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SUMMARY 

 

Multivariate state-space methods have been used in finance, physics, and ecology, but have 

only recently been applied to fisheries. This class of methods allows for analysis of time series 

in a flexible manner which permits hypothesis testing regarding the nature of relationships 

between different time series, as well as properties regarding their observation and process 

variance. As such, the methods are potentially useful for gleaning information on stock 

dynamics from existing abundance indices at the available political or spatial scales. We 

showcase the utility of multivariate state-space modeling by applying the methods to swordfish, 

a species suspected to be influenced by environmental drivers. Alternative models containing 

assumptions about process error, observation error, stock migrations, and environmental 

linkages, are compared via an information criterion framework. The most parsimonious model 

is then used to produce a combined index of abundance for the stock. In addition to informing 

the issue of combining separate abundance indices, multivariate state-space methods can be 

used to: estimate commonalities in species’ responses to the environment, test for species 

interactions, identify structural breakpoints, or make one-step-ahead predictions in abundance. 

 

RÉSUMÉ 

 

Des méthodes état-espace à variables multiples sont utilisées dans le domaine de la finance, de 

la physique et de l'écologie et n'ont été appliquées que très récemment aux pêcheries. Ce type 

de méthodes permet d'analyser des séries temporelles d'une manière flexible ce qui permet la 

vérification d'hypothèses au niveau de la nature des relations entre les différentes séries 

temporelles, ainsi que les propriétés concernant leur observation et la variance du processus. 

Par conséquent, les méthodes pourraient être utiles pour glaner des informations sur les 

dynamiques des stocks à partir des indices d’abondance existants aux échelles politiques ou 

spatiales disponibles. On souligne l'intérêt que revêt la modélisation état-espace à variables 

multiples en appliquant les méthodes à l'espadon, une espèce soupçonnée d'être influencée par 

des facteurs environnementaux. D'autres modèles contenant des postulats au sujet de l'erreur 

de processus, l'erreur d'observation, les migrations des stocks et les interactions 

environnementales, sont comparés au moyen d'un cadre de critère d'information. Le modèle le 

plus parcimonieux est ensuite utilisé pour produire un indice combiné d'abondance du stock. 

Les méthodes état-espace à variables multiples sont utilisées pour documenter la question de la 

combinaison des indices d'abondance séparés, mais elles peuvent également servir à estimer 

les points communs des réponses des espèces à l'environnement, à tester les interactions des 

espèces, à identifier les points de rupture structurels ou encore à formuler des prévisions de 

l'abondance ayant une longueur d'avance. 

 

RESUMEN 

 

Los métodos de modelación de espacio-estado multivariable se han estado utilizando en 

estudios financieros, en física y en ecología, y recientemente se están aplicando a las 

pesquerías. Esta clase de métodos permite analizar series temporales de una manera flexible, 

lo que permite poner a prueba las hipótesis relativas a la naturaleza de las relaciones entre 

distintas series temporales, así como las propiedades relativas a su varianza en términos de 

observación y proceso. En este sentido, los métodos resultan potencialmente útiles para 

recabar información sobre la dinámica del stock a partir de los índices de abundancia 

existentes en escalas políticas o espaciales disponibles. En el documento se ejemplifica la 
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utilidad potencial del modelo de espacio-estado multivariable aplicando los métodos al pez 

espada, una especie a la que supuestamente le influyen los factores ambientales. Se comparan 

modelos alternativos que incluyen supuestos sobre errores de proceso, errores de observación, 

migraciones del stock y vinculaciones ambientales, a través de un marco de criterio de 

información. Se utiliza seguidamente el modelo más austero para elaborar un índice 

combinado de abundancia del stock. Además de para profundizar en la cuestión de cómo 

combinar índices de abundancia distintos, los métodos de modelación de espacio-estado 

multivariable pueden emplearse para estimar los elementos comunes en las respuestas de las 

especies al medio ambiente, contrastar interacciones entre especies, identificar puntos 

estructurales de ruptura o realizar predicciones sobre la abundancia. 
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1.  Introduction 
 

While the effect of the physical environment on the dynamics of pelagic fish stocks has long been recognized, 

the methods for integrating these influences in the assessment of our stocks still remain largely unexplored.  

Generally environmental influences are introduced into a stock assessment in one of two ways: either during the 

catch-per-unit-effort (CPUE) standardization process, or linked to a process within the assessment model itself.  

