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SUMMARY 

 

When conducting a Management Strategy Evaluation, hypotheses that represent the simulated 

versions of reality are required for conditioning the Operating Model. There are many 

alternative ways to do this, one way is to use the the currently-used stock assessment model. 

Although use of the assessment model as the Operating Model seems to imply that assessment 

models describe nature almost perfectly, if a Management Procedure cannot perform well when 

reality is as simple as implied by an assessment model, it is unlikely to perform adequately for 

more realistic representations of uncertainty. Basing an operating model on the current 

assessment model also has arguably the lowest demands for knowledge and data. In this paper 

we summarise an Operating Model developed for North Atlantic albacore conditioned using 

Multifan-CL.  

 

RÉSUMÉ 

 

Pour réaliser une évaluation de la stratégie de gestion, des hypothèses représentant les versions 

simulées de la réalité sont requises pour conditionner le modèle opérationnel. Il y a beaucoup 

d'autres façons de le faire, par exemple en se servant du modèle d'évaluation des stocks 

actuellement utilisé. Bien que l'utilisation du modèle d'évaluation comme modèle opérationnel 

semble impliquer que les modèles d'évaluation décrivent la nature presque à la perfection, si 

une procédure de gestion ne fonctionne pas correctement quand la réalité est aussi simple que 

celle issue d’un modèle d'évaluation, il est peu probable qu'elle fonctionne correctement avec 

des représentations de l'incertitude plus réalistes. Faire reposer un modèle opérationnel sur le 

modèle d'évaluation actuel a aussi sans doute les exigences les plus basses en termes de 

connaissances et de données. Le présent document contient un résumé du modèle opérationnel 

élaboré pour le germon de l’Atlantique Nord conditionné au moyen de Multifan CL.  

 

RESUMEN 

 
Al realizar una evaluación de estrategias de ordenación, se requieren hipótesis que representen 

versiones simuladas de la realidad para condicionar el modelo operativo. Existen varias 

alternativas para los modos de hacerlo, una forma es utilizar el modelo de evaluación utilizado 

actualmente como modelo de operativo Aunque el uso del modelo de evaluación como modelo 

operativo parece implicar que los modelos de evaluación describen la naturaleza casi a la 

perfección, si un procedimiento de ordenación  no funciona bien cuando la realidad es tan 

simple como se supone en un modelo de evaluación, es poco probable que funcione  

adecuadamente con representaciones más realistas de la incertidumbre. También puede decirse 

que basar un modelo operativo en el modelo de evaluación actual implica el nivel más bajo de 

requisitos en cuanto a conocimientos y datos. En este documento se resume un modelo 

operativo desarrollado para el atún blanco del Atlántico norte condicionado utilizando 

Multifan-CL.  
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Introduction 

 

In this paper we describe a case study to develop an Operating Model (OM) for North Atlantic albacore using the 

integrated stock assessment Multifan-CL (Fournier et al., 1998). An OM is a mathematical statistical model used 

to describe the actual resource dynamics in simulation trials and to generate resource monitoring data when 

projecting forward to simulation test a Management Procedure (MP). While an MP is combination of pre-

defined data, together with an algorithm to which such data are input to provide a value for a TAC or effort 

control measure. 

 

Conducting a Management Strategy Evaluation (MSE) requires six steps (after Punt and Donovan, 2007); 

namely i) identification of management objectives; ii) selection of hypotheses for the OM; iii) conditioning the 

OM based on data and knowledge, and possible weighting and rejection of hypotheses; iv) identifying candidate 

management strategies; v) running the Management Procedure (MP) as a feedback control in order to simulate 

the long-term impact of management; and then vi) identifying the MPs that robustly meet management 

objectives. 

 

Developing the OM is mainly concerned with steps ii) and iii); and there are many alternative ways to condition 

OMs (see Kell et al., 2006). The method adopted in this study is to use the currently-used stock assessment 

model. Although this implies that assessment models describe nature almost perfectly, if a MP cannot perform 

well when reality is as simple as implied by an assessment model, it is unlikely to perform adequately for more 

realistic representations of uncertainty. Basing an OM on the current assessment model also has arguably the 

lowest demands for knowledge and data. 

 

In a stock assessment, the objective is often to find a ‘best‘ model, while when conditioning an OM the objective 

is to characterise what we don’t know about resource dynamics. As pointed out by Kolody et al. (2009) the stock 

assessment process often appears to involve a haphazard search for a few model specifications which appear to 

be plausibly, consistent with the data and a priori expectations. When developing an OM many more scenarios 

need to be run to ensure that the MPs are robust to uncertainty. 
 

Material and Methods 
 
Operating Model 
 

When fitting assessment models there is often insufficient contrast in the data to estimate parameters for 

important population processes (e.g. Lee et al., 2012, 2011; Pepin and Marshall, 2015). Therefore the data may 

appear equally likely given alternative model assumptions or parameter values (model and parameter 

uncertainty), while different data sets (CPUE, catch and length distributions) may show conflicting signals. A 

variety of scenarios therefore need to be run to reflect scepticism about the capacity of the model to estimate key 

parameters. Scenarios are generally developed by evaluating the effect of fixing some parameters, assuming 

alternative functional form for processes, or by down weighting some datasets when fitting (Kell and Mosqueira 

in press). 
 

