable trends in relative 

abundance (these fleets are described in Table 2). Expansion to more complex interactions (e.g. year – season – 

fleet) led to spurious model predictions of relative abundance among areas, seasons and years. It follows that 

given that trip level data are not available, this constitutes both the most and least complex model that is available 

for constructing the master index. There is however scope for producing alternative indices by including varying 

combinations of fleets and possibly by assuming constant catchability among areas (dropping the fleet-region 

interaction in favour of a simpler marginal fleet effect).  

 

A more thorough iteration of this modelling based on, for example, fine-scale trip data could consider a much 

more detailed account of the interaction of the fishery and population density. For example by accounting for 

density at finer spatial scales and a range of fishery characteristic such as gear configuration: 

 

log(𝐶𝑃𝑈𝐸𝑦,𝑅,𝑚,𝑓,𝑔) = 𝛼𝑦,𝑟 + 𝐴𝑅 + 𝛽𝑚,𝑟 + 𝛿𝑓,𝑟 + 𝑑𝑓,𝑔 + 𝜀      (2) 

 

where the d terms account for fleet specific gear g, configurations that may affect catchability.  The A terms are 

marginal effects to account for density estimates over finer spatial strata R, such as 5 x 5 or 1 x 1 degree spatial 

grid. If these fine-scale spatial phenomenon are assumed to be year- and season-specific they could be predicted 

as a function of habitat data H, such as sea temperature data: 

 

log(𝐶𝑃𝑈𝐸𝑦,𝑅,𝑚,𝑓,𝑔) = 𝛼𝑦,𝑟 + 𝑓(𝐻𝑅) + 𝛽𝑚,𝑟 + 𝛿𝑓,𝑟 + 𝑑𝑓,𝑔 + 𝜀      (3) 

 

More detailed analysis of trip-level data should consider both positive CPUE and the frequency of zero CPUE 

observations (i.e. a delta-lognormal mixture model, Maunder and Punt 2004.). Mixture models can account for 

increasing sparsity of positive observations, e.g: 

 

logit(∆𝑦,𝑟,𝑚,𝑓) = 𝛼𝑦,𝑟 + 𝛽𝑚,𝑟 + 𝛿𝑓,𝑟 + 𝜀             (4) 

 

Where the Δ is the fraction of positive catch rate observations. Mixture models of CPUE data have a potentially 

serious flaw in that they can lead to biased relative abundance indices if fishing practices have become 

increasingly intelligent over time or are less likely to observe zero catch rates as stocks decline (i.e. use of GPS, 

data sharing, increasingly sophisticated fish finders to maintain economic viability). These phenomena are 

prevalent in pelagic fisheries targeting billfish and tuna and so mixture models should be considered with some 

caution (it is possible that the positive CPUE data alone, contain the most reliable relative abundance signature).  
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2.2 Predicting population density and missing data 

 

For straightforward prediction of relative abundance in each year, season and area, the linear model of Eqn 1 

requires complete CPUE observations for every strata of each interaction effect, i.e. every combination of year - 

area (α) and season – area (β). However data for at least one fleet are not available across all of these strata (Table 

3, Figure 2). The majority of bluefin catch observations (~85% by weight) occur where these CPUE data are 

present to inform the master index. However in the remaining cases the calculation of standardized effort requires 

the use of an index calculated outside of the range of CPUE observations. In these instances the index is imputed 

from the inferred marginal year, area and season effects calculated across the interactions calculated from data 

that are present. Density estimates were calculated using the R function ‘predict.glm()’ of the ‘stats’ package.  

2.3 Calculating abundance from predictions of population density 

 

Atlantic bluefin operating models require abundance estimates at the coarse 10-area spatial resolution of Figure 

1. The linear model predicts CPUE density at this resolution (Figure 3) which must be converted to abundance 

estimates using covariate data regarding the spatial area over which these observations are made. Seasonal 

coverage of CPUE observations at the resolution of 1 x 1 degree ocean cells was used to calculate the seasonal 

size S, of each of the 10 areas of Figure 1 (Table 4). This coverage was calculated for season – area cells for 

which at least one tonne of bluefin was caught historically. The densities predicted by the linear model D were 

then converted to initial abundance estimates by multiplication by the relative seasonal size of each area: 

 

𝐴𝑦,𝑚,𝑟 = 𝐷𝑦,𝑚,𝑟 ∙ 𝑆𝑚,𝑟          (5) 

 

The abundance predictions arising from this equation can exhibit high inter-annual variability among years 

(Figure 4). In some cases the extent of these fluctuations is not credible given a stock with the longevity of 

Atlantic bluefin tuna subject to relatively consistent fishery exploitation rates (e.g. Mediterranean in quarters 2-4, 

Figure 4).  In a typical stock assessment framework, error in a relative abundance index is accounted for in the 

corresponding likelihood function. However in bluefin operating models the master index is proposed as a basis 

for calculating standardized effort for multiple fleets. It follows that an erroneous and overly low estimate of 

relative abundance will create a commensurately inflated prediction of standardized effort for all fleets in the 

model and hence the same number of inflated catch observations. Rather than use an index with unrealistically 

high inter-annual variability, a simple smoother (a cubic spline smoother, ‘smooth.spline ()’ of the R ‘stats’ 

package) was applied to create greater temporal consistency in the index among years whilst preserving the 

general temporal trends (Figure 5).  

