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SUMMARY 
 
Environment-recruitment relationships can be difficult to delineate with traditional statistical 
models. We use state-space reconstruction techniques, which are non-parametric and make no 
assumptions about functional relationships, to address the question of whether environmental 
influences on early life stages can be used to forecast subsequent recruitment. We find that sea 
surface temperature, which has been associated with larval growth and survival, can be used to 
improve one-year ahead forecasts of bluefin tuna recruitment. This result was found for areas 
surrounding the Balearic Archipelago (Mediterranean Stock), the Gulf of Mexico, and areas east 
of Chinese Taipei and within the Sea of Japan (North Pacific Stock). Our analysis does not negate 
the importance of stock-recruitment functions for fisheries management; rather, it identifies the 
possibility of using alternative tools for recruitment forecasting. In particular, state-space 
reconstruction is expected to be useful when recruitment is poorly estimated by traditional 
methods, including instances where cohorts have not yet entered the fishery. 

 
RÉSUMÉ 

 
Les relations environnement-recrutement peuvent être difficiles à déterminer au moyen de 
modèles statistiques traditionnels. Nous utilisons des techniques de reconstruction état-espace, 
qui ne sont pas paramétriques et n'émette pas de postulat au sujet des relations fonctionnelles, 
afin de traiter la question de savoir si les influences environnementales sur les premiers stades 
du cycle vital peuvent être utilisées pour prédire le recrutement ultérieur. Nous avons constaté 
que la température de surface de la mer, qui a été associée à la croissance larvaire et à la survie, 
peut servir à améliorer les prévisions un an à l'avance du recrutement du thon rouge. Ce résultat 
est apparu pour des zones avoisinant l'archipel des Baléares (stock méditerranéen), le golfe du 
Mexique et des zones à l'Est du Taipei chinois et à l'intérieur de la mer du Japon (stock du 
Pacifique Nord). Notre analyse ne conteste pas l'importance des fonctions stock-recrutement 
pour la gestion des pêcheries, mais elle identifie la possibilité d'avoir recours à d'autres outils 
pour prédire le recrutement. Plus particulièrement, la reconstruction état-espace devrait être 
utile lorsque le recrutement est mal estimé par les méthodes traditionnelles, y compris les cas où 
des cohortes ne sont pas encore entrées dans la pêcherie. 
 

RESUMEN 
 

Las relaciones medio ambiente-reclutamiento pueden ser difíciles de establecer con los modelos 
estadísticos tradicionales. Se usan técnicas de reconstrucción estado-espacio, que son no 
paramétricas y no hacen supuestos acerca de relaciones funcionales para solucionar la cuestión 
de si las influencias medioambientales en las primeras etapas de vida pueden usarse para prever 
el posterior reclutamiento. Se halló que la temperatura de la superficie del mar (SST), que se 
había asociado con el crecimiento de larvas y las tasas de supervivencia, puede utilizarse para 
mejorar las previsiones de futuro de un año del reclutamiento de atún rojo. Este resultado se 
halló en el archipiélago balear (stock del Mediterráneo), en el golfo de México, en zonas al este 
de Taipei Chino y dentro del mar de Japón (stock del Pacífico septentrional). Nuestro análisis 
no niega la importancia de las funciones stock-reclutamiento para la ordenación pesquera, en 
su lugar, identifica la posibilidad de utilizar herramientas alternativas para la previsión del 
reclutamiento. En particular, se prevé que la reconstrucción estado-espacio sea útil cuando se 
dispone de una estimación mediocre del reclutamiento mediante los métodos tradicionales, lo 
que incluye los casos en los que las cohortes no han entrado todavía en la pesquería. 
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1. Introduction 
 

Ways in which environmental conditions affect fish recruitment has previously received investigation in fisheries 
ecology (Myers et al. 1993, Alheit and Hagen 1997, Govoni 2005). Problematically though, correlations between 
environmental and biological variables can be difficult to delineate and can sometimes appear ephemeral in nature 
(Sugihara et al. 2012). Finding evidence of environmental drivers can be plagued by inconsistencies that can 
appear as positively correlated variables at some times and as uncorrelated or negatively correlated variables at 
other times (Myers 1998, Carscadden et al. 2000, Ravier and Fromentin 2004). One possible explanation for 
inconsistencies in environment-recruitment relationships is the use of traditional linear statistical methods in 
instances where biological systems are nonlinear (Hsieh et al. 2005, 2008, Glaser et al. 2013). Nonlinearity in 
biological systems can arise from non-additive interactions among forcing variables (Steele and Henderson 1984, 
Sugihara 1994, Dixon et al. 1999, Glaser et al. 2011). Where traditional linear modeling is insufficient to capture 
the complexity of nonlinear systems, a more robust approach is offered by state-space reconstruction (SSR; Deyle 
and Sugihara 2011, Deyle et al. 2013). Techniques for SSR offer the flexibility to delineate both linear and 
nonlinear dynamics (Sugihara et al. 2012, Deyle et al. 2013). This flexibility is possible because SSR techniques 
are non-parametric and make no assumptions about functional relationships. Instead, SSR relies on the structure 
of the data to identify interacting variables, thus enabling accommodation of a variety of behaviors (Glaser et al. 
2011, Perretti et al. 2013). 
 
