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DEVELOPMENT OF INDICES OF LARVAL BLUEFIN TUNA
(THUNNUS THYNNUS) IN THE WESTERN MEDITERRANEAN SEA
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SUMMARY

Fishery independent indices of bluefin tuna larvae in the western Mediterranean Sea are
presented utilizing ichthyoplankton survey data collected from 2001 through 2005 and 2012 by
the Spanish Institute of Oceanography. Indices were developed using larval catch rates
collected using two different types of bongo gear, fished three ways, by first standardizing catch
rates by gear/fishing-style and then employing a delta-lognormal modeling approach, including
following covariates: average water temperature between the surface and the mixed layer
depth, average salinity between the surface and the mixed layer depth, time of day, a systematic
geographic area variable, month and year. Also, a separate model is developed using a
spawning habitat quality variable to determine if the inclusion of such information reduces the
variance in the index values.
RESUME

Les indices de larves de thon rouge indépendants des pécheries dans la mer Méditerranée
occidentale sont présentés au moyen des données des prospections d’ichthyoplancton
recueillies de 2001 a 2005 et en 2012 par I'Institut espagnol d'océanographie. Des indices ont
été développés sur la base des taux de capture des larves recueillies au moyen de deux
différents types de filets Bongo, péchées de trois facons différentes, en standardisant avant tout
les taux de capture par engin / mode de péche et ensuite en appliquant une approche de
modélisation delta-lognormale, en incluant les covariables suivantes: température moyenne de
I'eau entre la surface et I'épaisseur de la couche de mélange, la salinit¢ moyenne entre la
surface et I'épaisseur de la couche de mélange, le moment de la journée, une variable de zone
géographique systématique, mois et année. De plus, un modéle distinct est élaboré au moyen
d'une variable de la qualité de I'habitat de frai afin de déterminer si I'ajout de ces informations
réduit la variance dans les valeurs de I’indice.

RESUMEN

Se presentan indices de larvas de atln rojo independientes de la pesqueria en el mar
Mediterraneo occidental utilizando datos de prospecciones de ictioplancton recopilados desde
2001 hasta 2005 y en 2012 por el Instituto Espafiol de Oceanografia. Se desarrollaron indices
usando las tasas de captura de larvas recogidas utilizando dos tipos diferentes de artes bongo,
pescadas de tres formas, estandarizando primero las tasas de captura por arte/estilo de pesca
y, posteriormente, empleando un enfoque de modelacion delta-lognormal, lo que incluye las
siguientes covariables: temperatura media del agua entre la superficie y la profundidad de la
capa de mezcla, la salinidad media entre la superficie y la profundidad de la capa de mezcla, la
hora del dia, una variable de area geografica sistematica, mes y afio. Ademas, se desarrolla un
modelo separado utilizando una variable de calidad del habitat de desove para determinar si la
inclusion de dicha informacion reduce la varianza en los valores del indice.
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1. Introduction

Managers became concerned of the status of Atlantic bluefin tuna (Thunnus thynnus) stocks in the late 1960’s.
During recent years, international assessments of Atlantic bluefin tuna (ABT hereafter) have been conducted at
least biannually. Most abundance indices used during assessments of ABT were of a fishery dependent nature.
Scott et al. (1993) presented a spawning biomass index for the western stock, which was based upon the
abundance of bluefin tuna larvae collected during fishery independent surveys conducted by NOAA Fisheries in
the Gulf of Mexico. Recently, Ingram et al. (2010) updated these indices using standardization via delta-
lognormal models.

