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SUMMARY 

 

Two-stage models (e.g., delta lognormal) that explicitly model the frequency of occurrence and 

positive observations are widely used for CPUE standardization. Estimation of the variance of 

the index is obtained as the variance of the product of two random variables. Many treatments 

assume or explicitly test for the independence of the two components and use a covariance 

term to estimate the index variance. Subsequent work indicates that this is incorrect, that much 

of the code used to estimate the covariance should be replaced and the components are, under 

most situations, independent such that the covariance is zero. This allows for an exact 

variance estimate based on Goodman (1960). Additionally, other distributions may be more 

appropriate and can obviate the need for a two-stage model. We present alternatives models 

for cases when discrete distributions may be more appropriate. We also present decision rules 

for selecting the appropriate discrete distribution with examples of simulated data that 

demonstrate the various distributional forms, along with statistical codes, with the goal of 

improving CPUE modeling.  

 

RÉSUMÉ 

 

Des modèles en deux étapes (p.ex. delta log-normal) qui modélisent explicitement la fréquence 

d’apparition et les observations positives sont largement utilisés pour standardiser la CPUE. 

L'estimation de la variance de l'indice est obtenue en tant que variance du produit des deux 

variables aléatoires. De nombreux traitements postulent ou testent explicitement 

l'indépendance des deux composantes et utilisent un terme de covariance pour estimer la 

variance de l'indice. Des travaux réalisés ultérieurement font apparaître que cela est 

incorrect, qu'une grande partie du code utilisé pour estimer la covariance devrait être 

remplacée et les composantes sont, dans la plupart des cas, indépendants, de sorte que la 

covariance est nulle. Cela permet une estimation de la variance exacte fondée sur Goodman 

(1960). De plus, d'autres distributions pourraient convenir et pourraient rendre moins 

nécessaire un modèle en deux étapes. D'autres modèles sont présentés pour les cas où des 

distributions distinctes pourraient être plus appropriées. Des règles de décision sont 

également présentées afin de sélectionner la distribution distincte appropriée avec des 

exemples de données simulées qui démontrent les diverses formes de distribution, ainsi que des 

codes statistiques, dans le but d'améliorer la modélisation de la CPUE.  

 

RESUMEN 

 

Los modelos de dos fases (por ejemplo, delta lognormal) que modelan explícitamente la 

frecuencia de presencia y las observaciones positivas son ampliamente utilizados para la 

estandarización de la CPUE. La estimación de la varianza del índice se obtiene como la 

varianza del producto de dos variables aleatorias. Muchos tratamientos asumen o prueban 

explícitamente la independencia de los dos componentes y utilizan un término de covarianza 

para estimar la varianza del índice. Trabajos subsiguientes indicaron que esto es incorrecto, y 

que gran parte del código utilizado para estimar la covarianza debería ser reemplazado y que 

los componentes son, en la mayoría de las situaciones, independientes de tal modo que la 

covarianza es cero. Esto permite una estimación exacta de la varianza basada en Goodman 

(1960). Además, otras distribuciones pueden ser más apropiadas y pueden obviar la necesidad 

de un modelo de dos fases. Se presentan modelos alternativos para los casos en los que las 

distribuciones diferentes podrían ser más apropiadas. También se  presentan normas de 
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decisión para la selección de la distribución diferente apropiada con ejemplos de datos 

simulados que demuestran las distintas formas de distribución, junto con los códigos 

estadísticos, con el objetivo de mejorar la modelación de la CPUE.  

 

KEY WORDS 

 

CPUE standardization, delta lognormal model, variance 

 

 

 

1. Introduction 

Many catch per unit effort standardizations employ a two-stage modeling approach where the proportion positive 

(𝑃̂𝑖) by year is modeled separately from the catch when positive (𝐶̂𝑖). Then the index for year i (𝐼𝑖̂ = 𝑃𝑖̂𝐶̂𝑖) is 

obtained as the product of the two components under the assumption that the dependent variable is a mixture 

distribution of a binomial and another non-zero distribution (lognormal, truncated Poisson, etc.). These types of 

models are variously called two-stage or hurdle models, of which the delta-lognormal model commonly used in 

ICCAT is a specific example. For convenience we will use the term two-stage in this paper. 

