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SUMMARY 

 

A generalized Bayesian surplus production stock assessment software (BSP2) is presented as an 

update to ICCAT’s current BSP software. BSP2 differs from BSP in a few different respects. 

Most importantly, BSP2 provides a state-space implementation of the deterministic Bayesian 

generalized surplus production model found in BSP. BSP2 models both process error in the 

dynamics equations to account for the effects of, e.g., interannual variation in recruitment, and 

error in predicted observations. BPS2 provides outputs to enable the computation of Bayes 

factors (BFs). BFs show Bayes posterior weights for different models and can be particularly 

important when structurally different models suggest different interpretations of stock status. A 

generalized production function implementation (i.e., the Fletcher model) is incorporated in 

which the ratio of the most productive stock size to carrying capacity can be set at hypothesized 

values other than the Schaefer model value of 0.5. The software can accommodate a variety of 

different priors for key parameters including carrying capacity (K), the maximum rate of 

population increase (r), and the ratio of stock biomass in the initial year to carrying capacity 

(Binit/K).  

RÉSUMÉ 

 

Le programme d'évaluation des stocks de production excédentaire bayésienne généralisée de 

l'ICCAT (BSP) est présenté en tant qu'actualisation du programme BSP actuel de l'ICCAT. Le 

BSP2 diffère du BSP à différents égards. Plus important encore, le BSP2 fournit une mise en 

œuvre état-espace du modèle bayésien déterministe de production excédentaire généralisée 

rencontrée dans le BSP. Le BSP2 modélise à la fois l'erreur de processus dans les équations 

dynamiques pour tenir compte des effets de, p.ex. la variation interannuelle dans le 

recrutement, et l'erreur dans les observations prédites. Le BSP2 fournit des résultats afin de 

permettre le calcul des facteurs bayésiens (BF). Les BF montrent les pondérations bayésiennes 

a posteriori pour différents modèles et peuvent s'avérer particulièrement importants quand des 

modèles structurellement différents suggèrent différentes interprétations de l'état du stock. Une 

mise en œuvre de la fonction de production généralisée (p.ex. le modèle de Fletcher) est 

incorporée en vertu de laquelle le ratio de la taille du stock le plus productif par rapport à la 

capacité de charge peut être établi à des valeurs postulées autres que la valeur de 0,5 du 

modèle de Schaefer. Le programme peut intégrer plusieurs priors pour les paramètres-clés, 

dont la capacité de charge (K), le taux maximum d'accroissement de la population (r) et le ratio 

de la biomasse du stock de l'année initiale par rapport à la capacité de charge (Binit/K).  

 

RESUMEN 

 

Se presenta un programa de evaluación de stock de producción excedente bayesiano 

generalizado (BSP2) como actualización para el actual programa BSP de ICCAT. El BSP2 

difiere del BSP en unos cuantos aspectos. El más importante, el BSP2 proporciona una 

implementación estado-espacio del modelo de producción excedente bayesiano generalizado 

determinista de BSP. El BSP2 modela tanto el error de proceso en las ecuaciones dinámicas 

para tener en cuenta los efectos de, por ejemplo, la variación interanual en el reclutamiento, y 

el error en las observaciones predichas. El BSP2 proporciona resultados para permitir el 

cálculo de los factores Bayes (BF). Los BF muestran las ponderaciones posteriores bayesianas 

para diferentes modelos y pueden ser especialmente importantes cuando modelos 

estructuralmente diferentes sugieren distintas interpretaciones del estado del stock. Se 

incorpora la implementación de una función de producción generalizada (es decir, el modelo 

Fletcher) en la que la ratio entre el tamaño más productivo del stock y la capacidad de 

transporte puede establecerse en valores hipotetizados diferentes al valor de 0,5 del modelo 

Schaefer. El programa puede integrar una amplia variedad de distribuciones previas diferentes 
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para parámetros clave, lo que incluye la capacidad de transporte (K), la tasa máxima de 

incremento de la población (r) y la ratio de la biomasa del stock en el año inicial con respecto 

a la capacidad de carga (Binit/K).  
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Introduction 

 

This paper presents an updated version of ICCAT’s deterministic Bayesian surplus production model (BSP) 

software documented in McAllister et al. (2001) and McAllister and Babcock (2006). The updated software 

offers a state-space model version that permits the user to specify a fixed value for the standard deviation in 

annual deviates from the state dynamics equations. Observation error variance is obtained via iterative re-

weighting. The updated software enables the computation of Bayes factors for different model runs when 

structurally different models are fitted to the same data sets (Kass and Raftery 1999). Bayes factors provide an 

empirical probabilistic basis to evaluate the credibility of different model runs and can be applied to summarize 

uncertainty in results between different model runs and combine these results to form mixture distributions that 

represent the joint uncertainty between different models (McAllister and Kirchner 2002). The updated software 

includes as before a generalized production function in which the ratio of biomass at maximum production to 

carry capacity can be fixed at values other than the constant of 0.5 in the Schaefer production model (McAllister 

et al. 2000). An implementation in which fishing effort for a given fishing fleet is used as a covariate for fishing 

mortality rate and the catchability coefficient is estimated from the prediction of one or more catch observations 

is incorporated (Stanley et al. 2009).  

 

The updated software has been developed through implementations in peer-reviewed assessments of numerous 

Canadian fish stocks (e.g., Stanley et al. 2009, 2012, Yamanaka et al. 2012a, McAllister and Duplisea 2011). 

The updated BSP software has offered a flexible framework with which to explore alternative hypotheses about 

how growing seal and sea lion populations have impacted rockfish populations (Yamanaka et al. 2012a), about 

technological creep in abundance indices derived from long time series of commercial trawl data (King et al. 

2012), and about how bycatch in spatially extensive non-target fisheries have contributed to stock declines in 

low productivity rockfish stocks (Stanley et al. 2009, 2012). The updated BSP software (BSP2) is illustrated 

with an application to data from the 2013 stock assessment of North Atlantic swordfish (ICCAT 2010).  

 

 

Surplus production model equations 

 

The updated BSP software (BSP2) applies a Bayesian surplus production model (Prager 1994; McAllister and 

Babcock 2006) that utilizes Sampling Importance Resampling (Rubin 1987, 1988). The surplus production 

model is updated using a conventional state-space formulation (Millar and Myer 2000; Stanley et al. 2009). The 

version of the model applied in this updated BSP software package have been developed for and applied in 

several peer-reviewed stock assessments that have been conducted by Fisheries and Oceans Canada. These 

include B.C. Bocaccio rockfish (Stanley et al. 2009, 2012), inside waters yelloweye rockfish (Yamanaka et al. 

2012a), inside and outside waters quillback rockfish (Yamanaka et al. 2012b), four offshore lingcod stocks 

(King et al. 2012) and four Atlantic redfish stocks (McAllister and Duplisea 2011, 2012). Required inputs for the 

program are a time series of catch biomass starting from near the beginning of the fishery, at least one catch rate 

(CPUE) index of abundance with coefficients of variation (CV) for model fit deviations and fixed values for the 

state-space process error variance (process) and autocorrelation coefficient for future process error deviates (). 

Estimated parameters include carrying capacity (K), the maximum intrinsic rate of population growth (r), the 

biomass in the first modeled year defined as a ratio of K (p0), variance parameters for each CPUE series, and 

constant of proportionality (q) for each CPUE series. Prior probability distributions (priors) were specified for all 

of the estimated parameters.  
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Deterministic model components 

 

The default surplus production model in the software is Prager's instantaneous F version of the Schaefer 

production model (Schaefer 1954; Prager 1994). State dynamics are modelled by assuming that biomass in a 

given year is a function of biomass in the previous year, the instantaneous fishing mortality rate, and two 

parameters that describe the impact of earlier biomass in growth, r and K: 
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where y is the year, By the stock biomass at the start of year y, r the intrinsic rate of increase, K the carrying 

capacity and Fy the instantaneous fishing mortality rate during year y. For the initial year, an additional 

parameter, p0, is estimated which gives the ratio of initial stock biomass to carrying capacity (e.g., for north 

Atlantic swordfish, p0 = B1950/K). 

 

Abundance indices are assumed to be directly proportional to stock biomass. The deterministic observation 

equation is: 

 

(F2)   
yjyj BqI ,

ˆ
 

 

where qj is the constant of proportionality for the abundance index j, Ij,y the observed abundance index j in year y 

and is the model predicted value for Ij,y.  

 

 

Stochastic model components 

 

The state-space approach allows for deviations from model predictions (i.e., random variability) in both (i) the 

data (e.g., relative biomass indices) and (ii) the unobserved state of the system of interest (e.g., annual stock 

biomass that has recruited to the fishery) (Millar and Meyer, 2000). These two components of the system are 

modelled within a single probabilistic framework that can be highly flexible (Rivot et al., 2004). Fisheries 

modellers tend to choose multiplicative lognormal errors (Millar and Meyer, 2000), which is what is applied in 

the presented model. The abundance index data are assumed to be lognormally distributed: 

 

(F3)  
  2
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where Ij,y is the observed index of abundance for series j in year y, is the predicted index for series j and 

σobs, j is the standard deviation in the error deviation between the log predicted index and the log 

observed index j. 