During recent decades ichthyoplankton surveys targeting ABT larvae were conducted in several areas of the
Mediterranean Sea, the spawning area of the eastern stock of ABT. However, the surveys employed
heterogeneous sampling strategies and methodologies, without any temporal continuity (e.g. Dicenta 1977,
Dicenta and Piccinetti 1978; Oray and Karakulak 2005; Piccinetti and Piccinetti-Manfrin 1994; Piccinetti et al.
1996a, 1996b, 1997; Tsuji et al. 1997). In 2001 the IEO started a series of standardized ichthyoplankton surveys,
named TUNIBAL, around the Balearic Islands, recognized as one of the main spawning areas of ABT within the
Mediterranean (Garcia et al. 2005; Alemany et al. 2010), with the aim of characterizing the spawning habitat of
this species and deepen in the knowledge of its larval ecology, assessing the influence of environmental factors
on larval distribution and abundance. These surveys followed an adaptive sampling strategy, combining
intensive sampling of high density larval patches with quantitative sampling over a systematic grid of stations. A
similar survey was carried out on 2012, following the same sampling strategy, within the framework of a new
research project named ATAME.

The results from these surveys have shown that spatial location of spawning habitats of ABT are strongly
influenced by mesoscale oceanographic processes in the Balearic sea (Alemany 2010, Reglero 2013, Muhling
2012), as have been also demonstrated in the Gulf of Mexico (Muhling 2012). Therefore, larval index values
may be influenced by the type of habitat sampled among years. Improving the knowledge of how habitat
information can increase the performance of larvae index models is of paramount importance to the advancement
of stock evaluation methodologies independent from fisheries data. Previous larval index calculations (Ingram et
al. 2013) have included salinity and temperature as environmental linear covariates, but other recent studies
(Reglero et al. 2012) have demonstrated that their effect on the spawning habitat characterization may not
present a linear response.

The ABT larval abundance data gathered during these surveys are useful for developing an index of abundance,
which would represent the second fishery-independent index of abundance of ABT in the world, and currently
the only fishery-independent index concerning the eastern Atlantic stock. Therefore, the objective of this report
is to present abundance indices of ABT larvae collected around the Balearic Islands based on delta-lognormal
models and to assess how including spawning habitat information can improve the current larval index
calculation methods.

2. Methods
Field sampling methodology

The sampling methodologies for the period 2001-2005 are described in detail in Alemany et al. (2010). ABT
larvae were collected by oblique tows performed down to 70 m in the open sea or down to 5 m above the sea
floor in shallower stations, using a 333 um mesh fitted to 60 cm mouth opening Bongo nets. In addition,
subsurface tows between 5 m deep and surface were carried out at the same stations in 2004 and 2005 by means
of a Bongo 90 net equipped with a 500 um mesh. Also, in 2012, ABT larvae were collected by oblique tows
performed down to the thermocline (~30 m), using a 500 um mesh fitted to a Bongo 90. In each of those years
around 200 stations, located over the nodes of a regular grid of 10 x 10 nautical miles, covering most of the
known ABT spawning areas in this region (from 37.85° to 40.35° N and from 0.77° to 4.91° E), were sampled
during the spawning peak of ABT in the Western Mediterranean. The exact number of sampled stations and the
dates of the surveys are shown in Table 1. In all haul-types, flowmeters were fitted to the net mouths for
determination of the volume of water filtered. Plankton samples were fixed on board with 4% formaldehyde in
seawater. In the laboratory, all fish larvae were sorted under a stereoscopic microscope. Tuna larvae were then
identified to species level. In addition, at each station, a vertical profile of temperature, salinity, oxygen,
turbidity, fluorescence and pressure was obtained using a CTD probe SBE911. The numbers of specimens
collected at a station, with corresponding gear-type, were adjusted to the number of 2-mm larvae, using the
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decay in numbers at size, derived from a length-based catch curve for each gear-type (Figure 1). Due to the
decreased selectivity in both gears for 2-mm larvae a coefficient was also used for adjustment: 1.582459 for
Bongo 60 and 2.331549 for Bongo 90. For years 2004 and 2005, the Bongo 90 larval catches were not measured.
Therefore, in order to adjust these numbers as the others, the length distribution of the 2004-2005, Bongo 90 was
assumed to be that summarized from 2012 survey Bongo 90 length data. Finally, larval density was calculated by
dividing the adjusted catch numbers by the volume filtered by the gear; and larval abundance was calculated by
multiplying the density by the tow depth.