 

To obtain an estimator of the variance of the two stage model index several estimators have been proposed. An 

early development of the delta-lognormal estimator by Lo et al (1992) employed a variance estimator that uses 

the covariance between the estimators of the two components, under the assumption that the two estimators were 

functionally related: 

 

)ˆ,ˆ(ˆˆ2)ˆ(ˆˆ)ˆ(ˆˆ)ˆ(ˆ 22 PCCovPCPVCCVPIV    (1) 

 

Note that this variance estimator is an approximation for the full variance estimator where the last term has been 

removed. 

 

Further consideration of this variance estimate by led to a proposal (Walter and Ortiz, 2011) to test the 

significance of the correlation between (𝐶̂𝑖) and (𝑃̂𝑖) and, if significant, use the variance estimator proposed by 

Lo et al 1992 (1) and, if nonsignificant, use Goodman’s exact estimator for the variance of the product of two 

random variables: 

 

)ˆ(ˆ)ˆ(ˆ)ˆ(ˆˆ)ˆ(ˆˆ)ˆ(ˆ 22 CVPVPVCCVPIV    (2) 

 

Subsequently Christman (in prep.) determined through simulation that the estimator of Lo et al 2002 and the 

proposed two-step method of Walter and Ortiz (2012) are unnecessary as, under most situations, the two parts 

(𝐶̂𝑖) and (𝑃̂𝑖) are independent which would make the Goodman (1960) proposal the most appropriate variance 

estimator. 

 

A second consideration for much of the modeling is the appropriate distribution for the dependent variable. 

Many papers assume a lognormal distribution for the positive catch, often even when the catch consists of a 

discrete number of fish, which would more appropriately be modeled with a discrete distribution, of which there 

are three logical choices, the binomial (also called the logistic model), the Poisson, or the negative binomial 

distribution. In this paper we present the case that many CPUE treatments would be more appropriately modeled 

with a discrete distribution assumption where effort is treated as a linear model intercept offset, and in many 

cases, these distributional forms might obviate the need for a two stage model (as they can allow zeros). We 

present a simple decisional rule for selecting the appropriate discrete distribution and examples of simulated data 

that demonstrate the various distributional forms. Furthermore, we outline cases where, depending on the 

magnitude of zero inflation and data overdispersion, it may be appropriate to use a zero-inflated model; and 

when a two-stage model would be most appropriate in cases when the sampling occurs in two phases where the 

first phase of sampling is used to identify the presence of the fish and second phase of sampling represents the 

capture of individuals (e.g., spotter plane searches followed by purse seining of schools). 

 

In this paper we develop the two concepts, above, and propose updated R and SAS code to obtain the variance 

for two-stage and discrete CPUE standardization models. 
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2. Materials and methods 

 

The covariance estimator proposed by Lo et al (2002) does not actually estimate the correct covariance 

 

Christman (in prep.) has pointed out that the estimate of the covariance proposed by Lo et al (1992) and used by 

Walter and Ortiz (2012) does not estimate the covariance of (𝐶̂𝑖) and (𝑃̂𝑖) within a year, but rather the covariance 

between annually varying estimates of (𝐶̂𝑖) and (𝑃̂𝑖). The correct covariance in eq(1) would be the covariance 

between estimates of (𝐶̂𝑖) and (𝑃̂𝑖) within a year, given below: 

 





n

i

iiiiii nPPCCPCCov
1

1)ˆ)(ˆ()ˆ,ˆ(     (4) 

Where 𝐶̂𝑖 and 𝑃 ̂𝑖 are the respective means of C and P within a year and n is the sample size. 

 

Lo et al (1992) proposed an estimator for the covariance that used the Pearson correlation between the annual 

estimates of C and P calculated across years, which does not estimate (4): 

 

)]ˆ(ˆ)ˆ(ˆ[)ˆ,ˆ( ˆ,ˆ iiPCii PCPCCov   

 

Where 𝜌̂𝐶̂𝑃̂ is the Pearson correlation between the annual predicted values of the two estimators, 𝜎̂ is the standard 

error of the year effect predictions of (𝐶̂𝑖) and (𝑃̂𝑖). The use of the correlation across years is incorrect and 

Christman (in prep.) argues that any perceived covariance is a simply a relationship between annual estimates of 

(𝐶̂𝑖) and (𝑃̂𝑖). 

