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SUMMARY 

 

Management strategy evaluation (MSE) requires the description of plausible hypotheses for 

population and fishery dynamics, also known as operating models. When performance metrics 

are available, fishery management procedures may be identified that are robust to 

uncertainties. However when operating models and performance metrics can be established, 

they offer many additional opportunities beyond MSE and the selection of MPs, and can be 

used to quantify value of information, test experiment designs, identify appropriate management 

reference points and investigate enforcement strategies. We discuss some of the opportunities 

and limitations of operational modelling.   

 

RÉSUMÉ 

 

L'évaluation de la stratégie de gestion (MSE) nécessite la description d'hypothèses plausibles 

pour la dynamique des populations et des pêcheries, également appelées modèles 

opérationnels. Lorsque des mesures de la performance sont disponibles, on peut identifier des 

procédures de gestion des pêcheries qui soient solides face aux incertitudes. Cependant, 

lorsque des modèles opérationnels et des mesures de la performance peuvent être établis, ils 

offrent de nombreuses opportunités supplémentaires au-delà de la MSE et de la sélection des 

procédures de gestion et ils peuvent servir à quantifier la valeur de l'information, tester des 

modèles expérimentaux, identifier des points de référence de gestion appropriés et étudier les 

stratégies d'application. Nous discutons de certaines des opportunités et des limites de la 

modélisation opérationnelle.  

 

RESUMEN 

 

La evaluación de estrategias de ordenación (MSE) requiere la descripción de hipótesis 

plausibles para la dinámica de la pesquería y de la población, también conocidas como 

modelos operativos. Cuando se dispone de mediciones del rendimiento, pueden identificarse 

procedimientos de ordenación pesquera que sean robustos ante las incertidumbres. Sin 

embargo, cuando pueden establecerse modelos operativos y mediciones del rendimiento, 

ofrecen muchas oportunidades adicionales más allá de la MSE y la selección de 

procedimientos de ordenación (MP), y pueden utilizarse para cuantificar el valor de la 

información, probar diseños experimentales, identificar puntos de referencia de ordenación 

adecuados e investigar estrategias de ejecución. Se discuten algunas de las oportunidades y 

limitaciones de los modelos operativos.  
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1 Introduction 

 

A Management Strategy Evaluation (MSE, Butterworth 1999, Cochrane 1998,) approach has been proposed for 

Atlantic bluefin tuna (SCRS 2013) as a suitable framework for providing robust management advice consistent 

with the precautionary approach (GBYP 2014). A principal task in the construction of an MSE framework is the 

development of operating models which represent credible hypotheses for population and fishery dynamics. 

Operating models are typically fishery stock assessment models which are fitted to data to ensure that model 

assumptions and estimated parameters are empirically credible (Punt et al. 2014, e.g. CCSBT 2011).  

 

At the heart of an MSE analysis is a closed-loop simulation, so called because the advice arising from 

management procedures (e.g. a TAC) feeds back into the known, simulated population dynamics. This approach 

has been applied widely to reveal trade-offs in performance and identify management procedures (MPs) (Punt et 

al. 2014, Carruthers et al. 2015) that are robust to uncertainty in observations and fishery dynamics. A wide 

range of management procedures can be tested that include assessments linked to harvest control rules, spatio-

temporal closures, size limits and allocation schemes.  

 

However, beyond the core MSE there are many other valuable uses for an established set of operating models 

and performance metrics (quantifiable definition of what is desirable and undesirable in the context of fisheries 

management). In general it is not possible to establish the bias of experiments or analyses without perfect 

information of the relevant quantities (e.g. simulated depletion, stock abundance, stock trajectory, fishing 

mortality rate etc.). It follows that simulation offers a foundation for evaluating and optimizing many 

components of fishery management system such as data collection, enforcement and reference points.  

 

2 Value of information analysis 

 

Arguably one of the most important uses of operating models is quantifying the value of various sources of 

information. There are three distinct types of value of information analysis: the value of better data, the value of 

additional data and the cost of current uncertainties.  