Statistical methodology

From the larval abundance dataset, two larval indices were computed to assess the effect of including the
spawning habitat information in the model development. The first model denoted as “standard larval index”
(SLI), included salinity and sea surface temperature to evaluate if there were any linear effects of these
environmental variable, following previous versions of the larval index in the Balearic Sea (Ingram et al. 2013).
The second model, denoted as “habitat corrected larval index” (HLI) included a spawning habitat quality
variable obtained from a general additive model were the effects of same variables (SST and Salinity) were
combined with day of the year and spatial location. This habitat quality variable used in the HLI accounted for
non linear effects of SST and Salinity on the characterization of the spawning habitat. Coefficients of variation
from both models were used as parameter of model performance.

Model configuration of the “Standard Larval Index” (SLI)

The delta-lognormal index of relative abundance (ly) as described by Lo et al. (1992) was estimated as

(D Iy =c,py,

where ¢, is the estimate of mean CPUE for positive catches only for year y; py is the estimate of mean probability
of occurrence during year y. Both ¢, and p, were estimated using generalized linear models. Data used to
estimate abundance for positive catches (C) and probability of occurrence (p) were assumed to have a lognormal
distribution and a binomial distribution, respectively, and modeled using the following equations:

2 In(c)=Xp+e

and

Xp+e

3) p=— , respectively,

1+e¥h
where c is a vector of the positive catch data, p is a vector of the presence/absence data, X is the design matrix
for main effects, B is the parameter vector for main effects, and ¢ is a vector of independent normally distributed
errors with expectation zero and variance o,

We used the GLIMMIX and MIXED procedures in SAS (v. 9.1, 2004) to develop the binomial and lognormal
submodels, respectively.

Similar covariates were tested for inclusion for both submodels to develop abundance indices: time of day (three
categories: night, day, and crepuscular), month, and year. For the SLI, both the average salinity and temperature
in the mixed layer were included. A backward selection procedure was used to determine which variables were
to be included into each submodel based on type 3 analyses with a level of significance for inclusion of a = 0.05.
If year was not significant then it was forced into each submodel in order to estimate least-squares means for
each year, which are predicted annual population margins (i.e., they estimate the marginal annual means as if
over a balanced population). The fit of each of the submodels were evaluated using AIC, residual analysis for the
lognormal submodel, and the area under a receiver operating curve (AUC), methodology presented by Steventon
et al. (2005), for the binomial submodel.

Therefore, ¢, and p, were estimated as least-squares means for each year along with their corresponding standard

errors, SE(Cy) and SE(py), respectively. From these estimates, |, was calculated, as in equation (1), and its
variance calculated as
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4) V(Iy)zv(cy)pj +cjv(py)+20ypyCov(c, p),

where

5)  Cov(c,p)~p,, [SElc, SE(p, )]

and p., denotes correlation of ¢ and p among years.

Model configuration of the “Habitat corrected Larval Index” (HLI).

Model design was the same as that for the SLI with one modification; a habitat quality indicator was included as
an additional covariate in both the binomial and lognormal submodels, while the temperature and salinity
variables were removed. For the calculation of the habitat quality indicator, the densities of larvae (LD) that were
below 4.5 millimeters in length were standardized to the minimum and maximum values within each year. This
length limitation was selected as proxy of spawning locations. For estimating the habitat quality indicator (HQ)
associated with each sampled station of a given year, the dataset (six years of data), was split into two datasets,
the prediction data set and the fitting dataset: the first one containing data from the considered year and the
second one with data from the other five years. Using the fitting data set, a general additive model (GAM) was
designed to fit the LD to the following explanatory variables: latitude (Lat), longitude (Lon), sea surface salinity
(Sal), day of the year (yd) and residual sea surface temperature (rSST). rSST was defined as the residual of SST
against the day of the year, as both variables were strongly correlated. This variable accounted for stations where
the temperatures were above or below the average for a specific time in the year. This GAM configuration, the
variable selection, and length limitation for the larval followed previous studies of BFT spawning habitat in the
area (Reglero et al.,, 2012). The GAM model, obtained by relating the LD values to the environmental
information and based on the fitting dataset only, was used to predict LD values for the prediction data set. These
predictions were used as the habitat quality indicator (HQ). This process was applied for each sampling
campaign, so predictions of HQ for each year were always based on data from the other five years.