 

2.1.  The two components (𝑪̂𝒊) and (𝑷̂𝒊) are independent, obviating the need for the covariance term. 

  

The covariance term in (1) assumes that (𝐶̂𝑖) and (𝑃̂𝑖) are parameters from a common joint, mixture distribution 

with a non-zero correlation. If in fact, the two estimators are independently derived meaning that the correlation 

between them is zero. This can be shown by a simple example borrowed from Christman (in prep) where we 

create a mixture distribution that is the product of a lognormal random variable 𝐶 = 𝐿𝑜𝑔𝑁(𝑢 ∗ 𝑎, 𝜎2) and a 

Bernoulli random variable 𝑃 = binomial(𝑛, 𝑎) where n=1. The product of the two, 𝐼 = 𝑃 ∗ 𝐶 is then the 

distributional assumption of a delta-lognormal models. Further we impose a functional relationship such that the 

mean of the lognormal distribution is a function of the binomial probability (a) under a situation where 

increasing abundance means that we encounter a positive observation more often and, when we do, the positive 

catch rate is higher. If we repeatedly sample from each distribution and calculate the covariance and the 

correlation, we see that both have expected values of zero (Figure 1). Hence the covariance term in eq (1) is 

zero. Christman (in prep.) takes the example further to evaluate the situation where both components are 

functionally dependent upon some covariate, say an environmental factor and shows that the covariance is also 

zero. 

  

2.2.  Modeling catch data using discrete distributions 

 

In many cases, fisheries catch data represent the count of individuals captured in each sample, and therefore 

discrete models are appropriate for obtaining mean, variance, and confidence interval estimates. Effort is 

appropriately modeled as an intercept offset in the generalized linear models, assuming the mean catch shifts 

according to the amount of fishing effort. This treatment of the data differs from modeling the catch rate as a 

continuous variable, which then uses a log-transformation to scale the data to meet normality assumptions, and 

requires the use of the delta-method to account for zeros. The discrete model approach treats zeros and positive 

observations as one distribution of counts, which reduces the two-stage model to a single regression, and more 

accurately reflects the discrete nature of the data. When taking this approach, the standard practice of plotting the 

histogram of the aggregated data aggregated may help gain a general view of the distribution. However, to 

conform to the distributional assumptions when fitting a GLMM with covariates where each factor combination 

would be expected to have a different mean (and, perhaps) variance and thus a different distribution, the data for 

each combination of model factors should be evaluated. So, at minimum, each year's distribution should be 

plotted as histograms as a first step is to gain a sense of the range, mode, and form of the distribution. Here we 

present examples of simulated discrete distributions which can be used as a guide for choosing the appropriate 

probability distribution (Figure 2). There is also a set of general rules of thumb that can assist in the selection of 

discrete distributions based on the observed annual mean and variance of catches (Young and Young 1998): 
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Binomial distribution: mean > variance 

Poisson distribution: mean = variance 

Negative binomial distribution: mean < variance 

 

The binomial distribution (Figure 2) is appropriate when modeling two potential outcomes, e.g., the presence or 

absence of a species in the catch. Often this situation arises when a species is rare or when one is only concerned 

with the probability of encountering a species. Sometimes, the catch of more than one individual is rare enough 

that those observations can be treated as presence data along with the single observations, and the logistic 

regression (binomial model) adequately models means and variance trends over time (Figure 2). 

 

The Poisson distribution assumption should be used when the mean and variance are approximately equal 

(Figures 2), although it has been our experience that this situation is rarely the case when modeling fisheries 

catch data. Rather, we prefer the negative binomial model, which is more flexible in the distributional form 

(Figures 2), but can also take the shape of the Poisson distribution (Figure 2), albeit, at the cost of an additional 

parameter, the variance scaling parameter or overdispersion parameter. In general, the negative binomial is 

useful for modeling catch data, which often demonstrate considerable overdispersion, or large variance that is 

not accurately modeled under alternative distribution assumptions. The Poisson distribution is based on the 

assumption that the events (here individuals) are randomly distributed in space or time whereas the Negative 

Binomial distribution, which accounts for variance that is larger than the mean, allows for the events to be 

clustered in space so that the variability among samples is large compared to the variability of randomly 

distributed individuals.  

