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SUMMARY 

 

Environmental conditions were evaluated for their influence on catch per unit effort (CPUE) 

of shortfin mako (Isurus oxyrinchus). Catch rates of shortfin mako were calculated from the 

US pelagic longline observer program (1992-2016) using a generalized linear mixed model 

(GLMM) with a delta-lognormal approach.  The GLMM analysis included consideration of the 

following environmental variables as predictor variables: sea surface height, sea surface 

temperature, and bathymetry.  The addition of environmental predictor variables resulted in 

an index that spans 2003-2012. The final index was used to predict average catch per unit 

effort (CPUE) based on environmental conditions. The two portions of the delta-lognormal 

approach retained different suites of variables with sea surface temperature and bathymetry 

retained to predict proportion of positive sets while bathymetry was retained to predict the 

CPUE of positive catches. Quantile regression was also performed to evaluate whether 

environmental variables can predict spatial areas with high CPUE. As with the delta 

approach, environmental data were used to predict conditions that favor high CPUE. Maps 

generated from both the approaches will later be used for determining mako shark habitat for 

a spatial management strategy evaluation. 
 

RÉSUMÉ 

 

Les conditions environnementales ont été évaluées afin de déterminer leur influence sur les 

captures par unité d'effort (CPUE) du requin-taupe bleu (Isurus oxyrinchus). Les taux de 

capture du requin-taupe bleu ont été calculés à partir du programme d'observateurs à bord de 

palangriers pélagiques des États-Unis (1992-2016) en utilisant un modèle mixte linéaire 

généralisé (GLMM) avec une approche delta-lognormale.  L’analyse de la GLMM prenait en 

compte les variables environnementales suivantes comme variables de prédiction : hauteur de 

la surface de la mer, température de la surface de la mer et bathymétrie.  L’ajout de variables 

de prédiction environnementale a entraîné un indice qui s’étend de 2003 à 2012. L’indice final 

a été utilisé pour prédire la capture par unité d’effort (CPUE) moyenne basée sur des 

conditions environnementales. Les deux parties de l’approche delta-lognormale ont retenu 

différentes suites de variables, la température de surface de la mer et la bathymétrie étant 

retenues pour prédire la proportion d'opérations positives tandis que la bathymétrie a été 

retenue pour prédire la CPUE de prises positives. Une régression quantile a également été 

effectuée afin d'évaluer si les variables environnementales peuvent prévoir des zones avec une 

CPUE élevée. Comme avec l’approche delta, des données environnementales ont été utilisées 

pour prédire les conditions qui favorisent une CPUE élevée. Les cartes obtenues des deux 

approches seront utilisées ultérieurement pour déterminer l’habitat du requin-taupe bleu aux 

fins de l'évaluation d'une stratégie de gestion spatiale. 
 

RESUMEN 

 

Se evaluaron las condiciones medioambientales para determinar su influencia en la captura 

por unidad de esfuerzo (CPUE) del marrajo dientuso (Isurus oxyrinchus). Se calcularon las 

tasas de captura del marrajo dientuso a partir del programa de observadores de palangre 

pelágico de Estados Unidos (1992-2016) utilizando un modelo lineal generalizado mixto 
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(GLMM) con un enfoque delta-lognormal. El análisis GLMM incluía la consideración de las 

siguientes variables medioambientales como variables de predicción: altura de la superficie 

del mar, temperatura de la superficie del mar y batimetría. Añadir las variables de predicción 

medioambientales tuvo como resultado un índice que abarca desde 2003 hasta 2012. El índice 

final se utilizó para predecir la CPUE media basándose en las condiciones medioambientales. 