 

Value of better data 

 

The value of better data considers more precise and less biased data arising from better experimental design, 

increased sampling intensity or more sophisticated data filtering and processing techniques. Analysis of better 

data can be achieved by quantifying the marginal benefit of increasing the precision or accuracy of the various 

data types (e.g. a relative abundance index, annual catches, catch composition) and establishing those that most 

strongly affect the yields (or any metric of utility) derived from a particular management system (e.g. Figure 1).  

 

Value of additional data 

 

Value of additional data examines the potential benefit of other management procedures that are possible given 

the collection of new types of data, for example, close-kin genetic tagging (Bravington et al. 2013), gene 

tagging, hydro-acoustic detection (Goñi et al. 2016, Canals et al. 2016) larval surveys (Ingram et al. 2015) or 

additional aerial surveys (Bonhommeau 2010). If defensible observation models can be designed for new types 

of data, the efficacy of alternative management procedures that use these data can be tested to establish whether 

they are worthy of collection and processing (e.g. Figure 2).  

 

Cost of current uncertainties 

 

Post-hoc analysis of MSE results often reveals gradients in performance with respect to particular parameters of 

the operating model; most often: natural mortality rate, steepness of the stock recruitment curve, stock depletion, 

the size selectivity of fishing, annual increases in fishing efficiency and spatial targeting. This analysis doesn’t 

identify specific data to be collected or improved but simply highlights where operating model uncertainty may 

lead to selection of MPs that are worse than other MPs over sub-ranges of model parameters (e.g. Figure 3).   

 

This problem can be rephrased as the yield lost due to not using an MP that may perform better but cannot be 

selected due to risks associated with parameter uncertainty. For example the DCAC MP may provide higher 

expected yields over an MSE projection than a delay-difference (DD) MP but only if it is certain that stock 

depletion is above 20% of unfished (Figure 3). The cost of current uncertainties is driven by asymmetry in 

performance among MPs; for example a more conservative MP may often be selected in the presence of higher 

uncertainty (consistent with the precautionary principle).  
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3 Design of stock assessments 

 

There are a range of protocols for weighing the various data used in a stock assessment (e.g. relative abundance 

indices, size composition data, catch observations, tagging data etc.), including iterative reweighting (McAllister 

and Ianelli 1997) and prioritization of fits to certain data (Francis 2011). However the existing data weighting 

approaches are ad-hoc and are not designed to establish robust management outcomes over a projected period. 

For example, over a 50 year projection it may be more important to robustly fit an index of relative abundance 

than precisely estimate size selectivity of fishing (the hypothesis of Francis 2011). Closed - loop simulation 

offers the most theoretically consistent basis for testing a range of data-weighting schemes and selecting one 

based on established management performance metrics. The operating models for Atlantic bluefin tuna can be 

used in a peer-reviewed investigation of the success of various proposed data weighting schemes for various 

stock assessments.  

 

Similarly to data-weighting decisions about the appropriate complexity of stock assessment models are generally 

based on information theory and the notion that the model should provide a parsimonious fit to the observed data 

(e.g. AIC, BIC and other diagnostics of model fit). However these model selection criteria are entirely unrelated 

to the long-term interests of fisheries managers. A consistently biased model that fits the data poorly may never 

chronically overfish, leading to healthy stock sizes, higher catch rates and larger fish caught (may satisfy a 

number of possible management performance measures). There is no coherent reason to assume that the 

statistical properties of model fit are related in any way to the emergent management performance of a particular 

stock assessment. Perhaps catches are chronically misreported or relative abundance indices are hyperstable, in 

which case a model that appears in a single year to be statistically suspect may provide appropriate management 

advice. Using operating models to weight data is also considerate of the unique conditions of each assessment 

setting. Take the example of a relative abundance index that could be strongly hyperstable; when does the 

recommendation of Francis (2011) to prioritize fit to the index hold true and when should it be ignored? The 

unpalatable truth may be that data weighting is context specific and there are few general rules.  

 

Operational modelling provides a meaningful opportunity to move away from the current, possibly myopic 

statistical approach to model selection, perhaps leading to the use of simpler, more tractable and easier to 

understand stock assessments that can meet management performance requirements robustly.   

