UPDATED STANDARDIZED BLUEFIN CPUE FROM THE JAPANESE LONGLINE FISHERY IN THE ATLANTIC TO 2012 FISHING YEAR

A. Kimoto¹, Y. Takeuchi¹ and T. Itoh¹

SUMMARY

Abundance indices of bluefin tuna from the Japanese longline fishery in the West and Northeast Atlantic were provided up to 2012 fishing year. The indices were standardized with deltalognormal model with random effect. West Atlantic index fluctuated significantly since 2007 fishing year, showing considerably high values in several fishing years. These high indices might be related to the abundance of relatively small-sized bluefin (50-60kg). Abundance index in the Northeast Atlantic showed a steep increasing trend since 2009 fishing year, and the size of bluefin caught showed a continuous contribution from 2003 year class. This study also made the first trial to provide the nominal CPUE by year class. Japanese longline possibly gradually exploited the 2003 year class since 2009 fishing year. This strong year class will migrate into the spawning areas, and it would be beneficial to monitor the other fisheries which target larger fish both in the West and East stocks. It was suggested that careful considerations would be needed for the use of Japanese CPUE series in the stock assessment of both west and east stocks.

RÉSUMÉ

Les indices d'abondance de la pêcherie palangrière japonaise ciblant le thon rouge et opérant dans l'Atlantique Ouest et Nord-Est ont été fournis jusqu'à l'année de pêche 2012. Les indices ont été standardisés au moyen d'un modèle delta-normal avec effet aléatoire. L'indice de l'Atlantique Ouest présente des fluctuations considérables depuis l'année de pêche 2007 et affiche des valeurs considérablement élevées pour plusieurs années de pêche. Ces forts indices pourraient avoir un rapport avec l'abondance du thon rouge de taille relativement réduite (50-60kg). L'indice d'abondance de l'Atlantique Nord-Est présentait une tendance rapide à la hausse depuis l'année de pêche 2009 et la taille des thons rouges capturés présentait la contribution continue de la classe d'âge de 2003. Cette étude a également fait le premier essai pour fournir la CPUE nominale par classe annuelle. Il se peut que la palangre japonaise ait graduellement exploité la classe de 2003 depuis l'année de pêche 2009. Cette forte classe annuelle migrera dans les zones de ponte et il serait judicieux d'effectuer un suivi des autres pêcheries qui ciblent des poissons plus grands dans les stocks Ouest et Est. Il a été suggéré qu'il conviendrait de faire preuve de prudence en utilisant cette série de CPUE dans l'évaluation des stocks de l'Est et de l'Ouest.

RESUMEN

Se facilitan como caso base índices de abundancia de atún rojo de la pesquería palangrera japonesa en el Atlántico occidental y nororiental hasta el año pesquero 2012. Los índices se estandarizaron mediante un modelo delta-lognormal con efectos aleatorios. El índice del Atlántico occidental fluctuó significativamente desde el año pesquero 2007, mostrando valores considerablemente elevados en varios años pesqueros. Estos índices elevados podrían estar relacionados con la abundancia de atún rojo de talla relativamente pequeña (50-60 kg). El índice de abundancia del Atlántico nordeste mostraba una marcada tendencia ascendente desde el año pesquero 2009, y la talla del atún rojo capturado mostraba la contribución continua de la clase anual de 2003. En el estudio se realizó también la primera prueba para proporcionar CPUE nominal por clase anual. Es posible que el palangre japonés haya explotado gradualmente la clase anual de 2003 desde el año pesquero 2009. Esta fuerte clase anual migró a zonas de reproducción, y sería beneficioso hacer un seguimiento de otras pesquerías que se dirigen a peces más grandes tanto en los stocks del este como del oeste. Se sugirió que se requerirá una consideración minuciosa al utilizar estas series de CPUE en la evaluación de stock, tanto de los stocks del este como del oeste.