In the last North Atlantic Multifan-CL assessment (Anon., 2014) 10 scenarios were considered (Table 1). The 

scenarios investigated the impact of the different dataset (size frequency and CPUEs), changing the start and end 

dates of the model, incorporating tagging data and alternative natural mortality (M) vectors. First the estimated 

time series and reference points are summarised and then the consequences for the dynamics and the 

conditioning of the future part of the OM discussed. 
 

Results 
 

Time Series 

 

Time series of recruits, SSB, biomass, Fbar, Fapex, harvest rate and catch are shown by scenario in Figure 1. In 

general trends are similar across scenarios and quantities. The main differences is seen between the methods 

used for calculating exploitation; F apex (the highest F by age as used by the SCRS) is much more variable than 

using F bar (the mean F across reference ages as used by ICES). 
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Stock Recruitment Relationship 

 

A Beverton and Holt stock recruitment relationship (Beverton and Holt, 1993) was fitted to the recruit and SSB 

time series. The fit to the Base Case and a suite of diagnostics based on the residuals are shown in Figure 2; each 

plot type is then repeated for all scenarios as a separate figure. The fits to all the scenarios are shown in Figure 

3; there is little evidence for a reduction in recruitment as population size declines as recruitment quickly 

saturates as spawning stock biomass (S) increases due to strong density dependence i.e. compensatory dynamics. 

Next the residuals (on the log scale) are plotted to check for systematic patterns that may suggest that the 

assumptions are violated.  

 

The residuals are plotted against SSB in Figure 4 to check for evidence that the Beverton and Holt stock 

recruitment relationship may not be appropriate and against year in Figure 5, i.e. to check for stationarity. 

Recruitment appears to be highest at medium biomass levels, which could suggest over compensation, however, 

the plots of residuals against year suggest that there may be a year effect as expected recruitment was higher in 

the 1960s. It is therefore difficult to say whether recruitment is driven by SSB or environment. The residuals are 

plotted against the fitted values to check the variance function (Figure 6); there is a suggestion that variance may 

increase with recruitment, i.e. that assuming a log normal error structure may not be appropriate. Therefore 

quantile-quantile plots are shown in in Figure 7 to check the assumed error model, while to check for 

autocorrelation residuals with are plotted with a lag of 1 in Figure 8. The residuals appear to be log normally 

distributed, as they lie along the y=x line with no auto-correlation since the regression of residual t+1 against 

residual t has a slope near 0. 

 

Production Functions 

 

The assumed biological parameters and the estimated selection patterns are plotted in Figure 9; these were 

combined with the stock recruitment relationships to derive age based equilibrium production curves Figure 10. 

The age based production function for the Base Case are compared with the corresponding Pella-Tomlinson 

production function, and the stock/yield trajectory, in Figure 11. The curves of the two production functions are 

very similar, although population growth rate at small sizes is slightly underestimated by the biomass function. A 

simulation using the biomass production function is shown for Base Case in Figure 12; harvest rate is capped at 

0.3. The production estimated by the function is insufficient to explain the catch at small as the population 

decreases so the stock collapses. This is due to the large amount of process error, modelled as recruitment 

variation in Multifan-CL, in the age based model that is ignored by the biomass production function. 

 

Stationarity 

 

Next variability in the time series of recruitment (Figure 13) and production (Figure 14) is evaluated using a 

sequential t-test algorithm for regime shifts (the STARS algorithm Rodionov, 2004). The boxes show the means 

and ±1 standard deviation. For recruitment there appears to be three regimes, with recruitment higher in the 

middle period. Surplus production is much more variable than recruitment and is driven mainly by strong year 

classes. 

 

Absolute and relative time series are plotted in Figures 15 and 16 for estimates quantities, population parameters 

and reference points. Variability between scenarios is greatest for the absolute estimates, and low for the relative 

values. The biggest variability across time is seen for FMSY, due to mixing exploitation level and selectivity; the 

production function parameters derived from the age based parameters (r,k and p) do not change much. 

 

The expected value of surplus production as estimated by the age based model are shown in Figure 17 (red is the 

production function with time varying selectivity and recruitment, and black is assuming only time varying 

recruitment), points are the values by year. The production functions are estimated using a moving average for 

selection pattern and recruitment (using a 5 year window). Including varying selection has little effect. 

 

The distributions of the estimates annual surplus production are plotted in Figures 18 and 19. The latter figure 

plots the residuals (i.e. observed-expected) and there appears to be a positive bias. 

