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SUMMARY 

 

Estimates of stock origin are given for Bluefin tuna caught in western Atlantic fisheries from 

1975 to 2013. Classification models were developed on the stable isotope ratios of carbon and 

oxygen using both Random Forest and linear and quadratic discriminant analysis for 

classification. 

 

RÉSUMÉ 

 

Les estimations de l'origine du stock sont présentées pour le thon rouge capturé par les 

pêcheries de l'Atlantique Ouest entre 1975 et 2013. Des modèles de classification ont été 

élaborés sur la base des isotopes stables de carbone et d'oxygène au moyen de méthodologies 

des forêts aléatoires, d'une analyse discriminante linéaire, d'une analyse discriminante 

quadratique aux fins de la classification. 

 

RESUMEN 

 

Se presentan estimaciones de origen del stock para el atún rojo capturado en pesquerías del 

Atlántico occidental desde 1975 hasta 2013. Se desarrollaron modelos de clasificación en las 

ratios de isótopos estables de carbono y oxígeno usando análisis lineales discriminantes, 

análisis cuadráticos discriminantes y metodologías de bosques aleatorios para la clasificación. 
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1. Introduction 

 

Currently, Bluefin tuna are managed as two separate stocks with no allowance for mixing between them. That is 

not to say that mixing is not a concern or that methods to allow for mixing have not been applied in the past. The 

fact that there is no allowance is strictly a function of the lack of mixing data.  

 

Evidence of mixing can come from several sources, genetic analysis, otolith shape analysis, tagging studies and 

otolith micro constituent analysis. Here we use otolith micro constituents as the basis for determining the natal 

origin of stocks. The micro constituents are the isotopes of carbon and oxygen found in the part of the otolith 

associated with the first year of life. Ratios of these isotope concentrations vary over the Bluefin tuna’s range but 

these ratios measured at the earliest possible moment of life reflect its natal origin. To date, science accepts the 

presence of two spawning grounds; the Gulf of Mexico and the Mediterranean Sea. 

 

Bluefin tuna from the western management zone are hatched in the Gulf of Mexico while the eastern fish are 

hatched in the Mediterranean Sea and because Bluefin are credited with spawning fidelity we can expect them to 

return. However, between hatching and spawning, they are free to occur almost anywhere else and this study 

attempts to predict the stock or natal origin of Bluefin caught in the western portion of the Atlantic Ocean. 

 

 

 

 

 

                                                        
1 Fisheries & Oceans Canada, Biological Station, 531 Brandy Cove Road, St. Andrews, NB E5B 2L9 CANADA. Email address of lead 

author: neilsonj@dfo-mpo.gc.ca.  
2 Department of Marine Biology, Texas A&M University, 1001 Texas Clipper Road, Galveston, Texas 77553 USA. 
3 Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science. 



 

1377 

2. Methods 

 

2.1 Data source 

 

Two data sources were required for this analysis. The first is the baseline data on which the classification models 

were fit and the second is the samples for which the stock or natal origin is predicted. 

 

The samples were collected from fish harvested off the New England coast and north as far as Newfoundland 

(NL) (Table 1). The New England samples were collected in the late 1970’s and the majority of samples were 

collected recently (2010-2013) from the Gulf of St. Lawrence (GSL) and Atlantic coast of Nova Scotia (NS). St. 

Margret’s Bay (SMB) is on the Atlantic coast but it is treated as a separate region. 

 

The baseline data were made available by Rooker et al. (2014) and can be accessed at: www.int-

res.com/articles/suppl/m504p265_supp.xls.  

 

2.2 Biological sampling 

 

The details of the catch from New England and Virginia dating back to the late 1970s are not known. We assume 

that these samples were collected by the same methods as the more modern samples described below. 

 

Bluefin tuna heads labeled with a unique commercial tag number were stockpiled by fishermen and co-ops, and 

then sampled by a field technician. Sampling consisted of extracting sagittal otoliths from Atlantic Bluefin tuna 

heads and taking snout length measurements (Busawon et al. 2013).  

 

The commercial tag number was linked to commercial databases to obtain catch (e.g. location) and size 

information. In some cases, the curved fork length of the fish was not reported in commercial databases or the 

label with the commercial tag number was lost. In these instances, we used monthly length-weight conversion 

(ICCAT 2006) and snout length conversion (Secor et al. 2014) to calculate curved fork length. 