KEYWORDS

Bluefin tuna, Stock abundance, Catch and effort, CPUE standardization, Delta-lognormal model, Generalized Linear Mixed Model, Long lining, Size

¹ NRIFSF. 5-7-1, Orido, Shimizu, Shizuoka, 424-8633. Japan. aikimoto@affrc.go.jp

1. Introduction

Japanese longline fishery data in the North Atlantic are valuable information for studying the bluefin tuna stock in the Atlantic. This fishery covers wide geographical areas in the North Atlantic and the Mediterranean Sea, where bluefin tuna were distributed, for more than five decades (Kimoto *et al.*, 2011b). This wide temporal/spacious coverage, together with a good accurate quality of the data is the most important advantages in providing reliable abundance trend for this species.

However, the patterns and areas of fishing by the Japanese longline fishery changed through the history especially in the recent years (**Figure 1**), due to the introduction of IQ (individual vessels quota) and limited entry system to the Japanese longline vessels, voluntarily since August 2007 and by law August 2009 (Japan, 2011). Because both the amount of catch and the number of vessels have been significantly reduced, the Japanese longline fishery is not a major fishery for bluefin anymore. Although the abundance indices from this fishery are still very reliable and useful, it is strongly recommended to develop valid and reliable indices for other major fisheries (e.g. Mediterranean purse seine) while continued effort in improving Japanese longline standardized CPUE index is also desirable.

This paper provides updated, to 2012 fishing season, abundance indices for the bluefin stocks in the Atlantic given in the previous studies (Oshima *et al.*, 2008 and 2009, Kimoto *et al.*, 2011b, and Kimoto *et al.*, 2013b), i.e. the CPUE series standardized by application of Generalized Linear Modeling technique. It also provides some exploratory abundance indices for the Japanese longline fleet, observing very rapid changes in its fishing patterns, due to the introduction of a new regulatory measure for bluefin tuna mentioned above, and examining the 2003 strong year class dominated in the Japanese longline catches since 2009 (Kimoto *et al.*, 2011b).

2. Materials and methods

The catch and effort data (individual operation data) of the Japanese longline fishery were obtained from the logbook data compiled by the National Research Institute of Far Seas Fisheries (NRIFSF), and used for the CPUE standardization for the period from 1975 to 2012 fishing years. The fishing years were used in this report; 2012FY refers to the period from August 1, 2011 to July 31, 2012. The data in 2013FY were incomplete and used only in the exploratory abundance indices. Information on the number of hooks between floats (NHBF) is available since 1975 (indicative of the depth of the line). The catch history by the Japanese longline fishery dates back to much earlier period (back to 1958) but the catches before the mid-1970s mostly came from different areas (mostly tropical waters) from the current fishing grounds. In addition, there were no reliable and sufficient size data available for them. It should be noted that the fleets are very mobile and their operational practice and fishing techniques have been constantly modified during its history (Miyake *et al*, 2010).

The size measurement (or composition) data for bluefin tuna caught by the Japanese longline fishery have been collected through the research programs by the NRIFSF and observer program by the Fishery Agency of Japan (Kimoto *et al.*, 2011a). In August 2008, Fishery Agency of Japan started to tag of the individual bluefin tuna caught by the Japanese longliners (for identification) and collect their weight (Japan, 2011). Therefore from 2009FY converted size (length) data, using weight-length relationship by ICCAT (Anon, 2011), are available for all fish caught; the number of available size data being 23,451, 17,899, 13,526, 9,449 and 8,824 in 2009FY, 2010FY, 2011FY, 2012FY, and 2013FY respectively. Applying slicing procedures to the size frequencies of bluefin caught by the Japanese longliners, catch at age was estimated for 2009 through 2013FYs from the converted size data. For slicing, the von Bertalanffy growth function estimated by ICCAT (Anon, 2011) was used.

