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SUMMARY 

 
When conducting a Management Strategy Evaluation the Observation Error Model is the 
component of the Operating Model that generates fishery-dependent and/or fishery-independent 
resource monitoring data for input to a Management Procedure. In this paper we explore options 
for the Observation Error Model used to test the North Atlantic albacore Management 
Procedure. The options include (i) single indices derived from Operating Models abundance, 
catch per unit of effort and overall selectivity and (ii) multiple fleet specific indices for biased 
and unbiased CPUE. We recommend the unbiased multiple CPUE indices for the North Atlantic 
albacore evaluation of HCRs using MSE. Fleet specific CPUE and variability of the indices can 
explain the recent assessment of this stock. 

 
RÉSUMÉ 

 
Pour réaliser une évaluation de la stratégie de gestion, le modèle d’erreur d’observation est la 
composante du modèle opérationnel qui génère des données de suivi de la ressource dépendantes 
ou indépendantes des pêcheries à saisir dans une procédure de gestion. Dans le présent 
document, plusieurs possibilités de modèle d’erreur d'observation sont étudiées pour tester la 
procédure de gestion du germon de l’Atlantique Nord. Ces possibilités incluent : (i) des indices 
uniques calculés à partir de l’abondance, de la prise par unité d'effort et de la sélectivité globale 
de modèles opérationnels et (ii) indices spécifiques à de multiples flottilles pour des CPUE 
biaisées et non biaisées. Les indices de CPUE multiples non biaisés sont recommandés pour 
l’évaluation des HCR du germon de l’Atlantique Nord au moyen d’une MSE. La CPUE spécifique 
à la flottille et la variabilité des indices peuvent expliquer l’évaluation récente de ce stock. 
 

RESUMEN 
 
Al realizar una evaluación de estrategias de ordenación el modelo de error de observación es el 
componente del modelo operativo que genera datos de seguimiento del recurso dependientes y/o 
independientes de la pesquería para utilizarlos como entradas en un procedimiento de 
ordenación. En este documento se exploran las opciones para el modelo de error de observación 
utilizado para probar el procedimiento de ordenación para el atún blanco del norte. Las opciones 
incluyen (i) índices únicos derivados de la abundancia, captura por unidad de esfuerzo y 
selectividad global de los modelos operativos, e (ii) índices específicos de múltiples flotas para 
CPUE sesgadas y no sesgadas. Se recomiendan los índices de CPUE múltiples no sesgados para 
la evaluación de HCR para el atún blanco del Atlántico norte mediante una MSE. Las CPUE 
específicas de la flota y la variabilidad de los índices pueden explicar la evaluación reciente de 
este stock. 
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Introduction 
 
The foundational objective of the International Commission for the Conservation of Atlantic Tunas (ICCAT) is to 
maintain populations at levels that can permit the maximum sustainable yield (or above). For that, a series of 
recommendations have fostered the development of reference points (Rec. 11-04) and guidelines of decision 
making including Harvest Control Rules (Rec. 11-13 and Rec. 15-04). In 2016, the Commission adopted a 
multiannual conservation and management program for North Atlantic albacore (Rec. 16-06). This Rec. requests 
that “in 2017, the SCRS shall refine the testing of candidate reference points (e.g., SSBTHRESHOLD, SSBLIM and 
FTARGET) and associated harvest control rules (HCRs) that would support the management objective expressed in 
paragraph 2 above. The SCRS shall also provide statistics to support decision‐making in accordance with the 
performance indicators in Annex 2. The result of the analyses described in paragraph 12 will be discussed in a 
dialogue between scientists and managers to be organised in 2017, either during a meeting of the SWGSM or as 
an inter‐sessional meeting of Panel 2. Based on the SCRS inputs and advice provided pursuant to paragraph 12 
above and the dialogue process indicated in paragraph 13, the Commission shall then endeavor in 2017 to adopt 
HCRs for the North Atlantic albacore, including pre‐agreed management actions to be taken under various stock 
conditions”. 
 