 

2.3 Natal origin 

 

A single otolith (right or left) from each sample was embedded in resin and a 2.0 mm thick section was cut from 

the center containing the juvenile portion of the otolith. A template from measured juvenile otolith sections was 

used to identify the first annulus, which increased the consistency of the cut location (Rooker et al. 2008). 

Carbonate material was milled from the identified region using a New Wave Micromill©. Samples were 

analyzed for δ18O and δ13C (±0.1‰ and ±0.6‰ respectively for δ18O and δ13C) at the University of Arizona 

Environmental Isotope Laboratory. For more detail on the otolith processing methodology see Schloesser et al. 

(2010) and Secor et al. (2013).  

 

 

Otolith δ18O and δ13C from historical samples collected in New England, Virginia, Caraquet and Miscou 

(1975-1977) were corrected for the Suess Effect prior to analysis (Schloesser et al. 2009). Powdered otolith 

extracted from the otolith core was analyzed to determine the isotropic differences of 13C and 18O from their 

isotropic standards. The calculation is: 

𝛿𝐴𝑋𝑆𝑇𝐷 =
𝑅𝑆𝑎𝑚𝑝𝑙𝑒

𝐴

𝑅𝑆𝑇𝐷
𝐴 − 1 

 

Here δ expresses the abundance of isotope A of element X in a sample relative to the abundance of that same 

isotope in the isotopic standard (McKinney et al. 1950). 

 

2.4 Data analysis 

 

Classification of the samples to a stock was accomplished using linear discriminant (LDA), quadratic 

discriminant (QDA) (Bischel et al. 2014, Venables and Ripley 2002) and randomForest (Liaw and Wiener 2002) 

classifiers. The QDA used here is equivalent to the conditional maximum likelihood estimate procedure HISEA 

(Millar 1990; http://www.stat.auckland.ac.nz/~millar/mixedstock/code.html) used by other authors. 

 

 

 

http://www.stat.auckland.ac.nz/~millar/mixedstock/code.html
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2.4.1 Linear and quadratic discriminant analysis models 

 

Base models for both LDA and QDA used both δ13C and δ18O as the primary variables distinguishing eastern 

from western samples. 

 

The linear and quadratic discriminant analysis approaches differ with respect to assumptions made about the 

form of the covariance matrix for each class. Unlike in LDA, QDA assumes that the covariance matrix can be 

different for each class. Should a class have greater dispersion; cases will be over classified in it. Past analyses 

using the same baseline data (Rooker et al. 2014) have assumed that the covariance matrices are different and 

thus opted for the QDA approach. The evidence suggests that a QDA is justified but we fit both models 

nonetheless. Multicollinearity between the variables and normality of the variables within the groups was also 

assessed. 

 

In each case, the performance of the learning algorithm was assessed using 3-fold cross validation and bootstrap 

resampling (n=500). Under cross validation the model is trained on 2 of the 3 data partitions and tested on the 

third while preserving the proportion of observations in each class. Under bootstrap resampling, a sample is 

drawn with replacement for training and any observations not in the training set are used for testing for each run. 

Performance is evaluated on the basis of the value of the aggregate false positive rate (fpr), false negative rate 

(fnr) and the mean misclassification error (mmce). Performance was re-evaluated after optimizing the 

classification threshold. 

 

The resampling was conducted using the observed base sample probabilities and equalized base sample 

probabilities. Equalization was achieved by over sampling the minority class (West). An optimal classification 

threshold was chosen such that the fpr, fnr and mmce were minimized. The performance of the models under 

resampling was compared to a model trained on all the data so that the sensitivity to over fitting could be 

assessed. 

 

The primary predictors were δ13C and δ18O; however models were also trained on an expanded basis by 

including both quadratic and cross-product terms (i.e. δ13C2, δ18O2 and δ13Cxδ18O). This introduced 3 new 

dimensions with a nonlinear basis. 

 

2.4.2 RandomForest models 

 

A randomForest model was trained on the base observations of δ13C and δ18O with no attempt to expand the 

basis. Each classifier was based on 500 trees with one variable tried at each split. Given that the base observation 

probabilities favoured the East, equal sample sizes were specified to reduce the emphasis of this class during 

training and, through class weighting factors, more priority was given to δ18O in the fitting. Tuning was 

performed to determine the optimum threshold value for assigning each sample’s class probability to a class. 

Resampling was not explicitly conducted because training on a subset of the data and testing on the remainder is 

intrinsic to the randomForest algorithm. This makes randomForest resistant to over fitting. 