In CPUE standardization, a year * area interaction variable is often used, which essentially absorbs any large-

scale environmental variability without explicitly accounting for it; for example, in a case where a stock 

migrates to a certain area only during years with specific environmental conditions. Environmental variables can 

also be added to the standardization process when available at spatial and temporal level of the fishing activity, 

to model the case where catchability is modulated by the environment (e.g. Lauretta et al. 2014). Depending on 

the flexibility of the stock assessment model used, environmental parameters can be linked to different aspects 

of the stock (Schirripa et al. 2009) ; however, such options may be limited, and increasing the complexity of an 

integrated assessment model can lead to problems with parameter confounding or model misspecification 

(Maunder and Punt 2013).  In sum, environmental effects can be incorporated into the stock assessment process 

in a number of ways; however, they may not be directly comparable from a hypothesis-testing perspective, and 

they are limited in the ways in which they can model effects of environment on the stock.   

 

A number of statistical approaches have been developed to analyze time series data such as CPUE indices or 

other fisheries data. One class of models, the multivariate autoregressive state-space models, are well-developed 

and have been used in the study of finance, economics, psychology, and ecology, but remain relatively unused 

in the fisheries realm.  Following Holmes et al. (2014), a multivariate state-space model can be written as a 

“state process” and an “observation process” as follows: 

  

𝑥𝑡 = 𝐵𝑡𝑋𝑡−1 + 𝑢𝑡 + 𝐶𝑡𝑐𝑡 + 𝑤𝑡;  𝑤𝑡  ~ 𝑀𝑉𝑁(0, 𝑄𝑡) 

𝑦𝑡 = 𝑍𝑡𝑋𝑡 + 𝑎𝑡 + 𝐷𝑡𝑑𝑡 + 𝑣𝑡;  𝑣𝑡 ~ 𝑀𝑉𝑁(0, 𝑅𝑡) 

 

where all elements are matrices, x is a state variable and y is the actual time series observation at time t.  We 

describe the other parameters in the model in reference to the case where the observations y are indices of 

abundance and the states x are the underlying abundances.  In the state equation, the matrix B is a parameter that 

represents the interactions between different states or subpopulations with separate abundance patterns. The 

parameter u is a scaling parameter, and the parameter c can represent environmental drivers whose effects map 

to the states according to matrix C. The matrix w represents the process errors.  In the observation equation, Z is 

a matrix which maps the time series data to their respective states x, a is again a scaling parameter and d can 

represent environmental drivers whose effects map to the time series observations according to matrix D.  

Finally, v represents the observation errors.  Further details on model structure can be found in Holmes et al. 

(2014) and in the extensive reference list within.   

 

This class of models is extremely flexible in that any of the terms above can be omitted, treated as known, or 

parametrized as a function of another unknown variable. The equations can be modified to represent a number 

of more commonly used statistical techniques; a simple linear regression, for example, can be expressed in 

matrix form by excluding the state process and diluting the observation equation to 𝑦𝑡 = 𝑎 +  𝐷𝑑𝑡 + 𝑣𝑡. The 

multivariate state space form thus represents a highly flexible framework which should be useful for testing 
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hypotheses regarding different assumptions about a given set of time series observations. The equations can be 

solved using a relatively new, well-developed R package (MARSS (Multivariate Auto-Regressive State-Space); 

Holmes et al. 2014). This package is particularly useful in that it has implemented an algorithm robust to 

missing values, as well as a bias-corrected information criterion metric which can be used in model selection.     

 

Here we present a preliminary application of multivariate state space models to test hypotheses regarding a set 

of CPUE time series.  We use swordfish (Xiphias gladias) as an example, as this species is thought to be 

influenced by the environment and was subject to a recent discussion on how to best capture these influences in 

a stock assessment (Schirripa 2014).  Schirripa (2014) noted that these environmental drivers could potentially 

affect catchability, migration patterns, stock expansion, or a change in food availability, among other 

possibilities or combinations of the above. The goal is to test various assumptions about the relationships 

between different abundance indices, and also the effects of suspected drivers on stock dynamics.  We focus on 

three different sets of hypotheses:  1) regarding the relationships of observation error and process error among 

fleets, 2) regarding environmental drivers, and the aspects of stock dynamics that these drivers affect, and 3) 

regarding interactions between the fractions of the stock targeted by different fleets.  The intent of this paper is 

not to be conclusive regarding the effects of the environment on Atlantic swordfish, nor do we expect that we 

have captured the full range of plausible hypotheses. The paper is simply meant to serve as an introduction to 

the methods and their application to analysis of fishery abundance indices, and to serve as a jumping-off point 

for further study in this regard.  We do not explore detailed model diagnostics in this paper, but recognize that 

this is an essential step before taking the methods further; thus the results herein thus should be interpreted with 

caution.   