 

The stochastic form equation F1 (i.e., the process equation) is: 
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Given these equations, the expected value for By+1 is: 
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Also, under unfished conditions the posterior mean of By is K and under the maximum sustainable harvest rate 

the posterior mean of By is K/2.  

 

The stochastic form of equation F2 (i.e., the observation equation) is: 

 

(F5)    

 

where .  

 

Both εprocess,y and εobs,j,y are i.i.d. random variables in all modelled years up to 2012. For each future year in the 

projections, I have modelled εprocess,y to be positively autocorrelated with a correlation coefficient,  (see Stanley 

et al. (2009) for details on the autocorrelation equations). There were too few years in which it was possible to 

estimate the correlation in process error deviates because non-zero estimates of process error only became non-

zero after 2000. I therefore applied the commonly applied default value for  of 0.5. The sensitivity of results to 

different values for  was evaluated in the BSP application to bocaccio (Stanley et al. 2009) and projection 

results were found to be relatively insensitive to values between 0.5 and 0.7 but more pessimistic than assuming 

that  = 0. 

 

A summary of key parameters estimated in the surplus production model is provided in Table 1. A summary of 

derived management parameters is provided in Table 2. 

 

A summary of prior distributions for estimated parameters is given in Table 3. A more detailed description of 

the methods used to determine each prior is provided below.  

 

 

Computing a prior density function for the maximum intrinsic rate of increase (r) 

 

The prior for r for North Atlantic swordfish that had been formulated by McAllister et al. (2000) and had been 

applied in assessments since then was updated using an updated methodology and inputs. McAllister et al. 

(2000) applied a stochastic life-table approach to compute a prior for the maximum intrinsic rate of increase (r) 

for North Atlantic swordfish. This is the base case prior for r that has been applied in ICCAT’s BSP applications 

to Atlantic swordfish since then. McAllister et al.’s (2000) methodology includes input distributions for the 

survival rate of pre-recruits and the natural mortality rate of fish that have recruited to the exploitable stock 

biomass. It presumes fixed assumptions about fecundity at age and the fraction mature at age. This methodology 

has been extended in Canadian BSP2 stock assessments (e.g., Stanley et al. 2009; Yamanaka et al. 2012a) to a 

more easily parameterized protocol that applies the Euler-Lotka method to compute r (Lotka 1907) which offers 

a near exact approximation of the Leslie matrix approach (McAllister et al. 2001). Stanley et al. (2009) replaces 

the prior for egg to age 1 survival rate with a prior for the steepness stock-recruit parameter. Steepness is a 

unitless parameter that reflects the fraction of average unfished recruitment achieved when spawning potential is 

reduce to 20% of unfished conditions. While it was possible to use literature based estimates of batch fecundity 

and frequency of spawning bouts to formulate a prior for egg to age zero survival rate (McAllister et al. 2000), 

the quantification of uncertainty in survival rate was entirely arbitrary. The formulation of a prior for the 

steepness parameter is more accessible due to its common usage in stock assessments and the numerous meta-

analyses of stock-recruit data sets that have formulated priors for steepness whereby the central tendency and 

variance can have a rigorous empirical basis (Dorn 2002; Michielsens and McAllister 2004; Forrest et al. 2010). 

The updated methodology includes uncertainty the stock-recruit steepness (h) parameter and the rate of natural 

mortality (M), means and variances for the female growth parameter estimates, the length to weight conversion 

factors, and parameters for the fraction maturity-at-age schedule (the prior covariances in parameter values can 

be assumed to be zero or can be empirically based). See appendix A for details on the updated methodology and 

inputs. The resulting prior was lognormal with a mean of 0.424 and a CV of 0.39.  
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Carrying capacity (K) 

 

The prior for carrying capacity (K) in BSP has been commonly assumed to be uniform over a large range of 

values, e.g., between 5,000 tonnes and 1,000,000 tons in the current illustration, to enable equal credibility for 

small and large possible values for K. The upper bound could be set at the highest unfished stock size of any 

related fish stock worldwide or at some large value beyond the support of the data (i.e., where the posterior 

density is very close to zero relative to the mpd).  

 

In some stock assessments, (e.g., McAllister and Duplisea 2011; King et al. 2012) a uniform prior on K has 

appeared to be unsuitable because posterior distributions for some assessed stock units had a thick tail at the 

upper bound. This problem has previously been noted by Millar and Meyer (2000). An alternative approach is to 

apply a uniform prior over the log of K with the same upper and lower bounds (see McAllister and Duplisea 

2011 and King et al. 2011). This alternative thins out the flat upper tail in posteriors for K and initial stock size, 

but has relatively little influence on posterior median results for all quantities of interest. 

 

Chris Francis (pers. commn) has suggested that uniform on log K or uniform on log(B0) is more consistent with 

logical reasoning about uncertainty than a uniform on K prior. For example, it would appear to be more logically 

consistent to suggest that relative ranges of values are equally credible at different point values for K. Take for 

example a hypothesized value for K of e.g. 100,000 tons. A biologist could claim quite fairly that he or she is 

uncertain about K plus or minus 50% whether it was 100,000 tons, 500,000 or 5,000,000 tons. It would seem to 

be less credible to claim that he or she was equally uncertain whether it was 100,000 tons plus or minus 50,000 

tons (plus or minus 50%) or 500,000 tons, plus or minus 50,000 tons (i.e., plus or minus 10%) or 5,000,000 tons 

plus or minus 50,000 tons (plus or minus 1%). Presuming a constant fixed range of values at increasingly higher 

values for K would thus appear to be increasingly more certain at higher values of K. In contrast, a uniform on 

log K prior would imply the same relative (or percentage) uncertainty at increasingly higher values of K. The 

uniform prior over the log of K is thus suggested as an alternative reference case prior for K.  

 

 

Ratio of initial biomass to carrying capacity (P0) 

 

The first year of the total catch time series for North Atlantic swordfish is 1950. The prior distribution for po 

from previous Atlantic swordfish assessments suggests the stock biomass in 1950 (B1950) was at lightly fished 

conditions at this time. The prior for p0 was assumed to be log-normal with a prior mean of 0.85 and a SD in 

log(p0) of 0.25 (ICCAT 2010). 

 

 

Process error variance 

 

To illustrate the implementation of a state-space BSP model, the standard deviation of εprocess,y, σprocess, was 

arbitrarily set at different values ranging from 0.005 to 0.15 in several different model runs to evaluate the effect 

on stock assessment results of applying different values for σprocess. Implementing non-zero values for σprocess 

allows the model to account for interannual variability in stock biomass due to variability in stock dynamics 

processes that were not explicitly modeled (e.g., interannual variability in recruitment, variation in growth and 

the rate of natural mortality). A value for σprocess of 0.05 would result in interannual changes in total recruited 

stock biomass of about 5% on average. A continued run of 5% positive errors would result in a net 28% increase 

in stock biomass in five years, all other things being equal. This would be 45% with σprocess set at 0.075, 65% at 

0.1 and about 111% at 0.15. As the value for σprocess increases, numerical integration becomes less 

computationally efficient. This is due to more of the importance draws resulting in trajectories that are 

inconsistent with the data and that cause the population to crash prior to the current year. The number of draws 

required to achieve reasonably precise estimates of the target posterior density functions thus increased markedly 

as σprocess was increased to 0.15 and final posterior approximations, though sufficiently precise were slightly 

more bumpy with the largest values tried for σprocess. As σprocess was increased, it would be expected that the 

outputted value for σobs,j at the mpd would decrease. In this instance, the model fit value for σobs,j at the posterior 

mode was insensitive to the inputted value for σprocess and remained at about 0.25. 

 

As in Stanley et al. (2009) and McAllister and Duplisea (2012), I will evaluate the sensitivity of results to this 

parameter. I have applied a range of values including 0.005, 0.01, 0.05, 0.075, 0.1 and 0.15. The lowest setting 

for σprocess, i.e., at 0.005, approaches an observation error only model and the model behaved nearly identically to 

the original BSP model version (McAllister and Babcock 2006). 
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Observation error variance 

 

Values for σobs,j (i.e., the standard deviation of εobs,j, from equation F-5) using this methodology are obtained by 

implementing a procedure of iterative reweighting for each model run. For each abundance index, a trial inputted 

value for σobs,j is applied and a model fit value for σobs,j is obtained at the posterior mode or maximum posterior 

density (mpd). This value is taken and inputted and the model is rerun subsequently to obtain the mpd of 

parameter values. This iterative process is repeated until the inputted and model fit values are practically 

identical (usually only one or two iterations is sufficient). The last outputted value for σobs,j is increased by about 

20% and applied as an input to importance sampling to accommodate model fits that deviate from the posterior 

mode and to thus avoid producing posterior distributions that are too narrow, i.e., based on values for σobs,j 

obtained at the mpd. The outputted values obtained for σobs,j tended to be similar across different model runs (at 

about 0.25), with 0.3 being the value that was applied in all runs.  