In 2016, the ability of a series of Harvest Control Rules (HCR) to achieve management objectives for North 
Atlantic albacore was evaluated using Management Strategy Evaluation (MSE) (Merino et al., 2016) and discussed 
in ICCAT’s Panel 2 meeting (ICCAT, 2016a). That study used a MSE framework containing an Observation Error 
Model (OEM) that used the Operating Models’ (OM) biomass time series with a normal error term to generate 
catch per unit of effort (CPUE) series that would be plugged into a biomass dynamic model in the Management 
Procedure (MP) component. This means that the analysis was undertaken using a theoretical CPUE index 
representative of the exploitable biomass and not the fishable biomass. ICCAT’s 2016 Working Group on Stock 
Assessment Methods (WGSAM) suggested that consideration should be given to simulating actual CPUE series 
(ICCAT, 2016d). Also in 2016, the SCRS developed a schedule for the development of MSE and Harvest Control 
Rules, which included further evaluations of HCRs through MSE for North Atlantic albacore. In the workplan 
agreed by the SCRS for North Atlantic albacore as part of the multiyear Albacore Research program, priority was 
given to developing a OEM that considers actual CPUE series’ structure, age-classes and other properties (ICCAT, 
2016b).  
 
In MSE an Operating Model is used to simulate resource dynamics in order to evaluate the performance of a 
Management Procedure. Where the MP is the combination of pre-defined data, together with an algorithm to which 
such data are input to provide a value for a management control measure. To link the OM and the MP it is necessary 
to develop an Observation Error Model to generate fishery-dependent or fishery-independent resource monitoring 
data. The OEM reflects the uncertainties, between the actual dynamics of the resource and perceptions arising 
from observations and assumptions by modelling the differences between the measured value of a resource index 
and the actual value in the OM (Kell and Mosqueira, 2017c). In this paper we describe alternatives for the 
development of an OEM for use in the North Atlantic albacore MSE. 
 
The OM is based upon the Multifan-CL assessment conducted during the 2013 ICCAT North Atlantic Albacore 
stock assessment and a series of alternatives (Merino et al., 2017). While the Management Procedure is based on 
the biomass dynamic stock assessment conducted in 2016 (Kell et al., 2017b). The biomass dynamic stock 
assessment model assumes that total historical catches are known without error and uses indices of relative 
abundance to estimate population growth rate (r) and virgin biomass (K). In this paper we explore options for an 
OEM by combining OMs biomass trends, catch per unit of effort series, fleet specific and overall selectivity 
patterns and analyses of the indices used in the latest stock assessment of North Atlantic albacore, including their 
residuals of fit. We develop a procedure to simulate CPUE from the OM and compare the properties of the 
simulated to those used in the assessment. We also explain how the results shown here encourage modifications 
to the MSE framework used in 2016 in order to produce more accurate results. 
 
Material and Methods 
 
When fitting the albacore stock assessments, commercial catch per unit effort (CPUE) is used as a proxy for 
relative abundance. In MSE, indices of abundance can be generated from OMs. Originally ten scenarios were 
considered for North Atlantic albacore when fitting Multifan-CL. The scenarios are described and the results 
summarized in (Kell et al. 2017a). Following this, additional OM scenarios have been proposed and these are 
documented. Using the trajectories of the OMs, a series of indices have been generated. First, estimated overall 
stock, catch, fishing mortality and selectivity values have been used to generate three individual indices. The OMs 
were initially conditioned from the fits to CPUEs in the 2013 stock assessment and they include estimated selection 
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patterns and residuals, which are explored and compared to the residuals of the 2016 biomass dynamic assessment. 
The 2016 stock assessment of this stock was made using a biomass dynamic model that was fitted using five 
indices (Table 1) as proxies of relative abundance (ICCAT, 2016c). Three of them were also part of the 2013 
assessment with Multifan-CL and therefore included in the updated OMs (ICCAT, 2013; Merino et al., 2017). In 
2013, US and Venezuelan LL indices were included in the China Taipei index. US index refers to ages 3-8. In 
order to estimate US and Venezuelan LL indices we used the selectivity of the KoreaPaCu LL index from 2013. 
This would allow covering the range of ages with the selected indices. From these, we have generated four 
individual fleet’s indices using their selectivity patterns. In addition, an additional index has been generated for 
Chinese Taipei longline considering a 10% bias (following this fleet’s CPUE residuals of fit (ICCAT, 2016c)). 
 