 
3. Results 
 
Box's M-test for homogeneity of covariance matrices indicated that the covariance matrices were heterogeneous 
(Chi-Sq (approx.) = 54.3, df = 3, p-value = 0). Normality of the variables within groups and multicollinearity 
were not issues. 
 
3.1 Discriminant analyses 
 
Both LDA and QDA were used on training sets of the base data to predict the origin of each base observation. 
The base observations did not have equal probabilities (P(East) =0.56) and consequently the effect of balancing 
the base observation probabilities was determined in combination with the type of resampling (cross-validation, 
bootstrap) and setting a threshold value for prediction. The default threshold value is 0.5. 
 
Tables 2 through 5 contrast the resampling methods, the effect of unequal base observation probabilities and 
linear versus quadratic DA. The performance measures (fpr, fnr, mmce) for QDA and LDA are similar across 
these comparisons. The mean misclassification error is consistently about 18% with a larger false positive rate. 
Since the positive class is “East”, this would indicate that western fish are being classed as being eastern to a 
greater degree than the reverse. The difference in rates is larger when the base observation probabilities are 
unequal. The last row of the tables provides the proportion of all the misclassified base observations by class and 
despite the “East” being the majority class; more western fish are classified as eastern because of the large fpr. 
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Estimating the performance measures over a range of threshold values provides the threshold for which the 

predicted posterior probabilities will classify the base observations into classes with a minimum mean 

misclassification error and roughly equal false positive and negative rates. Tables 6 through 9 contrast the 

resampling methods, the effect of unequal base observation probabilities and linear versus quadratic DA under 

optimum threshold values. The optimum threshold value is higher when the base observation probabilities are 

unequal (.65 vs .6 for LDA; .68 vs .62 for QDA). Again, both QDA and LDA have very similar performance 

metrics and indeed the mmce is similar to models trained using the default threshold of 0.5. Now that the fpr and 

fnr are balanced the majority of misclassified fish are due to eastern base observations misclassified as western 

because “East” is the majority class. Consequently the proportion of misclassified fish is similar to the base 

observation probabilities. 

 

The potential for over fitting was evaluated by fitting models to all the base data. Tables 10 and 11 contrast the 

effect of unequal base observation probabilities when predictions are based on a threshold value which balances 

the fpr and fnr. Performance measures were not that different from what was estimated in Tables 6 through 9 

and that suggests predictions on the sample data will be insensitive to the effects of over fitting. There is very 

little difference between the performance of QDA and LDA and correcting for unequal base observation 

probabilities had little impact on performance as well. 

 

Fits to a LDA and QDA model with an expanded basis show that the extra variables do not improve the 

performance of the classifier (Table 12) relative to full models with only two variables. In fact, a test of the 

information gain associated with including each variable indicates that δ13C and δ13C2 contributes nothing and 

that each of the other features (δ18O, δ18O2 and δ13Cxδ18O) are similar in importance. 

 

Given that the LDA and QDA models fit to all the base data without equalizing the base observation 

probabilities provided the best overall performance, the origin of the samples was predicted using the threshold 

values that balanced the false positive and false negative error rates. Tables 13 and 14 provide the proportion of 

the sample of eastern origin by year and sample location and Tables 15 and 16 give the regional estimates in 

each year. Despite similar training errors, QDA predicts fewer eastern fish in the sample than LDA and this 

discrepancy is partially a function of δ13C in the sample unlike δ13C in the base observations. A LDA fit to only 

the δ18O base observations provides estimates of eastern fish in the sample similar to those provided by a QDA 

model trained on both δ18O and δ13C. 

 

3.2 RandomForest analysis 

 

As with the LDA and QDA analyses, the classification error by class was affected by the unequal base 

observation probabilities. Table 17 shows the biased fit to the majority class (East) and similar classification 

errors when sample sizes are equal. However, the total model misclassification error (OOB=out-of-bag error 

rate) is similar whether you correct for the unequal sample sizes or not. The accuracy is identical to what was 

achieved using LDA or QDA. 

Through a tuning process it was determined that the cutoff or threshold applied to the predicted class 

probabilities yielded optimal sensitivity and specificity at 0.474 rather than at the default of 0.5. The predicted 

origin of the samples (Table 18) was similar to results from QDA at a coarse spatial resolution. At a finer spatial 

resolution (Table 19) the difference between a RandomForest and QDA classifier was more evident at particular 

locations, though generally there was still good agreement. 