 

 

3 Results and Discussion 

 

There are a number of characteristics of the master index (Figure 5) that appear qualitatively plausible given 

existing knowledge of Atlantic bluefin tuna migration and spatial distribution: 

 

- a substantially greater fraction of biomass in eastern areas; 

- seasonal movement out of the Mediterranean and Gulf of Mexico into mixing areas in the eastern, 

western and central Atlantic; 

- generally declining or flat trends from 1970 to 2000 with apparent rebuilding after the mid 2000’s 

 

There are also incidents where the master index predicts population distribution that may be qualitatively less 

credible:    

 

- substantially less biomass is available in quarter 4 (vulnerable biomass appears to decrease by as much 

as 50% population-wide); 

- abundance in Gulf of Mexico and Mediterranean / Eastern Atlantic areas go through long-term increases 

then decreases which are not reflected in the Western Atlantic region which exhibits a general decline. 

This implies a degree of stock viscosity (the ability for regional trends to differ due to regional 

exploitation rates) that may not be credible given the relatively high mixing rates of Atlantic bluefin tuna 

inferred by electronic tagging data. 

- the rebuilding signal in the east appears rather strong and begins before the more substantial management 

revisions that occurred around 2008 and 2009 
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That these characteristics are observable prior to assessment points to a particular merit of the master index 

approach (and the concept of combining fleet-specific indices in general). There is a clear representation of the 

inferred relative abundance among areas over time and it can be summarized in a single figure. This allows 

stakeholder to contribute further to the pivotal initial stages of the operational modelling where data are processed, 

rather than post-hoc model fits to various indices where questions are likely to be technical / statistical rather than 

logical (should an index inform relative abundance and if so where, when and under what circumstances?). For 

example, in some settings, CPUE indices from multiple fleets are used in an assessment where some are derived 

from linear models with time-area interaction effects (possibility of different trends in abundance among areas) 

and others are derived from linear models with marginal time and area effects (same trend in abundance among 

areas), which is theoretically inconsistent. 

 

Another advantage is that the catch rate data of multiple fleets are synthesized before estimation reducing the 

number of potential data conflicts, thereby simplifying the estimation problem. This is paramount in the case of 

Atlantic bluefin operating models that are already disaggregated seasonally and spatially. While multi-fleet CPUE 

standardization may be challenging, the same conflicts in data are likely to arise later in the model fitting at which 

stage there may be less opportunities to revisit how indices were formulated.  

 

With additional resources, a master index may be derived that provides an overall picture of relative abundance 

for Atlantic bluefin. To be defensible in a stock assessment setting such an index would have to make use of finer-

scale catch rate data, account for trip-level gear specific configurations and model finer-scale spatio-temporal 

density. Such a process would likely include the data from multiple contracting parties with terms of reference 

for objectively guiding which data should be included in the analysis. 

 

It may the case that the approach applied here would not be sufficient to pass peer-review in a stock assessment 

setting (use of nominal CPUE, failure to account for frequency of zero CPUE observations). However in the case 

of MSE, the operating models are not required to be defensible as the best available representation of the system 

but rather as a suitable basis for bracketing uncertainty in spatio-temporal distribution and population trends. It 

can be argued that rather than focusing on the potential inaccuracy of a particular index, a more important threat 

to MSE is compression of uncertainty leading to false conclusions of robustness of management procedures. 

Given these differing priorities it may be argued that the current approach is a defensible preliminary step in the 

conditioning of operating models that can be updated as fleet-specific standardized effort data become available 

at the required seasonal and spatial resolution.  
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Table 1. The fleets that are currently modelled explicitly in the bluefin tuna MSE operating models.  

 
 

 

Table 2. The fleets (flags and gear groups) whose CPUE was used in calculation of the master. 

 

Flag Gear Code 
Total historical 

catches 

Japan Longline JP LL 1.38m fish 

Canada Rod and reel CA RR 9,131 tonnes 

Morocco Trap MA TP 15,996 tonnes 

Spain Bait boat ES BB 35,625 tonnes 

     

No. Fleet code Gear code Flag Start End Areas Quarters

1 LLOTH LL Not JPN 1960 2015 Any Any

2 LLJPN LL JPN 1960 2015 Any Any

3 BBold BB ALL 1960 2008 Any Any

4 BBnew BB ALL 2009 2015 Any Any

5 PSMedRec PS ALL 2009 2015 Med Any

6 PSMedLOld PS ALL 1960 2008 Med 2

7 PSMedSOld PS ALL 1960 2008 Med Not 2

8 PSWestOld PS ALL 1960 1986 Not Med Any

9 PSWestnew PS ALL 1987 2015 Not Med Any

10 TPOld TP ALL 1960 2008 Any Any

11 TPnew TP ALL 2009 2015 Any Any

12 RRCan RR CAN 1988 2015 Any Any

13 RRUSA RR USA 1988 2015 Any Any

14 All other fleets - - 1960 2015 Any Any
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Table 3. Time-area strata where CPUE data for at least one fleet are available to inform linear model predictions 

(year - area and quarter - area interactions).  

 
 

Table 4. Calculation of the quarterly size of areas based on the coverage of CPUE observations in 1x1 degree 

ocean cells.  
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Figure 1.  The 11-area spatial definitions of latest electronic tagging (Lauretta. pers. comm., right). In this analysis 

the two Mediterranean areas were combined into a single area, creating a total of 10 ocean areas.   

 

 

 
 

Figure 2. The seasonal-spatial coverage of the various fleets (Table 3) used in constructing the preliminary master 

index.  
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Figure 3. Spatial density predictions arising from the linear model (Eqn 1.). 

 

 

 
Figure 4. Unprocessed relative abundance predictions arising from linear model estimates of population density 

(Figure 3) multiplied by seasonal estimates of area size (Table 3).   
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Figure 5. A preliminary master index by region and season that was calculated by temporally smoothing relative 

abundance estimates (Figure 4) (data smoothed by cubic spline).  

 

 

 