The CPUE were standardized respectively for the traditional three areas by applying the same method as previously described by Oshima *et al.* (2008 and 2009) and Kimoto *et al.* (2010b and 2012b). These three areas are West Atlantic (off US and Canada, north of 30°N and west of 45°W), Northeast Atlantic (off Iceland north of 40°N and east of 45°W), and East Atlantic (30°N to 40°N, off Gibraltar to western Mediterranean Sea). The area definitions are shown in **Figures 2 and 3**. Total accumulative numbers of observations (set by set data) throughout the period to 2013FY for the standardized CPUEs are 57,375 in the West Atlantic, 86,132 in the Northeast Atlantic, and 64,308 in the East Atlantic (**Tables 1-3**), after eliminating some anomalies due to a technical error.

Updated standardized CPUE to 2012FY

In the east of 45°W, the Japanese longline vessels almost limited their operations solely in the Northeast Atlantic and rarely in the East Atlantic, since 2010FY, due to the IQ system and the small quota for each vessel (**Tables 2 and 3**). Therefore the CPUE series were updated to 2012FY for only in the West (1976-2012FY) and Northeast Atlantic (1990-2012FY) from the previous study (Kimoto *et al.*, 2013b), whereas the CPUE in the East Atlantic was not updated since 2010FY.

In the CPUE standardization, fishing year, month, area, main and branch line material and NHBF were considered as main effects in the model, and interactions between month and area were included as a random effect. The original area stratification of each index was shown in **Figure 2**. Information on materials for main and branch lines is only available since 1994 and classified as either nylon or other materials. The lines used before 1994 were assumed as other materials. In order to keep the interaction in the model (avoiding lack of observations), some adjacent categories (month and area) were aggregated (**Figure 3**). Categories in each main effect adopted in the model are shown below. Delta-lognormal model (Lo *et al.*, 1992) with binomial distribution to model successful/unsuccessful sets and lognormal for positive catch rate was applied for standardizing CPUE, because the data set includes many zero-catch observations. Model formula of logistic regression model of the 1st step model is as follows,

```
\log \frac{p}{1-p} = \text{Intercept} + (\text{Main effects}) + (\text{Interaction term}) (1)
```

where Log(p/(1-p)) is logit link function, *p* indicates ratio of positive catch and is assumed to binomially distributed. The model formula of lognormal model of the 2nd step is as follows,

logCPUE = Intercept + (Main effects) + (Interaction term) + Error (2)

where logCPUE indicates natural logarithm of catch rate of positive set, that is the number of bluefin tuna per 1000 hooks, and error is also assumed to be distributed normally. The fitting was conducted by GLIMMIX macro and MIXED procedure of SAS/STAT package (Version 9.3) for the 1st and 2nd steps, respectively. Only significant variables among the considered main effects in the 1st step were used in the final model for each area, West, Northeast, and East Atlantic.

Main effect / Area	West Atlantic	Northeast Atlantic
Stock	West	East
Fishing Year	1976-2012	1990-2012
Month	Nov, Dec, Jan, Feb	Aug-Oct, Nov, Dec, Jan-Mar
Area (Figure 3)	5 areas	4 areas
Material of main line	Nylon, others (since 1994)	Nylon, others (since 1994)
Material of branch line	Nylon, others (since 1994)	Nylon, others (since 1994)
Hooks between floats	5–13 (individual)	4 - 7, 8 - 12 hooks

Exploratory CPUE series

As explained earlier, the standardization of CPUE of the Japanese longline fishery becomes much more complicated, since the IQ system has been introduced. These complications are studied in the discussion section later. In order to help understanding of the changes and fluctuations of CPUE, several exploratory CPUE series were examined. They include updating to 2013FY both in the West and Northeast Atlantic shown with their model diagnostics.

Updated standardized CPUE to 2013FY

Using exactly the same method as above with the final chosen categories, the CPUE series were updated to 2013FY in the West and the Northeast Atlantic. The data for 2013FY are, however, incomplete.

