STANDARDIZATION ON NORTHERN ATLANTIC ALBACORE (*THUNNUS ALALUNGA*) CPUE, DATING FROM 1967 TO 2012, BASED ON TAIWANESE LONGLINE CATCH AND EFFORT STATISTICS

Feng-Chen Chang¹, Tzong-Te Tzeng², and Shean-Ya Yeh³

SUMMARY

The Taiwanese longline fisheries have been one of the major fleets operating in the North Atlantic for albacore resource since the mid-1960s. Catch statistics of North Atlantic albacore (Thunnus alalunga) compiled from Taiwanese longline fisheries from 1967 to 2012 were thus investigated in an attempt to elucidate the abundance fluctuations of this resource. The Taiwanese longline CPUE was separately standardized into three periods (1967~1987, 1987~1999 and 1999~2012). The generalized linear model (GLM) with log-normal error distribution was adopted for the standardization of both yearly and quarterly catch-per-unit-effort (CPUE) trends. Factors of year, quarter, subarea and bycatch effects of bigeye tuna, yellowfin tuna and swordfish were constructed into the model to obtain the yearly standardized abundance trend. The results show that the yearly standardized CPUE highly fluctuated before the mid-1980s, and then continuously declined up to the mid-1990s. Thereafter, it remained relatively stable up to the present. Similar trends were also obtained for the quarterly standardized CPUE series.

RÉSUMÉ

Les palangriers du Taipei chinois étaient l'une des principales flottilles opérant dans l'Atlantique Nord et ciblant le germon de l'Atlantique Nord depuis la moitié des années 60. Les statistiques de capture du germon de l'Atlantique Nord (Thunnus alalunga) provenant des pêcheries palangrières du Taipei chinois de 1967 à 2012 ont donc fait l'objet d'une étude en vue d'éclaircir les fluctuations de l'abondance de cette ressource. La CPUE palangrière du Taipei chinois a été standardisée séparément en trois périodes (1967-1987, 1987-1999 et 1999-2012). Le modèle linéaire généralisé (GLM) avec une distribution d'erreur log-normale a été adopté pour la standardisation des tendances annuelles et trimestrielles de capture par unité d'effort (CPUE). Les facteurs année, trimestre, sous-zone et effets de la capture accidentelle du thon obèse, de l'albacore et de l'espadon ont été inclus dans le modèle afin d'obtenir la tendance annuelle de l'abondance standardisée. Les facteurs de série trimestrielle, de sous-zone et d'effets de la capture accidentelle du thon obèse, de l'albacore et de l'espadon ont été inclus dans le modèle afin d'obtenir la tendance trimestrielle de l'abondance standardisée. Les résultats font apparaître que la CPUE standardisée annuelle fluctuait considérablement avant la moitié des années 80 et descendait ensuite de manière continue jusqu'à la moitié des années 90. Depuis lors, elle est restée à un niveau relativement stable jusqu'à présent. Des tendances similaires ont également été obtenues pour les séries des CPUE trimestrielles standardisées.

RESUMEN

Las pesquerías de palangre de Taipei Chino han sido de las más importantes en el Atlántico norte dirigidas al recurso de atún blanco del norte desde mediados de los sesenta. Las estadísticas de captura de atún blanco del Atlántico norte (Thunnus alalunga) recopiladas a partir de las pesquerías de palangre de Taipei Chino desde 1967 hasta 2012 se investigaron para intentar deducir las fluctuaciones en la abundancia de este recurso. La CPUE del palangre de Taipei Chino se estandarizó por separado en tres periodos (1967~1987, 1987~1999 y 1999~2012). Se adoptó el modelo lineal generalizado (GLM) con una distribución

¹ Overseas Fisheries Development Council, Taipei 106, Taiwan; E-mail: fengchen@ofdc.org.tw ; d93241008@ntu.edu.tw

² College of Liberal Education, Shu-Te University, Kaohsiung County, 82445 Taiwan; tdtzeng@mail.stu.edu.tw

³ Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan; tdtzeng@mail.stu.edu.tw

de error lognormal para estandarizar las tendencias de la captura por unidad de esfuerzo (CPUE), tanto anuales como trimestrales. En el modelo se incluyeron los factores de año, trimestre, subárea y efectos de captura fortuita del patudo, rabil y pez espada para obtener la tendencia en la abundancia estandarizada anual. En el modelo se incluyeron los factores de series trimestrales, subárea y efectos de captura fortuita del patudo, rabil y pez espada para obtener la tendencia en la abundancia estandarizada anual. En el modelo se incluyeron los factores de series trimestrales, subárea y efectos de captura fortuita del patudo, rabil y pez espada para obtener la tendencia en la abundancia estandarizada trimestral. Los resultados demuestran que la CPUE estandarizada anual fluctuaba notablemente antes de mediados de los ochenta y más tarde descendió de forma continua hasta mediados de los noventa. Posteriormente, se mantuvo bastante estable hasta la actualidad. Se obtuvieron tendencias similares para la serie de CPUE estandarizada trimestral.

KEYWORDS

North Atlantic albacore, GLM, longline fisheries

Introduction

In the Atlantic Ocean, two stocks of albacore (*Thunnus alalunga*), separated by 5° N latitude, were assumed for the fishery management. Taiwan is one of the main fishing nations utilizing the north Atlantic albacore resource, and contributes a significant part to the total landings. As one of the main fishing nations, it is equally our responsibility to acquire the catch and effort statistics for the purpose of monitoring its status.

Taiwanese longliners operated in the Atlantic are mainly composed of two types of fishing gears, i.e., regular longliner and deep longliner. The former, which is also called traditional longliner, is mainly targeting on albacore, whereas the latter equipped with -70° C freezing capability is mainly targeting on bigeye and yellowfin tunas. Unfortunately, it was not possible until mid-1990s when the logbook reporting system was able to directly distinguish their major identities by the addition of "the number of hooks per basket used" in logbook. However, historic task2 data series compiled by Taiwanese fisheries managerial sector and reported to the ICCAT since late-1960s thus became one of the important data sources to investigate the long-term abundance fluctuation of this resource.

The main purpose of this study was thus to obtain, based on Taiwanese 1967-2012 task2 data series, the longterm abundance trend of North Atlantic albacore resource by using GLM standardization procedure. Factors of quarter, fishing areas, and bycatch information were often adopted as remedies for better understanding the main factor of year component.

Materials and Methods

Taiwanese longline catch and effort data, compiled by month and by 5° square block, from 1967 to 2012 were the major source of data used in this analysis. These data were kindly provided by the Overseas Fisheries Development Council (OFDC), Taiwanese fisheries managerial sector.

GLM with normal error structure (Robson, 1966; Gavaris, 1980; Kimura, 1981) was used in the present study to standardize yearly and quarterly CPUE trends, based on Taiwanese longline fisheries data set, for the north Atlantic albacore. Factors of year, quarter, subarea and bycatch effects of bigeye tuna, yellowfin tuna and swordfish will be constructed for obtaining yearly standardized CPUE trend. Factors of quarter-series, subarea and bycatch effects of bigeye tuna, yellowfin tuna and swordfish will be constructed for obtaining quarterly standardized CPUE trend. Factors of quarter-series, subarea and bycatch effects of bigeye tuna, yellowfin tuna and swordfish will be constructed for obtaining quarterly standardized CPUE trend. Bycatch effects of bigeye tuna, yellowfin tuna and swordfish were evaluated by quartile. Three subareas (Figure 1), followed the resultant obtained by Yang and Yeh (2004), were adopted in the model to minimize variations caused by fishing location. The Taiwanese longline CPUE was separately standardized into three periods (1967~1987, 1987~1999 and 1999~2012). GLM models thus constructed for both yearly and quarterly standardizations are:

Yearly generalized linear model with normal error structure: $Log (U_{ijklmn}+C)=\mu+Y_i+Q_j+A_k+BE_l+YF_m+SW_n+\varepsilon_{ijklmn}$

where *Log*: natural logarithm;

 $\begin{array}{l} U_{ijklmn}: nominal CPUE in year i, quarter j, subarea k, and with bycatch level of BE_{i}, YF_{m}, SW_{n}\\ \mu: intercept, or overall mean for correction\\ C: constant (10% of the overall mean albacore nominal CPUE)\\ Y_{i}: effect of year i\\ Q_{j}: effect of quarter j\\ A_{k}: effect of subarea k;\\ BE_{i}: bycatch effect of bigeye tuna in quartiles of CPUE (no./1000hooks)\\ YF_{m}: bycatch effect of yellowfin tuna in quartiles of CPUE (no./1000hooks)\\ SW_{n}: bycatch effect of swordfish in quartiles of CPUE (no./1000hooks)\\ \epsilon: error term assumed fitting with normal distribution N(0,1).\\ \end{array}$

