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SUMMARY 

 

Generalized additive models (GAMs) were developed to predict the spatial distributions of 

billfish and tuna species across the Gulf of Mexico. Models were fitted with data from NOAA's 

Pelagic Longline Observer Program (2005-2010). A delta approach was followed – fitting a 

Bernoulli GAM with binomial data, and a Gamma GAM with zero-truncated catch rate data 

[number of organisms per 100 hooks]. Model descriptors included year, season, day/night, sea 

bottom depth, altimetry, sea surface temperature, and minimum distance from a front. Basis 

dimensions of smoothing splines were iteratively adjusted. Models fitted for Istiophorus albicans 

(sailfish), indicate that both the probability of catching a sailfish and the CPUE are most 

influenced by sea bottom depth and sea surface temperature. The Bernoulli model explained 

14.6% of deviance while the Gamma model explained 48.6% of deviance. Fitted models were 

used to develop seasonal distribution profiles across the Gulf's open ocean by predicting across 

grids of environmental data from NCEI and AVISO. Profiles for sailfish indicate a seasonal 

flux, with increased CPUE between April and September, and higher catch rates associated to 

fronts.  

 

RÉSUMÉ 

 

Des modèles additifs généralisés (GAM) ont été élaborés afin de prévoir les distributions 

spatiales des istiophoridés et des thonidés dans le golfe du Mexique. Les modèles ont été ajustés 

avec des données obtenues dans le cadre du Programme d’observateurs à bord palangriers 

pélagiques de la NOAA (2005-2010). On a appliqué une approche delta ajustant un GAM 

Bernoulli avec des données binomiales et un GAM Gamma avec des données de taux de capture 

tronquées à zéro [nombre de spécimens / 100 hameçons). Les descripteurs de modèle 

incluaient : année, saison, jour / nuit, profondeur du fond marin, altimétrie, température de 

surface de la mer et distance minimale par rapport au front. Les dimensions de base des splines 

de lissage ont été ajustées de manière itérative. Les modèles ajustés à l’Istiophorus albicans 

(voilier) indiquent que tant la probabilité de capturer un voilier que la CPUE sont 

principalement influencées par la profondeur du fond marin et la température de surface de la 

mer. Le modèle Bernoulli expliquait 14,6 % de l’écart alors que le modèle Gamma expliquait 

48,6% de l’écart. Les modèles ajustés ont été utilisés pour élaborer des profils de distribution 

saisonnière pour l’ensemble du golfe au moyen de prévisions en grilles de données 

environnementales provenant de NCEI et de AVISO. Les profils dans le cas du voilier indiquent 

un flux saisonnier, avec une augmentation de la CPUE entre avril et septembre, et des taux de 

capture plus élevés associés aux fronts.  

 

SUMMARY 

 

Se desarrollaron modelos aditivos generalizados (GAM) para predecir la distribución espacial 

de las especies de istiofóridos y túnidos en el golfo de México. Los modelos se ajustaron con 

datos del programa de observadores de palangre pelágico de NOAA (2005-2010). Se siguió un 

enfoque delta ajustando un GAM Bernoulli con datos binomiales y un GAM Gamma con datos 

de tasa de captura truncados en cero (número de organismos por 100 anzuelos). Los 

descriptores del modelo fueron año, temporada, día/noche, profundidad del fondo del mar, 

altimetría, temperatura de la superficie del mar y distancia mínima desde un frente. Se 

ajustaron iterativamente las dimensiones básicas de las funciones alisadoras spline. Los 

modelos ajustados para el pez vela (Istiophorus albicans) indicaban que la profundidad del 

fondo del mar y la temperatura de la superficie del mar eran los factores que más influían tanto 
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en la probabilidad de capturar un pez vela como en la CPUE. El modelo Bernoulli explicó el 