 

It is presumed that values for σ2
obs,j are the sum of (i) the variance for each index j, determined analytically from 

the construction of the survey indices (σ2
ind,j) and (ii) the variance presumably due to interannual processes 

affecting the annual availability of the fish stock to the gear or fleet associated with the abundance index (σ2
int,j) 

(e.g., due to variation in the spatial distribution of the fish stock, σ2
obs,j = σ2

ind,j + σ2
int,j ). Thus in the iterative 

reweighting, when values for σind,j were available, the values for σint,j were adjusted so that the inputted values for 

σobs,j exceeded by about 20% the values for σobs,j that were outputted from the stock assessment model.  

 

 

Constant of proportionality (q) 

 

The prior probability density function (pdf) for the constant of proportionality for abundance indices, qj, is by 

default treated as uniform on the log of qj over the interval [-20,2]. Thus, the prior for q is treated as non-

informative over a wide range of potential values. This is the so-called “Jeffrey’s prior” which is commonly 

applied to scale parameters such as q (Box and Tiao 1973). When there's been no scientific research devoted to 

formulating and informative prior for q, it is commonly accepted that the most defensible prior for q is a non-

informative one that ranges from values less than one to values above one (McAllister et al. 1994; McAllister 

and Ianelli 1997).  

 

The computational shortcut of Walters and Ludwig (1994) for integrating the joint posterior pdf with respect to 

scale parameters such as q is implemented in BSP (McAllister and Babcock 2006) and BSP2. BSP2 implements 

this shortcut for the lognormal likelihood function of abundance indices when σobs,j is either constant for an index 

or varies by year. The software also implements this shortcut should a normal density function of the abundance 

indices be applied, e.g., when there are one or more abundance index values that are zero (Stanley et al. 2009).  

 

 

Method of approximation of the posterior distribution 

 

The sampling/importance resampling (SIR) algorithm was used to compute marginal posterior distributions for 

BSP model parameters and quantities of interest (Rubin 1987, 1988; McAllister et al. 1994). Importance 

sampling can be shown via the strong law of large numbers (Ross 2009) and a five line statistical proof 

(Appendix 2) that as the number of samples increases, the importance sampling distribution approaches the 

posterior density function for model parameters and derived quantities of interest (Berger 1985, p.263; 

McAllister et al. 1994). With the application of an importance function with good properties (Oh and Berger 

1992), importance sampling can be reasonably swift and numerically efficient for problems with up to about 110 

combined key and nuisance parameters (e.g., Stanley et al. 2012). An additional convenient feature of 

importance sampling is that it provides an efficient numerical approximation of the probability of the data given 

the model, which is required for the computation of Bayes factors in the evaluation of the credibility of 

alternative models given the data (Kass and Raftery 1995). 

 

The key output statistics computed include marginal posterior distributions of current stock biomass (B2012), 

current stock biomass to carrying capacity (B2012/K), the ratio of current stock biomass to stock biomass at MSY 

(B2012/BMSY), the replacement yield in 2012 (RepY2012), the ratio of the replacement yield in 2012 to the catch 

biomass in 2012 (RepY2012/C2012), and the ratio of fishing mortality rate in 2012 to fishing mortality rate at MSY 

(F2012/FMSY). Posterior samples of B2012/BMSY, F2012/FMSY, and posterior medians for By/BMSY, Fy/FMSY, are also 

outputted for the formulation of a Kobe plot to indicate stock status.  
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For the majority of runs, precise and consistent approximations of posterior distributions were obtained with runs 

that took only about 5 minutes on a notebook computer (i.e., about one million draws from the importance 

function). In a few instances, longer runs were required (i.e., up to 36 million importance samples) since the 

importance functions applied were for some parameters, e.g., K, considerably wider than their marginal 

posteriors, and the strong correlation patterns between some of the parameters, e.g., were only partially 

accounted for in the importance function applied. However, a run of 36 million however took only a few hours 

of computing. The marginal posteriors for the quantities of interest were reliably estimated with the maximum 

importance ratio for any one draw taking no more than about 0.5% in each of the runs conducted. Runs using 

alternative importance functions, (e.g., with different variances in the key parameters), yielded practically 

identical marginal posterior estimates. Post model, pre-data runs were carried out using a few different priors for 

K, to evaluate the effect on the model output distributions for key quantities of interest of running the model with 

the priors and the catch data. The marginal prior and posterior pdfs of r and K are plotted below to show the 

extent to which priors have been updated. SIR was also applied to compute Bayes factors when comparing the 

credibility of alternative model settings to the reference case runs (see below). Due to major differences in 

interpretation, Bayes factor comparisons should not be made between runs with different priors for K, e.g., 

between runs with uniform on K and uniform on log K priors. 

 

 

Diagnostics for importance sampling 

 

BSP and BSP2 software provides both numerical and graphical outputs to help diagnose how importance 

sampling is performing in approaching an approximation of the posterior distribution. These different diagnostic 

methods are detailed in McAllister and Kirchner (2002), McAllister et al. (2002) and McAllister and Babcock 

(2006). The two most important diagnostics are the ratio of the maximum importance weight to the sum of the 

importance weights from a given set of draws, n, from the importance function, %mwt. As n increases, %mwt 

should drop systematically, with occasional small increases when a draw that resets the maximum weight occurs. 

No one draw should take more than a few percentage of the sum of the weights compiled from importance 

sampling. The maximum weights should not consistently occur in the tails of the marginal posterior distribution 

for any one estimated parameter. Take for example, K. A good choice of an importance function would provide 

maximum weights occurring more in the area of highest posterior density. A poor choice of an importance 

function would tend to result in maximum weights coming from draws in the upper tail of the posterior 

distribution with the value for K at the maximum weight getting progressively larger as importance sampling 

increases. This would indicate that the marginal density for K in the importance function has tails that are sharper 

than those of the marginal posterior distribution for K and that importance sampling should be stopped and 

adjustments should be made to thicken the tails of the importance function for K.  

 

The BSP2 software provides live updated values of %mwt, a graph of %mwt against the number of importance 

samples, a table printing values for all parameters at the posterior mode and a table next to it printing values for 

all parameters obtained at the draw with the maximum weight. Should the value for e.g. K at the maximum 

weight be consistently several times higher than the value at the mode and should this value at the maximum 

weight increase as %mwt are updated, then this would indicate that importance sampling should be stopped and 

the importance function readjusted to improve sampling efficiency.  

 

A second useful diagnostic is the ratio of the coefficient of variation (CV) in the weights to the CV in the product 

of the prior and the likelihood function from the draws taken from the importance function (CV(w)/CV(LP)). A 

ratio of less than one suggests that the variation in the weights from the importance samples taken is less than the 

variation in the posterior surface and that the importance function applied is providing a stable approximation of 

the posterior distribution of interest. For example, if the importance function was actually the posterior density 

function itself, the value of the importance weights from importance draws would be constant and CV(W) would 

be zero. However, the variation in LP would reflect the variation in the relative posterior density of values of 

parameters taken from the importance function. The values of CV(w) and CV(LP) are also printed in an on-

screen table, live with updates as importance sampling is carried out. With the most efficient importance 

functions for BSP2 and good datasets, CV(w) can remain as low as less than five. However, should a large value 

for σprocess be applied, e.g., 0.15, CW(w) could be in the low to mid 200s.  
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Definition of reference case 

 

I develop and present results using a reference case set of inputs and assumptions. For the reference case run, all 

inputs, assumptions and settings are to be based where possible on the best available information and scientific 

judgment. Prior distributions used in the reference case have been described above. The following list 

summarizes the key settings for the North Atlantic swordfish case study application: 

 

 Prior mean r formulated for this stock (Appendix A). 

 

 Stock trend index was the base case stock trend index in ICCAT (2013). 

 

 Likelihood function of the abundance index data follows a lognormal distribution as in ICCAT (2009) 

 

 Schaefer surplus production function (BMSY/K=0.5) (as in ICCAT 2010) 

 

 Prior mean p0 (B1950/ K) = 0.85, prior SD(log(p0))=0.25 as in ICCAT (2009). 

 

 σprocess set at 0.05. 

 

 Uninformative prior for q 

 

 Lag 1 autocorrelation with the autocorrelation coefficient, , set at 0.5 starts in 2012 (see Stanley et al. 

2009 for the equations). 

 

 CVs for stock trend indices obtained by iterative reweighting, with fixed observation error from survey 

imprecision and process error components determined by fitting the BSP model to the data to find the 

parameter values that give the maximum posterior density (mpd). 

 

I allowed for the possibility of updating the reference case settings based on Bayes factor results obtained after 

fitting the model to the data in the different sensitivity analyses. I applied conservative criteria for updating the 

reference case settings to reduce the possibility of making excessively frequent and numerous changes or poorly 

justified changes that could result from random variation in the data when reference case settings are actually 

better approximations than the alternative settings. I would consider suggesting a revision of the reference case 

settings only if there was a very strong weight of evidence (e.g., a Bayes factor of less than 1/50 (see below)) 

against the reference case setting compared to the most credible alternative setting for some model component) 

in the posterior results.  

 

 

Sensitivity analyses 

 

Sensitivity tests were conducted to evaluate the effect of stock assessment model assumptions on stock status 

and projection results. A summary of the additional model runs carried out in this assessment is provided in 

Table 4, and a brief description of each analysis is provided below. 

