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STANDARDIZATION OF CATCH RATES FOR THE
EASTERN TROPICAL ATLANTIC BIGEYE TUNA CAUGHT BY
THE FRENCH PURSE SEINE DFAD FISHERY
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SUMMARY

The drifting Fish Aggregating Device (dFAD) purse seine fishery is complex and fishing effort
depends on a multitude of factors. Traditional indices of fishing effort such as searching time
are meaningless for this fishery. We composed a comprehensive list of 28 candidate variables
that describe the dFAD fishery and used them as predictors of fishing effort in bigeye tuna
CPUE standardization of the French purse seiners operating in the Eastern Atlantic Ocean
during 2007-2013. We performed variable selection using penalized maximum likelihood in
GLM and GLMM frameworks, aiming to improve prediction accuracy and interpretability of
the selected models. We applied the Lasso (Least Absolute Shrinkage and Selection Operator)
regression models to derive the true parsimonious model, because the number of candidate
independent variables is large compared to the number of observations. The penalized model
selection process retained explanatory variables such as: the skipper, the vessel, the price of
targeted tuna species, the density and spatial distribution of FADs and the number/type of
deployed buoys. The inclusion of these predictors in CPUE standardization models provided
realistic estimates of uncertainty. We propose the systematic collection of selected explanatory
variables and their usage in dFAD related tuna CPUEs standardization in a mixed model
framework.

RESUME

La péche a la senne ayant recours aux dispositifs de concentration des poissons dérivants
(DCPd) est complexe et I'effort de péche dépend d'une multitude de facteurs. Les indices
traditionnels de I'effort de péche tels que le temps de recherche sont dénués de sens pour cette
pécherie. Nous avons dressé une liste exhaustive de 28 variables potentielles qui décrivent la
péche sous DCPd et les avons utilisées comme prédicteurs de I'effort de péche pour
standardiser la CPUE du thon obese des senneurs francais opérant dans I'océan Atlantique
oriental entre 2007 et 2013. Nous avons effectué la sélection de variables en utilisant la
vraisemblance maximale pénalisée dans les cadres de GLM et GLMM, dans le but d'améliorer
I'exactitude des prévisions et I'interprétabilité des modéles sélectionnés. Nous avons appliqué
les modeles de régression de Lasso (Least Absolute Shrinkage and Selection Operator) pour
obtenir le vrai modéle parcimonieux, car le nombre de variables indépendantes potentielles est
élevé par rapport au nombre d'observations. Le processus de sélection du modéle pénalisé a
retenu des variables explicatives telles que le capitaine, le navire, le prix des espéces de
thonidés ciblées, la densité et la distribution spatiale des DCP et le nombre / type de bouées
déployées. L'inclusion de ces prédicteurs dans les modeles de standardisation de la CPUE a
fourni des estimations réalistes de I'incertitude. Nous proposons la collecte systématique des
variables sélectionnées explicatives et leur utilisation pour standardiser les CPUE de thonidés
se rapportant aux DCPd dans un cadre d'un modele mixte.

RESUMEN

La pesqueria de cerco con dispositivos de concentracion de peces a la deriva (DCPd) reviste
una gran complejidad y el esfuerzo pesquero depende de multitud de factores. Los indices
tradicionales del esfuerzo pesquero, como tiempo de blsqueda, pierden su razén de ser en esta
pesqueria. Se ha creado una lista exhaustiva de 28 posibles variables que describen la
pesqueria con DCPd y las hemos utilizado como predictores del esfuerzo pesquero en la
estandarizacion de la CPUE de patudo de la pesqueria de cerco francesa que opero en el
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océano Atlantico oriental desde 2007 hasta 2013. Se ha realizado una seleccion de variables
utilizando la méxima verosimilitud penalizada en marcos GLM y GLMM, para mejorar la
precision de la prediccidn y la capacidad e interpretacion de los modelos seleccionados. Se
aplicaron modelos de regresion Lasso (Least Absolute Shrinkage and Selection Operator) para
derivar el modelo austero real, porque el nimero de posibles variables independientes es muy
amplio en comparacion con el nimero de observaciones. El proceso de seleccion del modelo
penalizado mantuvo variables explicativas como el patrén, el buque, el precio de las especies
de thnidos objetivo, la densidad y distribucién espacial de los DCP y el nimero/tipo de boyas
plantadas. La inclusién de estos predictores en los modelos de estandarizacion de la CPUE
proporciond estimaciones realistas de la incertidumbre. Se propuso una recopilacion
sistematica de las variables explicativas seleccionadas, asi como su utilizaciéon en la
estandarizacion de la CPUE para los tanidos relacionada con los DCPd en un marco de
modelo mixto.
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1. Introduction