14,6 % de la desviación, mientras que el modelo Gamma explicó el 48,6% de la desviación. Los 

modelos ajustados se utilizaron para desarrollar perfiles de distribución estacional en el mar 

abierto del Golfo mediante la predicción en cuadrículas de datos medioambientales de NCEI y 

AVISO. Los perfiles  para el pez vela apuntaban a un flujo estacional, con una mayor CPUE de 

pez vela entre abril y septiembre y tasas de captura más elevadas asociadas con frentes.  
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1. Introduction 

 

The 2009 Sailfish Assessment found that stocks may have been reduced below BMSY and there is a higher degree 

of uncertainty in the status of the western stock (ICCAT 2010). Atlantic sailfish (Istiophorus albicans) are an 

ecologically and economically important species, especially in the Gulf of Mexico. Sailfish were once one of the 

most sought-after sport fisheries and are still caught by recreational fishers (Prince et al. 2007). Sailfish larvae 

have been found in the Gulf of Mexico at high densities, and research suggests that sailfish frequent the Gulf 

seasonally for spawning (Wells and Rooker 2009; Simms et al. 2010; Rooker et al. 2012). However, the fine-

scale spatial and temporal distribution of older individuals is not well understood.  

 

Here we present work done to fit Generalized Additive Models (GAMs) to predict the catch rates of billfish and 

tuna species within the Gulf of Mexico. Catch rates are used as an indicator of abundance (Hilborn and Walters 

1992). Efforts were made to optimize the fits of GAM smoothing splines. Model fits are assessed using residual 

diagnostics as well as the receiver operating characteristic. Fitted GAMs were used to predict seasonal, Gulf-

wide spatial distribution profiles. Profiles were constructed using grids of geographic coordinates representing 

seasonal averages of environmental conditions. The profiles for sailfish are presented here.  

 

 

2. Methods and Materials 

 

2.1 Data 

 

Data for model fitting was collected from NOAA's Pelagic Observer Program dataset. The Pelagic Observer 

Program (Beerkircher et al. 2002; Brooke 2012) collects catch data from observers aboard vessels in the U.S. 

commercial pelagic longline fleet. Vessels suspend longline gear mid-depth, approximately 33-66 m, but the 

actual fishing depth is unknown due to the influences by currents and environmental conditions (Beerkircher et 

al. 2002). Data were restricted to be within the Gulf of Mexico between 2005 and 2010. Models were fit for the 

following species identified in the dataset: Istiophorus albicans, Istiophoridae spp., Makaira nigricans, 

Tetrapturus albidus, Tetrapturus spp., Thunnus albacares, Thunnus thynnus, and Xiphias gladius. 

Environmental and temporal variables were used as model descriptors.  

 

Temporal variables included year, season, and daytime (day / night). Season was broken down into four 

categories: 1 (Jan. - Mar.), 2 (Apr. - Jun.), 3 (Jul. - Sep.), or 4 (Oct. - Dec.). Environmental variables included sea 

surface temperature (SST) °C, altimetry (SSH) m, sea bottom depth (SBD) m, and minimum distance from a 

front (MDF) m. The observer dataset includes measurements of SST and SBD throughout the longline set and 

haul. Single estimates of these variables for each longline event were generated by averaging the multiple 

measurements. Approximately 5% of the observer records lacked measurements of SST, so the Interpolate 

PO.DAAC MODIS L3 SST at Points tool from the Marine Geospatial Ecology Tools (MGET) toolbox (Roberts 

et al. 2010) was used in ArcGIS to generate estimates. Approximately 9% of the observer records were dropped 

from this analysis since necessary information was missing (e.g., date).  