 $\begin{array}{l} \textit{Quarterly generalized linear model with normal error structure:} \\ \textit{Log } (U_{jklmn} + C) = \mu + YQ_j + A_k + BE_l + YF_m + SW_n + \epsilon_{jklmn} \end{array}$

where *Log*: natural logarithm;

 $\begin{array}{l} U_{jklmn} : nominal CPUE \ in quarter-series \ j, \ subarea \ k, \ and \ with \ bycatch \ level \ of \ BE_{l}, \ YF_{m}, \ SW_{n} \\ \mu: \ intercept, \ or \ overall \ mean \ for \ correction \\ C: \ constant \ (10\% \ of \ the \ overall \ mean \ of \ albacore \ nominal \ CPUE) \\ YQ_{j}: \ effect \ of \ quarter-series \ j \\ A_{k}: \ effect \ of \ subarea \ k \\ BE_{l}: \ bycatch \ effect \ of \ bigeye \ tuna \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ YF_{m}: \ bycatch \ effect \ of \ yellowfin \ tuna \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ SW_{n}: \ bycatch \ effect \ of \ swordfish \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ statch \ effect \ of \ swordfish \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ statch \ effect \ of \ swordfish \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ statch \ effect \ of \ swordfish \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ statch \ effect \ of \ swordfish \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ statch \ effect \ of \ swordfish \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ statch \ effect \ of \ swordfish \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ statch \ effect \ of \ swordfish \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ statch \ effect \ of \ swordfish \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ statch \ effect \ of \ swordfish \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \\ statch \ effect \ of \ swordfish \ in \ quartiles \ of \ CPUE \ (no./1000hooks) \ effect \ swordfish \ in \ quartiles \ of \ contex \ swordfish \ swo$

SAS (Statistical Analysis System) Ver. 9.3 package was used to find solutions.

Results and Discussion

A constant (for three periods: 1967~1987, 1987~1999 and 1999~2012), which was obtained by averaging all Taiwanese longliners' nominal albacore CPUE reported in the north Atlantic and dividing by 10, was determined and added to each nominal albacore CPUE before using SAS solver for the purpose of avoiding zero albacore catch rate problem (ICCAT, 1996).

Around mid-1980s, some Taiwanese longliners began to equip with super cold freezer and shifted their target species from albacore to bigeye tuna in order to meet the demands of the sashimi markets. The increasing efforts of these deep longliners are thus considered as non-albacore-directed efforts, since albacore is the less expected catch species than bigeye tuna. Unfortunately, the traditional log book system cannot distinguish fishing efforts of regular albacore-targeting longliner from those of bigeye-targeting deep longliners. Although the situation got improved since mid-1990s when number of hooks per basket was added to the new log book system, historic log reports can only be distinguished, perhaps, by specification on area-time of fishing or catch composition.

Efforts (Yang and Yeh, 2004) have been devoted to subdivide North Atlantic into subareas for the purpose of sorting out a homogeneous subarea, by clustering analyses on catch composition, of showing indicative catch composition. The result of 3-subareas thus obtained indicated that the longline catch composition of subarea-1 was significantly different with the other two subareas. Longline catch in subarea-1, which is also the traditional fishing ground for North Atlantic albacore, were mainly comprised of albacore. On the other hand, longline catch in subarea-3 was mainly composed of big eye tuna thus to be considered as the major fishing ground for Taiwanese deep longliners targeting on bigeye tuna. As for subarea-2, there often appeared mixture catches of albacore, bigeye and yellowfin tunas each with various area-time intensities. To divide appropriately the north Atlantic albacore's entire habitat into subareas is one of the attempts used in the present study for providing corrections stemmed from area contrast. The character of subareas from the data set reflects that subarea-1 is the main fishing areas of albacore, subarea-3 for bigeye tuna, and subarea-2 for a mixture of albacore and bigeye tuna.