Atlantic and Pacific bluefin tuna (Thunnus thynnus, Scombridae; Thunnus orientalis, Scombridae) undergo 
extensive migrations as adults, but spawn in narrowly defined geographic areas (Garcia et al. 2005, Block et al. 
2005, Fromentin and Powers 2005, Satoh et al. 2008). Observational studies have examined spawning and larval 
distributions of bluefin tuna in relation to environmental conditions (McGowan and Richards 1989, Davis et al. 
1990, Kitagawa et al. 2000, Tanaka et al. 2007, Satoh 2010, Alemany et al. 2010, Lindo-Atichati et al. 2012, 
Muhling et al. 2013), but few studies examine whether and how environmental conditions experienced during 
larval development are likely to translate into recruitment fluctuations. Here, SSR techniques were used to address 
the question of whether environmental conditions, occurring in relation to timing of spawning and early life stages, 
could be detected in subsequent recruitment fluctuations. We applied a multivariate extension of SSR to evaluate 
whether and how sea surface temperature is related to recruitment dynamics. We explored the reliability of near-
term recruitment forecasts produced from SSR relative to a simple alternative forecasting technique. The analysis 
was regarded as a precursor to the potential use of nonlinear time series modeling to complement recruitment 
forecasting techniques currently used in stock assessment procedures.  
 

2. Methods 

2.1 State-space reconstruction 
 
State-space reconstruction (SSR) considers the structure of a one-dimensional (univariate) time series as having 
been produced from underlying ecological processes. Takens (1981) theorem shows that a dynamical system can 
be reconstructed through time-delayed coordinate embedding. Time-delayed coordinate embedding involves 
transforming a univariate time series into a set of time-delayed vectors:  

( )2 1, , , , ,t t t t t Ex x x xτ τ τ− − − −
 =  X    (1) 

where x is a time series, t is time, τ  is the time lag, and E is the embedding dimension. The embedding dimension 
is the number of time-delayed coordinates used in state-space reconstruction (Sugihara and May 1990, Glaser et 
al. 2013). Time-delayed vectors capture properties of the unknown state space attractor (Takens 1981, Sugihara 
and May 1990, Deyle and Sugihara 2011).  
 
The univariate SSR approaches we applied were simplex projection and S-maps techniques developed by Sugihara 
and May (1990) and Sugihara (1994), respectively. The simplex projection model was used to identify the best 
embedding dimension for the time series (Sugihara and May 1990). Simplex projection is a nearest neighbor 
algorithm that uses the shape of the reconstructed attractor in E-dimensions to predict the trajectory of the time 
series from time t to time t+1. Simplex projection contains only one parameter, E, which is sequentially varied 
from 1 to 10. In model fitting, the coordinate vectors are divided into sets of library vectors and prediction vectors. 
To generate forecasts of the prediction vectors, Euclidean distances to all library vectors are calculated, and the 
E+1 nearest neighbors are used to generate an exponentially weighted prediction: 
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where weightings, jw , for each neighbor j, are determined at time t, and applied to forecasts of the prediction 

vector, Tx  , at T=t+1. This means that library coordinate vectors that are similar to the prediction vector at time t 
and are also expected to have similar states at t+1. Because our recruitment time series tended to be short, out-of-
sample forecast skill was tested using leave-one-out cross-validation (Sugihara et al. 1996, Glaser et al. 2011, 
2013, Liu et al. 2014). Forecast skill was defined as the Pearson correlation coefficient ( ρ ) and mean absolute 
error (MAE) calculated from observed and forecasted values.  
 