 

 

4 Optimizing for spatial fleet structure and allocation 

 

There is a diverse range of fishing métiers operating on the tunas of the Atlantic (Mediterranean trap, Canadian 

rod and reel etc.). Fleet heterogeneity arises not only from varying gear configuration but also the magnitude and 

spatio-temporal arrangement of effort. Rather than testing prescribed spatio-temporal controls and allocation 

schemes it may be possible to directly optimize for these under the various operating model scenarios, in such a 

way that yields may be improved whilst providing protection for less resilient stocks.  

 

 

5 Evaluating methods of data processing 

 

Catch rate data provide the longest time series of relative abundance information for most pelagic tunas 

including bluefin. It is common for these CPUE data to be standardized whereby a linear model is used to 

remove the various confounding factors that affect CPUE other than population density (e.g. bait type, season, 

depth etc). Similarly to the selection of assessment models, standardization models are generally chosen that 

satisfy model selection criteria such as AIC. However simulation testing reveals that selecting standardization 

models this way is flawed and often leads to the selection of models that produce spurious estimates of relative 

abundance (Carruthers et al. 2010). Operating models for bluefin tuna may be used to establish robust CPUE 

standardization models and identify the potential for non-linearity in the relationship between stock size and the 

index.  

 

For certain data sources (e.g. total catch-at-age data), the majority of data points are manually imputed using ad-

hoc rules (for example uprating to total catches assuming age composition of similar fleets operating in similar 

times and areas). These approaches can be time consuming and opaque but also hard to validate. Operating 

models may be used to establish automated data-imputation algorithms that are robust and can be applied rapidly 

(e.g. Carruthers and Kell 2016).  
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6 Determining appropriate fisheries management reference points and fishery certification standards  

 

Fishery reference points (e.g. biomass targets and limits) are often established without consideration of what is 

meaningful and achievable given the case-specific fishery and population dynamics (Hilborn 2002). For example 

in some management settings fisheries are considered healthy only when spawning biomass is above MSY 

levels. For short-lived species with highly variable recruitment, there is commensurate variability in unfished 

biomass which masks the management performance when this is expressed in terms of biomass. In such cases 

reference points relating to exploitation rate may be more appropriate. Operating models may be used to test the 

appropriateness of candidate management reference points by quantifying the success of MPs (control rules) that 

use these to make policy recommendations. Simple tests include evaluating whether management performance 

limits (e.g. a 50% probability of a stock above 50% biomass at MSY) and targets can be met given fishing at 

fractions of a known simulated level, for example no fishing, 50% FMSY fishing and FMSY fishing.  

 

Eco-labelling and seafood certification is rapidly expanding and in many instances has improved the profitability 

of fishing operations whilst providing guidance to ensure sustainability, albeit with uncertain environmental 

benefits (MRAG 2009). The fishery certification standards (for example SG100, SG80 and SG60 of the Marine 

Stewardship Council) have previously used the outputs of stock assessments to inform certification purposes. 

However a new initiative being investigated for less data-rich fisheries is whether certification standards can be 

met by management procedures that do not provide explicit estimates of stock status and trajectory (Carruthers 

and Agnew 2016). Under this new certification paradigm, operating models may be used to certify fisheries that 

do not have an assessment, for example by quantifying the likelihood of meeting a certification standard using a 

size limit. It follows that operating models may offer an alternative approach to meeting certification standards in 

situations where a single stock assessment is not considered representative of the full range of uncertainty. 

 

 

7 Testing enforcement strategies 

 

In the multi-stock Atlantic bluefin tuna fishery there is potential for high spatio-temporal heterogeneity in fishing 

mortality rates (e.g. fishing on spawning grounds). This may be a particularly issue for certain fishing métiers 

operating on less resilient stocks. Operating models offer a basis for testing enforcement strategies. Given the 

variable costs of enforcement (Davis et al. 2015), where and when should monitoring be prioritized and for what 

métiers (e.g. Bastardie et al. 2014)? Enforcement strategies may be linked to value of information analysis to 

target the most critical data reporting issues.  

 

 

8 Discussion 

 

In this paper we focus primarily on the potential opportunities arising from establishing operating models for 

Atlantic bluefin tuna. Here we discuss some of the potential problems and limitations.  