 

 

2.  Methods 

 

The last North Atlantic swordfish assessment included CPUE time series from 5 different fleets: Canada, 

Portugal, Spain, Japan, and the United States.  The United States index was split in 2004 due to the introduction 

of new gear which was thought to significantly change catchability. Note that an abundance index from 

Morocco was also available; this was excluded due to the short time series as we wished to keep the number of 

missing values limited for initial exploration.  For this reason, we also limited our preliminary analysis to the 

data-rich 1986 – 2011 period.  Biomass time series in were taken from the 2013 stock assessment report (Anon 

2013; Table 3).  Schirripa (2014) hypothesized a number of drivers that were thought to potentially affect the 

stock: the Atlantic Multidecadal Oscillation, the North Atlantic Oscillation, and the Atlantic Warm Pool.  

Indices for these environmental drivers were taken from the Gulf of Mexico Ecosystem Status Report 

(Karnauskas et al. 2013). In this preliminary exploration we tested various hypotheses under the logic that 

follows.   

 

The first hypotheses dealt solely with the spatial nature of the abundance indices from different fleets, 

disregarding for the moment any effects of the environment.  The general form of the MARSS equations for this 

set of hypotheses is as follows:  

 

𝑥𝑡 = 𝑥𝑡−1 + 𝑢 + 𝑤𝑡;  𝑤𝑡~ 𝑁(0, 𝑞) 

[
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In the simplest case (hypothesis H0A), a single abundance state is assumed to exist, and we estimate a single 

state scaling parameter u, a set of observation scaling parameters a (which are meaningless as the indices are 

relative), a single process error q, a set of independent observation errors r, and finally a time series of states xt 

which represent the underlying abundance trend.   Note that the last two observation errors are estimated to be 

the same value because they both represent indices from the United States; we assume that while the gear has 

changed, and thus the scaling parameters a4 and a5 should differ, the level of observation error has stayed the 

same.  Other plausible hypotheses are also proposed as follows:   

 

H1A: Each time series of observations represents a separate abundance state, and process errors are 

equal among states.   
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H2A:  Each time series of observations represents a separate abundance state, and the process errors 

differ among states. 

H3A:  Each time series of observations represents a separate abundance state, except for the two indices 

from the USA which were mapped to a single state process, and separate process errors and 

covariances among process errors are estimated. (Note that the full 6-state model did not converge so 

we limited the number of states to 5, assuming the process error of the two United States observations 

was similar).   

H4A:  Based on the patterns in covariance of process errors from H3A, the observation time series are 

grouped and mapped to a smaller number of different underlying states.   

 

The second set of hypotheses involves testing environmental covariates as influencing either the observation 

process or the state process. The base model is the same configuration as above, with the addition of a covariate 

linked to the state variable:   

 

𝑥𝑡 = 𝑥𝑡−1 + 𝑢 + 𝐶𝑡𝑐𝑡 + 𝑤𝑡;  𝑤𝑡~ 𝑁(0, 𝑞) 
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The hypotheses tested were as follows:  

 

H0B: Six time series observations with independent observation error linked to a single underlying state, 

with the environmental variable (Atlantic Multidecadal Oscillation) affecting the abundance state.   

H1B: Six time series observations with independent observation error linked to a single underlying state, 

with the environmental variable (Atlantic Multidecadal Oscillation) affecting the observation states 

(with a different effect measured for each observation time series). Note that the environmental effect 

𝐷𝑡𝑑𝑡is included in the observation state and the 𝐶𝑡𝑐𝑡 term is dropped.    

H2B: Six time series observations with independent observation error linked to a single underlying state, 

with the environmental variable (Atlantic Warm Pool mean annual size) affecting the abundance state.   

H3B: Six time series observations with independent observation error linked to a single underlying state, 

with the environmental variable (North Atlantic Oscillation) affecting the abundance state.   

H4B: Six time series observations grouped and mapped to three underlying states (using the same 

optimal configuration used in H4A) with the environmental variable (Atlantic Multidecadal Oscillation) 

affecting the observation states. The process errors of the three underlying states, and all of their 

covariances, are estimated. The effect of the environmental variable is independently estimated for 

each of the three states.   