The five alternatives for generating CPUE indices are the following: 
 

1) Index1 ~Stock: In the previous MSE developed for this stock (Merino et al., 2016), a single index was 
generated adding a normal error term to each of the stock trajectories. This means that the indices were 
representative of the exploitable biomass and not the fishable biomass.  
 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼1 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼 𝜀𝜀   (eq. 1) 
 

2) Index2 ~CPUE: The OMs contain information of alternative trajectories for catch and fishing mortality 
(fbar) that do not necessarily coincide with stock biomass trends. We have estimated a single overall 
CPUE index from the total catch and estimated harvest rates. This index is still representative of the 
exploitable biomass and not the fishable biomass as the catch and harvest rates used are not age specific. 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2 = Total Catch

fbar
𝐼𝐼 𝜀𝜀    (eq. 2) 

 
3) Index3 ~CPUE & Selectivity: In this case, the catch per unit of effort is estimated corrected by the 

selectivity pattern. The catch of each age class (a) is multiplied by its overall selectivity (across fleets) 
and divided by the overall fishing mortality (eq. 3). Here also a single index is generated: 
 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼3 = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑎𝑎 𝑥𝑥 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚

𝑎𝑎
fbar

𝐼𝐼 𝜀𝜀    (eq. 3) 
 

4) Indices4 ~ Fleet specific CPUE & Selectivity: In this case, the catch per unit of effort is estimated with 
each fleet’s selectivity pattern. The catch of each age class (a) is multiplied by its fleets’ selectivity and 
divided by the overall fishing mortality (eq. 4). Here, four fleets’ (f) indices are generated: 
 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼4,𝑓𝑓 =

∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑎𝑎,𝑓𝑓 𝑥𝑥 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆𝑎𝑎,𝑓𝑓
𝑚𝑚𝑎𝑎𝑚𝑚
𝑎𝑎

𝑓𝑓𝑓𝑓𝐶𝐶𝑓𝑓
𝐼𝐼 𝜀𝜀    (eq. 4) 

 
5) Indices5 ~ Fleet specific CPUE, Selectivity and bias: Finally, we have replicated Indices4 but with a 

modification for Chinese Taipei LL index. The residuals of fit for this fleet’s index in 2016 suggest a 
possible bias and we have explored a 10% yearly increase in catchability. 

 
The indices generated are used to fit the biomass dynamic model mpb, which was used in the 2016 stock 
assessment of North Atlantic albacore (ICCAT, 2016c). The fits are made using the same specifications and 
modelling choices as in 2016, i.e. using the Fox model, CPUE series from the years specified in Table 1 and the 
same starting values used in 2016. The estimated trajectories of relative biomass and the residuals of fit of indices 
4 and 5 are compared to the 2016 stock assessment.  
 
Then, the base case OM is projected into the future with a 40% CV on its stock recruitment relationship. The 
projected OM is then used to generate the five indices for fitting with the biomass dynamic model. 
 
Finally, variability is added to the simulated indices for 2016. Series of indices are generated with increasing 
variability to explore the range of variability that the model can handle and regularly produce reliable estimates of 
biomass and fishing mortality.  
 
Results 
 
Figures 1 and 2 show the base case OM from 2013 Multifan-CL and the overall selectivity pattern of North 
Atlantic albacore that are used to generate the indices 1, 2 and 3 (Figure 3). In Figure 3, it is noted that the peaks 
of stock biomass are anticipated by the indices built upon CPUE. For example, in the mid 1950s decade Indices 2 
and 3 show a major peak which is noted on the stock trajectory two-three years later at lower level. The same 
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happens at the end of the series, where both Index 2 and Index 3 show a sharp increase in 2010-2012, which is 
smoother in the stock. Also, the indices decrease in the last year (Index 3) and two years (Index 2), that may 
anticipate a decline of the overall stock.  
 