Las dos partes del enfoque delta lognormal retenían diferentes conjuntos de variables y la 

temperatura de la superficie del mar y la batimetría se retuvieron para predecir la proporción 

de lances positivos, mientras que la batimetría se retuvo para predecir la CPUE de capturas 

positivas. Se llevó a cabo también una regresión por cuantiles para evaluar si las variables 

medioambientales pueden predecir áreas con una CPUE elevada. Al igual que con el enfoque 

delta, se utilizaron los datos medioambientales para predecir las condiciones que favorecen 

una CPUE elevada. Los mapas generados a partir de ambos enfoques se utilizarán 

posteriormente para determinar el hábitat del marrajo dientuso para una evaluación de la 

estrategia de ordenación espacial. 
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1. Introduction 
 

The objective of this paper is to evaluate how environmental conditions influence mako shark catch per unit 

effort (CPUE) and determine if they can be used to predict CPUE in time and space, especially high values of 

CPUE.  A generalized linear mixed modeling (GLMM) approach is used to predict mean CPUE, similar to the 

standardization methods used to generate abundance indices for past assessments (Cortés 2013; 2007).  

However, this study has a particular interest in determining what conditions favor particularly high CPUE, where 

much of the fishing mortality occurs.  The use of quantile regression to focus on the upper tail of the CPUE 

distribution, rather than the mean, will reveal what environmental conditions predict higher CPUE.  Quantile 

regression is a method appropriate for abundance data with non-linear, non-symmetric, heterogenous scatter in 

response to a gradient (Fukunaga et al. 2016, Anderson 2008, Cade and Noon 2003, Koenker and Bassett 1978). 

It addresses the scatter by allowing the slopes to differ for the different parts of the abundance distribution 

(Koenker and Bassett 1978). It has been used in ecology particularly to test environmental predictor variables 

(Fornaroli et al. 2016, Fukunaga et al. 2016, Anderson 2008, Cade and Noon 2003). Application of quantile 

regression to the upper extreme allows the independent environmental variables to be viewed more easily as 

boundaries to suitable habitat (Fornaroli et al. 2016). This is the first step in a larger body of work aimed at 

determining mako habitat and distribution for a management strategy evaluation. 

 

2. Methods 

 

Environmental conditions were considered within the GLMM and quantile regression as explanatory variables.  

The GLMM predicts mean CPUE while the quantile regression predicts CPUE at the defined percentile. As this 

is a preliminary study, only sea surface temperature, sea surface height, and bathymetry were considered. Future 

studies will incorporate distance from front and other oceanographic variables. Catch and effort data was 

obtained from the US pelagic longline observer program (1992-2016) (Brown and Minnett 1999) while weekly 

sea surface temperature composites (2003-2016) and daily sea surface height (1992-2012) (Ducet et al 2000) 

were downloaded from the NOAA CoastWatch satellite database and bathymetry was downloaded from the 

Scripps Institute of Oceanography Geodesy satellite database (Smith and Sandwell 1997). The catch dataset was 

reduced to those events in time for which environmental variables were available so there would be no null 

values. This resulted in a dataset spanning 2003 to 2012. All of the following analyses were conducted in R 

version 3.1.2 using the MASS (Venables and Ripley 2002) and quantreg (Koenker 2015) libraries. 

 

Mean catch rates were modeled using a GLMM with a delta-lognormal approach.  In this approach the 

proportion of positive catch assumes a binomial error distribution while the mean catch rate for positive 

observations assumes a lognormal error distribution so they are considered separately then combined (Maunder 

and Punt 2004, Ortiz and Arocha 2004).  The predicted mean CPUE is then calculated as the probability of 

presence from the binomial model multiplied by the mean CPUE when present from the lognormal model. The 

variables year, fishing area, quarter, hooks between floats, and the use of lights were initially considered in all 
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models along with all combinations of possible environmental variables.  Interactions were not considered. All 

environmental variables were converted to factors (factor levels provided in Table 1). After viewing diagnostic 

results, models excluding variables that explained less than 1% of the total deviance were considered. The 

Bayesian information criteria (BIC) was used to select the final binomial and lognormal models because it 

tended to prefer simpler models and more complex models had unreasonably high coefficients of variation.   