 

The final set of models was set up to test hypotheses concerning potential interactions among the identified 

subpopulations (using, as above, the optimal configuration determined in H4A), as well as the potential 

environmental influences on individual subpopulations. We use the term “subpopulation” not to suggest that 

there are distinct, genetically separate subpopulations within the overall Atlantic stock, but rather to refer to 

fractions of the population that display differing dynamics (as suggested by the data), which are represented by 

the three different state variables. To understand the interactions between these “subpopulations,” we are 

interested in estimating the matrix parameter B; however, to avoid a model with infinite solutions this requires 

us to set other parameters as fixed.  The parameter B is well known to be confounded with the scaling parameter 

u, and thus we fixed u to zero (Holmes et al. 2014). Additionally, model convergence was somewhat 

problematic for models where the process error was allowed to vary, so we estimated only a single process error 

variance which was equal for all subpopulations.  The model structure for this set of hypotheses was thus:  
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Note that the Z matrix maps different observation time series y to their respective states x. The subscripts c, s, 

and u refer to Canada, Spain/Portugal/ Japan, and the United States, as these subpopulation groups were derived 

from the first set of hypotheses (see Results below).  In each of these models, the six time series were mapped to 

the three states as shown above, and the observation error was allowed to vary by fleet. Additionally, we used 

only the single environmental covariate that obtained the best statistical support from the second set of 

hypotheses.   

 

H0C:  No environmental effect on the state processes of the subpopulations.   

H1C:  The environmental covariate is linked only to the 𝑥𝑢 state process 

H2C:  The environmental covariate is linked only to the 𝑥𝑐 state process 

H1C:  The environmental covariate is linked only to the 𝑥𝑠 state process 

H1C:  The environmental covariate is linked to the 𝑥𝑐 and 𝑥𝑢 state processes in the same manner (a 

single parameter estimated for the combined effect).   

H1C:  The environmental covariate is linked to the 𝑥𝑠 and 𝑥𝑢 state processes in the same manner (a 

single parameter estimated for the combined effect).   

H1C:  The environmental covariate is linked to the 𝑥𝑐 and 𝑥𝑠 state processes in the same manner (a 

single parameter estimated for the combined effect).   

 

All analyses were run using R version 2.3.1 (R Core Development Team, 2015) and using the MARSS package 

(Holmes et al. 2012).  All indices and covariates were scaled to a mean of zero and standard deviation of 1 in 

order to simplify the analysis by limiting the number of necessary parameters to be estimated and improve 

model convergence.  The Expectation-Maximization algorithm (Holmes 2012) was used for model fitting.  Each 

model was run until a tolerance value (the slope of the log parameter versus the log iteration) of 0.1 had been 

achieved.   

 

 

3.  Results 

 

We report results in Table 1 which reiterates the model number, assumptions used, and the bias-corrected AIC 

(AICc).  A lower AICc indicates a more parsimonious model fit.  For the first set of hypotheses, regarding stock 

structure,  models assuming a single underlying abundance trend were clearly inferior to models incorporating 

some sort of spatial fleet structure.  When the process error term was left fully unconstrained and thus all 

variances and covariances estimated by the model, logical relationships between fleets emerged (Table 2).  

Covarying process errors (i.e., “high” years and “low” years of abundance) were found for fleets that generally 

overlap in space.  Process errors from the Portuguese, Spanish, and Japanese fleets were all highly correlated (R 

> 0.70).  Process errors from the Canadian fleet were somewhat correlated with Spain and Portugal, but not with 

Japan.  Process errors from the United States fleet were not correlated or were strongly negatively correlated 

with other fleets. Based on the process error structure, further hypothesis testing was developed around an 

assumption of three different underlying states whose dynamics were represented by 1) the Canadian fleet, 2) 

Spanish, Portuguese, and Japanese fleets (referred to as the “Spanish subgroup”), and 3) the United States fleet.   

 

Results from the second set of hypotheses elucidated the potential environmental drivers affecting stock 

dynamics.  Generally, the data seemed to most strongly support the Atlantic Multidecadal Oscillation (AMO) as 

the most influential driver, and there was more statistical support for a model linking the environmental effects 

to the state process than to the observation process. A model assuming a single underlying abundance state, 

driven by the AMO, was only slightly less-supported than a model assuming three abundance states, each with 

separately estimated AMO effects (H0B vs. H4B, ΔAIC = 1.76). In the latter model, the AMO effect was 

estimated to be positive for the Canadian fleet and Spanish subgroup (0.19 and 0.17 respectively), and negative 

for the United States fleet (-0.20).   
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The third set of hypotheses generated information regarding the interactions between subpopulations. Note 