The standardization of CPUE trends for both the yearly series and quarterly series were constructed by GLM model. The results of ANOVA test for the yearly series show that either the model itself or the effects considered are all significant at 0.0001 confidence level (Table 1). As shown in the table, the effect of subarea plays the most important role in explanation of the model variation, and followed by effects of bigeye and quarter.

Comparatively, effects of year, yellowfin and swordfish play less important roles as their mean square are relatively low, but they are still statistically significant. Similar results of ANOVA are obtained for the quarterly series, and importance of the effects in explanation of the model variation ranks from subarea, bigeye, yellowfin, year-season and swordfish (Table 2).

The yearly nominal CPUE trend and its respective standardized CPUE series thus obtained were tabulated in Table 3, and plotted in Figure 2. The yearly standardized CPUE series showed a slight decline in the beginning of the fishery, and then fluctuated between 5 and 12 up to mid-1980s. Thereafter, a continuous decline was observed until 1996, and then it remained relative stable at a level between 2 and 7 no./1000 hooks. The normalized residual pattern from this model is shown in Figure 3. As shown in the figure, main distribution of residuals ranged from -1.00 to +1.00 and obviously centered at zero as mode. The Q-Q plot of those residuals was also shown in Figure 4, indicating the fitting was generally good.

The quarterly standardized CPUE series were also tabulated in Table 4, and plotted in Figure 5. In the period from 1967 to mid-1980s, the quarterly standardized CPUE series highly fluctuated mainly within a range between 4 and 14 no./1000 hooks. Then a continuous decline from late 1980s to mid 1990s was apparently observed. Thereafter, the CPUE trend remained relative stable ranging from 2 to 6 no./1000 hooks. The general trend appeared in quarterly CPUE series is very similar with those obtained in yearly CPUE trend. The normalized residual pattern from this model is shown in Figure 6. As shown in Figure 8, main distribution of residuals ranged from -1.00 to +1.00 and obviously centered at zero as mode. The Q-Q plot of those residuals were shown in Figure 7 indicating the fitting was generally good.

Acknowledgments

We are indebted to the Fisheries Agency and Overseas Fisheries Development Council, Taiwan, for their financial supports. We are also grateful to the fishermen and fisheries companies who provided logbooks and related information.

References

- Gavaris, S. 1980, Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci., 37: 2272-2275.
- González-Garcés, A. and A. C. Fariña-Pérez 1983,. Determining age of young albacore, *Thunnus alalunga*, using dorsal spines. U.S. Dep. Comer., NOAA Tech. Rep. NMFS 8: 117-122.
- Hsieh, C. H., Chang, F. C. and Yeh, S. Y. 2007, Standardized northern Atlantic Albacore (*Thunnus alalunga*) CPUE, from 1967 to 2008, based on Taiwanese longline catch and effort statistics. Collect. Vol. Sci. Pap. ICCAT, 65(4): 1390-1400 (2010).
- Hsu, C. C. 1996, Standardized catch per unit effort of Taiwanese longline fishery as abundance index of albacore stock in the Atlantic. Col.Vol.Sci.Pap. ICCAT, 46 (3): 123-130 (1997).
- Hsu, C. C. 1999, Standardized abundance index of Taiwanese longline fishery for bigeye tuna in the Atlantic. Col. Vol. Sci. Pap. ICCAT, 49 (3): 459-465 (2000).
- ICCAT. 1996. Report of the bluefin tuna methodology session. In April 16 to 19, 1996. Madrid, Spain, 28pp.
- Kimura, D. K. 1981, Standardized measures of relative abundance based on modeling log (CPUE), and their application to Pacific Ocean perch (*Sebastes alutus*), J. Cons. Int. Explore, Mer., 39: 211-218.
- Koto, T. 1969, Studies on the albacore-XIV. Distribution and movement of the albacore in the Indian and Atlantic Oceans based on the catch statistics of Japanese tuna longline fishery in 1959-1967. Bull. Far Seas Fish. Res. Lab., 1: 115-129.
- Mark N. Maunder and André E. Punt.2004, Standardizing catch and effort data: a review of recent approaches. Fisheries Research 70 p. 141-159.