 

Estimates of SSH and MDF were also used since top marine predators are known to aggregate around 

oceanographic features (Olson et al. 1994). SSH was calculated for individual catch records using the Archiving, 

Validation and Interpretation of Satellite Oceanographic (AVISO) dataset (Ducet et al. 2000). Estimates were 

the average of the four AVISO records nearest to the catch location, on the same date as the catch. Estimates of 

MDF were calculated for individual catch records using the Cayula-Cornillon Fronts in ArcGIS Raster MGET 

tool from the MGET toolbox in ArcGIS. This tool uses the Cayula and Cornillon (1992) algorithm for the 

detection and extraction of fronts. Cayula and Cornillon used sea surface temperature to detect fronts but the 
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Gulf of Mexico is known to have weak sea surface temperature gradients (Legeckis 1978). Thus, AVISO 

altimetry data were used to derive frontal features. ArcGIS's Model Builder was used to develop a routine that 

systematically estimates MDF for catch records. The routine loops through each unique date in the AVISO 

dataset, generates the corresponding frontal features, and calculates the minimum distance between a front and a 

catch event corresponding to the date.  

 

2.2 Model Description 

 

Generalized additive models (GAMs) for estimating the abundance patterns of individual species were 

developed using the gam() function and the statistical software R (Wood 2004; R Development Core Team 2008; 

Wood 2011; Drexler and Ainsworth 2013; Grüss et al. 2014). Abundance was assumed to be proportional to 

catch-per-unit-effort (CPUE). CPUE was calculated as the total numbers of individuals caught per 100 hooks. A 

Delta approach was followed to account for the zero-inflated nature of the dataset. The Delta method calls for 

fitting two statistical models: one predicting the probability of catching an organism with binomial data, the 

other predicting the CPUE with zero-truncated data. Determining an appropriate error structure for generalized 

models is an important aspect of model construction (Maunder and Punt 2004). The Bernoulli distribution with a 

logit link function is used to model the error structure of the binomial data. Preliminary analyses indicated that 

the gamma distribution is more suitable for the non-zero CPUE data in this investigation. Other studies fitting 

generalized models have achieved comparable, if not improved, model fits using the gamma distribution (Punt et 

al. 2000; Ortiz et al. 2004). A log link function was used to ensure non-negative predictions (Wood 2007). A 

general form of the fitted GAMs is as follows: 

 

 

𝜂 = 𝑓(𝑦𝑒𝑎𝑟) + 𝑓(𝑠𝑒𝑎𝑠𝑜𝑛) + 𝑓(𝑑𝑎𝑦) +  𝑠(𝑆𝑆𝑇) + 𝑠(𝑆𝑆𝐻) + 𝑠(𝑆𝐵𝐷) + 𝑠(𝑀𝐷𝐹) 

 

where 𝜂 is either the probability of retaining an organism or the mean non-zero CPUE, f() indicates factor 

descriptors, and s() indicate numerical descriptors processed with smoothing splines.   

 

The construction of GAMs requires some attention towards developing robust smoothing splines for each 

numerical descriptor. This study uses penalized regression splines, which incorporate penalties to the least 

squares fitting objective based on the flexibility of a spline (Wood and Augustin 2002; Wood 2006). Penalized 

regression splines are controlled by the smoothing parameter, which controls the tradeoff between the model's fit 

and smoothness, and the basis dimension (k), which defines the maximum possible degrees of freedom (Guisan 

et al. 2002; Wood 2006). Smoothing parameters are automatically calculated by the gam() function based on the 

smoothness selection criterion: generalized cross-validation (GCV) criterion, or the Un-Biased Risk Estimator 

(UBRE) scores (Wood 2006). We allowed an additional penalty to completely removal of a term if the 

smoothing parameter equals zero (i.e., if the smoother does not improve model fit). Basis dimensions are not 

automatically calculated by the gam() function and must be specified. Pya and Wood (2016) concluded that the 

exact setting of a basis dimension is not crucial as long as it large enough to avoid over-smoothing / under-

fitting, and highlighted that the simple test for assessing a basis dimension presented by Wood (2006) performs 

just as well as the complex, time expensive approaches. To improve the fitting of splines, we iteratively adjusted 