After identifying E that produced the highest forecast skill, sequentially weighted global linear maps (S-maps) 
were used to explore evidence on nonlinearity. S-maps examine evidence of nonlinearity by comparing the forecast 
skill obtained using equivalent linear or nonlinear models. Implementation details are described by Sugihara 
(1994), and summarily by Glaser et al. (2011), Liu et al. (2012), Sugihara et al. (2012), Glaser et al. (2013), and 
Deyle et al. (2013), and Liu et al. (2014). Briefly, forecasts at time t+1 are made using all library vectors, rather 
than E+1 nearest neighbors used in simplex projection, but where library vectors are still weighted according to 
according to Euclidean distance from the prediction vector. Forecasts produced by S-maps are tuned by adjusting 
a nonlinearity parameter, θ , within the continuous range of 0 to 10. The nonlinearity parameter controls how 
heavily library vectors that are nearest to the prediction vector are weighed relative to distant library vectors: 

( ) ( )exp / ,w d d dθ= −   (3) 

where d is Euclidean distance and d  is the minimum distance from all library vectors. When 0θ =  all library 
vectors are given equal weight and S-maps give linear forecasts. Higher θ  values give greater weight to library 
vectors that are in close proximity to the prediction vector. Since specifying the model as linear ( 0θ = ) or 
nonlinear ( 0θ > ) depends on only one parameter, it is convenient to test whether nonlinear forecast skill is 
significantly improved over linear forecast skill. We calculated the decrease in forecast error (

0 bestMAE MAE MAEθ θ= =∆ = − ) as a measure of nonlinearity (Hsieh and Ohman 2006). Permutation testing 

was implemented by first calculating the test statistic, MAE∆ , then shuffling the time series before carrying out 
the S-map procedure. Null MAE∆ was then calculated from the S-map procedure applied to the shuffled time 
series. This process was repeated 1000 times and significant improvement in forecasting skill using a nonlinear 
model was determined using a cutoff p-value of 0.05 (Hsieh and Ohman 2006).  
 
Deyle and Sugihara (2011) generalized Takens’ (1981) approach to situations when multiple time series from the 
same system are analyzed together. Multivariate SSR examines whether variable x and an auxiliary variable y are 
interacting parts of the same system. Multivariate embedding consists of including y in the construction of time 
delayed coordinates (e.g., ( )2 1, , , , ,t t t tt Ex x x x yτ τ τ− − − −

 
  ). Multivariate SSRs were compared to the univariate 

SSR to determine whether multivariate embedding led to significant improvement in forecast skill. We first 
calculated the improvement in forecast skill ( ρ∆ ) between univariate and multivariate coordinate embeddings. 
We then tested whether improvement in fit was different from improvement expected by chance alone. 
Permutation testing was implemented by shuffling the forcing variable, y, and calculating the null forecast 
improvement. These steps were repeated 1000 times, the fraction of instances in which null forecast improvement 
exceeded the predicted forecast skill provided the probability that forecast improvement occurred by chance alone. 
Significant improvement in forecasting skill was considered to be evident when the probability of forecast 
improvement occurring by chance alone was <0.10.  
 
2.2 Forecast performance 
 
We evaluated whether recruitment forecasts made by multivariate SSR were more reliable than other simple 
predictive approaches. Performance was measured using standardized root mean square error (SRMSE), which is 
the RMSE divided by the standard deviation of the dataset used in prediction. Values of SRMSE greater than 1 
indicate that forecasting models are less accurate than using the mean of the dataset for prediction (Perretti et al. 
2013). For each recruitment time series, we compared the multivariate SSR to univariate SSR and the naïve 
forecasting method, which uses recruitment in year t as a predictor at time t+1.  
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2.3 Time series 
 
Time series of Atlantic bluefin tuna recruits and spawning stock biomass (SSB) were available for the period of 
1950-2013 for the eastern Atlantic stock and 1970-2013 for the western Atlantic stock (Anon., 2013). Estimates 
of recruitment in numbers of age-1 individuals were obtained from virtual population analysis (VPA). VPA-based 
estimates were used because VPA does not impose a stock-recruitment function on recruitment estimates. For our 
analysis, we excluded the years 2004-2013 from the eastern stock and 2011-2013 from the western stock because 
these most recent estimates could be prone to estimation inaccuracies, including retrospective bias (Anon., 2013). 
Time series of Pacific bluefin tuna recruitment of age-0 individuals was obtained for the period of 1952-2012 
(Anon., 2015). Our analysis included recruitment between 1953-2008 (Anonymous 2015). For each of the stocks, 
we also obtained spawning stock biomass time series to explore this variable as a driver of recruitment dynamics. 