 

Prior distribution for K - To evaluate the sensitivity of model results to the prior distribution for K, two 

additional runs were conducted: one with a uniform on log K prior and a lognormal prior for K with a mean of 

200,000 tons and a SD in the log of K of 0.8.  

 

Prior distribution for r - To evaluate the sensitivity of model results to the informative prior distribution for r, 

two additional runs were conducted: one with a high prior mean for r and one with a low prior mean for r. The 

low r prior was obtained by applying a prior mean for r (0.28) that was two thirds of the reference case prior 

mean, while the high r prior was obtained by using a prior mean (0.56) that was one third higher than the 

reference case prior mean (0.42). The prior CVs were held constant at 0.49.  

 

Prior distribution on B1950/K (p0 or Binit/K) - p0 typically cannot be estimated from available data and when catch 

records are available from near to the beginning of the fishery or lightly exploited conditions it is commonly 

assumed that Binit/K falls at 90-100% of K. It has been found that if the catch series is more than a few decades, 

the final results are insensitive to the value assumed for p0, provided it is over about 50%. In the BSP model, 

alternative prior means of 0.7 and 1.0 were considered.  
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Uncertainty in catch estimates - The influence of uncertainty in historic catch is evaluated by conducting runs 

where annual fixed catch values for all fisheries combined are set at 75% and then 150% (i.e., 0.5 and 2.0 times) 

of the time series of compiled fixed catch values. It is presumed that catch records earlier in the series were less 

well determined than those later in the series. Arbitrarily, 1985 was presumed as the cut-off point between less 

and more well determined catch records. Thus one alternative set of catch records was obtained by multiplying 

catch records 1950-1985 by 0.75 and leaving the catch records in subsequent years as is. A second alternative set 

of catch records was obtained by applying a catch multiplier of 1.5 also only to records 1950-1985.  

 

Uncertainty in the standard deviation (SD) in process error (p) deviates in annual stock biomass – Due to 

having one only time series of abundance, it is not possible to jointly estimate p and the standard deviation in 

observation error deviates for the different abundance indices (o). I thus evaluated the sensitivity of results to 

applying a lower and higher value for p. The values applied in this sensitivity analysis were 0.005, 0.01, 0.05, 

0.075, 0.10 and 0.15.  

 

Uncertainty in the form of the surplus production function – it is typically not possible to estimate the third 

parameter in generalized surplus production functions such as the Fletcher or Pella Tomlinson models (Quinn 

and Deriso 1999). It is common thus to apply only the Schaefer surplus production model for which Bmsy/K is 

fixed at 0.5. McAllister et al. (2000) provide a variant of the Fletcher production function that can incorporate an 

informative prior for r and avoids the infinite slope at the origin of the Fletcher and Pella Tomlinson functions 

when Bmsy/K approaches and drops below 1/e (about 0.368). The original BSP and updated BSP2 software 

packages include this Fletcher model variant. I evaluate the sensitivity of results to setting Bmsy/K at 0.3, 0.4 and 

0.6.  

 

 

Evaluation of credibility of alternative sensitivity analysis scenarios 

 

To compare the credibility of competing model runs given the data in sensitivity analyses, I computed Bayes 

factors (Kass and Raftery 1995) for the reference case and for each of the related sensitivity runs. Bayes factors 

account for both the relative goodness of fit of the model to the data and the parsimony for each of the alternative 

models. They are calculated as the ratio of the marginal probability of the data for one model to that for another 

model. Bayes factors were computed by approximating the marginal posterior probability of the data given the 

model using the average value of the importance weights obtained from each model run (Kass and Raftery 1995; 

McAllister and Kirchner 2002). In all instances I referenced Bayes factors to our reference case model settings, 

i.e., the probability of the data for the reference case model was placed in the denominator and that for the model 

to which it was compared in the numerator. It is commonly held that nothing should be made of Bayes factor 

unless the value for it departs substantially from 1. Even fairly large or small Bayes factors can come from 

random chance in the data and possible misspecification of probability models for the data, e.g., treating annual 

errors for each observed index value as independent when they may not be independent. Thus, while a factor of 

1/10 may appear to provide strong evidence against a model, the difference in fits of the model to the data could 

still have resulted from random chance in the data. Intermediate values for Bayes factor (e.g., between about 

1/100 and 100) should be interpreted with restraint. Models with Bayes factors of about 1/100 could be 

interpreted as unlikely but not discredited. When Bayes factor is less than 1/1000, the model with lower 

credibility can be viewed as highly unlikely relative to the other.  

 

Bayes factors can be used in decision tables to indicate the relative weight of results from different scenarios that 

are presented in a decision table (e.g., Yamanaka 2012a, 2012b, King et al. 2012). As has been noted previously 

it is recommended that the posterior probabilities that can be derived from Bayes factors for different model runs 

not be applied for model averaging of results especially for stock status indicators. Taking the average of results 

obtained from different models to provide a management recommendation could be nonsensical and possibly 

dangerous depending on how the combined results are presented. For example, the mean or median value of a 

bimodal mixture distribution could yield an intermediate result between the two alternative scenarios that had 

close to zero probability density, i.e., close to zero credibility compared to values closer to the modes of the 

mixture distribution. This could happen when the modes were separated and there was close to zero probability 

density between the modes in the mixture distribution. In such case, it would be inappropriate to report the 

model averaged, e.g., mean or median value from the combined outputs from two different models. This point 

has been made numerous times in the past and there should be some conventions adopted for instances in which 

there is multi-modality in the combined output distributions from different models, e.g., if there is multi-

modality it would appear to report output values only from the different modes, and not from the medians, or 

means of the combined distribution.  

 

1733



   

The outputted value that is to be used in Bayes factor computations is the natural logarithm of the average 

importance weight taken from all of the samples from the importance function. Bayes factor for a given model 

run, i, is computed as: 

 

  

 

where  is the average value for the importance weights from model i,  is the average value for the 

importance weights from the reference case model and const is a constant value that prevents the operation from 

producing excessively large or small values. The value for  can be found in the histogram output file 

beside the label, log(average_wt). 

 

 

Results 

 

Post-Model Pre-Data Runs 

 

A useful diagnostic from a Bayesian numerical integration is the so-called “post-model, pre-data” distribution. In 

this instance, the post model, pre-data distribution shows how the priors interact with the BSP model, and fixed 

inputs for catch before the model is fitted to the abundance index data. The post-model, pre-data distributions 

show the effect of the priors for model parameters, when applied in combination with the inputted values for 

catch, on the output distributions for the model parameters and quantities of interest such as current stock 

biomass and replacement yield. It is possible to find out whether the priors acting in combination and with the 

catch data within the simulated model structure lead to output distributions for, e.g., r and K that are markedly 

different from their priors, and thereby impact the shape of the output distributions for initial and current stock 

biomass. This allows analysts to evaluate the extent to which fitting the model to abundance index data updated 

the distributions determined by the interaction of the priors and inputted catch records within the stock 

assessment model formulation. 

 

When a uniform on K prior was applied, the marginal output distributions for K and r, from the post-model pre-

data run, resembled the prior pdfs with only minor updates in the shape of the priors. The biomass quantities 

showed mostly relatively flat or dome-shaped distributions as a result of the lower and upper bound cut-off 

points for the prior for K, and the minimum value for K that could allow population persistence to the present 

with the available catch records (Figure 1). In contrast, when a uniform on logK prior was applied, the marginal 

output distribution for K and other stock biomass quantities of interest reflected the prior down-weighting of 

larger values for K in the uniform on logK prior (Figure 1). The outputted distributions for stock status 

quantities, e.g., Bcur/Bmsy and Fcur/Fmsy however were influenced very little by the form of the prior for K (Figure 

1). It is noted that the post-model pre-data output distributions were invariant to whether a data point from either 

one abundance index series or a data point from each of more than one abundance index series was included in 

the computation.  

 

SIR diagnostics 

 

For the reference case and all runs tried, importance sampling provided numerically stable results and 

sufficiently precise approximations of the marginal posterior distributions for parameters within a few hours of 

importance sampling. Importance sampling, however, became noticeably less efficient for the runs with the 

largest values for the standard deviation in process error (e.g., when process error was set at 0.15.). For all runs 

except those where when process error was set at 0.15, the maximum weight from any one draw from the 

importance function dropped rapidly to less than 0.5% within an hour of importance sampling. In runs with 

process error was set at 0.15 the maximum weight dropped below t 1%, after a few hours when importance 

sampling. In all runs, the CV in the weights was less than half of the value for CV in the likelihood times the 

prior, and the maximum weights were not consistently in the tails of the marginal posterior density functions for 

key parameters.  