 

The quantile regression method analyzes patterns in the user-specified quantile rather than the mean.  For this 

analysis, the interest was focused on particularly high values of CPUE; the 99th percentile was analyzed looking 

at different combinations of the environmental variables as numerical variables, including the interactions 

between all possible pairs in addition to quadratic terms for each variable, with the response variable being (log 

CPUE + 0.1). Gear variables use of light and hooks between floats were also considered as it is assumed that 

gear differences will bias catch rates. All variables except use of light were considered to be continuous and not 

converted to the factors used in the GLMM. Explanatory variables and terms were retained based on their 

significance, calculated using the default settings of the summary function in the quantreg R library. This method 

is based on a t statistic, with the standard error calculated using a Huber sandwich estimate of the standard error 

(Koenker 2015).  

 

Comparing the results of the two methods will give an indication of how environmental conditions affect both 

mean catch rates and particularly high catch rates.  

 

 

3. Results 

 

In the GLMM analysis of the observer data, as determined by the BIC, variables retained for the proportion of 

positive sets were year, area, quarter, use of light, hooks between floats, sea surface temperature, and bathymetry 

(Table 2). Residuals for the proportion of positive catch are shown in Figure 1. Model coefficients for 

bathymetry indicate a negative effect on the proportion of positive sets except for bottom depths shallower than 

800m (Figure 2a). Overall with decreasing bottom depth there is a “U” shape with the greatest coefficient 

magnitude at the 2400m-3200m bin (Figure 2a). Mako catches are least likely in waters 2400m-3200m and most 

likely in waters less than 800m (Figure 2a). Model coefficients for sea surface temperature indicate a positive 

effect on the proportion of positive catch except for the 25-30 degree bin and a higher probability of having a 

positive catch in colder waters (Figure 2b).  

 

The variables retained by the BIC for the lognormal model of positive catch were year, area, quarter, hooks 

between floats, and bathymetry (Table 2). Residuals for the positive catch model have increasing variance with 

higher predicted values indicating that the assumed error distribution may not be the most appropriate (Figure 

3). Model coefficients for bathymetry indicate that, using the deepest category as a reference level, all shallower 

levels have a positive effect on CPUE, and the CPUE tends to increase as the bottom depth gets shallower, with 

the highest CPUE in bottom depths shallower than 800m (Figure 4).  

 

In the quantile regression, the gear variables hooks between floats and use of lights were never found to be 

significant. All three environmental variables tended to be significant when included as a linear term while only 

bathymetry tended to be significant as a quadratic term and the only significant interaction was that between sea 

surface temperature and bathymetry. Model exploration showed that when analyzed separately sea surface 

temperature and sea surface height tended to be significant.  However, possibly because sea surface height and 

sea surface temperature are moderately correlated (Table 3), all models that included both variables found that 

only one was significant. For this reason, a “final” model was not selected but rather several models were 

selected for discussion; one including appropriate sea surface temperature and bathymetry terms (Model A) and 

one including appropriate sea surface height and bathymetry terms (Model B).  Both models are summarized in 

Table 4.  

 

Model A indicates that predicted log CPUE has an inverse relationship with sea surface temperature.  At any 

given depth, the predicted 99th percentile of log CPUE is higher for colder sea surface temperatures (Figure 5). 

Model B indicated that predicted log CPUE also has an inverse relationship with sea surface height, with the 

predicted log CPUE greater at lower heights at any given depth (Figure 6). Bathymetry appears to be more 

complicated with the highest predicted log CPUE at the deepest bottom depths and moderately high predictions 

at the shallowest bottom depths for any given sea surface temperature (Figure 5) or any given sea surface height 

(Figure 6).  
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Because some of the tested environmental variables were retained in the GLMM but show some promise for 

predicting high catches, a post hoc analysis was performed visually inspecting the annual CPUE trend and the 

North Atlantic Oscillation (NAO) (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml). The 

NAO is associated with height, temperature, and pressure anomalies that could be influencing mako abundance 

and catch.  The predicted mean log CPUE and the median NAO index appear to follow similar trends except in 

2007 and 2012 (Figure 7).  