the basis dimension for each numerical descriptor. First, GAMs were fitted with all basis dimensions set to three, 

the minimum allowable setting. Then, considering smoothing splines one at a time and in sequential order, the 

basis dimension was tested following the Wood (2006) method to determine if increasing the value might 

improve the spline’s fit. If not, basis dimensions were not adjusted. Otherwise, GAMs was re-fitted with the 

basis dimension set to the default value suggested by Kim and Gu (2004):10n2/9, where n is the sample size. The 

basis dimension was then tested again. If the value did not pass the test then adjusting the basis dimension for 

that descriptor did not significantly assist in reducing the spline’s residual variance, so the basis dimension was 

re-set to the larger of the following two values: 3, ⌈𝑒𝑑𝑓⌉ + 1 (where edf is the effective degrees of freedom). The 

latter value accounts for minor improvement in smoother fit. However, if the increase in basis dimension passed 

the test then the value was iteratively reduced to determine the smallest value for satisfying the test so degrees of 

freedom can be preserved. 

 

Model fits were assessed with Pearson residuals, which standardize the raw residuals by dividing them by an 

estimate of the standard deviation of the observed value. Since GAMs allow the use of different error structures 

it is necessary to standardize residuals, otherwise residuals may be driven by error in the assumed mean-variance 

relationship instead of the model fit. Residual diagnostic plots considered for Gamma models include normal Q-

Q, box-plot, residuals against linear predictor, and residuals against time. Assessing the residuals for Bernoulli 

models is complicated since a model produces predicted probabilities for a binary response variable. The 

detection of model inadequacy is often the main focus since non-constant variance is always present, and outliers 
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can be difficult to diagnose. The logistic model residuals against fitted values can provide some insight into 

model adequacy. An adequate logistic model should have residuals that produce a LOWESS (locally weighted 

scatterplot smoother) curve centered along the horizontal line with a zero intercept. The receiver operating 

characteristic area under the curve (AUC) metric for logistic models was also evaluated, since it is commonly 

used as a global indicator of logistic model performance (Greiner et al. 2000). The AUC is equal to the 

probability that the model will correctly identify the positive case when presented with a randomly chosen pair 

of cases in which one case is positive and one case is negative (Hanley and McNeil 1982). This study will follow 

the arbitrary AUC guidelines suggested by Swets (1988): 0.5 is non-informative, 0.5 - 0.7 are less accurate, 0.7 - 

0.9 are moderately accurate, 0.9 - 1 are highly accurate, 1 is perfect.  

 

2.3 Model Prediction 

 

Seasonal, spatial abundance distribution profiles spanning the Gulf of Mexico’s open ocean (areas where the 

bottom depth is >200m) were developed for Istiophorus albicans (sailfish) using the fitted GAMs. First, grids for 

creating distribution profiles were generated in ArcGIS. A grid of geographic coordinates (0.1° latitude by 0.1° 

longitude) spanning the area was created using the Fishnet tool. The grid was duplicated to create four versions, 

one for each season. Then, coordinates were assigned estimates of model descriptors. Seasonal data for the year 

2010 were collected from AVISO and NCEI to provide estimates of model descriptors. Data were interpolated 

into raster files using the Kriging tool, and the Cayula-Cornillon Fronts in ArcGIS Raster MGET tool was used 

to develop average seasonal fronts for calculating MDF (Figure 1). The Extract Values to Points tool (set to 

bilinear interpolation) was used to assign estimates from raster files to each coordinate in the appropriate 

seasonal grid. The routine constructed in Model Builder (described in 2.1) was used to calculate MDF for each 

coordinate in the fishnet. A single bathymetry raster was used to generate SBD estimates for the four seasonal 

grids. For fishnets, year was set to the year the data came from (2010), season corresponded to the appropriate 

numerical identification (1-4), and day/night was assumed to be day (D). Lastly, abundance indices for sailfish 

were predicted at each geographic coordinate in these fishnets using the fitted delta GAMs to develop seasonal 

distribution profiles.  