 

Reference Case Run 

 

The reference case run results were very similar to results obtained with the application of ASPIC and BSP in the 

2013 assessment. The model provided a fairly good fit to the abundance index data, except for one extreme 

outliers in the early part of the time series (Figure 2a). The estimated process error deviates differed relatively 

little from each other and without any significant difference from the prior distribution for process error (Figure 
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2b). Marginal posterior distributions for key parameters and quantities of interest showed a marked update from 

the priors and the post model-pre-data distributions (Figure 3). The prior for r was updated to some extent with 

the posterior mean for r shifting to about 0.37 (CV=0.28) down from the prior mean of 0.424 (CV=0.39) (Table 

5). The update was made possible by the considerable drop in total catch biomass in the 1980s and the 

subsequent turn around of the stock trend index. The index increased less quickly than supported by the central 

tendency of the prior for r, and this lead to an update in the posterior to support lower values for r. Figure 4 

shows a Kobe scatter plot of 5000 draws from the posterior density function for the quantity F2012/Fmsy, 

B2012/Bmsy. The median value is centered just below the 1,1 point indicating that the current fishing mortality rate 

is just below the Fmsy level and the stock biomass is very close to the Bmsy level. The plotted trajectory of F/Fmsy 

against B/Bmsy shows that the stock decreased to below Bmsy in the 1970s with F exceeding Fmsy but then 

increased back up to the Bmsy level as F levels decreased in the 1980s to the present.  

 

Projections were carried out with future constant catch levels being set at 10,000, 11,000, 12,000, 13,000, 14,000 

and 15,000 tons. Summary results are tabulated in Table 6. For 5, 10 and 20 year horizons, the model predicts 

that stock biomass can be expected to decrease for constant total catch policies of larger than 13,000 tons. A 

constant catch of 13,000 tons is expected to maintain the stock at close to it’s Bmsy level.  

 

Evaluation of sensitivity of results to different model settings  

 

Stock status results were most sensitive to applying different assumptions about the value for Bmsy/K (Table 7). 

See Figure 5 for a plot of the alternative surplus production functions considered. The smallest values 

considered, i.e., 0.3 and 0.4 resulted in a considerably posterior higher median values for r (i.e., 0.43, and 0.41, 

respectively) compared to the reference case in which the posterior median was 0.36. Stock status was the most 

optimistic under these scenarios compared to other scenarios with e.g. the posterior median value for B2012/Bmsy at 

1.46 and 1.21 compared to all other scenarios which ranged between about 0.89 and 1.15 (Table 7). The Kobe 

plot showing the time trajectory of stock status shows considerable sensitivity to the assumed value for Bmsy/K 

with the smallest values showing the most optimistic endpoints (Figure 6). The smallest value for Bmsy/K of 0.3 

had considerably higher credibility given the data, with a Bayes factor of 7.9 relative to the reference case where 

Bmsy/K was set at 0.5 (Table 8). 

 

Runs with different prior means for r, different scenarios for possible systematic bias in early catch records, 

different priors for K, and different prior means for p0, had relatively little impact on stock status results (Table 

7, Figure 7). The scenario in which historic catches prior to 1986 were considered to be systematically low or 

high suggested somewhat different perceptions of stock status. For example, the version with a catch multiplier 

of 1.5 suggested a slightly more optimistic stock status results (Table 7) and had 1.8 times the credibility of the 

reference case run (Table 8). 

 

Runs with different fixed values for the standard deviation in the process error (process error), showed considerably 

different historic trajectories of stock biomass and increasingly variable and less precise time series of estimated 

process error deviates (Figure 8). The highest values for process error scaled up the values for K and stock biomass 

and resulted in slightly more optimistic assessments of stock status (B2012/Bmsy) and considerably lower values for 

F2012/Fmsy (Table 7, Figure 9). The estimated stock biomass trends fitted the stock trend data progressively better 

as process error was increased but lead to much wider posterior intervals for annual stock biomass (Figure 8). 

Bayes factors were not very different between runs with different values for process error. Under a uniform on K 

prior, ranged from values as low as 0.3 for the lowest values for process error and as high as 3.2 for process error of 

0.15. Under a uniform on log(K) prior, Bayes factors favoured slightly lower values for process error. However, 

none of the Bayes factors would suggest that any of the hypothesized values for process error had notably lower 

credibility than other values.  

 

Using Bayes factors for model averaging 

 

It is becoming increasingly common for outputs from different stock assessment model runs to be combined 

using the so-called approach of “model averaging”. This involves formulating a mixture distribution from the 

outputs of different assessment models which could be considered to be alternative interpretations of stock status 

and stock and fishery dynamics. This would account for uncertainty in model outputs better than considering 

outputs from a single run of a single stock assessment model (McAllister and Kirchner 2002). If I had a 

probability density function (pdf), e.g., for Bcur/Bmsy from model 1 (pdf(1)), a pdf for the same quantity from 

model 2 (pdf(2)), and so on up to n different models, then the resulting mixture pdf of e.g. Bcur/Bmsy would be  

 

pdf_mixture(1,2,…,n) = w(1) x pdf(1) + w(2) x pdf(2) + …+ w(n) x pdf(n) 
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where the weights, w(i) sum to 1. With BSP2, the weights are obtained by renormalizing Bayes factor for the 

different model runs of interest. This could produce a multi-modal density function if the modes of models 1 to n 

were sufficiently far apart, e.g., if there were two models and the mode of the pdf from model 1 was at 0.5 (and 

the CV was e.g. 0.3) and the mode of the pdf of model 2 was at 1.5 (and the CV was also small at e.g. 0.3), these 

two modes would be retained in the resulting mixture distribution and the mixture distribution would be much 

wider than either of the density functions from the two different models. Graphically, this would represent 

uncertainty much more effectively than showing the output distribution from only a single run of a single model.  

 

Figure 9 shows the marginal posterior pdfs for r, Bcur/Bmsy , and Fcur/Fmsy obtained when the value for Bmsy/K was 

fixed at 0.3, 0.4, 0.5 and 0.6 in different model runs. The marginal posterior pdfs show markedly different central 

tendencies for each of these quantities. The Bayes factors computed for the different runs show that the Bayes 

factors are markedly different across the four hypothesized values for Bmsy/K and suggest nearly two orders of 

magnitude difference between the lowest and highest values for Bmsy/K (Table 8). Rather than treating the results 

from different model runs as equally likely in considering different model runs, as is normally the case, it is 

argued that it would be more appropriate to take into account the probability of the data given the model, from 

the different model runs to formulate model weightings (McAllister and Kirchner 2002; McAllister 2013). This 

is especially important where Bayes factors are noticeably different between different model runs. Considerable 

differences in the interpretation of different model runs can be obtained in such circumstances as shown in the 

resulting mixture distributions for these quantities when either equal weights or Bayes factors are applied as the 

weights to combine the different outputs from the different model runs (Figure10).  

 

It is also argued that Bayes factors should also be presented in decision tables to show how projection results can 

be sensitive to how the stock assessment model is formed and most importantly the credibility of the different 

stock assessment models considered given the stock trend data. An example decision table that shows projection 

results from production models with different assumed values for Bmsy/K is shown in Table 9. Here it is 

important to show that the results from the different models are not equally likely and the least likely of these 

that would normally be considered to be equally likely can be down-weighted given its low Bayes factor.  

 

 

Discussion 

 

An updated version of the BSP2 software has been presented and illustrated with an application to the 2013 

stock assessment data for North Atlantic swordfish. The main updates in the software include the introduction of 

a Bayesian state-space version of the generalized surplus production model, the provision of summary statistics 

to enable computation of Bayes factors, and mixture distributions of outputs from different model runs using 

Bayes factors. The software offers a statistically and mathematically consistent framework with which to account 

for both parameter and structural uncertainties in the application of time dynamic surplus production models.  

 

The updated software also enables the computation of an additional set of diagnostic output distributions to 

evaluate the effect of priors for model parameters and the inputted catch records on output distributions for 

model parameters, stock biomass and other quantities of interest before the model is fitted to data. This allows 

analysts to evaluate the impact of fitting the model to the stock trend data on the output distributions of interest.  

 

Under the reference case model settings that included a relatively conservative value for the standard deviation 

in process error (process), results obtained were not very different from those obtained from applications of the 

Prager model in the 2013 stock assessment (ICCAT 2010). These indicate that the stock is close to Bmsy and 

fishing mortality rates are a little less than Fmsy. Very substantial updates in marginal posterior distributions 

resulted from fitting the model to the stock trend index with the prior for r being updated considerably to a lower 

posterior mean than the prior mean (0.31 compared to the prior mean of 0.42). This update was produced by the 

lowering of catches in the 1970s and the subsequent reversal of the declining trend in the stock trend index.  

 

The illustration of the updated software with an application to data from the 2012 assessment of North Atlantic 

swordfish shows that considerably different estimates of historic stock biomass can result when different values 

for the standard deviation in process error are applied. As standard deviation in process error was increased from 

very low values, i.e., 0.005, approximating a deterministic values to moderately high values, i.e., up to 0.15, the 

estimates of historic stock biomass nearly doubled. Stock status estimates however were less sensitive to the 

value assumed for process error, though also became slightly more optimistic as the value for process was increased. 

Bayes factors were not very different between models with different values for process, though values of 0.075 

and 0.10 had slightly higher Bayes factors than other values considered. This suggests that careful a priori 

judgment needs to be applied in determining a reference case setting for this parameter.  
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Results were most sensitive to the value assumed for the ratio of stock biomass at the most productive level to 

unfished stock size (Bmsy/K). Considerably higher values for r and Bcurrent/Bmsy and lower values for Fcurrent/Fmsy 

were favoured by the lowest setting for Bmsy/K. The projection results were also highly sensitive to this assumed 

parameter value with the most optimistic projections coming from the runs with lowest assumed value for 

Bmsy/K. Bayes factors in this instance most strongly favoured the lowest value applied for Bmsy/K (i.e., 0.3) which 

indicated that this version was about 8 times more credible given the stock trend data than the reference case 

value of 0.5. The illustration showed that the common practice of giving different model runs the same weight 

could have resulted in considerably different conclusions about stock status than the more statistically rigorous 

approach of applying Bayes factors to obtain weights for different model runs. 
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Table 1. Summary of estimated parameters. 