Nominal CPUE of 2003 year class, and the older and the younger year classes

In these series, the nominal CPUEs for 2003 year class and the older and the younger year classes were analyzed separately both in the West and Northeast Atlantic, because the continuous utilization of 2003 year class in the both areas has been observed (Kimoto *et al.*, 2013a and 2013b). These studies also noted that the CPUEs in the recent years substantially changed longline operations and resulted in their highly concentrated and limited catch pattern in time and space, due to the high CPUEs, small quota for each vessel, and the introduction of IQ system voluntarily since 2008FY (August 2007). Since August 2008, Fishery Agency of Japan started to collect the weight of all of the individual bluefin tuna caught by the Japanese longliners (Japan, 2011). Using these data and logbook data, the catch were roughly divided into three categories: 2003, the older, and the younger year classes and each nominal CPUE was calculated. The rough criteria in round weight to distinguish 2003 year class in each fishing year was used as follows: 30-75kg in 2009FY, 60-105 kg in 2010FY, 80-145 kg in 2011FY, 100-180 kg in 2012FY, and 120-210 kg in 2013FY. The nominal CPUE by stock, fishing year, and category was calculated as the number of bluefin tuna divided by the total hooks (in the thousands) in the fishing year, and the data set using the same data manner (the months and the areas) with the standardization described above.

3. Results and discussion

Updated standardized CPUE to 2012FY

Results of type III test for positive catch ratio (1st step) and CPUE of positive catch (2nd step) in the final model were shown in **Table 4**. The variables of main and branch line materials among the considered main effects were not significant for the West and Northeast Atlantic. They were excluded in the 1st and 2nd steps for these areas.

Residual patterns of positive CPUE in the 2nd step were slightly skewed to the right in these areas (**Figure 4**). Additionally, the residual distribution in the Northeast Atlantic had two modes. There were large annual fluctuations in observed and predicted proportions of positive catch in the West Atlantic (**Figure 4**), while the proportions in the Northeast Atlantic showed less fluctuations compared to that in the West.

Observed CPUE of positive catch in the West Atlantic fluctuated without any trend during 1976-2012FY, and it jumped up sharply in 2007 and 2011FYs in the West (**Figure 4**). On the other hand, the CPUE in the Northeast Atlantic were stable until 2008FY except for 1996FY, and demonstrated an upward trend in the recent four years to 2012FY.

Standardized CPUE based on the Least Square Mean are shown in Figure 5 and Table 6. In the West Atlantic, the abundance indices showed gradual decline with large fluctuations from 1976FY to the mid-1980s, having reached the lowest in 1986FY. It recovered since then and showed relatively stable until the mid-2000s except for the sudden increase in 1996FY. It exhibited an increase after 2005FY with large fluctuations. In 2007, 2009, 2011 and 2012FYs, they showed very high levels. Relatively smaller-sized fish (135-150cm in fork length, 50-60kg) were abundant in 2009 and 2011FYs in the catches off Canada (Figures 1 and 2, areas 18-19) in January, which were similar to 2007FY (Kimoto et al., 2011a). This is well shown in the size and age composition data (Figures 6 and 7) of bluefin caught by Japanese longline, collected by Fishery Agency of Japan since 2009FY. In addition, the jump of the CPUEs in 2011 and 2012 FYs was also due to the good catch of medium-sized fish (165-185cm, 95-120kg in 2011FY, and 180-200cm, 115-165kg in 2012FY) from October to January, which was a similar size range appeared in the Northeast fishing ground between October and November. The large difference and the opposite trend in 2012FY were considered to be of less concern, because the magnitude of 2012FY CPUE (Figure 4) in the west fish was large but it remains within the range of variations of constant CV of lognormal error (normal error in the log-scale) (Figure 8). The sharp decline in the CPUEs in 2010FY was mainly because of many zero catch data (Figure 4). This may be related to a good catch rate of bigeye tuna, particularly in 2010FY, and that some vessels targeted bigeye rather than bluefin. The low CPUE in 2010FY were also caused by the shift of main fishing ground to south (25-35°N and 65-75°W) part of which was outside of the defined area to which CPUE was standardized, and hence large portion of data are not included in the analyses.