Figure 4 shows the monthly CPUE indices used to fit Multifan-CL scenarios in 2013 and that are compared to the 
indices used in the 2016 stock assessment (Figure 5). Spanish baitboat index trajectory increases overall in both 
series with a sharp increase in the latest (Figure 5). The Japanese LL index used in the 2016 assessment started in 
1998 with a declining trend followed by a recovery from the mid 1990s to 2003, which is also seen in the 2013 
index. From 2004 to 2007 the index declined and since then increased at the same pace as the overall indices trend. 
Both Venezuelan LL and US continuity LL indices follow an increasing pattern since the early 1990s, but it is not 
directly comparable with the index used in 2013, that contains seldom information for these years. In 2016, the 
stock assessment was mostly driven by the Chinese Taipei LL index (ICCAT, 2016c). In 2013, the Chinese Taipei 
index shows an increasing trend that is appreciated since the end of the 1990s, with a decline after 2005 and a 
recovery after 2008. In 2016, the index shows a similar trend without the marked decline in 2005, but followed by 
a notable increase in the last two years of the series, which could eventually produce a marked increase in the 
estimated stock biomass.   
 
Figures 6 and 7 show the residuals of fit from the 2013 stock assessment with Multifan-CL and the residuals from 
2016 stock assessment with the biomass dynamic model. Note the differences on the residuals for China Taipei 
LL, which follow opposite trends in 2013 and 2016. The residuals of KoreaPaCuLL and Venezuela LL also follow 
opposite trends while Japanese LL residuals are homogeneously distributed in 2013 but show a negative trend in 
2016. Note that in the 2016 stock assessment, the last two years of the Japanese LL index were removed from the 
analysis (ICCAT, 2016c).  
 
Figure 8 shows the selectivity’s of the fleets used to generate CPUE indices 4 and 5. Note that the Spain BB fishes 
the lowest age classes of the stock and therefore, this fleet is prone to perceive the impacts of variability in 
recruitment.  
 
Figure 9 shows the four simulated CPUE series using data from the OMs for the periods shown in Table 1. Note 
that Indices 5 are equivalent to Indices 4 except for China Taipei. Both the trajectories of 4D and 5D are compared 
to the Chinese Taipei late Longline index in Figures 4 and 5, the indices used in the 2013 and 2016 stock 
assessments. Both indices 4D and 5D show the declining trend after 2005 (seen in the 2013 stock assessment 
index) and the marked increase in the last years, which also follows the recruitment peak shown in Figure 1 (top) 
after 2008. 
 
Using the specifications of the 2016 stock assessment, i.e. Fox model, starting values used, indices range, catch 
data (Table 2), the biomass dynamic model was fitted to the five sets of indices.  
 
Figure 10 shows the relative biomass trajectory from the base case OM and the estimated trajectories using the 
indices explored here. Figure 10 also shows the estimated trajectory in the 2016 stock assessment. The OM shows 
a declining trend until the 1990s decade where a recovery is appreciated towards levels above BMSY, that are 
surpassed in the last year. The main discrepancy across the scenarios with the biomass dynamic model relies on 
the year where the recovery starts and its final point. In 2016, the albacore working group estimated that the stock 
started to recover at the end of the 1980s, whereas the indices tested here estimate that it starts at the end of the 
1990s except for the group of Index 5 (10% bias assumed for China Taipei LL index), which also estimates an 
earlier recovery. There is also discrepancy on the endpoint. Adding CPUE and selectivity information to the indices 
sharpens the recovery of the stock in the final years. However, the fits to Indices 1-4 estimate the biomass in the 
last year to be below BMSY, in contrast to what is shown in the OM. The trajectory and final point of the fit using 
the bias index for China Taipei (Index 5) is similar to the results obtained in the 2016 stock assessment. 
 