 

 

3. Results and Discussion 

 

Fitted generalized additive models (GAMs) for each species are summarized in Table 1. The median model 

deviance explained by Bernoulli models is 17.3% (ranging from 9.95% to 29.7%). The Bernoulli model for 

sailfish is one that is explaining a smaller amount of variance (14.6%). Commonly, logistic models struggle to 

explain deviance since they produce predicted probabilities for a binary response variable. The logistic models 

for most species were primarily driven by sea surface temperature and sea bottom depth, including the sailfish 

model. The median model deviance explained by Gamma models is 31.25% (ranging from 8.77% to 52.9%). 

The Gamma model for sailfish is one that is explaining a higher amount of deviance (48.6%). Most of the 

Gamma models were primarily driven by sea bottom depth, but sea surface temperature and altimetry were also 

influential for some models. These results suggest that sailfish are highly influenced by sea bottom depth and sea 

surface temperature.  

 

The general trends for Bernoulli model diagnostic plots are displayed in Figure 1. Most of the logistic models 

produce positive residuals with heavier tails than the negative residuals, and create LOWESS curves entirely 

within the negative region (Figure 2a, b). This indicates that these models are more successful at estimating low 

probabilities of catch for non-catch events than at estimating high probabilities of catch for catch events. This 

includes the logistic model for sailfish (Figure 2a). The opposite trend was observed for some species: negative 

residuals with heavier tails than the positive residuals, and create LOWESS curves almost entirely within the 

positive region (Figure 2c). These models tend to be more successful at estimating high probabilities of catch for 

catch events than at estimating low probabilities of catch for non-catch events. None of the logistic models 

produce a LOWESS curve flat and centered on the horizontal line with a zero intercept (which would indicate a 

good model), but the Receiver Operating Characteristic (ROC) curve and Area Under the ROC curve (AUC) 

value for the logistic models (Figure 3) indicate that the logistic models constructed here are all “moderately 

accurate”. Thus, although there is room to improve the fit of the logistic models, the current fits are reasonable 

enough to use for predictive purposes.  

  

Residual diagnostics for Gamma models are similar to one another, so residuals for the sailfish model are shown 

as a general example (Figure 4). Diagnostics suggest there are some issues to be aware of. The residual have an 

obvious right skew in their distribution (Figure 4a, b). The heaviness of the tails differs among fitted Gamma 

models. Thus, models struggle with under-predicting catch rates. There are potentially several outliers in the data 
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(Figures 4b), but some work should be done to determine if these are truly outliers (and should be removed from 

the statistical analysis) or leverage points (providing important information and should remain in the statistical 

analysis). The variance of the Pearson residuals appears to quickly increase with increasing linear predictor 

(Figure 4c). The trend is more obvious when considering linear predictors less than then -1.0. This issue may be 

resolved by using a different error structure and/or link, or by transforming the response variable. Some work has 

been done with this (Perryman, in progress) with no improvement on residual diagnostics. Fortunately, there is 

no obvious correlation between error terms over time (Figure 4d).   

 

Descriptor fits for the GAMs fitted for sailfish are shown in Figure 5. Since sea surface temperature and sea 

bottom depth are two of the most influential descriptors for the sailfish delta models, interpretation will focus on 

smoothing splines for those two numerical descriptors. The probability of catching a sailfish decreases with sea 

bottom depth (Figure 5a). The probability of catching a sailfish increases with sea surface temperature to around 

25°C, and then declines with higher temperatures (Figure 5b). This is very similar to results reported by 

Kerstetter et al. (2010), and Mourato et al. (2010). The positive CPUE of sailfish decreases with depth to about 

1000 m (Figure 5h). Catch rates don’t change much once the sea bottom depth goes beyond about 1000m. Sea 

surface temperature appears to have a dynamic influence on sailfish catch rates (Figure 5i). The most influential 

ranges are temperatures from 23°C to 25°C (the greatest negative influence on catch rates), and 30°C to 32°C 

(the greatest positive influence on catch rates). Notice some of the numerical descriptors (e.g., Figure 5j) 

produce nearly flat smoothing splines. This indicates that the descriptor has a limited effect in the model.  