- Nakano, H. 1996, Review of data collection system for the Japanese longline fishery and problems about standardization of CPUE. Col.Vol.Sci.Pap. ICCAT, 43: 159-161 (1996).
- Nelder, J. A. and R.W. M. Wedderburn 1972, Generalized Linear Models. J. Royal Stat. Soc. A, 135:370-384.
- Nishida, T., Y. Ishizuka and H. Kishino. 1994, Estimate of catch rate of Japanese longline fisheries for southern bluefin tuna (*Thunnus maccoyii*). The trilateral meeting for southern bluefin tuna. SBFWS/94/11.
- Uosaki, K. 1996, Updated standardized CPUE for albacore caught by Japanese longline fishery in the Atlantic Ocean. Col. Vol. Sci. Pap. ICCAT, 43: 311-317 (1996).
- Uosaki, K. 1999, Updated standardized CPUE for albacore caught by Japanese fishery in the Atlantic Ocean, 1975-1997. ICCAT Col. Vol. Sci. Pap., 49 (3): 212-217.
- Uosaki, K. 2000, Updated standardized CPUE for albacore caught by Japanese fishery in the Atlantic Ocean, 1975-1999. Col. Vol. Sci. Pap. ICCAT, 52 (4): 1468-1474.
- W.N. Venables and C.M. Dichmont 2004, GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research 70 p.319-337.
- Wu, C. L. and Yeh, S. Y. 1999, CPUE standardization for South Atlantic albacore caught by Taiwanese longline fisheries, 1968-1996. Col. Vol. Sci. Pap. ICCAT, 49 (4): 191-199
- Wu, C. L. and Yeh, S. Y. 2002, Geographic distribution and area demarcation on the fisheries resource of south Atlantic albacore. ACTA Oceanogra. Taiwan. 40(1): 81-92.
- Yang, S. H. and Yeh, S. Y. 2004, Standardized CPUE trend of Taiwanese longline fishery for northern Atlantic Albacore from 1968 to 2001. Col. Vol. Sci. Pap. ICCAT, 56(4):1412-1416.

Table 1. Analysis of variance on the standardized north Atlantic albacore yearly CPUE using Taiwanese longline fisheries data set from 1967 to 2012 (three periods:1967~1987, 1987~1999 and 1999~2012).

1. Dependent Variable: Logcpuen_alb

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	34	1627.924089	47.88012	153.96	<.0001
Error	3391	1054.578806	0.310993		
Corrected Total	3425	2682.502895			
R-Square	Coeff Var	Root MSE	Logcpuen_alb Mean		
0.606868	19.66674	0.557668	2.835588		
Source	DF	Type III SS	Mean Square	F Value	Pr > F
year	20	68.4968216	3.4248411	11.01	<.0001
quarter	3	55.7437786	18.5812595	59.75	<.0001
subarea	2	616.8414993	308.4207496	991.73	<.0001
codebet	3	33.687908	11.2293027	36.11	<.0001
codeyft	3	6.0951214	2.0317071	6.53	0.0002
codeswo	3	10.0033007	3.3344336	10.72	<.0001

2. Dependent Variable: Logcpuen_alb

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	23	2564.191505	111.486587	164.96	<.0001
Error	1862	1258.400126	0.675833		
Corrected Total	1885	3822.591631			
R-Square	Coeff Var	Root MSE	Logcpuen_alb Mean		
0.670799	52.76559	0.82209	1.558004		
Source	DF	Type III SS	Mean Square	F Value	Pr > F
year	12	108.807072	9.067256	13.42	<.0001
quarter	3	15.6410415	5.2136805	7.71	<.0001
subarea	2	309.8926703	154.9463351	229.27	<.0001
codebet	3	267.7324208	89.2441403	132.05	<.0001
codeyft	3	24.3709766	8.1236589	12.02	0.0002

3. Dependent Variable: Logcpuen_alb

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	26	4217.651167	162.217353	260.57	<.0001
Error	2901	1806.035126	0.622556		
Corrected Total	2927	6023.686293			
R-Square	Coeff Var	Root MSE	Logcpuen_alb Mean		
0.700178	61.5629	0.789022	1.281652		
Source	DF	Type III SS	Mean Square	F Value	Pr > F
year	13	115.6797442	8.8984419	14.29	<.0001
quarter	3	51.0923428	17.0307809	27.36	<.0001
subarea	2	596.60831	298.304155	479.16	<.0001
codebet	3	466.0344519	155.3448173	249.53	<.0001
codeyft	3	12.9376258	4.3125419	6.93	0.0001
codeswo	2	8.7517607	4.3758804	7.03	0.0009

Table 2. Analysis of variance on the quarterly standardized CPUE based on northern Atlantic albacore data of Taiwanese longline fishery during 1967 to 2012 (three periods:1967~1987, 1987~1999 and 1999~2012).