Figure 11 shows the residuals of fit from Indices 4 and 5. The residuals of fit to Indices 4 show an appreciable 
autocorrelation in the case of KoreaPaCu LL and Japan LL. However, the estimated trajectory for both indices 4 
and 5 seems to be consistent with both indices. The Spanish BB index also follows a similar pattern in both fits 
but with smaller deviations for the Indices 4 fit.  
 
A series of sensitivity runs were made in 2016 to elucidate the influence of each of the indices and this highlighted 
that China Taipei LL was the most influential index of the assessment. However, the index used may be biased in 
relation to the estimated biomass (see Figure 7). Here, the fit using Index 4 shows a more homogeneous 
distribution of residuals for China Taipei. 
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The base case OM is projected into 2035 with a 40% CV on its stock recruitment relationship (Figure 12). The 
projected OM is used to generate the five indices (Figure 13) and they are used to fit the biomass dynamic model 
with catch from the OM (Figure 14). The bias index for China Taipei was 3% this time. The simulated indices 
show a declining trend in the last years except for the China Taipei indices with and without bias. The residuals of 
fit of Indices 4 and 5 are shown in Figure 15. Figure 14 again shows that adding fleet specific selectivity 
information improves the estimate of relative biomass. In this case too, there are differences between the biased 
and unbiased scenarios. The residuals show autocorrelated patterns for KoreaPaCu LL and Japan LL. With regards 
to China Taipei LL, the fit to the 3% index also shows a positive bias. 
 
Next was to explore the impact of variability in the indices (Index 4) on the biomass dynamic model’s capacity to 
estimate biomass and fishing mortality trends of the Reference Case OM accurately. We run the indices simulated 
for 2016 with a lognormal deviation at each point: Indexi,t=Indexi,t x logN(0, CV). 100 iterations were run with 
each randomized index for each CV value explored and compared to the model estimates with CV=0. Figure 16 
shows the estimated relative biomass and fishing mortality with CV=0 (green), averaged estimate for each CV 
(blue) and each of the iterations within each group (black). Figure 16 shows that the same group of indices (Index 
4) produces stable estimations across iterations. This Figure also shows that while increasing the CV of the indices, 
the average estimate deviates from the estimate with CV=0, and does it in two ways, i.e. two groups or types of 
trajectories are seen, both at biomass levels above the estimate with CV=0. A group of trajectories does not seem 
to estimate the historical exploitation of the stock and estimate that the stock has been well above BMSY since 
1930s. The second group is somehow an intermediate trajectory of the previous and the trajectory with CV=0. 
Here, the stock declines to BMSY and recovers since 1980s approximately. 
 
Discussion 
The available fisheries-dependent information is used to generate CPUE series for use in stock assessment as 
abundance indices. ICCAT’s albacore working group recognizes the difficulty on collecting reliable CPUE indices 
for stock assessments (ICCAT, 2013). The indices used in the last two assessments of this the North Atlantic 
albacore stock show conflicting trends, potential bias and variability that produce impacts on assessments’ results. 
The conflicting trends observed reflect the abundance of different fractions of the population exploited by each of 
the fleets fishing albacore. For example, Spain baitboat fishes individuals from ages 1-3 mostly and hence, their 
indices are more influenced by recruitment variability. Japanese longlines fish young individuals (mostly age 4) 
but also mature. China Taipei longline and US and Venezuela longlines mostly exploit adults (age 4 and beyond). 
The 2016 stock assessment was mostly driven by the China Taipei index. The residuals of the 2016 stock 
assessment suggest marked biases for the China Taipei index that may have produced an overly optimistic view 
of stock status. With regards to variability, this reflects observation or measurement errors and could potentially 
also explain the high values seen in the China Taipei index for the years 2014 and 2015.  
 