 

Partial dependence plots (Figure 1) show the marginal effect of δ18O and δ13C on determining class probability. 

A clear dependence exists between the class probabilities and values of δ18O whereas there is an unclear 

relationship for δ13C. Measures of predictor variable importance indicate that δ18O is 5 times more influential in 

reducing the error of classification and more than 2 times more influential in reducing the node impurity. 

RandomForest models trained on δ18O alone had and out-of-bag error (17%) similar to one with both stable 

isotope ratios. 

 

The relationship between the base observations used in training the classifier and the sample stable isotope 

values is shown in Figure 2. While many of the sample values fall within the bivariate normal kernel density 

distributions, many do not. The discrepancy differs by region and is more evident for the δ13C values. Figure 3 

relates the isotope values to the sample year and to the base observations used in training. The annual values are 

conditioned on the predicted origin of the samples to separate any trend from the changing balance of eastern 

and western fish sampled. Generally the median values are trending with time and are outside the range of the 

data used in training. 
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The classifiers (LDA, QDA, and RandomForest) provide a probability of class membership (East or West) and 

the cutoff or threshold provides the decision rule that assigns the sample to a particular class. Rather than 

evaluate the mixing by region using the sample assignment, the relative mixing by region was expressed as 

probability density distributions. Figure 4 indicates the degree to which the samples are eastern or western in 

origin. Locations like Virginia have a fairly uniform distribution indicating the potential for good representation 

by both stocks in the catch. This is in contrast with the Newfoundland (NL) samples which have a high 

probability of being western in origin. The class probabilities can also be related to other features of the sample 

and one of the more obvious attributes is the curved fork length of the fish (CFL). Figure 5 shows that shorter 

fish are more likely to be eastern in origin and that the median probability by length class differs by region. 

 

 

4. Discussion 

 

Base observations of δ18O and δ13C for Bluefin tuna of known origin provided the basis for classifying Bluefin 

tuna catch spanning multiple years and locations. Three classifiers performed equally well on the training data 

with misclassification rates of 17%. However, predictions of sample origin were only comparable for QDA and 

randomForest while LDA classified more fish as being eastern in origin. The bivariate distribution of the 

predictors in the sample was shown to be outside the range of the base observation for a portion on the data 

(Figure 7). Rooker et al. (2014) had a similar issue for samples collected in the central North Atlantic Ocean but 

not in the eastern Atlantic where most fish were determined to be of eastern origin. So perhaps the extra 

variability in the sample stable isotope values may be a western origin phenomenon tied to the greater age of 

these and/or the outliers could be a function of a third spawning location. A concern that we are extrapolating the 

predictions to sample data beyond the envelope of the base observations is diminished by the fact that it is more 

evident for the carbon isotope which does not have any predictive power. 

 

The source of the differences in the isotope values is not known but may be related to time trends in the stable 

isotope ratios at the reference locations or to otolith milling bias. Given that the 4 to 8 year old fish are more like 

the base then the 9 to 36 year olds, drift in the stable isotope ratios at the reference site may be likely (Figure 6). 

This observation is supported by Schlosser et al (2009) who found that both carbon and oxygen isotopic 

signatures varied significantly by year of birth for Bluefin tuna with d13C decreasing and d18O increasing. 

 

Although, both δ18O and δ13C have been used as predictors in classification analyses on Bluefin tuna, it has been 

shown that δ13C has very little discriminatory power and one can omit it without affecting the estimated mixing 

rates or increasing the classification error. Introducing a quadratic form of δ13C or the interaction with δ18O did 

not improve its overall importance to the fit. 

 

Taken at face value, the mixing analysis shows that there may be annual trends in the occurrence of eastern fish 

on the fishing grounds and these may relate to the movement of small sized tuna. There is also a strong 

dependence on location and season which will require consistent high resolution sampling before mixing can be 

thoroughly understood. Estimates of mixing for the Virginia samples from the late 1970s were consistent with 

estimates provided by Secor et al. (2013) for North American school size tuna caught in the same area.  

 

A model relating the class probabilities to the coarse spatial and temporal features of the sampling and the 

attributes of the fish may be able to provide estimates of stock origin for the corresponding times and locations 

of the northwest Atlantic catch. This is for later. 
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Table 1. Source of otolith samples by port within region and year. 