 

Seasonal spatial distribution maps for sailfish are shown in Figure 6. The predictions are based on data averaged 

across season – which likely has a fair amount a variation. Thus, results will be discussed broadly and 

qualitatively rather than quantitatively. Immediately, a strong seasonal change in abundance is apparent. Sailfish 

appear to be more abundant in the Gulf of Mexico during season 2 and 3 (i.e., from April to September). 

Although season was not statistically significant for the fitted sailfish GAMs (Table 1), the probability of 

catching a sailfish is higher for seasons 2 and 3 (Figure 4f), and the predicted positive CPUE is higher during 

seasons 2 and 3 (Figure 4m). These results support the argument that sailfish have increased abundance in the 

Gulf of Mexico from April to September. This could be due to a seasonal migration to Gulf of Mexico spawning 

grounds (de Sylva and Breder 1997; Simms et al. 2010).  

 

The predictions for season 2 and 3 (Figure 6b, c) show increased abundance of sailfish around fronts 

corresponding to the respective season (Figure 1j, k). Pelagic predators are often associated to frontal features 

(Worm et al. 2005), and use them as spawning habitat (Bakun 2006). Simms et al. (2010) found that the highest 

density of sailfish larvae is often found within mesoscale frontal features. This could be due to physical 

processes, but Richardson et al. (2009) examined sailfish spawning around a cyclonic, submesoscal Florida 

Current frontal eddy, and concluded that sailfish spawn at frontal zones. Thus, if sailfish are migrating into the 

Gulf of Mexico during the spring and summer to spawn at/near frontal features, our delta GAMs are picking up 

that behavior.  

 

Standard errors for the predictions made with the sailfish models are shown in Figure 7. Standard errors are 

consistently larger in the deepest areas of the Gulf. Figure 8 shows density plots of the numerical data used to fit 

and predict with the fitted sailfish GAMs. Notice that the prediction fishnets contain areas exceeding the 

maximum depth observed in the fitting data. In addition, notice that splines for sea bottom depth (Figure 1a, h) 

have very wide 95% confidence intervals for larger values of sea bottom depth. Since sea bottom depth is a 

statistically important model descriptor, yet can introduce a large amount of error into model predictions, future 

use of these models should be limited to predicting across depth ranges comparable to the fitting data.  

 

Statistical models for predicting the horizontal distribution of Atlantic sailfish provided information on 

environmental drivers, and the use of GAMs allowed us to determine critical ranges of influential descriptors, in 

addition to spatial patterns in abundance. Although model fits were not ideal, fits and predictions were supported 

by various findings in the literature. Thus, qualitative trends may be captured by model predictions. Statistical 

models will likely be improved with additional catch data as well as the inclusion of additional environmental 

drivers. For instance, research has found that dissolved oxygen may constrain sailfish movement (Ehrhardt and 

Fitchett 2006; Prince and Goodyear 2006). The Commission encouraged actions to reduce fishing mortality of 

sailfish from non-industrial, in addition to industrial, fisheries (ICCAT 2010), and this research could provide 

insight on areas where and when sailfish may aggregate in the Gulf of Mexico.  
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Table 1. Summary of fitted Generalized Additive Models. Percent deviance explained refers to the whole model, p refers to the p-value of the indicated 

descriptor, and k refers to the basis dimension set for the indicated spline.  