In order to generate simulated CPUE indices for use in a MSE framework and for them to be comparable to the 
indices currently used, a series of alternatives are proposed in this document. All alternatives pivot around the 
trends and parameters of the Operating Models conditioned from the 2013 stock assessment (Merino et al., 2017). 
First, Index 1 is simulated by adding a normally distributed error term to the stock biomass. This index was used 
in the preliminary MSE framework (Merino et al., 2016). This index is technically easy to implement on the MSE 
but reflects the abundance of the entire population and therefore, does not reflect the different trends potentially 
observed when using fishery dependent information to build CPUE indices. The same problem is found for Index 
2 which is directly estimated from catch and overall fishing mortality trends from the Operating Models. Third, 
Index 3 is also a single index but reflects the overall selectivity of the stock. Using this index will still not permit 
simulating conflicting trends but it will capture the abundance of the exploitable population, as requested by the 
WGSAM (ICCAT, 2016d).  
 
Index 4 and Index 5 aim at generating fleet specific indices that reflect their selectivity pattern and catch. Results 
show that the fits to the biomass dynamic model are very similar when using a single index with the overall 
selectivity pattern (Index 3) and when generating fleet specific indices (Index 4). However, the simulated fleet 
specific indices allow generating conflicting trends and probably reflect better the CPUE series used in the 2016 
stock assessment. Index 5 was designed to produce an overly optimistic stock assessment and to compare with the 
China Taipei index used in 2016. This was achieved by adding a 10% increasing trend in catchability since the 
beginning of the series and the residual patterns are comparable to the 2016 stock assessments. However, using 
Index 5 in the MSE framework would require estimating the amount of bias for the China Taipei index in the 
future.  
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Using Index 4 as a reference, several iterations were run with lognormal variability added to each of the points of 
the indices. This aims at reflecting measurement error on the CPUE indices and can potentially generate fits 
comparable to the 2016 stock assessment too. In brief, using Index 4 would allow simulating a number of 
potentially conflicting indices that would reflect each fishery’s performance and assign deviations from abundance 
to measurement or observation error. The MSE framework is run iteratively and it is expected that some of the 
simulated stock assessments within the Management Procedure component will reflect the state of the stock 
accurately while others will do it with error.   
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Software Model Catch series Starting values 
mpb Fox (biomass 

dynamic) 
1930-2014 Intrinsic growth rate: r=0.1 

Carrying capacity: K= 3.6 x 106 tonnes 
Biomass at t=0 (fixed): 1 x K 

Table 2. Specifications of the biomass dynamic model used in the 2016 stock assessment. 
 

Index Years used 
Chinese Taipei late Longline 1999-2014 
Japan bycatch Longline 1988-2012 
Spanish Baitboat 1981-2014 
US continuity Longline 1987-2014 
Venezuela Longline 1991-2014 
Table 1. CPUE series used in the 2016 stock assessment and their time range. 
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Figure 1. Time series of stock biomass, catch and fishing mortality from the base case OM. 
 

 
Figure 2. Overall selectivity pattern from the base case OM. 
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Figure 3. Indices generated directly from the base case OM. 
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Figure 4. Selection of four CPUE indices used in the 2013 stock assessment with MFCL. 
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Figure 5. CPUE indices used in the 2016 stock assessment with the biomass dynamic model. 
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Figure 6. Residuals of fits of the CPUE indices used in the 2013 stock assessment. 
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Figure 7. Residuals of fits of the CPUE indices used in the 2016 stock assessment. 
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Figure 8. Selectivity indices of the four selected fleets from the 2013 stock assessment with MFCL. 
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Figure 9. Simulated CPUE indices grouped as Index 4 and Index 5. 
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Figure 10. Relative biomass from the base case OM (black) and estimated from alternative indices: (gray) indices 
used in the 2016 stock assessment, Index 1 (red) , Index 2 (darkgreen), Index 3 (blue), Index 4 (pink), Index 5 
(green). 
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Figure 11. Residuals of CPUE indices grouped as Index 4 and Index 5. 
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Figure 12. Base case OM projected with a 40% variability on recruitment. 
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Figure 13. Simulated CPUEs from OM base case projected to 2035. 
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Figure 14. Projection of OM base case with F=FMSY to 2035 and fit to catch and different indices. 
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Figure 15. Residuals of fit of Indices 4 and 5. 
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Figure 16. Fits to simulated indices for 2016 for different levels of CV. 
 


	Discussion
	References
	List of Figures