 

Stock Status 

 

Harvest rate relative to FMSY is plotted in Figure 20 and stock status in Figure 21 stock biomass relative to BMSY 

by scenario. Kobe Phase Plots are shown in Figure 22 with the 2011 status indicated by the blue point. 
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Power Spectra 

 

Power spectra are plotted for simulated recruitment, SSB, yield, stock biomass, juvenile biomass and surplus 

production (Figures 23, 24, 25, 26, 27 and 28). For each OM scenario three levels of fishing mortality (FMSY 

times 0.1, 1 and 2) were simulated. The spectral analysis performed shows even though recruitment is a 

sequence of serially uncorrelated random variables with zero mean and finite variance (white noise) the time 

series SSB, yield, stock biomass and juvenile biomass are dominated by low frequencies (i.e. long-term 

variations) that results from the propagation of stochastic recruitment into the age-classes and lead to a 

smoothing of the SSB (i.e. cohort resonant effects). The analysis of productivity is different and is dominated by 

medium frequencies, presumably due to the transient effect of a large recruitment. 

 

Discussion 

 

The scenarios all showed similar trends, estimates of current stock status, production functions and reference 

points. The dynamics of the time series are also similar, and are driven by variations in recruitment. Although 

there was no auto-correlation in the recruitment deviates, there is evidence for changes in the mean level of 

recruitment and large recruitments cause an increase in surplus production. Process error in Multifan-CL is 

modelled as random recruitment this translates into changes in surplus production and long-term fluctuations in 

biomass and catches. This will have consequences for the MP, as seen in Figure 12 since catches can be driven 

by process error rather than the expected production. Using the stock assessment as the OM helps in ensuring 

estimates of historical and current stock status are consistent with recent advice. Which in turn makes it easier to 

make the transition from the Kobe Framework (Kell et al., 2016) based on showing alternative management 

options to the use of a HCR. Choices still have to be made, however, about simulation of uncertainty into the 

future and around current status. 
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Figure 1. Time series of recruits, SSB, biomass, 𝐹𝑏𝑎𝑟, 𝐹𝑎𝑝𝑒𝑥, harvest rate and catch by OM scenario. 
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Figure 2. Stock recruitment fit with diagnostics for the Base Case. 
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Figure 3. Stock recruitment fits to observations by scenario. 
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Figure 4. Residuals plotted against SSB by scenario to check for systematic patterns. 
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Figure 5. Residuals plotted against year by scenario to check for systematic patterns. 
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Figure 6. Residuals plotted against fitted by scenario to check variance function. 
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Figure 7. Quantile-quantile plot by scenario to check error model. 
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Figure 8. Plot of lagged recruitment residuals by scenario to check auto-correlation. 
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Figure 9. Biological parameters by scenario. 
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Figure 10. Equilibrium curves derived from stock recruitment relationships and per recruit analysis. 

 

Figure 11. Comparison of age and biomass based production functions for the Base Case, the track is the 

estimated stock yield trajectory. 
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Figure 12. Simulation of biomass production function with parameters (r, K and shape) equivalent to OM Base 

Case; harvest rate capped at 0.3. 
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Figure 13. Time series of recruitment by scenario, with means and standard deviations as estimated by the 

STARS algorithm. 
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Figure 14. Time series of production by scenario, with means and standard deviations as estimated by the 

STARS algorithm. 
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Figure 15. Time series of derived quantities, population parameters and reference points for all scenarios. 
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Figure 16. Time series scaled by means within a scenario of derived quantities, population parameters and 

reference points. 
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Figure 17. Surplus production as estimated by age based model, lines are expected values, red is the production 

function allowing for change in selection pattern. 
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Figure 18. Conditional population growth rate distributions by scenario. 
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Figure 19. Condition population growth rate residuals (observed-expected) by scenario. 
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Figure 20. Harvest rate relative to 𝐹𝑀𝑆𝑌 by scenario. 
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Figure 21. Stock biomass relative to 𝐵𝑀𝑆𝑌 by scenario. 
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Figure 22. Kobe Phase Plots, with 2011 status (blue point) by scenario. 
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Figure 23. Power spectra of recruitment; simulations for each Operating Model scenario and three levels of 

fishing mortality (𝐹𝑀𝑆𝑌 times 0.1, 1 and 2). 
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Figure 24. Power spectra of SSB; simulations for each Operating Model scenario and three levels of fishing 

mortality (𝐹𝑀𝑆𝑌 times 0.1, 1 and 2). 
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Figure 25. Power spectra of yield; simulations for each Operating Model scenario and three levels of fishing 

mortality (𝐹𝑀𝑆𝑌 times 0.1, 1 and 2). 
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Figure 26. Power spectra of stock biomass; simulations for each Operating Model scenario and three levels of 

fishing mortality (𝐹𝑀𝑆𝑌 times 0.1, 1 and 2). 
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Figure 27. Power spectra of juvenile biomass; simulations for each Operating Model scenario and three levels of 

fishing mortality (𝐹𝑀𝑆𝑌 times 0.1, 1 and 2). 
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Figure 28. Power spectra of surplus production; simulations for each Operating Model scenario and three levels 

of fishing mortality (𝐹𝑀𝑆𝑌 times 0.1, 1 and 2). 
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