 

 Parameter  Description 

 r  Intrinsic rate of increase 

 K  Carrying capacity 

 p0  Ratio of initial stock biomass in first year to carrying capacity 

 eprocess,y  Process error deviate in year y 

 

Table 2. Summary of derived management parameters of interest for the Schaefer model. 

 Maximum Sustainable Yield 

(MSY) 

 rK/4 

 Stock size for MSY (Bmsy)  K/2 

 Rate of exploitation at MSY  r/2 

 Replacement yield 

 

KBfor

KBfor
K

B
rB

y

y
y

y



















0

1
 

 Threshold extirpation rate of 

exploitation 

 r 

 

Table 3. Prior distributions for surplus production model parameters for North Atlantic Swordfish. Biomass 

values are shown in t.  

Parameter Prior density function 

K 

ln(K) 

Uniform(5000, 1,000,000) or 

Uniform(log(5000),log(1,000,000))1 

ln(qj) Uniform(-200,10) 

p0 Lognormal(log(0.875),0.252)2 

r  logNormal(log(0.424),0.4052)3 

process,y Normal(0, 0.052) 
1 Uniform on logK is suggested as an alternative prior for K, as explained above. 
2 Prior taken from ICCAT (2010). 

3 When the prior coefficient of variation (CV) in X is specified for a lognormal density function, the parameter 

sigma for this density function is given by sigma = sqrt(ln(1+CV(X)2). 
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Table 4. Summary of sensitivity test runs. 

 

Code Category  

Description 

Code Run Description 

Ref Reference run Ref Reference run 

A Bmsy/K A.1 Bmsy/K = 0.3 

A.2 Bmsy/K = 0.4 

A.3 Bmsy/K = 0.6 

B r prior mean B.1 

B.2 

low r (mean = 0.28, CV = 0.39) (equivalent to steepness of 0.71) 

High r (mean = 0.56, CV = 0.39) (equivalent to steepness of 0.94) 

C Catch 

assumptions 

C.1 Catch records 1950-1985 x 0.75 

C.2 Catch records 1950-1985 x 1.5 

D Prior for K D.1 Uniform on log K prior. 

  D.2 Lognormal prior for K with mean of 200,000t, and SD in log(K) of 0.8. 

E p0 prior  E.1 Prior mean set at 0.7. 

  E.2 Prior mean set at 1.0. 

F Standard 

deviation in 

process error 

F.1a,b process = 0.005 (a=uniform on K prior, b=uniform on logK prior) 

F.2a,b process = 0.01 

F.3a,b process = 0.05 (reference case) 

F.4a,b process = 0.075 

F.5a,b process = 0.10 

F.6a,b process = 0.15 
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Table 5. Posterior mean, standard deviation (SD), coefficient of variation (CV) and 5th, Median and 95th 

percentiles for parameters and management quantities of interest for North Atlantic swordfish using reference 

case model specifications. Biomass values are in tons. The referenced current year is 2012. 

 

Variable Mean SD CV 5th Percentile Median 95th Percentile 

r 0.37 0.10 0.28 0.21 0.36 0.54 

K 162215 48606 0.3 104466 152388 254959 

MSY 13721 958 0.07 12342 13750 14958 

Bmsy 81107 24303 0.3 52233 76194 127479 

B1950 147304 65611 0.445 80843 132667 255720 

B2012 81554 26302 0.323 50464 77446 131488 

B2012/Bmsy 1.01 0.12 0.12 0.808 1.01 1.21 

B2012/B1950 0.59 0.16 0.27 0.37 0.58 0.88 

B2012/K 0.50 0.06 0.12 0.40 0.50 0.61 

FMSY 0.18 0.05 0.28 0.10 0.18 0.27 

F2012 0.16 0.04 0.28 0.09 0.16 0.24 

F2012/FMSY 0.90 0.14 0.16 0.70 0.88 1.14 

REPY2012 13511 838 0.06 12062 13546 14784 

Cat2012/REPY2012 0.90 0.06 0.07 0.82 0.90 1.01 

P(B2012> 0.4Bmsy) 1 

     P(B2012> 0.8Bmsy) 0.96 

     P(B2012> Bmsy) 0.52 

     P(F2012< Fmsy) 0.79 

      

 
Table 6. Projected outcomes from a set of constant total catch policy options at 5, 10 and 20 horizons computed 

using the BSP reference case model with standard deviation in process error set at 0.05.  

 

 
Policy option Median(Bfin/Bmsy) P(Bfin>0.8 Bmsy) P(Bfin>B2012) P(Bfin>Bmsy) 

Horizon Constant catch 

    5 -year 10000 1.23 0.98 0.89 0.85 

 

11000 1.17 0.96 0.82 0.78 

 

12000 1.12 0.93 0.72 0.70 

 

13000 1.06 0.88 0.60 0.61 

 

14000 1.00 0.81 0.46 0.50 

 

15000 0.94 0.72 0.34 0.40 

      10 -year 10000 1.36 0.98 0.93 0.92 

 

11000 1.28 0.96 0.86 0.85 

 

12000 1.19 0.91 0.75 0.75 

 

13000 1.08 0.82 0.60 0.61 

 

14000 0.96 0.68 0.40 0.45 

 

15000 0.82 0.52 0.25 0.29 

      20 -year 10000 1.5 0.99 0.95 0.96 

 

11000 1.4 0.96 0.89 0.90 

 
12000 1.2 0.88 0.76 0.78 

 
13000 1.09 0.74 0.55 0.59 

 
14000 0.84 0.53 0.33 0.37 

 
15000 0.33 0.31 0.15 0.18 
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Table 7. Medians and 80% credibility intervals drawn from the posterior distributions for seven parameters taken from the Bocaccio assessment for the reference run and 17 

sensitivity runs. Codes used for each run along with a run description can be found in Table 4. Biomass values are in tons. The referenced current year is 2012. 

 

Run r Bmsy Bcurrent RepYcurrent Bcurrent/Bmsy Fcurrent/Fmsy Catchcurr/RepY 

 10% Median 90% 10% Median 90% 10% Median 90% 10% Median 90% 10% Median 90% 10% Median 90% 10% Median 90% 

 

Reference run Ref. 0.21 0.36 0.54 52233 76194 127479 50464 77446 131488 12062 13546 14784 0.81 1.01 1.21 0.70 0.88 1.15 0.82 0.90 1.01 

 Bmsy/K 

A.1 0.25 0.43 0.64 42893 62364 103682 57800 90161 169552 10965 12540 13966 1.12 1.46 1.91 0.44 0.62 0.88 0.87 0.97 1.11 

A.2 0.25 0.41 0.61 45576 65915 105665 52428 79507 135253 11703 13126 14274 0.94 1.21 1.53 0.56 0.74 1.00 0.85 0.93 1.04 

A.3 0.18 0.31 0.46 47134 68703 108889 47711 70547 108898 12769 14502 15739 0.79 1.03 1.30 0.61 0.79 1.08 0.77 0.84 0.95 

 r prior mean 

B.1 0.15 0.29 0.46 60940 94635 168800 58835 94571 175597 11419 13299 14866 0.79 0.99 1.21 0.71 0.91 1.22 0.82 0.91 1.06 

B.2 0.25 0.40 0.59 47763 69337 107803 48348 71009 114143 12377 13665 14806 0.82 1.02 1.23 0.69 0.86 1.11 0.82 0.89 0.98 

 Catch assumptions 

C.1 0.21 0.36 0.55 50097 74499 123756 52585 80288 136823 11656 13155 14393 0.87 1.07 1.28 0.67 0.85 1.11 0.85 0.92 1.04 

C.2 0.20 0.32 0.47 64375 91266 144718 56023 81925 135481 12693 14524 15948 0.70 0.89 1.10 0.73 0.92 1.20 0.76 0.84 0.96 

 K priors 

D.1 0.23 0.38 0.57 49796 71948 114220 49711 73403 118503 12200 13576 14759 0.82 1.01 1.23 0.70 0.87 1.13 0.82 0.90 1.00 

D.2 0.24 0.38 0.56 50680 71572 110972 50034 73569 115611 12246 13574 14777 0.82 1.01 1.23 0.70 0.88 1.12 0.82 0.90 0.99 

 p0 priors 

E.1 0.22 0.37 0.55 52085 75153 122516 50920 77314 126901 12094 13548 14796 0.81 1.01 1.23 0.69 0.88 1.14 0.82 0.90 1.00 

E.2 0.20 0.36 0.54 52703 77179 129225 51671 79086 133682 11996 13530 14803 0.81 1.01 1.23 0.70 0.88 1.15 0.82 0.90 1.01 

 Standard deviation in process error  

F.1a 0.29 0.41 0.56 50527 65575 87982 50569 63339 83136 12297 13394 14054 0.80 0.97 1.12 0.78 0.93 1.17 0.87 0.91 0.99 