In the West Atlantic, the fishing ground changed substantially between years, and the area of the fishing ground shrank in recent years (**Figure 1**). There characteristics appeared since 2008FY when the fishermen's association introduced IQ system, and became more significant since 2010FY, when the IQ system was officially applied by law while the total TAC has gradually reduced. The fishing operation normally started in November before the IQ system, but since 2010FY the fishermen's strategy was changed and nearly half of their operations were mostly occurred in the period between August and October by targeting both bigeye and bluefin tuna in the fishing year (**Figure 9**). Therefore, development of new separate CPUE time series which start in August may be recommended.

The CPUE series in the West Atlantic sometimes detected high abundance of relatively small-sized fish (135-150cm, 50-60kg: **Figure 6**). Moreover, the nominal CPUE values of some sets since 2011FY in the West area were as high as those observed in the Northeast, and the size range of fish in the main fishing area and season (40-45°N, 45-55°W, November and December) being similar to the Northeast Atlantic (50-60°N and 15-35°W, October to November), especially in 2012FY (**Figure 10**). These findings possibly suggested migration of fish from the east stock into the western of the stock boundary. However, the possibility of simultaneous appearance of a strong year class of 2003 in the west stock as in the east stock cannot be rejected.

The Northeast Atlantic, north of 40°N (Areas 31-34 in **Figure 3**) was exploited by the Japanese longline fleet around 1990, and this fishing ground has been constantly exploited since then, i.e. for more than 20 years. Especially in recent years, the Japanese longline concentrated its activities in this area, while there were hardly any operations in the south of 40°N including the Mediterranean Sea. It seems that this pattern would be maintained. Therefore, the abundance index in the Northeast Atlantic would become more valuable for the stock assessment of the east stock.

In the Northeast Atlantic, overall abundance indices showed a slight increasing trend since 1990FY (**Figure 5**). The high value was observed in 1996FY and decreased thereafter and remained at the average level since 1999FY until 2005FY. It started increasing again in 2009FY and reached the highest value in the latest fishing year of analysis, 2012FY. In the recent years, the high CPUEs were observed in October and November, in the northern areas: 50-60°N and 15-35°W (**Figure 1**), where and when the most of the operations are concentrated, because the fish of high quality and value are available. Interestingly, the longline catch since 2010FY were consisted mainly of 2003 year class (**Figures 6 and 7**), while they already appeared in 2009FY catch. The similar result was observed in the analyses, which used roughly only 2003 year class data (exploratory CPUE: **Figure 14**). Recruitment of the strong 2003 year class to this fishery contributed to the increase in the longline CPUE in that area. This strong year class showed up for the first time in the Japanese longline catches in 2009FY and thereafter (**Figures 6 and 7**). It might suggest that younger bluefin is not fully available in the northern fishing ground (north of 50°N). It would be very helpful to understand their migration pattern by age and this issue e.g. by encouraging more electronic tagging studies. At the same time, the introduction of strict IQ system by law possibly has affected the skippers' behavior and efficiency, having also probably contributed this increase of the CPUEs. Further study would be needed.

In the recent years, the fishing grounds changed or shrank (**Figure 1**) due to the introduction of IQ system for Japanese longline vessels, and/or the small quota, high CPUE, and increment of average weight in catch related to the growth of 2003 year class, having resulted in the extremely shortened fishing season, especially in the Northeast Atlantic (**Figure 11**). Since the 2012FY, these conditions became even more significant, showing the extremely high CPUE. Under current small quota, the continuity of the high CPUEs will remain the total fishing efforts reduced substantially and will result in the limited temporal/spacious coverage of efforts. It is possible that the representativeness of the CPUE series of stock abundance may have changed, and the uncertainty in the stock assessment results could be increased. It may be desirable to separate the CPUE series into different time blocks at the introduction of the IQ system. Additionally, if age-specific CPUE series could be developed, they might help understanding the observed fluctuations in CPUE.

The good CPUEs were observed in other fisheries (Anon. 2013) both in the West and East Atlantic. The bluefin currently utilized by the Japanese longliners in the Northeast Atlantic, 2003 year class, will migrate into the spawning areas. The similar phenomenon may affect their CPUE series targeting large fish, and the careful attention would be necessary.