Indicators of abundance constitute a vital component of fish stock assessments (Hilborn and Walters, 1992). For
tropical tuna, abundance indices are derived through the standardization of Catch per Unit of Effort (CPUE)
from commercial data. Knowledge of catchability is necessary to acquire an unbiased indicator of abundance
over time (Wilberg et al., 2009). In the case of the tropical tuna purse seine fisheries, catchability has drastically
increased due to the increasing use of drifting Fish Aggregating Devices (dFADs) since the early 1990s (Ariz et
al., 1992; Fonteneau et al., 2013) and their rapid technological development. dFADs equipped with electronic
devices (i.e. GPS and echo-sounders; Lopez et al., 2014; Torres-Irineo et al., 2014) have broken the link between
searching time and effective fishing effort (Fonteneau et al., 1999). For juvenile yellowfin (Thunnus albacares),
juvenile bigeye (Thunnus obesus), and skipjack (Katsuwonus pelamis) that are mainly caught by surface
fisheries, there is currently no reliable dFAD-fishing CPUE index to evaluate the trend in abundance (e.g.
assessment of the WCPO SKJ; IOTC, 2014)).

For these reasons the European Union has implemented a research project called “Catch, Effort, and eCOsystem
impacts of FAD-fishing” (CECOFAD) to provide reliable estimates of abundance indices and accurate indicators
on the impact of dFAD-fishing on juvenile bigeye tuna, juvenile yellowfin tuna, skipjack, and bycatch (Gaertner
et al., 2015). In this framework, we attempt to develop a reliable CPUE index for bigeye tuna caught in
association with dFADs by the French purse seiners operating in the Eastern Atlantic. Statistical procedures of
model selection were adapted to the large number of available explanatory variables and the hierarchical
structure of the data. We discuss the contribution of different explanatory variables to CPUE standardization and
suggest a statistical framework to incorporate significant variables in CPUE standardization models.

2. Materials and Methods
2.1 Data

The Institut de Récherche pour le Dévelopement (IRD) has been collecting catch and effort data for the French
purse seiners operating in the Atlantic Ocean since the early 1960s (Postel, 1969). Here, we used logbooks of the
French purse seiners for the period 2007-2013 (Chassot et al., 2015) and restricted our analysis to fishing sets
documented as related with floating objects, i.e. logs and dFADs. We put together a comprehensive list of
candidate predictors to describe changes in fishing efficiency, provided either directly from the French purse
seiner tuna association ORTHONGEL (2007-2013) or from scientific literature (Table 1). The final dataset
consists of 3,838 loghook records. Table 2 gives a thorough description of the candidate predictors.

2.2 CPUE Standardization
BET CPUE follows a skewed zero-inflated distribution and as such were standardized in a two stages delta-
lognormal GLM (Fletcher et al., 2005; Lo et al., 1992). At stage 1, the probability of a positive BET CPUE C;,

fori=1,...,N, is modeled as a linear combination of x; predictors with a; coefficients:
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Pr(C; > 0) = InvLogit(3Y, a;x;).

At stage 2 the mean size of positive CPUEs Cj, for j=1,...,M <N, is modeled as a linear combination of the same
x; predictors with b; coefficients, following a lognormal distribution:

M
j=1

Our dataset comprises of less than 4,000 records, 28 continuous and categorical predictors, and more than 68
parameters to estimate (in a GLMM). For multidimentional data such as these, variable or model subset selection
through stepwise selection becomes problematic. The number of possible models grows exponentially with the
number of predictors and renders computation infeasible (Kuo and Mallick, 1998). Moreover, when the number
of observations is not much larger than the number of predictors, ordinary least squares may result in over-
fitting. Penalized maximum likelihood methods allow regression modeling when the number of model
parameters is high compared to the number of observations and prevent over-fitting (Tibshirani, 1996). For
model selection purposes, models were fitted with Lasso, a technique that constrains coefficient estimates
(Tibshirani, 1996).

The model parameters were estimated with the glmnet? algorithm for elastic net models (Friedman et al., 2010,
2009; Hastie et al., 2005; Zou and Hastie, 2005). Given a linear regression with standardized predictors x; and
centered response values y; for i=1,2,...,N and j=1,2,...,p, the glmnet algorithm estimates the regression
coefficients b={b;} to minimize:

—a)||b||%
S, Wil by + bTx) + 2|00 4 b,

where A covers a range of values, 1(y,n) is the negative log-likelihood contribution for observation i and a
controls the elastic-net penalty (for lasso a=1). The tuning parameter A was chosen through cross validation.