 

 

4. Discussion 

 

The two portions of the GLMM approach retained different environmental variables; proportion positive retained 

sea surface temperature and bathymetry while the positive catches retained only bathymetry. The difference in 

environmental variables retained in the two parts of the GLMM model indicate that sea surface temperature 

plays a role in whether mako will be caught at all but not necessarily how many will be caught. Sea surface 

height was never retained indicating that it may not play a role at all. Even when retained in the BIC best models, 

the environmental variables explained less than 3% of the deviance in the binomial and lognormal GLMM. On 

the other hand, the quantile regression indicates that all three environmental variables may be important for 

predicting high values of CPUE. This difference between methods could indicate that sea surface temperature 

and sea surface height are more influential on particularly high catch but not mean catch.   It is also possible that 

the traditional GLMM method is not picking up the environmental signals. Sea surface temperature is known to 

vary with the season and latitude. This data covers most of the western-north Atlantic over several years and the 

local sea surface temperature signal could be hidden by the variable quarter or the large spatial scale of the data. 

Sea surface height contours are considered to be indicative of frontal position. It is possible that another frontal 

descriptor, such as distance from front, would be more informative. The gear variables, which are assumed to 

influence catchability, were not significant in the quantile regression models but were in the GLMM indicating 

that gear may matter less for large catches than for presence/absence. 

 

Sea surface temperature and height could be influencing mako distribution and density. The results of both 

methods indicate that sharks may be found in higher densities at certain environmental conditions (colder waters 

and lower heights) therefore increasing the proportion of positive catch and the number caught at locations with 

these conditions.  Bathymetry could be influencing mako density and/or catchability. The GLMM shows higher 

probability of positive catch and higher catches in shallow waters, again indicating that there are possibly higher 

shark densities there. However, low catches in deeper waters could also be caused by a decrease in catchability, 

if sharks are present but occupy a larger volume in deeper waters.  However, the quantile regression method 

shows high CPUE in very deep and shallow waters indicating high densities for both or possibly high 

catchability. 

 

This work was intended to be an exploratory study to test methods for ultimately determining mako habitat 

preference. This will be used to distribute individuals spatially in an individual-based model (IBM) based on 

environmental conditions at each location. The more traditional method of including environmental variables in 

a GLMM does not appear to tell the whole story.  Sea surface height was not retained in either model and 

variables that were retained explained very little deviance. The quantile regression of the 99th percentile of CPUE 

indicates that these variables are significant and can potentially predict high catch.  

 

For the purposes of determining habitat preference and distribution, as opposed to standardized catch rates over 

time, quantile regression may be a better method.  High CPUE can be interpreted as a result of high shark 

density indicating a preference for the conditions found at that particular set. Mako sharks are highly migratory, 

long-lived sharks that are not known to aggregate.  Catches are typically zero so the data is zero-inflated. When 

there is a positive catch, most of the time only 1 or 2 makos are caught per set.  If we assume that CPUE and 

catch are representative of density, then sets with low CPUE (which are the overwhelming majority in this 

dataset) and ultimately the mean CPUE, tell us very little about where we find makos. Quantile regression 

looking at the upper extreme eliminates the issue of large numbers of zeros and avoids making habitat preference 

assumptions based on very low average CPUE. There is also more freedom with the variables themselves 

because there is no assumption of a normal distribution and the error distribution does not need to be specified. 