3. Results and Discussion

Table 2 summarizes the data used in these analyses. Sampling occurred during June and July, and the number of
stations per year ranged from 173 to 205 for the Bongo-60 gear and from 197 to 217 for the Bongo-90 gear.
Sizes of larvae collected in the Bongo-60 gear ranged from 1.39 to 8.5 mm and those from Bongo-90 between
1.74 and 11.49mm. Length data for the Bongo-90 gear from 2004 and 2005 surveys are currently unavailable.

The backward selection procedure used to develop the delta-lognormal model for the SLI is summarized in
Table 3. For the binomial submodel, all variables except the time of day variable were retained. For the
lognormal submodel, all variables were dropped from the model except year (Table 3). The AIC for model runs
#5 and #6 increased as area and salinity variables were dropped from the model indicating a possible increase in
lack-of-fit. However, due to the large p-values of the type 3 test for the inclusion, we chose to remove these
variables. Figure 2 summarizes the resulting indices, and Figures 3 and 4 contain diagnostic plots for model
development. The results of the binomial model performance are shown in Figure 3. The AUC value for the
binomial submodel for the SLI was 0.8003. This means that in 80 out of 100 instances, a station selected at
random from those with larvae had a higher predicted probability of larvae being present than a station randomly
selected from those that had no larvae. The residual plot in Figure 4 indicates the approximately normal
distribution of the residuals of the lognormal submodel.

The backward selection procedure used to develop the delta-lognormal model for the HLI is summarized in
Table 4. For the binomial submodel, all variables except the time of day variable were retained. For the
lognormal submodel, all variables were dropped from the model except year and habitat quality (Table 4).
Figure 5 summarizes the resulting indices, and Figures 6 and 7 contain diagnostic plots for model development.
Again, the binomial submodel residuals plotted in Figure 6 have bimodal tendencies. The AUC value for the
binomial submodel for the HLI data was 0.7370. This means that in 74 out of 100 instances, a station selected at
random from those with larvae had a higher predicted probability of larvae being present than a station randomly
selected from those that had no larvae. The residual plot in Figure 7 indicates the approximately normal
distribution of the residuals of the lognormal submodel.
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The final results of the SLI and HLI models showed differences in their coefficients of variation (CVs) along the
six years of data (Table 5). While some years presented very low differences in the CVs (2012, improvement of
0.6%), other years presented CV improvements up to 16% (2003). Three years presented improvements above
10% (2003, 2004 and 2005). The mean improvement of CVs of the HLI against SLI along the six years was 9.07
%. The fact that the highest improvement of HLI against SLI is associated to one of the years where the effect of
temperature was the strongest (2003) may suggest that the spawning habitat quality indicator improves the
capability of the larval index model to account for interannual effects on the sampling distribution due to
differences is the spawning habitat locations. Improving the models by the use of spawning habitat has
demonstrated reduction in the CVs in the larval index. New advances towards the capability of modeling the
spawning habitats will be relevant for future improvements of the ABT stock assessments when including
fishery independent larval indexes.