1. Dependent Variable: Logcpuen_alb

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	92	1683.030435	.030435 18.293809		<.0001	
Error	3333	999.47246	0.299872			
Corrected Total	3425	2682.502895				
R-Square	Coeff Var	Root MSE	Logcpuen_alb Mean			
0.62741	19.31188	0.547605	2.835588			
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
уд	81	177.2254812	2.1879689	7.3	<.0001	
subarea	2	572.8552817	286.4276409	955.17	<.0001	
codebet	3	32.7065675	10.9021892	36.36	<.0001	
codeyft	3	6.5622981	2.1874327	7.29	<.0001	
codeswo	3	8.9049156	2.9683052	9.9	<.0001	

2. Dependent Variable: Logcpuen_alb

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	59	2602.065162	44.102799	65.98	<.0001
Error	1826	1220.526468	0.668415		
Corrected Total	1885	3822.591631			
R-Square	Coeff Var	Root MSE	Logcpuen_alb Mean		
0.680707	52.47525	0.817567	1.558004		
Source	DF	Type III SS	Mean Square	F Value	Pr > F
уq	51	163.2555456	3.2010891	4.79	<.0001
subarea	2	288.7721545	144.3860773	216.01	<.0001
codebet	3	250.5495642	83.5165214	124.95	<.0001
codeyft	3	24.9015027	8.3005009	12.42	<.0001

3. Dependent Variable: Logcpuen_alb

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	65	4268.187674	65.664426	107.05	<.0001
Error	2862	1755.498619	0.613382		
Corrected Total	2927	6023.686293			
R-Square	Coeff Var	Root MSE	Logcpuen_alb Mean		
0.708567	61.10761	0.783187	1.281652		
Source	DF	Type III SS	Mean Square	F Value	Pr > F
уq	55	208.9207159	3.7985585	6.19	<.0001
subarea	2	583.1000157	291.5500078	475.32	<.0001
codebet	3	431.7846597	143.9282199	234.65	<.0001
codeyft	3	12.0932717	4.0310906	6.57	0.0002
codeswo	2	7.5342054	3.7671027	6.14	0.0022

Table 3. The nominal CPUE and its respective yearly standardized CPUE of north Atlantic albacore based on the Taiwanese catch statistics from 1967 to 2012.

Year	Nominal CPUE 1	Nominal CPUE 2	Nominal CPUE 3	Standardized CPUE 1	Standardized CPUE 2	Standardized CPUE 3
1967	19.7391			7.04761149		
1968	16.0726			12.17957499		
1969	13.406			10.51884607		
1970	14.2848			9.34167880		
1971	10.5539			6.71437595		
1972	25.5395			7.06525616		••••••
1973	26.5063			8.74580466		
1974	25.3519			7.98217959		
1975	27.4278			6.77497221		•
1976	26.3591			9.36022324		••••••
1977	23.6375			9.11781900		
1978	23.4746			8.69721275		
1979	30.2652			8.55978189		••••••
1980	29.8619			8.82731190		••••••
1981	21.7329			8.71087020		
1982	34.465			9.53825509		
1983	31.5084			9.54492836		
1984	27.5051			8.30930525		
1985	22.3687			7.17560262		
1986	19.5749			5.89185191		
1987	16.4646	16.4646		5.55517944	4.30222512	
1988		28.0238			6.98517469	
1989		19.0499			5.25506371	
1990		4.7679			3.85984828	
1991		6.0984			5.26785495	
1992		3.6641			4.45330957	
1993		10.2907			4.43557565	
1994		13.9695			3.22619959	
1995		14.5839			3.34505891	
1996		7.8009			2.19693177	
1997		8.3098			2.66303358	
1998		13.0828			2.66353052	
1999		6.9356	6.9356		2.02489370	2.11885330
2000			8.2945			2.03952367
2001			9.1721			2.19271756
2002			6.4509			2.28895699
2003			8.8337			4.12208989
2004			8.4901			3.13308117
2005			5.8526			3.65377605
2006			10.431			3.91051113
2007			5.932			2.67305287
2008			3.991			2.39078035
2009			5.349			2.39307184
2010			7.871			3.26066153
2011			5.909			3.40038198
2012			1.570			1.79180429

Table 4. The nominal CPUE and its respective quarterly standardized CPUE of north Atlantic albacore based on the Taiwanese catch statistics from 1967 to 2012.