Prior to model fitting, recruitment time series were processed by taking first differences ( 1t tx x x −∆ = −  ) and 
normalizing (i.e. mean = 0, standard deviation = 1). 
 
2.4 Sea surface temperature 
 
Sea surface temperatures (SST) were obtained from the International Comprehensive Ocean-Atmosphere Data Set 
(ICOADS; National Climatic Data Center/NESDIS/NOAA/U.S. n.d.). Non-interpolated monthly mean 
temperatures were obtained at 2-degree spatial resolution (National Climatic Data Center/NESDIS/NOAA/U.S. 
n.d.). SST was extracted for areas of known bluefin tuna spawning and where larvae are commonly collected (Figs. 
1A, 2A, 3A). In the Mediterranean Sea, two rectangles were specified that focused on waters surrounding the 
Belearic Archipelago (Garcia et al. 2005, Alemany et al. 2010). The largest rectangle covered the area between 
38o and 40o North and between 1o and 5o East, which was consistent with the extent of TUNIBAL surveys 
conducted by the Instituto Español de Oceanografía (Figure 1A; Garcia et al. 2005, Alemany et al. 2010). A 
smaller rectangular area was also considered between 37.5o and 39.5o North and between 3o and 5o East, which 
covered the area south of the archipelago where the high larval densities has been reported (Alemany et al. 2010). 
In the Gulf of Mexico, three regions were defined: the immediate region of influence (ROI) of the Loop Current 
in the spring season (between 25o and 27o North and between 86o and 88o West), a region to the west of the loop 
current that is associated with spawning and larval habitat (between 25o and 28o North and between 88o and 95o 
West), and a region north of the Loop Current (between 27o and 29o North and between 84o and 98o West) (Figure 
2A; Teo et al. 2007, Lindo-Atichati et al. 2012, Muhling et al. 2013). In the North Pacific, we considered three 
regions associated with spawning: an area east of Chinese Taipei (between 22.5o and 24.5o North and between 
123.5o and 125.5o East), a larger region surrounding the RyuKyu Islands (between 22o and 26o North and between 
124o and 130o East), and the eastern Sea of Japan (between 36o and 38o North and between 132o and 136o East). 
We also considered a coastal area south of Japan within the area of 32 o and 35o North and between 132 o and 141o 
East (Kitagawa et al. 2010). 
 

3. Results 

3.1 Atlantic bluefin tuna 
 
Univariate SSR of eastern Atlantic recruitment (no environmental forcing used in forecasting), suggested that 
nonlinear forecast skill ( MAE∆ ) was not significantly improved over a linear S-map model (p-value = 0.279). 
When introducing SSB and SST into the SSR models, SSB and a SSTs in summer and autumn months tended to 
improve forecast skill in term of increasing ρ  relative to equivalent univariate SSRs (Table 1). A multivariate 
forecast that included both SSB and September SST was constructed as an exploration of utilizing both biological 
and environmental data in recruitment forecasting ( 0.782ρ = ; Figure 1). 
 
A nonlinear signature in forecast skill was detected in univariate forecasts of western Atlantic recruitment (

MAE∆ , p-value = 0.001). Multivariate modeling revealed significant improvement in forecast skill when SSB 
was included state-space reconstruction (Table 2). When SSTs were considered in multivariate SSR, spring SSTs 
outside of the Loop Current ROI significantly improved forecast skill. In the area west of the Loop Current ROI, 
April SST improved recruitment forecasts, while in the area north of the Loop Current ROI, May SST similarly 
improved recruitment forecasts (Table 2). Including biological and environmental data in recruitment forecasting 
was explored by producing a multivariate forecast that included both SSB and April SST west of the Loop Current 
( 0.455ρ = ; Figure 2). 
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3.2 North Pacific bluefin tuna  
 
Univariate SSR of Pacific bluefin tuna recruitment indicated a nonlinear signature in forecast skill ( MAE∆ , p-
value = 0.003). When SST was included in the multivariate SSR, significant improvement in forecast skill was 
obtained when using the months following spawning in the Sea of Japan and near Chinese Taipei and the Ryukyu 
Islands (Table 3). Also evident was the potential effect of SST in the area south of Japan. SSTs within this area 
were not strongly correlated with SSTs within the spawning area to the southwest, thus it possible both areas 
independently influence recruitment. There was however, a strong positive correlation between the larger and 
smaller bounding boxes of the Ryukyu Island spawning area, suggesting a regional SST pattern was reflected in 
both datasets. In exploring SSRs that contained more than one auxiliary variable y, it was found that combinations 
of SST drivers, without inclusion of SSB, led to the highest forecast skill. As an example, August SSTs in the two 
spawning regions (Ryukyu Islands and Sea of Japan) produced forecast skill of 0.340ρ =  (Figure 3). 
 