F.2a 0.28 0.41 0.57 50268 65359 89965 50088 63385 85571 12325 13429 14143 0.81 0.97 1.12 0.78 0.93 1.17 0.86 0.91 0.99 

F.3a 0.21 0.36 0.54 52233 76194 127479 50464 77446 131488 12062 13546 14784 0.81 1.01 1.21 0.70 0.88 1.15 0.82 0.90 1.01 

F.4a 0.18 0.32 0.52 54745 87646 162438 54446 92523 179276 11705 13965 16262 0.80 1.04 1.32 0.60 0.82 1.13 0.75 0.87 1.04 

F.5a 0.16 0.30 0.51 56638 99857 228949 56371 107214 276840 11587 14496 19568 0.79 1.06 1.43 0.45 0.76 1.10 0.62 0.84 1.05 

F.6a 0.15 0.26 0.47 68168 153922 447175 68853 166578 547197 11331 17575 35522 0.76 1.15 1.59 0.23 0.56 0.99 0.32 0.68 1.01 
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Table 8. Bayes factors for alternative mode runs. These reflect the ratio of the probability of the stock 

assessment data based on a sensitivity run to the probability of the data obtained from the reference case. For 

runs with alternative process error Bayes factors are shown for runs with uniform on K and uniform on log(K) 

priors. NA indicates no results produced. 

 

    Bayes factor 

Category 

Code 

Category 

Description 

Code Run Description U(K) U(log(K)) 

A Bmsy/K A.1 Bmsy/K = 0.3 
7.9 

NA 

  A.2 Bmsy/K = 0.4 
6.7 

NA 

  Ref Bmsy/K = 0.5 
1.0 

NA 

  A.3 Bmsy/K = 0.6 
0.4 

NA 

B r prior mean B.1 low r (mean = 0.28, CV = 0.49) 
1.0 

NA 

  Ref ref. prior (mean = 0.42, CV = 0.49) 
1.0 

NA 

  B.2 high r (mean = 0.56, SD = 0.49) 
0.7 

NA 

C Catch C.1 Total catch for years <1985 x 0.75 
0.4 

NA 

  Ref.  
1.0 

NA 

  C.4 Total catch for years <1985 x 1.5 
1.8 

NA 

E p0 prior E.1 Prior mean p0 = 0.7 
0.9 

NA 

  Ref. Prior mean p0=0.875 
1.0 

NA 

  E.2 Prior mean p0=1.0 
1.0 

NA 

F Process F.1a,b process error=0.005 
0.3 0.4 

 error SD F.2a,b process error=0.01 
0.4 0.4 

  Ref., D.1 process error=0.05 
1.0 1.0 

  F.3a,b process error=0.075 
2.0 1.8 

  F.4a,b process error=0.10 
3.2 2.6 

  F.6a,b process error=0.15 
3.2 1.7 
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Table 9. Summary decision table for the probability that stock biomass exceeds Bmsy in 10 years under each 

alternative constant TAC policy (t) and under each alternative hypothesized value for Bmsy/K. 

             Hypothesized Bmsy to K ratio 

   Reference  

Bmsy/K 0.3 (A.1) 0.4 (A.2) 0.5 0.6 (A.3) 

Bayes factor 7.9 6.7 1.0 0.4 

TAC     

10000 0.99 0.97 0.92 0.95 

11000 0.97 0.93 0.85 0.92 

12000 0.93 0.86 0.74 0.86 

13000 0.87 0.76 0.61 0.75 

14000 0.76 0.61 0.45 0.59 

15000 0.62 0.45 0.29 0.42 

 
 

Figure 1. Post-model, pre-data distributions for quantities of interest for North Atlantic swordfish when either a 

uniform on K and uniform on log K prior is used. 
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Figure 2. Plots of a. posterior median and 90% probability intervals for stock biomass, the stock trend index 

divided by the posterior median q, and total catch biomass, and b. the posterior median and 90% probability 

intervals for annual process error deviates. This is for the reference case BSP2 run for North Atlantic swordfish 

fitted to data to 2012 from the 2013 stock assessment. 
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Figure 3. Plots of marginal posterior, and post-model, pre-data distributions for quantities of interest for North 

Atlantic swordfish when either a uniform on K prior is used. 

 

 

 

 
 

Figure 4. Kobe plot of stock status under reference case run with uniform on K prior, and the standard deviation 

in the process error set at 0.05. The black trajectory shows the progression of the status of the fishery from 1950 

to 2012 from right to left, using the posterior median values for By/Bmsy, Fy/ Fmsy.. 
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Figure 5. A plot of the reference case Schaefer and rescaled versions of the three alternative production 

functions applied in evaluations of the sensitivity of results to different model settings. All plotted production 

functions are referenced to approximately the same MSY value to highlight differences in the shape of the 

production functions.  
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Figure 6. Kobe plots of stock status under reference case run with uniform on K prior, and the standard 

deviation in the process error set at 0.05. a. The trajectories show the progression of the status of the fishery from 

1950 to 2012 from right to left, using the posterior median values for By/Bmsy, Fy/ Fmsy from the runs with the 

Bmsy/K point set at 0.3, 0.4, 0.5 (base case), 0.6. Also plotted are 5000 draws from the posterior for F2012/Fmsy, 

B2012/Bmsy. b. Scatter plots of F2012/Fmsy, B2012/Bmsy from runs with Bmsy/K point set at 0.3, 0.4, 0.5 (base case), 

0.6.  
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Figure 7. Marginal posterior distributions for (a) the maximum rate of increase, r, (b) stock status (Bcur/Bmsy) and 

(c) Fcur/Fmsy for North Atlantic swordfish obtained from model runs where Bmsy/K is fixed at 0.3, 0.4, 0.5 and 0.6. 

Results are shown for the marginal posterior density functions from the separate runs, using equal weights, and 

using Bayes factors to weight the results from different runs. 
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Figure 8. Kobe plot of stock status under reference case run with uniform on K prior, and the standard deviation 

in the process error set at 0.05. The trajectories shows the progression of the status of the fishery from 1950 to 

2012 from right to left, using the posterior median values for By/Bmsy, Fy/ Fmsy from the runs with the prior mean 

for r set at 0.28, and 0.56, and the catches prior to 1986 multiplied by either 0.75 or 1.5 to account for uncertain 

in historic catch records. 
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Figure 9. Fits of BSP2 to the data and medians, and 90% probability intervals under values for process error SD 

of 0.005, 0.05, 0.10, and 0.15 for North Atlantic swordfish. sep refers to the prior standard deviation in annual 

process error deviates (process error).  
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Figure 10. Kobe plot of stock status under reference case run with uniform on K prior, and the standard 

deviation in the process error set at 0.05. The trajectories shows the progression of the status of the fishery from 

1950 to 2012 from right to left, using the posterior median values for By/Bmsy, Fy/ Fmsy from the runs with the 

standard deviation in process error set at 0.005, 0.05, 0.1 and 0.15. sp refers to the standard deviation in log 

process error deviates process.  
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Appendix A: Reformulating the Euler-Lotka method to compute a prior for r for North and South 

Atlantic swordfish 

 

The prior for the maximum rate of increase (r) for North Atlantic swordfish as reformulated using the Euler 

Lotka method (McAllister et al. 2001) that had been adapted for teleost species (Stanley et al. 2009; Yamanaka 

et al. 2012). The Euler Lotka method to compute r, is based on the following identify: 

 

 
 

where rm is the maximum rate of increase, lx is the fraction surviving to age x, mx is the number of age 1 

individuals produced at age x, A is the oldest age class. A Monte Carlo procedure is applied in which the life 

history parameters that determine lx and mx are repeatedly drawn from prior distributions for these parameters. 

Given lx and mx, a value for rm is solved for numerically. The Monte Carlo procedure is repeated numerous times 

to formulation a frequency distribution for the parameter rm. The frequency distribution is then approximated 

using a parametric distribution. The terms lx and mx are determined by the following life history parameters for 

females and population dynamics parameters together with estimates of coefficients of variation (CV) for them 

to represent uncertainty in them:  

 

1. the means and CVs for the von Bertalanffy growth parameters, K, Linf, t0,  

2. the means and CVs for the rate of natural mortality (M) at age for recruited animals (e.g., either a 

constant value M for recruited animals or a Lorenzen schedule for M at age),  

3. the mean and CV for the length-weight conversion parameters (a,b),  

4. the means and CVs for parameters for the fraction mature at age (e.g., for the logistic function),  

5. a prior median and uncertainty specifications for the Beverton-Holt steepness parameter (h) that could 

be applicable for North and South Atlantic swordfish. 
 

Where possible these parameter values were obtained for the North and South Atlantic stocks. Since only point 

estimates are available for most of these parameters, the prior CVs were subjectively determined. The CVs 

considered include 10-20% for the growth parameters, 20% for the age at maturity parameters, 10% for the 

length-weight parameters, 25% for the natural mortality rates, and about 15% for steepness. In all instances, it 

was assumed that the prior covariance was zero. These parameter estimates were entered into existing computer 

software (Stanley et al. 2009; Yamanaka et al. 2012) to compute an updated prior for r for the North Atlantic 

stock. 