Another important result from our analysis is the increase in the 2012 survey larval index in relation to the values
calculated for the period 2001-2005. Part of this difference is possibly attributable to the higher ABT larvae
sampling efficiency of the Bongo 90 nets towed obliquely through the first meters of the water column, above
the thermocline, as our own results indicate and have also been observed in the Gulf of Mexico (Habtes et al.,
2014). Thus, the use of Bongo 90 nets fitted with 500 microns meshes allow to capture larger larvae, and the
higher volume of water filtered, in our case 2-3 times larger in Bongo 90 versus Bongo 60 tows, would increase
the probability of capturing ABT larvae in the areas were their density is extremely low. However, considering
that in 2004 and 2005 Bongo 90 nets towed through the upper mixed layer, where the maximum concentrations
of ABT larvae have been observed (unpublished personal data), were also used, we hypothesize that these
differences in the LI are a direct reflection of an increase in the ABT eastern stock spawning biomass, which
occurred during the last several years. Also, the gear selectivities were accounted for and abundances adjusted as
described in Section 2. Moreover, this increase has been observed by other authors using both fishery dependent
methodologies, such as CPUE variations (Gordoa 2013) and fishery independent, such as aerial surveys of
juvenile ABT (Fromentin et al. 2013). One of the causes of this increase have probably been the effectiveness of
the protective measures established within the ABT recovery plan initiated in 2007, as the ban on juvenile
captures and the lower TACs in recent years (Anon. 2013). However, environmental factors have also
contributed to this improvement in the ABT eastern stock state. Specifically, the high proportion of individuals
belonging to the 2003 cohort (Rodriguez-Marin et al. 2013) could be attributed to an exceptionally good
recruitment resulting from environmentally driven higher larval survival rates, associated to very high sea
surface temperatures during the 2003 ABT spawning season in the Mediterranean, as proposed in Garcia et al.
(2013).
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Table 1. Surveys from which data were used for analyses.

Survey Year Start Date End Date Number of stations
TU0601 2001 16JUN2001 07JUL2001 173
TU0602 2002 07JUN2002 30JUN2002 205
TU0703 2003 03JUL2003 29JUL2003 198
TU0604 2004 18JUN2004 10JUL2004 378
TU0605 2005 27JUN2005 23JUL2005 385

ATAMEO0612 2012 21JUN2012 08JUL2012 153

Table 2. Summary of data used in these analyses. B60 and B90 gear type indicate bongo-60 and bongo-90 gear,
respectively.

Numt?er of Mean _
Gear HaulType Sy 100 siartpate  End Date 'S\';e”;f’nigr?sf L(?]?r%t)h S'Z?mRn"]‘)”ge
Analysis

B60 deep oblique 2001 173 17-Jun-01  7-Jul-01 123 3.589 2.0-5.0
B60 deep oblique 2002 205 7-Jun-02  29-Jun-02 332 2.820 2.0-6.0
B60 deep oblique 2003 199 3-Jul-03  29-Jul-03 211 2.709 2.0-8.0
B60 deep oblique 2004 181 22-Jun-04  10-Jul-04 265 3.760 20-8.5
B60 deep oblique 2005 204 28-Jun-05  23-Jul-05 182 3.046 1.39-8.0
B90 subsurface 2004 197 22-Jun-04  9-Jul-04 3300 NA NA
B90 subsurface 2005 217 28-Jun-05 23-Jul-05 866 NA NA
B90 mixed layer 153 21-Jun-12 8-Jul-12 28761 3.616  1.74-11.49

oblique
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Table 3. Backward selection procedure for building delta-lognormal submodels for the SLI.