3.3 Forecast performance 
 
Multivariate SSR provided more reliable one year-ahead forecasts of recruitment than univariate SSR or the naïve 
method. All SST and SSB variables reported in Tables 1 through 3 produced improved forecast skill ( ρ ) relative 
to univariate forecasts. Likewise, multivariate SSR had lower SRMSE than univariate SSR, and in all cases, 
multivariate SSR models had lower SRMSE than the naïve forecast method. This result suggests that signals from 
SST and SSB improved overall forecast performance. However, when SRMSE estimates were compared to unity, 
not all multivariate SSRs produced appreciably better forecasts than would be expected by using the mean as a 
predictor (Figure 4). Taken together, forecast performance suggests that while recruitment fluctuations are to 
varying degrees correlated with SST, and thus SST can be used to improve forecasts, model improvements are still 
desirable. For each of the combined multivariate SSR forecasting models illustrated in Figures 1b, 2b, & 3b, 
forecast performance was contrasted against univariate and naïve modeling methods (Figure 4). Multivariate SSR 
performed particularly well in forecasting recruitment for the eastern Atlantic stock, with SRMSE values well 
below 1; however, performance was poorer for the western Atlantic and Pacific stocks (Figure 4). 
 

4. Discussion 

SSR techniques have been demonstratively useful for short-term forecasting of biological systems (Perretti et al. 
2013, Glaser et al. 2013, Ward et al. 2014). Here, we found that nonlinear models that included sea surface 
temperatures (SST) could improve forecasts of bluefin tuna recruitment. Notably, significant improvements in out-
of-sample forecasting were found only for SST variables in months that generally corresponded with the timing 
of bluefin tuna spawning. SST has previously been associated with larval development, thus, it is perhaps not 
surprising that SST in the months immediately following spawning appear to influence subsequent recruitment 
fluctuations. The eastern Atlantic stock spawns most commonly during June and July in the waters of the western 
Mediterranean Sea in proximity to the Balearic Archipelago and to Sicily (Garcia et al. 2005, Alemany et al. 2010, 
Muhling et al. 2013). Our analysis suggested that SSTs in September, 60-90 days post spawning, improved 
recruitment forecasts in the following year. The western Atlantic stock spawns in the Gulf of Mexico during April, 
May, and June (Block et al. 2005, Teo et al. 2007, Teo and Block 2010). During the months associated with 
spawning, adult bluefin tuna may avoid the Loop Current, which flows north from the Caribbean Sea, enters the 
Gulf of Mexico and loops eastward, eventually entering the Florida Straits (Lindo-Atichati et al. 2012). 
Accordingly, we found that forecasts were improved when April and May SSTs from areas sounding the Loop 
Current’s region of influence were included in recruitment forecasts. North Pacific bluefin tuna spawn in proximity 
to the Ryukyu Islands and Chinese Taipei from April to June and in the Sea of Japan in August (Satoh 2010 and 
references therein). Similar to the findings for the Mediterranean Sea, SSTs approximately 2 to 4 months post 
spawning improved recruitment forecasts. Following hatching, and perhaps after a period of retention in 
anticyclonic eddies associated with Ryukyuan Islands, the Kuroshio Current appears to transport larvae to cooler 
coastal nursery grounds south of Japan (Kitagawa et al. 2006, 2010, Kimura et al. 2010). Larval growth and 
survival are widely cited as critical aspects of bluefin tuna biology, and particularly in relation to temperature 
(Matsuura et al. 1997, Masuda et al. 2002, Tanaka et al. 2006, Reglero et al. 2011).  
 