This method may provide the tools necessary to determine which environmental conditions makos actually 

inhabit. 
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The quantile regression method seems promising after this study.  However, more analysis needs to be carried 

out to define mako habitat preference. This study only looked at the 99th percentile, which was chosen arbitrarily; 

another quantile may be more informative.  In this study a “final model” was never selected and retained 

variables were determined using p-values.  More diagnostics need to be performed and a selection method needs 

to be solidified in order to eventually select a final model to be employed within the spatial IBM. Furthermore, 

the p-value of a variable is influenced by its location in the model in relation to other variables (Sokal and Rohlf 

2011) and alone may not be the most reliable for final variable selection.  

 

Comparison of the GLMM with the NAO index, a synergy of environmental anomalies, indicates that despite the 

low deviance explained and lack of variable retention, these environmental conditions could be impacting catch 

rates. The possible correlation may be caused by changes in distribution of either the mako population or the 

fishing fleet, or some other mechanism that affects catchability. It is unlikely that mako shark abundance would 

change rapidly enough to track the NAO. However, the NAO may be relevant to determining shark habitat 

distributions over time.  

 

References 

 

Anderson, M.J., 2008. Animal-sediment relationships re-visited: Characterising species’ distributions along an 

environmental gradient using canonical analysis and quantile regression splines. Journal of 

Experimental Marine Biology and Ecology, 366(1-2):16-27. 

 

Brown, O.B. and P.J. Minnett. 1999. MODIS Infrared Sea Surface Temperature Algorithm, Version 2.0. 

Algorithm Theoretical Basis Document, ATBD25. University of Miami, Miami, FL. Under Contract 

Number NAS5-31361. 

 

Cade, B.S. and B.R. Noon. 2003. A gentle introduction to quantile regression for ecologists. Frontiers in Ecology 

and the Environment, 1(8):412-420. 

 

Cortés, E. 2013. Standardized catch rates of mako sharks from the U.S. pelagic longline logbook and observer 

programs using a generalized linear mixed model. Collect. Vol. Sci. Pap. ICCAT, 69(4): 1578-1590. 

 

Cortés, E. 2007. Standardized catch rates for blue shark and shortfin mako from the US pelagic longling logbook 

program. Collect. Vol. Sci. Pap. ICCAT, 60(2): 617-628. 

 

Ducet, N., P.-Y. Le Traon, and G. Reverdin. 2000. Global high resolution mapping of ocean circulation from 

TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105:19477-19498. 

 

Fornaroli, R. et al. 2016. Optimal flow for brown trout: Habitat-prey optimization. Science of the Total 

Environment, 566-567:1568-1578. 

 

Fukunaga, A., R.K. Kosaki, D. Wagner, and C. Kane. 2016. Structure of mesophotic reef fish assemblages in the 

northwestern Hawaiian Islands. Plos One, 11(7). 

 

Koenker, R. 2015. Quantile Regression in R: a vignette. www.R-project.org. 

 

Koenker, R. and B. Gilbert. 1978. Regression quantiles. Econometrica, 46(1): 33-50. 

 

Maunder M.N., and A.E. Punt. 2004. Standardizing catch and effort data: as review of recent approaches. 

Fisheries Research, 70(2-3):141-159. 

 

Ortiz, M. and F. Arocha. 2004. Alternative error distribution models for standardization of catch rates of non-

target species from a pelagic longline fishery: billfish species in the Venezuelan tuna longline fishery. 

Fisheries Research, 70(2-3):275-297. 

 

Sokal, R.R. and F.J. Rohlf. 2011. Biometry. Fourth Edition. W.H. Freeman. 

 

Smith, W.H.F. and D.T. Sandwell 1997. Global seafloor topography from satellite altimetry and ship depth 

soundings. Science, 277:1957-1962. 

 

Venables, W. N. and B.D. Ripley. 2002. Modern Applied Statistics with S. Fourth edition. Springer. 

1668

http://www.r-project.org/


Table 1. Factor levels used for hooks between floats, sea surface temperature, sea surface height, and 

bathymetry predictor variables used in the generalized linear mixed model approach to predict catch rates. 