 

There are cases when the variance of the negative binomial distribution fails to account for all of the observed 

variability in the data, often due to a larger than expected number of zero catches and a larger range (and/or 

variance) of positive observations (e.g., Figure 2). For some of these cases, a zero-inflated negative binomial 

distribution is appropriate (Figure 2), while for others a two-stage model may be more appropriate. A zero-

inflated model can be used to allocate the expected proportion of zeros based on the discrete distribution 

separately from a proportion of zero counts that are structural and separate from the likelihood of observing a 

zero under the sample distribution. This is accomplished by adding an additional parameter, the zero-inflation 

parameter or probability of excess zero counts. A two-stage model is appropriate when the positive catch 

observations are expected to occur from a separate process than the zero observations, i.e. some “hurdle” exists 

that must be overcome before a positive catch is observed. One classic example is catch data of schooling fish 

sampled by first identifying the presence of a school (e.g., spotter plane surveys), and then obtaining a catch of 

individuals in the school (e.g., purse seine hauls of identified schools). Therefore, there is information on the 

relative abundance of a species in both the proportion of samples that positively identified the presence of the 

species (e.g., number of schools), and the number of fish captured in the positive samples (e.g., size of the 

schools). The two-stage model is not, however, exclusive to this situation. In some cases, a log-transformation is 

most appropriate to accurately model the mean and variance as this transformation both stabilizes the variance 

and leads to approximately normally distributed data. It is in these situations, that the delta-lognormal model or 

other delta-transformation model is more appropriate (e.g., Lo et al. 1992). 

 

A comparison of the goodness-of-fit to the observed data provides a good method for model selection (Young 

and Young 1998). This test should be conducted on the data by year and by important factor combinations each 

factor level is likely to have different mean. This should be done prior to the index standardization to avoid 

duplication of effort. We provide R code for data exploration, frequency histogram creation, and discrete 

distribution goodness-of-fit tests in Appendix 3. We provide SAS code for the generalized linear model 

standardizations using the various discrete distributions in Appendix 4, and note the simplification of estimating 

yearly least-square means, standard deviations, and confidence intervals using these models compared to the 

delta-method. 

  

 

3. Results and discussion 

 

Based upon the derivations in 1.1 and 1.2 we recommend that the variance for two stage estimators be calculated 

according to Goodman (1960) exact estimator, eq (2). We have proposed SAS and R code to do so in 

Appendices 1 and 2. This assumes that the two components are independent as shown briefly in 1.2 and more 

formally in Christman (in prep). This finding obviates the cumbersome testing of the significance of the 

correlation proposed by Walter and Ortiz 2012 and eliminates the need for the covariance estimator proposed by 

Lo et al (2002). 
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Figure 1. Histogram of 1000 estimates of the covariance and the correlation between the proportion positive and 

the lognormal mean for the a mixture distribution of a lognormal random variable 𝐶 = 𝐿𝑜𝑔𝑁(𝑢 ∗ 𝑎, 𝜎2) and a 

Bernoulli random variable 𝑃 = binomial(𝑛, 𝑎) where n=1. The product of the two, 𝐼 = 𝑃 ∗ 𝐶 is then the 

distributional assumption of a delta-lognormal models.  
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Figure 2. Examples of discrete distributions from simulated data.  
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Appendix 1. R code 

 

gooodman.se <- function(p,var_p, c,var_c ){(var_p*c^2+var_c*p^2-var_p*var_c)^.5} 

 

var_i= var_p* cpue ^2+var_c* ppos ^2-var_p*var_c) 

 

 

Appendix 2. SAS code for Two-stage model variance estimation 

 

var_i=var_p*cpue**2 +  var_c*ppos**2 - var_p* var_c; *Goodman exact estimator 

 

where var_i is the annual variance of the index, ppos is the annual estimate of the proportion positive (lsmeans in 

SAS) for the proportion positive, var_p is the variance of the of the proportion positive and cpue is the back-

calculated (lsmeans in SAS) lognormal component and var_c is the variance for the lognormal component. 