From a fisheries management perspective, it was also intriguing that multivariate SSR provided better forecasts 
than simpler naïve forecasting methods. While more direct comparison of forecast skill with stock-recruitment 
functions is necessary, our analysis demonstrates an additional, but distinctly different tool for recruitment 
forecasting. Our analysis does not negate the importance of stock-recruitment functions for fisheries management; 
rather, multivariate SSR can be potentially useful to stock assessment by providing recruitment forecasts for 
cohorts that have not become fully vulnerable to fishing, and thus are not prevalent in catch-at-age matrices. Near-
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term forecasting of recruitment in future years is also possible, and could be useful for supporting model-based 
projections used in evaluating total catch regulations. Finally, our analyses demonstrated an initial step in moving 
from identification of environmental correlates to the use of environmental drivers in forward-forecasting of 
recruitment fluctuations. 
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Table 1. The effects of spawning stock biomass (SSB) and monthly sea surface temperature (SST) on recruitment 
of eastern Atlantic bluefin tuna. Multivariate SSR models with significant improvement in forecast skill relative 
to univariate SSR are shown. ρ  is Pearson correlation calculated in the original data units, 

univariate multivariate univariateF ρ ρ∆ = − , and naive multivariate naiveF ρ ρ∆ = − , where naïve method refers to the use of 
observed recruitment at t as a predictor of recruitment at t+1. 
 

Model type ρ  
univariateF∆   naiveF∆  

SSB 0.804 0.134 0.077 
    
Large bounding box    
February SST 0.739 0.027 0.005 
April SST 0.710 0.073 -0.017 
June SST 0.744 0.019 0.015 
July SST 0.757 0.043 0.023 
August SST 0.757 0.043 0.023 
September SST 0.757 0.079 0.039 
October SST 0.730 0.013 -0.004 
November SST 0.739 0.027 0.005 
    
Small bounding box    
September SST 0.732 0.033 0.005 
October SST 0.724 0.017 -0.010 

 
 
 
Table 2. The effects of spawning stock biomass (SSB) and monthly sea surface temperature (SST) on recruitment 
of western Atlantic bluefin tuna. Multivariate SSR models with significant improvement in forecast skill relative 
to univariate SSR are shown. ρ  is Pearson correlation calculated in the original data units, 

univariate multivariate univariateF ρ ρ∆ = − , and naive multivariate naiveF ρ ρ∆ = − , where Naïve method refers to the use of 
observed recruitment at t as a predictor of recruitment at t+1. 
 

Model type ρ  
univariateF∆   naiveF∆  

SSB 0.461 0.007 -0.090 
    
West of Loop Current    
April SST 0.377 0.067 0.074 
    
North of Loop Current    
May SST 0.423 0.181 -0.009 
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Table 3. The effects of monthly sea surface temperature (SST) on recruitment of North Pacific bluefin tuna. 
Multivariate SSR models with significant improvement in forecast skill relative to univariate SSR are shown. ρ  

is Pearson correlation calculated in the original data units, univariate multivariate univariateF ρ ρ∆ = − , and 

naive multivariate naiveF ρ ρ∆ = − , where Naïve method refers to the use of observed recruitment at t as a predictor of 
recruitment at t+1. 
 

Model type ρ  
univariateF∆   naiveF∆  

SSB 0.281 0.257 0.272 
    
Sea of Japan    
August SST 0.321 0.276 0.312 
December SST 0.157 0.119 0.148 
January SST +1 year 0.287 0.268 0.278 
    
Ryukyu Islands large box    
August SST 0.366 0.358 0.357 
November SST 0.111 0.135 0.192 
    
Ryukyu Islands small box    
August SST 0.448 0.424 0.439 
September SST 0.306 0.276 0.297 
    
South of Japan    
July SST 0.300 0.254 0.291 
September SST 0.259 0.246 0.250 
November 0.193 0.263 0.224 
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Figure 1. (A) Mediterranean Sea with large (solid line) and small (dashed line) rectangular boundaries used to 
summarize sea surface temperature. (B) Recruitment in numbers and forecasts from multivariate state-space 
reconstruction based on inclusion of both spawning stock biomass and September sea surface temperature in the 
larger bounding box. 
  

 

 

2954 



 

Figure 2. (A) Gulf of Mexico with bounding boxes used to summarize sea surface temperature according to the 
Loop Current region of influence (dashed line), area west of the Loop Current (solid line) and area north of the 
Loop Current (dotted line). (B) Recruitment in numbers and forecasts from multivariate state-space reconstruction 
based on inclusion of both spawning stock biomass and April sea surface temperature west of the Loop Current. 
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Figure 3. (A) North Pacific with bounding boxes used to summarize sea surface temperature according areas 
associated with spawning distribution (solid lines) and areas associated with nursery grounds (dashed lines. (B) 
Recruitment in numbers and forecast based on August sea surface temperature near Ryukyu Islands & Sea of 
Japan. 
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Figure 4. Performance of multivariate state-space reconstruction (SSR) models illustrated in Figures 1b, 2b, & 
3b. Out-of-sample forecast skill is reported as standardized root mean square error (SRMSE). 
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