 

Arguably the most important limitation is the likely failure to generate data as irregular as real fishery data. In 

many cases what is considered observation error encompasses fundamental model misspecification that is not 

well simulated by simplistic observation error models. For example, certain fleets such as purse seiners operate 

on aggregations of bluefin tuna that are often size-monospecific (shoaling fish of comparable size) leading to 

size observations that are strongly non-independent. Other fleets operate on more mixed size classes (e.g. US rod 

and reel) but this may change to homogeneous size classes during certain times of year (e.g. spawning). Fisheries 

may high-grade fish depending on temporally varying market conditions and catch rates, retaining the largest 

caught without reporting the mortality of smaller fish and there may be complex spatial targeting for fleets 

operating on multiple species such as pelagic longliners. Fishing dynamics such as these produce irregular data 

sets that may be poorly recreated by naïve observation error models (e.g. generating size composition from 

multivariate logistic or multinomial models). The result could be misleading value of information analyses and 

model selection due to overstating the information content of the various data. 

 

Simulation testing is generally only appropriate for rapid, robust, automated and reproducible methods. This 

precludes the simulation evaluation of subjective approaches such as productivity-susceptibility analysis (PSA, 

Patrick et al. 2009) and to a certain extent a realistic stock assessment process which includes many 

opportunities for experts to intervene where problems are apparent. It follows that simulation may provide an 

overly pessimistic view of current practices that rely on subjective judgement. Depending on how 

computationally intensive a method is, simulation evaluation may not be tractable. However this limitation raises 

the interesting question of whether non-objective, non-reproducible approaches should be used if it is not 
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possible to evaluate their biases and more generally their performance. If a conventional stock assessment 

process is not objective by definition and cannot be automated, can it be considered best available scientific 

practice?  

 

The principal driver behind developing operating models for Atlantic bluefin tuna is the identification of 

management procedures that are robust to the considerable uncertainties in population and fishing dynamics 

(Anon. 2014). More broadly, operational modelling provides a coherent approach for improving the efficiency of 

fisheries management by prioritizing the most valuable science and identifying the most appropriate methods.  
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Figure 1.  An example of an analysis of the value of better data. Each panel plots 300 points representing 

independent simulations. The value of bias or imprecision that was simulated is plotted on the x-axis, the relative 

yield obtained over each simulation is plotted on the y-axis. For both DCAC and delay difference (DD) 

management procedures, the three most important observation processes for determining yield are plotted. For 

example, ‘Cbias’ is the bias in historical catch observations where the value of 1 on the x-axis represent unbiased 

reporting of annual catches. It is clear from this plot that the delay-difference assessment (DD) is more 

vulnerable to catch over-reporting than DCAC and obtains lower yields on average, when catch is overestimated 

(e.g. Cbias>1.5). FMSY_Mbias is the bias in the simulated level of FMSY relative to natural mortality rate M. 

Dbias is bias in observations of stock depletion (spawning biomass relative to unfished levels). lenMbias is bias 

in the observed length at 50% maturity. Isd is the lognormal error in observations of a relative abundance index.  

 

 

 
 

Figure 2. An example of an analysis of the value of additional data. A simple trade-off plot shows the expected 

probability of not overfishing and the expected long term yield (as a fraction of FMSY yield) of two 

management procedures. The delay-difference model (DD) is unavailable due to a lack of information regarding 

growth. With these data this MP may be used instead of DCAC and the expected gain in yield is around 20%.  
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Figure 3. An example of an analysis of the cost of uncertainty. Each point represents one of 300 simulations. 

The level of various operating model a parameters is plotted on the x-axis, the yield obtained is plotted on the y-

axis. The top left panel shows that the yields obtained by the DCAC MP is strongly determined by the starting 

level of stock depletion (spawning biomass relative to unfished levels). When this is below 0.2 (20% of unfished 

biomass) DCAC obtains less than half the yield of the delay-difference (DD) MP. FMSY_M is the simulated 

ratio of FMSY to natural mortality rate. AC is lag-1 recruitment autocorrelation. lenM is the length at 50% 

maturity. Linfsd is the interannual variation in maximum length, Linf.  

  

 

 

 