Lognormal Submodel Type 3 Tests (AIC

Model Run #1 Binomial Submodel Type 3 Tests (AIC 7180.5) 1343.6)
Num Num Den
Effect DF DenDF Chi-Square FValue Pr> ChiSq Pr>F DF DF  FValue Pr>F
Year 5 1390 158.28 31.66 <.0001 <.0001 5 303 11.23 <.0001
Month 1 1390 7.55 7.55 0.0060 0.0061 1 303 0.43 0.5149
Time of Day 2 1390 5.72 2.86 0.0573 0.0577 2 303 0.55 0.5755
Geographic Area 40 1390 63.63 1.59 0.0101 0.0115 40 303 1.13 0.2756
Salinity 1 1390 18.01 18.01 <.0001 <.0001 1 303 2.07 0.1509
Temperature 1 1390 16.78 16.78 <.0001 <.0001 1 303 0.00 0.9711
Lognormal Submodel Type 3 Tests (AIC
Model Run #2 Binomial Submodel Type 3 Tests (AIC 7180.5) 1342.2)
Num Num Den
Effect DF DenDF Chi-Square FValue Pr> ChiSq Pr>F DF DF  FValue Pr>F
Year 5 1390 158.28 31.66 <.0001 <.0001 5 304 11.34 <.0001
Month 1 1390 7.55 7.55 0.0060 0.0061 1 304 0.47 0.4940
Time of Day 2 1390 5.72 2.86 0.0573 0.0577 2 304 0.58 0.5611
Geographic Area 40 1390 63.63 1.59 0.0101 0.0115 40 304 1.17 0.2263
Salinity 1 1390 18.01 18.01 <.0001 <.0001 1 304 2.12 0.1467
Temperature 1 1390 16.78 16.78 <.0001 <.0001 dropped
Lognormal Submodel Type 3 Tests (AIC
Model Run #3 Binomial Submodel Type 3 Tests (AIC 7180.5) 1341.7)
Num Num Den
Effect DF DenDF Chi-Square FValue Pr > ChiSq Pr>F DF DF  FValue Pr>F
Year 5 1390 158.28 31.66 <.0001 <.0001 5 306 11.49 <.0001
Month 1 1390 7.55 7.55 0.0060 0.0061 1 306 0.38 0.5365
Time of Day 2 1390 5.72 2.86 0.0573 0.0577  dropped
Geographic Area 40 1390 63.63 1.59 0.0101 0.0115 40 306 1.21 0.1919
Salinity 1 1390 18.01 18.01 <.0001 <.0001 1 306 242 0.1207
Temperature 1 1390 16.78 16.78 <.0001 <.0001 dropped
Lognormal Submodel Type 3 Tests (AIC
Model Run #4 Binomial Submodel Type 3 Tests (AIC 7180.5) 1341.7)
Num Num Den
Effect DF DenDF Chi-Square FValue Pr> ChiSq Pr>F DF DF  FValue Pr>F
Year 5 1390 158.28 31.66 <.0001 <.0001 5 307 12.05 <.0001
Month 1 1390 7.55 7.55 0.0060 0.0061 dropped
Time of Day 2 1390 5.72 2.86 0.0573 0.0577 dropped
Geographic Area 40 1390 63.63 1.59 0.0101 0.0115 40 307 1.20 0.1991
Salinity 1 1390 18.01 18.01 <.0001 <.0001 1 307 2.15 0.1440
Temperature 1 1390 16.78 16.78 <.0001 <.0001  dropped
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Model Run #5

Binomial Submodel Type 3 Tests (AIC 7180.5)