Exploratory CPUE series

Updated standardized CPUE to 2013FY

The standardized CPUE in the West Atlantic was updated up to 2013FY and provided in **Figure 12**, whereas the model for the Northeast Atlantic was not converged and its nominal CPUE was shown in **Figure 13**.

In the West Atlantic, the observed and the estimated CPUEs showed also high levels in 2013FY. These CPUEs in logarithmic scale were similar (**Figure 8**). As described above, these high CPUEs since 2011FY were mainly due to the good catch of medium size fish (165-185cm in 2011FY, 180-200cm in 2012FY, and 190-220cm in 2013FY) from October to January, which was a similar size range, appeared in the Northeast fishing ground between October and November. These good catches were produced in the areas 19 and 20 (40-45°N, 45-55°W) in **Figure 2**, and these fish were speculated to be same school which migrated from the Northeast fishing ground from their captured month and the sizes. These high CPUEs would be continued as far as a small quota continues and the 2003 strong year class continues to contribute to the catch.

In the Northeast Atlantic, substantially high nominal CPUE observed in 2012FY was remained in 2013FY, and the 2003 year class again dominated catches (**Figures 6 and 7**). The increasing trend of CPUE in the Northeast Atlantic was stopped and was slightly decreased in 2013FY. Even if the future CPUE already started to decline, it could be expected that it also remain high level if Japanese longliners continue to utilize mainly the 2003 year class.

Nominal CPUE of 2003 year class, and the older and the younger year classes

As the size data of Japanese longline catches have been improved since 2009FY (100% coverage), and hence the age-based CPUE are possible for recent periods. This is the first trial to roughly examine the trend of CPUE by year class, thus only nominal CPUEs were provided for the 2003 year class and the older and the younger year classes both in the West and Northeast Atlantic.

In the West Atlantic, the overall CPUE (**Figures 5 and 12**) mainly consisted by 2003 and the younger year classes, which also contributed to the highly fluctuated CPUE (**Figure 14**), as already explained above. The CPUE for the younger year classes detected relatively good recruitment in 2011FY, and also showed the increase in 2013FY. It would be good to monitor these year classes in the future CPUE, and Japanese longline CPUE might show some references about the strength of the year class.

In the Northeast Atlantic, the overall CPUE trend was similar to those for the 2003 year classes. This was already pointed out that this year class were already appeared in 2009FY and the main size of the catches chiefly consisted by this year class since 2011FY. The 2003 year class in the Japanese Northeast fishing ground will migrate into the spawning areas, and would gradually contribute to the other fisheries which target larger fish both in the West and East stocks. In the case of east stock, it would be beneficial to explore signals of the 2003 year class from size compositions of fisheries in the eastern Atlantic and Mediterranean Sea, as shown in **Figure 6** for Japanese longline in this study. It is encouraged to continue to collect and monitor the size information of the catch in each fishery. However, current high CPUEs possibly may not fully detect the year class under the shortened fishing period with the current national quotas.

The CPUE for the younger year class showed small increase in 2013FY. Similar to the West CPUE, it would help to understand the magnitude of the year class by monitoring the future CPUE, and the study analyzing 2003 year class would be also helpful to decide the magnitude of year class at their early age. Japanese longliners catch over 30kg in the North Atlantic, and their CPUE sometimes catch some high recruitment sign when the fish is about 4-5 age. It also can be preferable to compare those indices to the CPUEs in the Mediterranean Sea and Bay of Biscay for the east stock, and in the Gulf of Mexico and Mid-Atlantic Bight for the west stock for the better understanding of Atlantic bluefin tuna. This study showed the first trial to examine the trend of CPUE by year class for Japanese longline fishery, and this will be improved in the future study. It is considered that these CPUE will contribute as a good indicator that reflect the abundance, and contribute to reduce uncertainty of the stock assessment.