 

Bernoulli Model 

Descriptors 

Istiophorus Istiophoridae Makaira Tetrapturus Tetrapturus Thunnus Thunnus Xiphias 

albicans  nigricans albidus  albacares thynnus gladius 

p, Intercept < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

p, Year (2006) 0.927 0.019 0.241 0.024 0.378 0.894 0.100 0.115 

p, Year (2007) 0.009 0.936 0.412 < 0.001 0.045 0.690 0.656 0.223 

p, Year (2008) 0.495 0.066 0.250 < 0.001 < 0.001 0.293 < 0.001 < 0.001 

p, Year (2009) 0.104 0.003 0.222 < 0.001 < 0.001 0.343 0.033 < 0.001 

p, Year (2010) 0.597 0.036 0.621 < 0.001 0.005 < 0.001 0.250 < 0.001 

p, Season (2) 0.230 0.019 0.317 0.009 0.514 0.007 < 0.001 0.723 

p, Season (3) 0.216 < 0.001 0.084 0.084 0.065 0.269 1.0 0.009 

p, Season (4) 0.157 0.078 0.939 < 0.001 0.198 0.048 < 0.001 < 0.001 

p, Daytime (N) 0.420 < 0.001 0.161 0.037 0.006 < 0.001 0.039 0.021 

p, s(SST) < 0.001 0.006 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

k, s(SST) 5 7 4 4 4 8 7 9 

p, s(SSH) 0.008 0.008 < 0.001 0.044 0.025 < 0.001 < 0.001 < 0.001 

k, s(SSH) 5 6 7 36 3 3 11 5 

p, s(SBD) < 0.001 0.020 0.005 0.005 0.083 < 0.001 < 0.001 < 0.001 

k, s(SBD) 5 9 3 8 8 20 7 14 

p, s(MDF) 0.030 0.082 0.091 < 0.001 0.958 < 0.001 0.237 0.592 

k, s(MDF) 5 3 3 10 3 6 15 6 

% Deviance 

Explained  

14.6 10.7 9.96 19.3 15.7 29.7 20.5 18.9 

n 2995 2995 2995 2995 2998 2995 2995 2995 

         

Gamma Model 

Descriptors 

        

        

p, Intercept  < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.997 < 0.001 0.039 

p, Year (2006) 0.999 < 0.001 0.039 0.015 0.809 < 0.001 0.011 0.083 

p, Year (2007) 0.762 0.105 0.008 0.210 0.018 0.182 0.101 0.015 

p, Year (2008) 0.002 0.002 0.028 0.766 0.005 0.125 0.001 < 0.001 

p, Year (2009) 0.070 < 0.001 0.054 0.362 < 0.001 0.111 < 0.001 < 0.001 

p, Year (2010) 0.002 0.117 0.047 0.172 0.012 0.731 0.010 < 0.001 

p, Season (2) 0.491 0.910 0.240 0.374 0.653 < 0.001 0.002 0.029 

p, Season (3) 0.510 0.798 0.250 0.967 0.126 < 0.001 NA 0.237 

p, Season (4) 0.513 0.880 0.052 0.724 0.732 0.013 0.356 0.912 

p, Daytime (N) < 0.001 0.115 0.118 0.361 0.779 < 0.001 0.407 < 0.001 

p, s(SST) 0.010 0.002 < 0.001 0.007 < 0.001 < 0.001 0.291 < 0.001 
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k, s(SST) 24 3 5 3 8 7 3 20 

p, s(SSH) 1.0 0.344 < 0.001 0.095 0.004 < 0.001 < 0.001 < 0.001 

k, s(SSH) 3 12 3 20 7 22 5 9 

p, s(SBD) < 0.001 < 0.001 < 0.001 < 0.001 0.011 < 0.001 0.012 < 0.001 

k, s(SBD) 5 21 7 12 3 14 4 45 

p, s(MDF) 0.207 0.010 0.097 0.103 0.756 0.004 0.023 < 0.001 

k, s(MDF) 3 9 5 3 3 13 3 20 

% Deviance 

Explained 
48.6 

26.6 27.8 34.7 35.2 16.6 8.77 52.9 

n 385 307 564 283 267 2589 605 2407 
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a) b) c) d) 
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i) j) k) l) 
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Figure 1. Files developed in ArcGIS for creating fishnets to use for model predictions. For panels (a) – (l), columns 1 

to 4 corresponds to seasons 1 to 4. Panels (a) – (d) are sea surface temperature (°C), panels (e) – (h) are altimetry 