 

 

1975 1976 1977 2011 2012 2013 Grand Total 

Gulf of St. Lawrence 5 

 

5 187 187 251 635 

Alberton 

    

1 

 

1 

Annandale 

     

8 8 

Ballantyne Cove 

    

9 

 

9 

Caraquet 3 

 

5 

   

8 

Miscou 2 

     

2 

Morell 

    

4 33 37 

Murray Harbour 

    

13 11 24 

North Lake 

   

76 41 4 121 

Port Hood 

   

54 45 121 220 

Shippagan 

     

3 3 

Souris 

     

9 9 

Tignish 

   

57 74 62 193 

Newfoundland 

     

25 25 

St John's 

     

25 25 

Nova Scotia 

   

119 106 62 287 

Canso 

   

52 33 11 96 

St. Margrets Bay 

    

22 14 36 

Wedgeport 

   

67 51 37 155 

U.S.A. East Coast 

 

6 20 

   

26 

New England 

 

6 

    

6 

Virginia 

  

20 

   

20 

Grand Total 5 6 25 306 293 338 973 

 
 

 

Table 2. Confusion matrix for a LDA and QDA model fit using 3-fold cross validation and the observed base 

probabilities.  

True\Fit East West Value Measure 

East: LDA 

         QDA 

0.92 

0.91 

0.08 

0.09 

0.08 

0.09 

fnr 

West 0.32 

0.32 

0.68 

0.68 

0.32 

0.32 

fpr 

Sum 0.76 

0.74 

0.24 

0.26 

0.18 

0.19 

mmce 
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Table 3. Confusion matrix for a LDA and QDA model fit using 3-fold cross validation and equal base 

probabilities.  

True\Fit East West Value Measure 

East: LDA 

       QDA 

0.88 

0.88 

0.12 

0.12 

0.12 

0.12 

fnr 

West 0.26 

0.29 

0.74 

0.71 

0.26 

0.29 

fpr 

Sum 0.63 

0.65 

0.37 

0.35 

0.18 

0.19 

mmce 

 

 

 
Table 4. Confusion matrix for a LDA and QDA model fit using bootstrap resampling and the observed base 

probabilities. 
 

True\Fit East West Value Measure 

East: LDA 

         QDA 

0.92 

0.92 

0.08 

0.08 

0.08 

0.08 

fnr 

West 0.32 

0.32 

0.68 

0.68 

0.32 

0.32 

fpr 

Sum 0.75 

0.75 

0.25 

0.25 

0.18 

0.18 

mmce 

 

 

 

Table 5. Confusion matrix for a LDA and QDA model fit using bootstrap resampling and equal base 

probabilities.  

True\Fit East West Value Measure 

East: LDA 

      QDA 

0.89 

0.89 

0.11 

0.11 

0.11 

0.11 

fnr 

West 0.26 

0.28 

0.74 

0.72 

0.26 

0.28 

fpr 

Sum 0.64 

0.67 

0.36 

0.33 

0.18 

0.18 

mmce 
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Table 6. Confusion matrix for a LDA and QDA model fit using 3-fold cross validation, observed base 

probabilities and respective classification thresholds for the positive class (East) of 0.65 and 0.68.  

 

True\Fit East West Value Measure 

East: LDA 

      QDA 

0.83 

0.83 

0.17 

0.17 

0.17 

0.17 

fnr 

West 0.18 

0.17 

0.82 

0.83 

0.18 

0.17 

fpr 

Sum 0.45 

0.43 

0.55 

0.57 

0.18 

0.17 

mmce 

 

 
Table 7. Confusion matrix for a LDA and QDA model fit using 3-fold cross validation and equal base 

probabilities and respective classification thresholds for the positive class (East) of 0.60 and 0.62.  

 

True\Fit East West Value Measure 

East: LDA 

          QDA 

0.81 

0.82 

0.19 

0.18 

0.19 

0.18 

fnr 

West 0.16 

0.19 

0.84 

0.81 

0.16 

0.19 

fpr 

Sum 0.39 

0.45 

0.61 

0.55 

0.18 

0.18 

mmce 

 
 

 

Table 8. Confusion matrix for a LDA and QDA model fit using bootstrap resampling, observed base 

probabilities and respective classification thresholds for the positive class (East) of 0.65 and 0.68.  
 