Lognormal Submodel Type 3 Tests (AIC

1445.9)
Num Num Den
Effect DF DenDF Chi-Square FValue Pr > ChiSq Pr>F DF DF  FValue Pr>F
Year 5 1390 158.28 31.66 <.0001 <.0001 5 347 11.53 <.0001
Month 1 1390 7.55 7.55 0.0060 0.0061 dropped
Time of Day 2 1390 5.72 2.86 0.0573 0.0577 dropped
Geographic Area 40 1390 63.63 1.59 0.0101 0.0115 1 347 2.03 0.1550
Salinity 1 1390 18.01 18.01 <.0001 <.0001 dropped
Temperature 1 1390 16.78 16.78 <.0001 <.0001 dropped
Model Run #6 Binomial Submodel Type 3 Tests (AIC 7180.5) Lognormal Submodel Type 3 Tests (AIC
1447.8)
Num F Num Den
Effect DF Den DF Chi-Square Value Pr > ChiSq Pr>F DF DF  FValue Pr>F
Year 5 1390 158.28 31.66 <.0001 <.0001 5 348 12.65 <.0001
Month 1 1390 7.55 7.55 0.0060 0.0061 dropped
Time of Day 2 1390 5.72 2.86 0.0573 0.0577  dropped
Geographic Area 40 1390 63.63 1.59 0.0101 0.0115 dropped
Salinity 1 1390 18.01 18.01 <.0001 <.0001  dropped
Temperature 1 1390 16.78 16.78 <.0001 <.0001  dropped
Model Run #7 Binomial Submodel Type 3 Tests (AIC 7174.3) Lognormal Submodel Type 3 Tests (AIC
1447.8)
Num Chi- Num Den
Effect DF DenDF  Square FValue Pr> ChiSq Pr>F DF DF  FValue Pr>F
Year 5 5 1392 156.04 31.21 <.0001 5 348 12.65 <.0001
Month 1 1 1392 7.45 7.45 0.0063 dropped
Time of Day dropped dropped
Geographic Area 40 1392 62.94 1.57 0.0118 0.0132 dropped
Salinity 1 1392 17.02 17.02 <.0001 <0001  dropped
Temperature 1 1392 17.69 17.69 <.0001 <.0001 dropped
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Table 4. Backward selection procedure for building delta-lognormal submodels for the HLI.

Lognormal Submodel Type 3 Tests (AIC

Model Run #1 Binomial Submodel Type 3 Tests (AIC 7178.0) 1447.1)
Num Num Den
Effect DF DenDF Chi-Square  FValue Pr> ChiSq Pr>F DF DF FValue Pr>F
Year 5 1482 158.52 31.70 <.0001 <.0001 5 344 13.22 <.0001
Month 1 1482 27.01 27.01 <.0001 <.0001 1 344 0.01 0.9427
Time of Day 2 1482 5.92 2.96 0.0517 0.0520 2 344 1.45 0.2360
Larval Habitat 1 1482 12.42 12.42 0.0004 0.0004 1 344 7.59 0.0062
Quality
Lognormal Submodel Type 3 Tests (AIC
Model Run #2 Binomial Submodel Type 3 Tests (AIC 7178.0) 1446.1)
Num Num Den
Effect DF DenDF Chi-Square FValue Pr> ChiSq Pr>F DF DF FValue Pr>F
Year 5 1482 158.52 31.70 <.0001 <.0001 5 345 14.38 <.0001
Month 1 1482 27.01 27.01 <.0001 <.0001 dropped
Time of Day 2 1482 5.92 2.96 0.0517 0.0520 2 345 1.46 0.2345
Larval Habitat 1 1482 12.42 12.42 0.0004 0.0004 1 345 7.62 0.0061
Quality
Lognormal Submodel Type 3 Tests (AIC
Model Run #3 Binomial Submodel Type 3 Tests (AIC 7178.0) 1447.0)
Num Num Den
Effect DF DenDF Chi-Square FValue Pr > ChiSq Pr>F DF DF FValue Pr>F
Year 5 1482 158.52 31.70 <.0001 <.0001 5 347 14.18 <.0001
Month 1 1482 27.01 27.01 <.0001 <.0001 dropped
Time of Day 2 1482 5.92 2.96 0.0517 0.0520 dropped
Larval Habitat 1 1482 12.42 12.42 0.0004 0.0004 1 347 7.22 0.0076
Quality
Lognormal Submodel Type 3 Tests (AIC
Model Run #4 Binomial Submodel Type 3 Tests (AIC 7157.1) 1447.0)
Num Num Den
Effect DF DenDF Chi-Square FValue Pr> ChiSq Pr>F DF DF FValue Pr>F
Year 5 1484 157.95 31.59 <.0001 <.0001 5 347 14.18 <.0001
Month 1 1484 27.29 27.29 <.0001 <.0001 dropped
Time of Day dropped dropped
Larval Habitat 1 1484 11.98 11.98 0.0005 0.0006 1 347 7.22 0.0076

Quality

Table 5. Coefficients of variation for the larval index models (SLI and HLI) associated with each year.