 

 

Appendix 3. Distribution Fitting and Goodness-of-fit Tests for Discrete Catch Models in R 

 

count=rnbinom(1000,mu=2,size=1) 

n=length(count) 

hist=hist(count,breaks=seq(-0.5,max(count)+0.5,1),col=8) 

 

# POISSON AND NEGATIVE BINOMIAL MODEL FITTING 

theta=c(mu=1) 

pois_negLL=function(theta) 

 { 

 -sum(dpois(count,theta[1],log=T)) 

 } 

fit=optimize(pois_negLL,lower=0,upper=max(count)) 

fit 

lines(seq(0,100),n*dpois(seq(0,100),fit$minimum),lwd=2,type='b',pch=18,col=3) 

 

theta2=c(mu=1,k=1) 

NB_negLL=function(theta2) 

 { 

 -sum(dnbinom(count,mu=theta2[1],size=theta2[2],log=T)) 

 } 

fit2=optim(theta2,NB_negLL) 

fit2 

lines(seq(0,100),n*dnbinom(seq(0,100),mu=fit2$par[1],size=fit2$par[2]),lwd=2,type='b',pch=18,col=4) 

 

# MODEL SELECTION 

AIC=rbind(2+2*fit$objective,2*2+2*fit2$value) 

dAIC=AIC-min(AIC) 

colnames(dAIC)=c('dAIC') 

rownames(dAIC)=c('Poisson','Neg Binom') 

dAIC 

 

# GOODNESS-OF-FIT TESTS 

pois_chisq=chisq.test(hist$counts,p=dpois(seq(0,max(hist$mids)),fit$minimum),rescale.p=T) 

pois_chisq 

NB_chisq=chisq.test(hist$counts,p=dnbinom(seq(0,max(hist$mids)),mu=fit2$par[1],size=fit2$par[2]),rescale.p=

T) 

NB_chisq 
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Appendix 4. SAS code for Discrete Catch Regression Models 

 

 

Logistic Regression Model in SAS for Discrete Presence/Absence Data 

proc glimmix data=analysis; 

nloptions maxiter=500; 

class year month area; 

ln_effort=log(effort) 

cpue=catch/effort 

model catch = year season area target / dist=binomial link=logit ddfm=kr s; 

random year*season; 

lsmeans year / ilink cl; 

output out=GLMM_out pred(ilink) pearson; 

id year month area target effort ln_effort catch cpue; 

run; 

 

Poisson Regression Model in SAS for Discrete Count Data 

proc glimmix data=analysis; 

nloptions maxiter=500; 

class year month area; 

ln_effort=log(effort) 

cpue=catch/effort 

model catch = year season area target / dist=poisson link=log offset=ln_effort ddfm=kr s; 

random year*season; 

lsmeans year / ilink cl; 

output out=GLMM_out pred(ilink) pearson; 

id year month area target effort ln_effort catch cpue; 

run; 

 

Negative Binomial Regression Model in SAS for Discrete Count Data 

proc glimmix data=analysis; 

nloptions maxiter=500; 

class year month area; 

ln_effort=log(effort) 

cpue=catch/effort 

model catch = year season area target / dist=negbin link=log offset=ln_effort ddfm=kr s; 

random year*season; 

lsmeans year / ilink cl; 

output out=GLMM_out pred(ilink) pearson; 

id year month area target effort ln_effort catch cpue; 

run; 

 

Testing the Zero-Inflated Negative Binomial Model for Discrete Count Data in R using glmmADMB package  

Webpages: http://glmmadmb.r-forge.r-project.org/, http://glmmadmb.r-forge.r-project.org/glmmADMB.html 

 

#requires R package “glmmADMB” 

 

library(glmmADMB) 

ln_effort=log(effort) 

nbinom=glmmadmb(catch~year+season+area+target+offset(ln_effort),family='nbinom',link='log') 

summary(nbinom) 

ZI_nbinom=glmmadmb(catch~year+season+area+target+offset(ln_effort),family='nbinom',link='log',zeroInflati

on=TRUE) 

summary(ZI_nbinom) 

AICtab(nbinom,ZI_nbinom) 

 

http://glmmadmb.r-forge.r-project.org/