Year*Quarter	Nominal CPUE 1	Nominal Nom CPUE 2 CPU	unal Standard IE3 CPI	dized St U.F. 1	tandardized Standardized CPUE 2 CPUE 3	Year*Quarter	Nominal CPUE 1	CPUE 2	CPUE 3 CPUE	ed Standardize	d Standardized 2 CPUE3	Year*Quarter	CPUE 1	CPUE 2	CPIJE 3	Standardized CPUE 1	Standardized CPIIE 2	Standardized CPUE 3
19671	01001	01022 010		0.5.1	01052 01053	19831	35.024	4052	9.032	6	2 01025	19991	01021	1,465	7.465	01021	3.08764	3,44725
19672						19832	27.122		9.247	1		19992		5.844	5.844		1.18847	1.69633
19673	21.534		6.01	1678		19833	25.116		8.619	3		19993		1.142	7.142		1.29292	1.78907
19674	18.6.6		7.29	9274		19834	37.325		13.545	4		19994		1.237	1.237		1.23985	1.82383
19681	28.112		13.94	1572		19841	35.753		11.765	3		20001			9.363			2.77940
19682	13.915		12.41	1903		19842	24.651		8.331	5		20002			9.427			2.19942
19683	15.917		11.31	1812		19843	20.882		6.618	2		20003			5.129			1 65861
19684	12.946		10.56	5351		19844	25.941		7.198	7		20004			8.414			1 29266
19691	26.845		10.86	5800		19851	26.041		8.958	4		20011			8.778			2.60965
19692	5.615		7.55	5531		19852	19.003		8.030	8		20012			8.679			1 92168
19693	12.946		10.04	1902		19853	16.490		4.768	7		20013			8.784			2 09026
19694	16.419		13.87	7013		19854	26.250		7 991	5		20012			11 902			2 37288
19701	10.362		12 37	7301		10061	20.400		7.002	2		20021			11500			3 52590
19702	23.84		9.94	132		19862	16.686		5 288	<u>م</u>		20021			3,995			1 83717
19703	10.612		8.33	1730		19863	16.171		5.616	г б		20023			6 901			1 79040
19704	13.16		694	1138		19864	21 492		5612	~ R		20024			2,072			2 15263
10711	26.540		8.70	1097		1007	17.412	17.412	6.000	9 4 0901	1	20024			7 562			4 53236
10712	20.540		6.52	1156		10072	14052	14052	4.405	5 2.0406	1	20001			6.953			384151
10712	1.010		4.04	1022		10072	14,002	14,002	4,455	6 5 4072	,	20032			11 200			3 75794
1071.4	2,510		1.00	902.5		19073	21.304	14.304	7 106	5 4 7570	2	20033			16.120			5.02704
10721	27.0%		11.40	2600		170/4	21.200	21.200	7.100	2 9.000	, ,	20034			0.111			2 71001
10722	2.000		11.42	70427		17001		20.404		5.6472	,	20041			10.140			2.00220
10722	12.20		4.00	7150		17002		12 756		0 7752	•	20042			10.140			2.50520
19723	20.20		0.00	2001				23.130		6.7752 E 0014	, ,	20045			12.302			4.10767
19724	26.010		0.00	9001		19004		24,0.04		6 2251	,	20044			10.1.79			4.19/07
19/31	12.000		11.52	5140				20.175		0.7751	, ,	20001			5,004			2 50725
19/32	10.62		0.00	2007		- 19692		10.101		5.0001	,	20052			5.094			2 15041
19/33	19.012		0.60	1997		19893		19.121		5.0721	1	20003			0.000			215041
19/34	34.95		9.07	1231		19894		12.921		4.00/2	,	20034			8.287			5.90433
19/41	20.114		9.72	2430				5.400		2.5575	,)	20001			0 100			2,00064
19/42	22.1)4		135	200		- 19902		2,980		3.5///	,	20062			5.199			3.00004
19/45	24.042		010	1099		19903		3.3%0		2.4201	,	20063			10.200			3.34733
19/44	34.942		9.15	813		19904		2,630		3.3493	5	20064			10.725			3399771