Friedman et al. (2009) suggest running the lasso to identify the set of non-zero coefficients, and then fitting an
unrestricted linear model to the selected set of features. We refitted the model as a unrestricted GLM using
predictors with non-zero coefficients and derived monthly estimates of the index using the least squares means
(Lenth, 2013). The data reference grid was restricted to the most frequent level of each factor (Campbell, 2015;
Lenth, 2013) and interactions had to be disregarded, due to computing power limitations and missing
(unobserved) levels in the case of interactions.

To deal with missing/unobserved values and with the hierarchical structure of logbook data we considered mixed
models. The skipper and the vessel are crossed effects. The year and grid cell interaction can be treated as a
random effect to allow for the calculation of standardized indices for the unobserved (i.e. unfished) year-grid cell
interaction levels from the estimated posterior mean of the distribution of the random effect, thus removing the
need for imputing these values (Campbell, 2015; Maunder and Punt, 2004). The generalised linear mixed
(GLMMs) Lasso models® are extensions of the GLM Lasso that allow for the inclusion of random effects (Groll
and Tutz, 2014; Schelldorfer, 2011). To optimize the tuning parameter 1 and the starting values we applied BIC-
based selection and 5-fold cross validation (Groll and Groll, 2014; Schelldorfer and Meier, 2011). Models with
and without random effects were compared using AIC. To derive monthly estimates of the standardized CPUE,
we selected the non-zero variables of the final Lasso model, refitted the GLMM?* and estimated the monthly
indices with the least square means approach (Campbell, 2015; Lenth, 2013).

3. Results and Discussion

We developed a modeling approach to standardize CPUE from logbook data and acquired an index of abundance
for tropical Atlantic juvenile BET caught by the French purse seine fishery. Table 3 lists coefficients derived
from the Lasso GLMs, binomial and lognormal. The GLMM Lasso models were more conservative than the
GLMs on the selection of the fixed effects (Table 3), especially for the binomial model, where only the
introduction of buoys equipped with a short-range radio beacon correlates to the probability of a positive bigeye
catch.

2 http://web.stanford.edu/~hastie/gimnet/gimnet_alpha.html
3 https://cran.r-project.org/package=glmmLasso
4 https://cran.r-project.org/web/packages/Ime4; (Bates et al., 2013)
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Figures 1 and 2 show the GLM and GLMM standardized monthly bigeye CPUE estimates and confidence
intervals, derived with the least squares means procedure. The GLM-based time series shows higher annual
bigeye CPUEs (closer to the annual data average) with narrower confidence intervals compared to the GLMM-
based time series (Figure 1). Both standardized BET CPUE time series peak in 2010; the GLM-based time
series remains stable at high CPUE levels after the peak of 2011 whereas the GLMM-based time series declines
after 2011.

Our results support the use of mixed models to mitigate the effects of a spatially shifting fishery (hyperstability)
and account for the correlation present in the data (repeated measurements at a vessel and/or skipper level).
Moreover, variable catchability, attributed to technological developments, is modeled by incorporating relevant
predictors as proposed in literature (Bishop, 2006; Bishop et al., 2008; Mahévas et al., 2011). Our results clearly
show a correlation between catch rate and predictors that describe technological developments, but these
relationships are often weak, possibly due to data deficiencies (e.g. short time series, low contrast, unreliable or
missing data) or non-linearities (Achen, 2005). Finally, this study highlighted the role of the skipper and the
vessel, also featured in Mahévas et al., (2011) for European fishing fleets.

The development of the FAD fishery has led to the need for new approaches to CPUE standardization if we want
to derive reliable abundance indices from commercial data. To that end, we suggest the collection of data on
technological advances potentially influencing fishing effort and the use of advanced statistical methods to
assess the effect of technology on fishing effort.
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Table 1. Datasets collected to provide additional information on changes in fishing effort.

Dataset Description Time Period Format Source
dFAD Location of dFADs 2007-2014 Monthly point (Maufroy et al., 2015)
distribution maps
Total number of buoys  2004-2014 Time series, (Goujon et al., 2015)
Buoy purchases  purchased by the French annual
fleet, by buoy type.
Number of buoys 2002-2014  Time series with a ORTHONGEL
Buoy purchases bought by vessel variable time
(French fleet). interval
length, horsepower, Records per IRD
Vessel capacity, vessel age, vessel Observatoire Thonier
characteristics company, flag, fleet
Skippers Skippers' ID per vessel 2004-2014 Records per IRD

and trip vessel and trip Observatoire Thonier

Table 2. Description of the predictors used in the elastic net GLMs and the Lasso GLMMSs. The numbers of
positive and null fishing sets are used as predictors in the lognormal models.