Variable Number of Levels Levels 

Hooks Between Floats 5 <3 

4 

5 

6 

>7 

Sea Surface Temperature (°C) 5 <15° 

15°-20° 

20°-25° 

25°-30° 

30°-35° 

Sea Surface Height (m) 4 <0m 

0m-0.3m 

0.3m-0.6m 

>0.6m 

Bathymetry (m) 7 0m-800m 

800m-1600m 

1600m-2400m 

2400m-3200m 

3200m-4000m 

4000m-4800m 

>4800m 

 

 

Table 2. Analysis of variance table for factors retained in the model of proportion of positive sets and positive 

catch of shortfin mako sharks for U.S. pelagic longline observer data. 

Proportion 

Positive Sets 

Df Deviance Residual Df Residual 

Deviance 

p-value Percent 

Deviance 

NULL   6442 8930.5   

Year 10 1935.29 6432 6995.2 0 21.7 

Fishing Area 7 866.25 6425 6129.0 0 9.7 

Quarter 3 32.60 6422 6096.4 <0.0001 0.4 

Use of Light 1 83.20 6421 6013.2 0 0.9 

Hooks Between 

Floats 

4 11.80 6417 6001.4 <0.02 0.1 

Sea Surface 

Temperature 

4 60.93 6413 5940.4 0 0.7 

Bathymetry 6 155.62 6407 5784.8 0 1.7 

Positive Catch       

NULL   1528     1707.95   

Year 10              866.66 1518 841.29 0 50.7 

Fishing Area 7                84.48 1511 756.81 0 4.9 

Quarter 3 33.93 1508 722.88 <0.0001 2.0 

Hooks Between 

Floats 

4 30.59 1504 692.29 <0.0001 1.8 

Bathymetry 6 33.70 1498 658.59 <0.0001 2.0 
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Table 3. Correlation matrix for the environmental predictor variables sea surface temperature, sea surface height, 

and bathymetry. 

 Sea Surface Temperature Sea Surface Height Bathymetry/1000m 

Sea Surface Temperature 1   

Sea Surface Height 0.443 1  

Bathymetry/1000m -0.0282 -0.389 1 

 

 

 

 

Table 4. Summary table for variables retained in the quantile regression models of proportion of positive sets 

and positive catch of shortfin mako sharks for U.S. pelagic longline observer data. 

Model A Coefficient Value Standard Error p-value 

Sea surface Temperature -0.0827 0.0364 <0.03 

Bathymetry/1000m 0.0192 0.399 >0.05 

Bathymetry/1000m Squared 0.137 0.0320 <0.0001 

Interaction 0.0360 0.0137 <0.01 

Model B    

Sea Surface Height -1.73 0.332 0.0 

Bathymetry/1000m 1.17 0.244 0.0 

Bathymetry/1000m Squared 0.241 0.0566 <0.0001 
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Figure 1. Proportion of positive sets binomial GLMM model diagnostics. 

 

 
 

Figure 2.  Coefficients +/- the standard error for the (a) bathymetry and the (b) sea surface temperature predictor 

variable levels determined for the proportion of positive sets binomial model of the GLMM approach. 

 

(a) (b) 
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Figure 3. Positive catch lognormal GLMM model diagnostics. 

 

 
 

 

Figure 4. Coefficients +/- the standard error for the bathymetry predictor variable levels determined for the 

positive catch lognormal model of the GLMM approach.  
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Figure 5. Heat map of predicted log CPUE generated from Model A; the quantile regression of the 99th 

percentile using the explanatory variables sea surface temperature, bathymetry, bathymetry squared, and an 

interaction term. 
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Figure 6. Heat map of predicted log CPUE generated from Model B; the quantile regression of the 99th 

percentile using the explanatory variables sea surface height, bathymetry and bathymetry. 

 
 

 
 

Figure 7. The annual CPUE trend (red), as predicted by the GLMM approach, overlaid with boxplots of the 

monthly North Atlantic Oscillation (NAO) index values for each year.  
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