19/31	24.769		9.30	0.004		19911		2.907		5.3103	,	20071			5,695			2.70303
19/52	19.055		5.08	5415		19912		6.927		5.4833	5	20072			2,634			2.82506
19/05	17.147		4.95	9428		19913		6.013		3.5724		20073			8.104			2.66330
19/34	20.212		10.04	4342		19914		4,637		4.9004	2	20074			3.115			1.980/0
19/01	35.51		14.05	02.50		19921		1.808		4.5542	>	20081			3.202			2.70013
19/62	22.5)4		9.02	1322		19922		4.280		4.5623	\$	20082			4.264			2.23000
19/03	12.938		4.55	0024		19923		0.363		2.9090	5	20083			3.415			198105
19/04	21.392		11.11	10,205		19924		2.220		4.1100		20064			0.890			2.62660
19//1	21.36		6.92	2291				0.457		2.4393		20091			0.361			2,90,942
19/72	25.0.0		11.60	00.0		19932		14,388		4.1472	-	20092			3.209			2.39921
19/73	21.01		8.32	641Z		19933		10.340		4.9420	-	20093			7.103			2.49354
19774	20.498		8.93	102		19934		2.40		3.2104		20094			0.417			1.0004
19/81	10.119		1225	/312		19941		1.945		2.0485	-	20101			9.300			3.02/31
19762	16.614		0.92	1401		19942		10.764		1.80/1	•	20102			0.336			2.04/0/
19783	10.0)4		1.42	6.004 560.4		19943		22.201		3,8185	,	20103			6.259			41200/
19784	20.201		8.55	1002		19944		11,040		2.8236	, ,	20104			7,044			9.17880
19791	36.3.9		14.94	1005		10010		12.047		2,8001	-	20111			3.129			3.01144
19/92	22.3%		7.39	8022		19922		20.033		2.1991	-	20112			4.152			2.14636
19/93	14.8%		5.01	11/2				10.04		4.5230	-	20113			/.004			4.04946
19/94	41.8.1		9.39	900				10.040		2.1742	5	20114			0.201			3./11/0
19801	30.303		13.88	800		19901		14.264		2.0622	-	20121			3.540			3.16042
19802	23.239		152	615		19962		4,440		1.8438	-	20122			0.201			1.20093
19803	18.757		5.71	1444		19963		1.790		15/00	-	20123			0.004			1.04911
19804	39.417		9.99	H15		19964		2.636		1.0811	-	20124			0.646			1.83866
19811	32.5%		10.12	1545		19971		11.621		3.3594	2							
19812	22.497		8.03	5385		19972		5.788		2.1775	5							
19813	21.35		7.76	9558		19973		3.255		1.6320	<u></u>							
19814	34,910		9.25	5655		19974		8.654		1.8171	1							
19821	35.90		11.69	R96		19981		17.234		2.3774	3							
19822	28.692		9.71	1 161		19982		12.073		1.9969								
19823	24.00		7.17	7066		19983		12.042		2.1923	3							
19824	46.0%		10.42	2138		19984		7.285		2.4214	5							

Figure 1. Map showing the segregation of subareas in the GLM analyses of present study.

Figure 2. Yearly nominal and standardized CPUE (No/1000 hooks) trends of north Atlantic albacore based on Taiwanese longline fishery data set from 1967 to 2012.

Figure 3. Distribution of normalized residuals obtained from yearly GLM model.

Figure 4. The Q-Q plot for residuals obtained from yearly GLM model.

Figure 5. Quarterly nominal and standardized CPUE (No/1000 hooks) trend of north Atlantic albacore based on Taiwanese longline fishery data set from 1967 to 2012.

Figure 6. Distribution of normalized residuals obtained from quarterly GLM model.

Figure 7. The Q-Q plot for residuals obtained from quarterly GLM model.