True\Fit East West Value Measure 

East: LDA 

        QDA 

0.84 

0.82 

0.16 

0.18 

0.16 

0.18 

fnr 

West 0.16 

0.17 

0.84 

0.83 

0.16 

0.17 

fpr 

Sum 0.43 

0.42 

0.57 

0.58 

0.16 

0.17 

mmce 
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Table 9. Confusion matrix for a LDA and QDA model fit using bootstrap resampling, equal base probabilities 

and respective classification thresholds for the positive class (East) of 0.60 and 0.62.  

 

True\Fit East West Value Measure 

East: LDA 

      QDA 

0.82 

0.82 

0.18 

0.18 

0.18 

0.18 

fnr 

West 0.16 

0.17 

0.84 

0.83 

0.16 

0.17 

fpr 

Sum 0.40 

0.43 

0.60 

0.57 

0.17 

0.18 

mmce 

     

 

 

Table 10. Confusion matrix for a LDA and QDA model trained on all the data, observed base probabilities and 

respective classification thresholds for the positive class (East) of 0.65 and 0.68. 

 

True\Fit East West Value Measure 

East: LDA 

      QDA 

0.84 

0.81 

0.16 

0.17 

0.16 

0.17 

fnr 

West 0.17 

0.17 

0.83 

0.83 

0.17 

0.17 

fpr 

Sum 0.44 

0.42 

0.56 

0.58 

0.16 

0.18 

mmce 

     

  

 
Table 11. Confusion matrix for a LDA and QDA model trained on all the data, equal base probabilities and 

respective classification thresholds for the positive class (East) of 0.60 and 0.62.  
 

True\Fit East West Value Measure 

East: LDA 

      QDA 

0.82 

0.81 

0.18 

0.19 

0.18 

0.19 

fnr 

West 0.17 

0.16 

0.83 

0.84 

0.17 

0.16 

fpr 

Sum 0.41 

0.39 

0.59 

0.61 

0.17 

0.17 

mmce 
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Table 12. Confusion matrix for a LDA and QDA model trained on all the data using the observed base 

probabilities and respective classification thresholds for the positive class (East) of 0.63 and 0.93. The basis has 

been expanded from the original 2 features to 5 using quadratic and cross-product forms.  
 

True\Fit East West Value Measure 

East: LDA 

      QDA 

0.82 

0.83 

0.18 

0.17 

0.18 

0.17 

fnr 

West 0.15 

0.17 

0.85 

0.83 

0.15 

0.17 

fpr 

Sum 0.39 

0.43 

0.61 

0.57 

0.17 

0.17 

mmce 

 

 

 

Table 13. The proportion of the sample predicted by the base model to be of eastern origin. The fit was based on 

LDA with observed base probabilities and a classification threshold for the positive class (East) of 0.65. 

 

Location 1975 1976 1977 2011 2012 2013 

GSL:Alberton . . . . 0 . 

GSL:Annandale . . . . . 0.25 

GSL:Ballantyne 

Cove . . . . 0.111 . 

GSL:Caraquet 0 . 0 . . . 

GSL:Miscou 0 . . . . . 

GSL:Morell . . . . 0.25 0.273 

GSL:Murray 

Harbour . . . . 0.077 0 

GSL:North Lake . . . 0.026 0.122 0 

GSL:Port Hood . . . 0.111 0.133 0.14 

GSL:Shippagan . . . . . 0 

GSL:Souris . . . . . 0 

GSL:Tignish . . . 0.158 0.068 0.081 

NL:St John's . . . . . 0.04 

NS:Canso . . . 0.365 0.152 0.182 

NS:SMB . . . . 0.273 0 

NS:Wedgeport . . . 0.164 0.255 0.135 

USA:New England . 0 . . . . 

USA:Virginia . . 0.35 . . . 
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Table 14. The proportion of the sample predicted by the base model to be of eastern origin. The fit was based on 

QDA with observed base probabilities and a classification threshold for the positive class (East) of 0.68. 

 

Location 1975 1976 1977 2011 2012 2013 

GSL:Alberton . . . . 0 . 

GSL:Annandale . . . . . 0.125 

GSL:Ballantyne 

Cove . . . . 0.111 . 

GSL:Caraquet 0 . 0 . . . 

GSL:Miscou 0 . . . . . 

GSL:Morell . . . . 0.25 0.182 

GSL:Murray 

Harbour . . . . 0 0 

GSL:North Lake . . . 0.026 0.073 0 

GSL:Port Hood . . . 0.111 0.133 0.132 

GSL:Shippagan . . . . . 0 

GSL:Souris . . . . . 0 

GSL:Tignish . . . 0.158 0.054 0.032 

NL:St John's . . . . . 0.04 

NS:Canso . . . 0.365 0.061 0.091 

NS:St. Margret’s Bay . . . . 0.182 0 

NS:Wedgeport . . . 0.149 0.216 0.081 

USA:New England . 0 . . . . 