again that the term “subpopulation” is used here not to denote a genetically different or independent stock, but to 

describe an observed portion of the stock whose dynamics follow a particular abundance trend. The model 

results indicated that clearly, interaction effects were important, and support the idea that these subpopulations 

belong to a single, mixed population with certain migrating sectors. Even the model with no environmental 

effect, but assuming subpopulation interaction (H0C) was superior to all the models from sections 1 and 2 which 

did not assume interactions.  Addition of an environmental covariate (the AMO) provided further insight to the 

dynamics of the stock. Of all the hypotheses considered in the entire study, the most parsimonious was that 

which considered interaction effects, and an AMO effect that was common to both the Canadian and United 

States subpopulations. This contrasts the estimation of the AMO effect in the previous section (where 

subpopulation interactions were not included) and the AMO effect on the United States was estimated to be 

opposite that of the effect on the Canadian subpopulation. Thus, the introduction of migratory dynamics into the 

model suggested that the nature of the environmental effect was more East-West in nature than North-South.   

 

Analyzing the estimated B matrix from the model lends insight into the nature of the dynamics of the stock and 

its subcomponents (Table 3). The diagonals of the matrix denote the level of density-dependence within stock 

subunits, with values close to 1 indicating low density dependence.  The model estimates suggest that density 

dependence is low in the area of the Canadian and European fleets, but high in the area fished by the United 

States. The off-diagonal components indicate the effect of the fleet in a column on the corresponding fleet in a 

row. In other words, the value of Bi,j gives the effect of subpopulation j on subpopulation i.  Based on the model 

estimates, we can see that the Canadian subpopulation has a small positive effect on the combined Spanish 

subpopulation, but a large positive effect on the United States subpopulation. The combined Spanish 

subpopulation, in turn, has no effect on the Canadian subpopulation, and a very large negative effect on the 

United States population. Finally, the United States population has little effect on other subpopulations.  Overall, 

the matrix seems to suggest a somewhat distinct subpopulation targeted by the United States fleet, whose 

dynamics do not highly influence abundance trends in other regions. However, when CPUE of the Spanish 

subpopulation is high, it has a large negative effect on the United States, indicating that perhaps swordfish are 

migrating from the southwest Atlantic to the northeast Atlantic. When CPUE is high in the Canadian 

subpopulation, it is also high in other areas, which seems to suggest that years of high CPUE are caused by an 

expansion of the stock across the Atlantic, rather than a migration out of one area and into another.   

 

The estimates of the underlying state variables are shown for a select number of the hypotheses considered.  To 

illustrate the effect of the environmental covariate on the abundance, we plot the estimated state from hypothesis 

H0B against the estimated state from H0A (Figure 1).  Overall, the inclusion of the AMO as linked to the state 

process does not greatly change the estimated trend in population abundance over time.  We also plot the three 

state processes for the most parsimonious model, H4C (Figure 2).  As was shown by the inspection of model 

parameter estimates, the United States subpopulation (‘state 3’) is distinct and shows a trend of fluctuating but 

stable abundance over time.  The Canadian and Spanish subpopulations (states 1 and 2, respectively) show 

similar trends until about the year 2000, at which point they diverge.   

 

 

4.  Discussion 

 

This preliminary exploration of the application of multivariate state space models to fishery abundance indices 

is intended to showcase potential utility of the methods, and understand whether reasonable model results can be 

obtained with the typical fisheries data which tend to have high observation error and many missing values. The 

results presented here suggest that this framework could be useful for further exploration, as we obtained results 

consistent with our general knowledge of the test species. Among the suite of hypotheses that we considered, 

which are clearly not inclusive of all the possibilities, we show that the most parsimonious model of stock 

dynamics is that there exist three, highly interactive subpopulations, and that movements among these 

subpopulations are driven by an environmental factor, the Atlantic Multidecadal Oscillation. This model appears 

to fit well with our current understanding that Atlantic swordfish is a single, highly migratory stock and that 

divergent trends in CPUE across fleets are probably due to variable migratory patterns depending on 

environmental conditions. However, further hypothesis testing and model diagnostics are needed, before any 

definitive conclusions can be drawn from these analyses.   