 

Values for the rate of natural mortality were obtained from ICCAT’s summary information on Atlantic 

swordfish. The point value provided was 0.2 yr-1 for all ages older than age 1 (ICCAT 2006) (Table A.1). 

Growth parameter values were also obtained from ICCAT (2006). Only a single set of growth parameter 

estimates were provided for the north and south Atlantic swordfish stocks (Table A.1). Due to the unfamiliar 

parameterization, the equation provided was applied to predict length at age. Following this, the von Bertalannfy 

parameters that most closely predicted these length at age values were obtained using least squares (Table A.1).  

 

Length to weight conversion parameters for the north and southern Atlantic stocks were obtained from values 

synthesized by the ICCAT secretariat. Three different estimates of these parameters were available for the 

northeast, north central and northwestern Atlantic Ocean and were synthesized to produce a single best estimate 

of the a-b parameters for both stocks (Table A.1).  

 

The median body length at maturity for female swordfish for the north Atlantic stock was reported to be 179cm 

(ICCAT 2006). The minimum body size at maturity was reported as 146 cm. From the growth curve these 

correspond to ages 5 years, and 3 years. Given the minimal information available on fraction mature at age, the 

median age at maturity (A50) was taken as 5 years, the minimum at 3 years, and the 95th percentile at 7 years. A 

logistic function was presumed for fraction mature at age. The prior CV assumed for the fraction mature at age 

parameters was 20%.  

 

The Beverton-Holt steepness parameter was the most difficult parameter for which to derive a prior for 

swordfish. It appears that there are no reliable stock-recruit datasets for swordfish, though there are some VPA 

constructions for north Atlantic swordfish in previous ICCAT assessments. McAllister et al. (2000) computed 

values for egg to age 1 survivorship using available literature based estimates of daily mortality rates, batch 

fecundity and the average number of spawning bouts per year per fish. The Leslie Matrix approach to computing 
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a prior was applied to give a median value of r of 0.405. It is possible to solve numerically for steepness given 

the life history parameter estimates and a fixed value for r. When the life history parameter estimates compiled in 

this document were applied together with the point value for r of 0.405, the point value for Beverton-Holt 

steepness was 0.85. Since the egg to age 1 survivorship estimate was based on a VPA and VPA has been 

considered to be unreliable, a web search was conducted to identify point values for steepness that have been 

applied in age-structured stock assessments of swordfish elsewhere and to see where this point value fell with 

respect to these estimates.  

 

In seeking out values for Beverton-Holt steepness that had been applied in other swordfish assessments a wide 

range of values was found to have been applied. Base case values ranged from about 0.8 to 1. Values applied in 

sensitivity analyses varied considerably also. For example, in the ISC stock assessments of North Pacific 

swordfish, only a single value for steepness of 0.9 appears to have been applied (Courtney and Piner 2009). The 

IOTC has also applied a fixed value of 0.9, though the choice of this value may have been influenced by the 

value chosen for steepness in ISC assessments of North Pacific swordfish (Nishida and Wang 2009). Stock 

assessments of swordfish in the southwestern Pacific Ocean have used a value of 0.8 as the reference case value 

and have run sensitivity analyses using values of 0.65 and 0.95 (Harley et al. 2012). The IATTC has in contrast 

applied a value of 1 as the reference case value for steepness, asserting that there appears to be no apparent 

relationship between recruitment and spawning stock size (Hinton and Maunder 2009). A sensitivity analysis 

was run using a value of 0.75. To cover the range of steepness values presumed to be plausible for swordfish 

stocks around the world, I formulated a wide prior distribution for steepness that derived from a Beta density 

function (Table A.1). The median value was 0.85 and the SD was 0.11. This gave a 2.5th percentile of 0.56 and a 

97.5th percentile of 0.98.  
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Table A.1. Values for prior distributions for input parameters to the algorithm to compute a prior for r. N means north, S means south, SD(X) is standard deviation, CV is the 

coefficient of variation, SD(ln(X)) is the standard deviation in the natural logarithm in instances where a lognormal prior is applied. Note that the Table in this early draft is as 

yet incomplete.  

 

Parameter Stock Mean SD(X) CV(X) SD(ln(X)) Minimum 2.5% Median 97.5% Probability distribution 

Rate of natural mortality (M) (yr-1) N,S 0.206 0.0515 0.25 0.25 NA 0.12 0.20 0.33 Log normal 

Growth parameters                    

       L∞ (cm) N,S 263.92 26.39 0.1 0.1 NA 218.03 265.24 322.67 Log normal 

       K (yr-1)   0.137 0.027 0.2 NA NA 0.08 0.137 0.19 Normal 

       t0 (yr)   -2.82 -1.41 0.5 NA NA -5.59 -2.82 -0.06 Normal 

Length-weight (cm to kg)           NA         

     a N 4.48E-06 4.48E-07 0.1 0.1 NA 3.66E-06 4.45E-06 5.42E-06 Log Normal 

     b N 3.2038 0.32 0.1 NA NA 2.58 3.2038 3.83 Normal 

 S 4.96E-06 4.96E-07 0.1 0.1 NA 3.66E-06 4.96E-06 5.42E-06 Log Normal 

 S 3.188 0.32 0.1 NA NA 2.56 3.188 3.81 Normal 

Fraction mature           NA         

     a50 (yr) N 5.1 1.02 0.2 0.2 NA 3.38 5.0 7.40 Log Normal 

     d95 (yr) N 2.0 0.41 0.2 0.2 3 1.35 2.0 2.96 Log Normal 

Steepness (h) N,S 0.83 0.11 0.14 NA 0.2 0.56 0.85 0.98 h~0.2 + 0.8 Beta(5.86, 1.59) 
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Results 

 

The prior for r that was derived and subsequently applied based on Leslie Matrix approach in McAllister et al. 

(2000) was lognormal with a mean of 0.42, and a CV of 0.50. This was a mildly informative prior distribution 

whose large spread was driven by the wide input prior distribution for the survivorship from egg to age 1 fish 

(i.e., age zero survivorship). The algorithm applied in this update analysis, applied instead the Euler-Lokta 

approach (McAllister et al. 2002; Stanley et al. 2009; Yamanaka et al. 2012). This required in place of the prior 

for egg to age 1 survivorship, a prior for steepness, i.e., either Beverton-Holt or Ricker steepness, depending on 

which stock-recruit function is deemed to be most appropriate for the stock. In this case, the Beverton-Holt 

steepness was adopted since there’s no known instance of cannibalism for swordfish and where stock-recruit 

estimates have been plotted in swordfish assessments, they’ve resembled a Beverton-Holt relationship much 

more so than a dome-shaped Ricker relationship (reference to be added). Using the values for north and south 

Atlantic swordfish listed in Table 1, the prior mean for r was the same to three decimal places for both stocks at 

0.424, and the prior CV for both stocks was 0.39 (Figure A.1). These values are very close because the only 

difference in input values is the length-weight conversion factors and these are very similar (Table A.1). The 

prior values for r were fairly close to those obtained from McAllister et al. (2000). This is largely because the 

input distributions to the compu tation of the prior for r changed relatively little between 1999 and 2012. The 

main difference was that the prior for steepness applied in this analysis tended to bound the value for r more so 

than did the prior for age zero survivorship in McAllister et al. (2000). The empirical frequency distribution for r 

this time also corresponded very closely to a log normal distribution, as it usually does when a Beverton-Holt 

function is applied (Stanley et al. 2009). The median value for r was 0.392 and the standard deviation in the 

natural logarithm of r was 0.405.  

 

 

Table A.2. Summary statistics for Monte Carlo outputs in generating a prior for r for north and south Atlantic 

swordfish. 

 

Stock Average Median Variance SD CV SD(log(X)) Var(log(X)) 

North 0.4240 0.3922 0.02769 0.1664 0.3925 0.4050 0.1640 

South 0.4244 0.3926 0.02772 0.1665 0.3924 0.4048 0.1639 

 

 
 
Figure A. 1. Plots of the Monte Carlo frequency distributions and lognormal approximations for the prior 

distributions for r for North and South Atlantic swordfish. 
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Appendix B: Proof for Importance Sampling for Approximation of Posterior Distributions 

 

I provide here the statistical proof for why importance sampling can be expected via the strong law of large 

numbers to provide an unbiased estimate of the posterior distribution. To make the proof accessible to a wider 

audience, the proof is elaborated from the ones shown in Berger (1985) and McAllister et al. (1994). The 

posterior probability density for a parameter or paramete

theorem: 

 

 

 

 

where  |dataP   p  is the 

 The posterior expectation or the posterior mean for some variable of interest,  g , 

 

 

  

 

 

 

 g  could represent for example the maximum sustainable yield, or stock biomass in the current year.  

 

We can take the numerator on the right of equation B.2 and multiply it and divide it by a third density function, 

 h   has the same set 

posterior. For computational efficiency is formulated to approximate the central tendency, covariance and 

  

 

 

 

with this rearrangement, the integral on the left of equation B.3 can be interpreted to be the posterior expectation 

of the product,  
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