USA:Virginia . . 0.35 . . . 

 

 

 

Table 15. The proportion of the sample predicted by the base model to be of eastern origin. The fit was based on 

LDA with observed base probabilities and a classification threshold for the positive class (East) of 0.65. 

 

Region 1975 1976 1977 2011 2012 2013 

GSL 0 . 0 0.09 0.10 0.13 

NL . . . . . 0.04 

NS . . . 0.25 0.21 0.11 

SMB . . . . 0.27 . 

USA . 0 0.35 . . . 

 

 

Table 16. The proportion of the sample predicted by the base model to be of eastern origin. The fit was based on 

QDA with observed base probabilities and a classification threshold for the positive class (East) of 0.68. 

Region 1975 1976 1977 2011 2012 2013 

GSL 0 . 0 0.09 0.08 0.10 

NL . . . . . 0.04 

NS . . . 0.24 0.15 0.06 

SMB . . . . 0.18 . 

USA . 0 0.35 . . . 
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Table 17. Confusion matrix for a Random Forest classifier with and without sample size correction and class 

weighting. The threshold for classification was {0.5, 0.5}. 

 

True\Fit East West Value Measure 

East: without 

         with 

129 

124 

21 

26 

0.14 

.17 

ce 

West 24 

18 

91 

97 

0.21 

0.16 

ce 

Sum   0.17 

0.17 

OOB 

 

 

 

 

Table 18. The proportion of the sample predicted by the base model to be of eastern origin within broad 

geographical regions by year. The fit was based on a Random Forest classifier with equal sample sizes per class 

and heavier class weights on δ18O. The threshold for classification was {0.53, 0.47}. 

 

Region 1975 1976 1977 2011 2012 2013 

GSL 0 . 0 0.07 0.08 0.10 

NL . . . . . 0.04 

NS . . . 0.22 0.14 0.06 

SMB . . . . 0.14 . 

USA . 0 0.35 . . . 
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Table 19. The proportion of the sample predicted by the base model to be of eastern origin for detailed locations 

within each year. The fit was based on a Random Forest classifier with equal sample sizes per class and heavier 

class weights on δ18O. The threshold for classification was {0.53, 0.47}. 

 

Location 1975 1976 1977 2011 2012 2013 

GSL:Alberton . . . . 0 . 

GSL:Annandale . . . . . 0.25 

GSL:Ballantyne 

Cove . . . . 0.111 . 

GSL:Caraquet 0 . 0 . . . 

GSL:Miscou 0 . . . . . 

GSL:Morell . . . . 0 0.212 

GSL:Murray 

Harbour . . . . 0 0 

GSL:North Lake . . . 0.013 0.098 0 

GSL:Port Hood . . . 0.074 0.133 0.124 

GSL:Shippagan . . . . . 0 

GSL:Souris . . . . . 0 

GSL:Tignish . . . 0.14 0.054 0.032 

NL:St John's . . . . . 0.04 

NS:Canso . . . 0.346 0.091 0.091 

NS:SMB . . . . 0.136 0 

NS:Wedgeport . . . 0.119 0.176 0.081 

USA:New England . 0 . . . . 

USA:Virginia . . 0.35 . . . 

 
 

 

Figure 1. Partial dependence plots showing the marginal effect of the randomForest predictors on the class 

probability. 
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Figure 2. The predicted origin of the samples by a Random Forest classifier in relation to the observed isotope 

ratio values of both the sample (points) and the base observations (polygons).  

 

Figure 3. Trends in stable isotope values for samples by predicted stock origin. The base observations used in 

training are included as a reference. 
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Figure 4 (cont.). Trends in stable isotope values for samples by predicted stock origin. The base observations 

used in training are included as a reference. 

 

 

Figure 5. The probability density distributions by catch location for the predicted class probability. 
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Figure 6. The relationship between the predicted class probability and curved fork length by catch location. 

 

Figure 7. Sample stable isotope ratios relative to the base for different aged fish. 
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Figure 8. The relationship between the base observations and samples. 95% and 68% confidence ellipses for 

eastern and western base observations are red and blue, respectively, while the sample is green.  