 

Importantly, this analysis focused on fleet-specific abundance indices which are likely not the most suitable for 

exploring spatial dynamics of the stock. Ideally, area-specific combined CPUEs, such as those proposed by 

Lauretta et al. (2015) could be obtained. If combined area CPUEs are not available, the year * area interaction 

least squares parameter estimates could similarly be used to represent trends in abundance specific to smaller 
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areas. A similar analysis, carried out on time series with higher spatial resolution, would likely yield further 

insights into the interactions among space, time, and environment. It would also be worthwhile to consider 

nominal CPUE trends by area, since the process of feeding the data through a generalized linear model may 

remove some of the environmental signal which could be informative to the process error component of the state 

space model.  

 

Notable features of the MARSS R package implementation of these methods is that it easily handles extended 

periods of missing values in the data inputs, and information can easily be “borrowed” by parameterizing some 

unknowns as functions of other unknowns. The framework therefore may be promising for issues such as 

combining CPUE indices from multiple sources, which usually contain different years of data or different levels 

of detail. The state estimates produced from these models are theoretically representative of the underlying 

population trends after accounting for process error, observation error, environmental dynamics, and any other 

processes parameterized in the model. As such, they could represent an alternative to the traditional method of 

using generalized linear models to estimate combined abundance indices, particularly as the latter are somewhat 

limited as to how the error structures and environmental drivers can be accounted for.  Beyond the application to 

abundance indices, these highly flexible models may be useful for analysis of other types of data frequently 

encountered in fisheries. An extensive discussion of potential applications appears in Holmes et al. (2014) and 

includes: analysis of animal tracking data, identification of species interactions, or forecasting of short-term 

dynamics.  We suggest that, given the extensive sets of time series data that we deal with in the fisheries realm, 

this flexible class of models may be worth further exploration.   
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Table 1.  List of hypotheses tested in this study.  Note the observation error structure was consistent across all 

models (independently estimated by fleet with no covariances estimated).   

 

model # states process error  B matrix U environmental effect AICc ΔAIC 

H0A 1 one combined set to identity estimated none 263.43 31.18 

H1A 6 shared  across fleets set to identity estimated none 258.20 25.96 

H2A 6 independent by fleet set to identity estimated none 263.68 31.43 

H3A 5 fully unconstrained set to identity estimated none 267.81 35.56 

H4A 3 independent by fleet set to identity estimated none 257.13 24.88 

        H0B 1 one combined set to identity estimated AMO linked to state process 248.18 15.93 

H1B 1 one combined set to identity estimated AMO linked to observation process 265.35 33.10 

H2B 1 one combined set to identity estimated AWP linked to state process 257.20 24.95 

H3B 1 one combined set to identity estimated NAO linked to state process 263.58 31.33 

H4B 3 shared across fleets set to identity estimated AMO linked to each of 3 processes  246.42 14.17 

        H0C 3 shared  across fleets estimated set to zero none 244.58 12.33 

H1C 3 shared  across fleets estimated set to zero AMO linked to only Xu state process 248.64 16.39 

H2C 3 shared  across fleets estimated set to zero AMO linked to only Xc state process 235.27 3.02 

H3C 3 shared  across fleets estimated set to zero AMO linked to only Xs state process 247.55 15.30 

H4C 3 shared  across fleets estimated set to zero AMO linked to Xc and Xu state 

processes  
232.25 0.00 

H5C 3 shared  across fleets estimated set to zero AMO linked to Xs and Xu state 

processes  
247.73 15.48 

H6C 3 shared  across fleets estimated set to zero AMO linked to Xc and Xs state 

processes  
241.25 9.00 

 

 

 

Table 2.  Correlation matrix of process errors from each fleet, as estimated by model H3A.  Correlations of R > 

0.70 appear in shaded boxes.     

 

 
CAN POR SPA JAP USA 

CAN 1.00 

    POR 0.62 1.00 

   SPA 0.47 0.73 1.00 

  JAP 0.12 0.84 0.52 1.00 

 USA 0.18 -0.45 0.14 -0.77 1.00 

 

 

 

Table 3.  B matrix estimated from model H0C, showing interactions between subpopulations.   

 
 effect of this subpopulation 

 

 

CAN SPA/POR/JAP USA 

on this 

subpopulation 
CAN 0.98 0.00 0.11 

SPA/POR/JAP 0.16 0.88 0.18 

USA 1.58 -2.20 -0.11 
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Figure 1.  Estimated state process for a single combined Atlantic swordfish population, with and without the 

effect of the environmental covariate.     

 

            

Figure 2.  Estimated state processes from the most parsimonious model of the set considered in the study (H4C).  

State 1 is observed by the Canadian fleet, state 2 is observed by the Portuguese, Spanish, and Japanese fleet, and 

state 3 is observed by the United States fleet.   
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