Variables Short description
Year Year at which the fishing set took place as recorded in logbooks
Month Month at which the fishing set took place as recorded in logbooks
Time at Sea Duration of the fishing trip, recorded in logbooks
Fishing Time Cumulated time dedicated to fishing
Sample Area Avreas used for the estimation of species composition of the catch .
EEZ Exclusive Economic Zone
Grid Cell Grid cell at 1x1 degree
Skipper ID of the skipper on each vessels per trip
Vessel Vessel ID
Vessel age Year of vessel service
Vessel length In meters
Vessel power In horsepower
Vessel Capacity In m?

Vessel category
YFT price
SKJ price
YFT/SKJ price ratio
GPS buoys bought by vessel
HF buoys bought by vessel
HF-GPS/GPS buoys bought by
vessel
Average HF buoys per vessel
Average BS buoys per vessel

Average BSE buoys per vessel
Distance from a dFAD
Distance from the centre of the
dFAD area
dFAD area

dFAD counts in buffer zone
=143nm

dFAD counts in buffer zone =
max

Vessel category related with vessel length and capacity
Yellowfin tuna price from the Bangkok auction
Skipjack tuna price from the Bangkok auction
Price ratio
Buoys equipped with a GPS
Buoys equipped with a high-frequency radar
Buoys equipped with a high frequency radar and a GPS

Buoys equipped with a short-range radio beacon
Buoys equipped with a beacon that communicates its position to the ship via
satellite
Buoys equipped with a GPS and an echosounder
Distance of the fishing set from the nearest dFAD (monthly scale)
Distance of the fishing set from the centre of the dFAD area (monthly scale)

Total area occupied by dFADs: the sum of the areas of the polygons of the
standard distance for each dFAD trajectory. Overlapping polygons were
merged.

Number of dFADs in a buffer zone around the fishing set. The buffer zone
diameter equals 143nm, which is the average nearest neighbor distance
between sets and dFADs occurring on the same month, over the whole time
series.

Number of dFADs in a buffer zone around the fishing set. The buffer zone
diameter is varying on a monthly basis and is equal to the max nearest
neighbor distance between the fishing sets and the dFADs for the given
month.
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Table 3. Variable selection using elastic net GLMs with a = 1 and GLMM Lasso. A two stage approach was
followed, modeling the probability of BET presence in a set (Pr(Cs>0)) and the positive BET CPUE (lognormal)
in two different models. Coefficients are listed for continuous predictors while factor variables with one or more
non- zero coefficients are denoted as (f). The standard deviation is given for random effects (grey cells).

GLM Lasso GLMM Lasso

Pr(Cs>0) lognormal | Pr(Cs>0)  lognormal
Year ) () ()
Month

Time at Sea
Fishing Time
Positive sets 0.08
Null sets 0.12
Sample Area ()] ()] f
EEZ )] ) ()
Grid Cell ()] ()]
Skipper )] 4] 0.65 0.001
Vessel ()] 0.49 0.1
Vessel age

Vessel length
Vessel Horsepower
Vessel Capacity
Vessel category
YFT price 3e-05 -le-14
SKJ price 9.4%-05 -4e-16
YFT/SKJ price ratio

GPS buoys bought by vessel

HF buoys bought by vessel
HF-GPS/GPS buoys bought by vessel
Average number of HF buoys per vessel 0.06 -0.08 9e-15
Average number of BS buoys per vessel
Average number of BSE buoys per vessel -8e-16
Distance from a FAD -0.015 -5e-02
Distance from the centre of the FAD area 4e-03
FAD counts in buffer zone = 2.39dd 1.3e-04
FAD counts in buffer zone = max
FAD area -3e-08
Year*month )] 4]
Year*Cell )] 4] 1.76 0.5
year*vessel age*category (f (f)

413



1.5 CPUE standardisation with GLM, model selection with Lasso
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Figure 1. Fitted values (product) of the two (binomial and lognormal) GLMs derived with Ismeans.

1 CPUE standardisation with GLMM), model selection with Lasso
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Figure 2. Fitted values (product) of the two (binomial and lognormal) GLMMs derived with Ismeans.
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