Year CV-SLI CV-HLI CV improvement (%)
2001 0.416 0.395 5.053

2002 0.454 0.414 8.870

2003 0.513 0.431 15.984

2004 0.293 0.261 10.862

2005 0.269 0.231 14.116

2012 0.228 0.226 0.693
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Figure 1. Decay curves used to back-calculate the number of 2-mm larvae. The equation for the bongo-60 (B60)
curve is N = 2821.37 e'0'6046(length), where N is numbers of larvae and length is in mm, and the equation for

the B9O curve is N = 14401.42¢" *-7°04(lenegth),
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2000 2002 2004 2006 2008 2010 2012

year
PLOT *—— STDcpue ——— LClI
——— UucCl *—*—* obscpue
Scaled  Scaled
Survey Year Frequency N Index . Ccv LCL UCL
Nominal  Index

2001 0.16185 173 4.5955  0.20606  0.57401 0.41577 0.25827 127571
2002 0.12195 205 10.1553  0.32849  1.26847 0.45410 0.53356  3.01559
2003 0.12121 198 1.1346 031804  0.14172  0.51294  0.05391  0.37258
2004 0.18783 378 2.1117  0.76586  0.26377  0.29322  0.14852  0.46846
2005 0.27013 385 1.0196  0.28561  0.12735 0.26898  0.07506  0.21605
2012 0.66667 153  29.0191  4.09594  3.62469 0.22788 231119  5.68468

Figure 2. Standard larval indices (SLI) for Atlantic bluefin tuna in the western Mediterranean Sea. STDcpue is
the index scaled to a mean of one over the time series. Obscpue is the average nominal CPUE, and LCI and UCI
are 95% confidence limits. In the table below, the frequency listed is nominal frequency, N is the number of
bottom longline stations, Index is the abundance index in CPUE units, Scaled Index is the index scaled to a mean
of one over the time series, CV is the coefficient of variation on the index value, and LCL and UCL are 95%

confidence limits.
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ROC Curve for Model
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Figure 3. ROC curve diagnostic of the binomial submodel for SLI in the western Mediterranean Sea.
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Q-Q Plot for Resid
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Figure 4. QQplot of chi-square residuals of the lognormal submodel for the SLI in the western Mediterranean
Sea.
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2000 2002 2004 2006 2008 2010 2012
year
PLOT <= STDcpue <~ LCI
s<=<UCl ¢—+—¢ obscpue
Scaled  Scaled
Survey Year Frequency N Index . LCL UCL

Nominal  Index
2001  0.16185 173 5.0638  0.20606 0.67769 0.39476 0.31658 1.45070
2002  0.12195 205 59756  0.32849 0.79972 0.41382 0.36108 1.77122
2003  0.12121 198  3.7981 0.31804 0.50830 0.43095 0.22265 1.16041
2004  0.18783 378 1.7123  0.76586 0.22916 0.26137 0.13704 0.38319
2005  0.27013 385 1.2700  0.28561 0.16997 0.23101 0.10772 0.26817
2012 0.66667 153 27.0132  4.09594 3.61517 0.22630 2.31216 5.65250

Figure 5. Habitat-adjusted larval abundance indices (HLI) for larval Atlantic bluefin tuna collected in the
western Mediterranean Sea. STDcpue is the index scaled to a mean of one over the time series. Obscpue is the
average nominal CPUE, and LCI and UCI are 95% confidence limits. In the table below, the frequency listed is
nominal frequency, N is the number of bottom longline stations, Index is the abundance index in CPUE units,
Scaled Index is the index scaled to a mean of one over the time series, CV is the coefficient of variation on the

index value, and LCL and UCL are 95% confidence limits.
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ROC Curve for Model
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Figure 6. ROC curve diagnostic of the binomial submodel for HLI in the western Mediterranean Sea.
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Q-Q Plot for Resid
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Figure 7. QQplot of chi-square residuals of the lognormal submodel for the SLI in the western Mediterranean
Sea.
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