(m), panels (i) – (l) display the polyline files for estimating minimum distance from a front (m), and panel (m) 

displays the bathymetry (m) raster which was used for all fishnets. For fishnets, year was set to the year the data was 

collected (2010), and day/night was assumed to be day (D). 
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a) Istiophorus albicans  b) Thunnus thynnus c) Thunnus albacares 

 

Figure 2. General trends of Bernoulli model diagnostic plots: Pearson residuals against fitted values. Model plots for 

Istiophorus albicans, Istiophoridae spp., Makaira nigricans, Tetrapturus albidus, and Tetrapturus spp. resemble the 

plot displayed in panel (a). Panel (b) displays the diagnostic for Thunnus thynnus. Model plots for Thunnus albacares 

and Xiphias gladius resemble the plot displayed in panel (c). The black circles indicate Pearson residuals, the red line 

indicates the computed LOWESS curve, and the grey-dashed line indicates the zero horizontal axis (the ideal 

location of the LOWESS curve).  
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Figure 3. Receiver Operating Characteristic (ROC) curve for all fitted Bernoulli models. Values included in the 

legend are the corresponding Area Under the ROC curve (AUC) value. The red, dashed line is a hypothetical ROC 

curve with an AUC approximately equal to 0.5 (a non-informative model), and the green, dashed line is a 

hypothetical ROC curve with an AUC approximately equal to 1 (a perfect model).  
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a) b) 

  
c) d) 

 

Figure 4. Residual diagnostic plots for the Istiophorus albicans Gamma model. Diagnostic plots include the Q-Q 

plot (a), box-plot (b), residuals against a linear predictor (c), and residuals against time (d). 
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a) b) c) d) 

    
e) f) g) h) 

    
i)  j) k) l) 
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Figure 5. Model descriptor fits for the Istiophorus albicans delta generalized additive models. Panels (a) - (g) display 

descriptor fits for Bernoulli models, and panels (h) - (n) display descriptor fits for the Gamma models. A solid line 

indicates the fit, dashed lines indicate the 95% confidence interval, and the black dashes along the horizontal axis 

display the rug plot. The estimated degrees of freedom for spline fits are included in the vertical axis label. 
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a) b) 

  
c) d) 

 

Figure 6. Abundance indices of Istiophorus albicans predicted from the fitted delta generalized additive models for 

Jan. – Mar. (a), Apr. – Jun. (b), Jul. – Sep. (c), and Oct. – Dec. (d). Predictions were generated from data fishnets 

(0.1° latitude by 0.1° longitude) representing seasonal averages of numerical model descriptors for the year 2010. 

Fishnets were generated using data from NCEI and NOAA. The plots in this figure were generated from the daytime 

fishnets (nighttime fishnets displayed similar patterns with slightly larger abundance indices).    

 

 

 

 

 

 

 

 



1794 
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g) h)  

 

Figure 7. Standard error of predictions made with Istiophorus albicans generalized additive models. Panels (a) – (d) 

are standard errors from Bernoulli model predictions for seasons 1 through 4, respectfully, and panels (e) – (f) are 

standard errors from Gamma model predictions for seasons 1 through 4, respectfully.  
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Figure 8. Density curves of data used to fit and predict with Istiophorus albicans generalized additive models. Black 

density curves are derived for data used to fit models, and grey density curves are derived from data used to develop 

the indicated seasonal prediction. Data used to fit the Gamma model were used to produce the shown curves since 

data used to fit the Bernoulli model produce similar curves.  