References

- Anon. 2011. Report of the 2010 Atlantic Bluefin Tuna Stock Assessment Session (Madrid, Spain, September 6 to 12, 2010). ICCAT, Col. Vol. Sci. Pap., 66(2): 505-714.
- Anon. 2013. Report of the 2012 Atlantic Bluefin Tuna Stock Assessment Session (Madrid, Spain September 4-11, 2012). ICCAT, Col. Vol. Sci. Pap., 69(1): 1-198.
- Japan. 2012. National Report, 2010. IN Report for biennial period, 2010-11 PART II (2011) Vol. 3.
- Kimoto A., Itoh T., and Miyake M., P. 2011a. Overview of the Japanese longline fishery for bluefin tuna in the Atlantic Ocean, up to 2009. ICCAT, Col. Vol. Sci. Pap., 66(3): 1116-1135.
- Kimoto A., Itoh T., and Miyake M., P. 2011b. Updated Standardized bluefin CPUE from the Japanese longline fishery in the Atlantic up to 2009. ICCAT, Col. Vol. Sci. Pap., 66(2): 956-983.
- Kimoto A., Itoh T., Sakai O., and Miyake M., P. 2013a. Overview of the Japanese longline fishery for bluefin tuna in the Atlantic Ocean, up to 2011. 69(2): 631-646.
- Kimoto A., Itoh T., Suzuki Z., and Miyake M., P. 2013b. Updated standardized bluefin tuna CPUE from the Japanese longline fishery in the Atlantic up to the 2011 fishing year. 69(2): 647-670.

- Lo, NC-H, Jacobson, LD, Squire, JL. 1992. Indices of relative abundance from fish spotter data based on deltalognormal models. Can. J. Fish. Aquat. Sci. Vol. 49, no. 12, pp. 2515-2526.
- Miyabe, N. 1993. Standardized CPUE of Atlantic bluefin in the eastern Atlantic and Mediterranean Sea obtained from the Japanese longline fishery. ICCAT, Col. Vol. Sci. Pap., 40:310-316.
- Miyabe, N. 2003. Description of the Japanese longline fishery and its fishery statistics in the Mediterranean Sea during the recent years. ICCAT, Col. Vol. Sci. Pap., 55: 131-137.
- Miyake M., P., Guillotreau P., Sun C-H., and Ishimura G. 2010. Recent developments in the tuna industry; stocks, fisheries, management, processing, trade and markets. FAO Fisheries and Aquaculture Technical Paper. 543, FAO, Rome. 125pp.
- Oshima K., Takeuchi Y., Miyabe N. 2009. Standardized bluefin CPUE from the Japanese longline fishery in the Atlantic up to 2007. ICCAT, Col. Vol. Sci. Pap., 64: 594-612.
- Oshima K., and Miyabe N. 2009. Updated Japanese longline bluefin tuna CPUE in the Atlantic Ocean. SCRS/2009/172.

Table 1. Number of longline sets by various strata for the West Atlantic CPUE standardization. Observations were aggregated by month, area (prefixed by A), materials of main line (M1=others, M2=nylon) and branch line (F1=others, F2=nylon), number of hooks between floats (prefixed by B). Area definition is shown in **Figure 2**. Year is fishing year (2013 means August 2012 to March 2013).

Year	Nov	Dec	Jan	Feb A	1 A	2 A3	3 A4	A	5 A	.6 A	7 A8	A	.9	A10	A11	A12	A13	A14	A15	A	16 A	A17
1976	347	322	266	208	9	1	0	0	0	0	0	0	163	196	2	0	0	0		14	268	19
1977	534	522	519	212	0	4	1	0	0	0	0	10	82	507	155	0	0	0		5	79	195
1978	516	559	377	45	0	4	0	1	0	0	0	3	202	238	94	0	2	0		5	24	184
1979	755	680	749	179	0	2	0	0	0	0	0	19	239	773	122	0	19	11		9	105	472
1980	824	777	683	170	0	7	0	0	0	0	0	0	90	254	113	54	0	3		3	56	898
1981	1513	1512	902	341	0	0	0	0	0	0	0	0	237	404	338	220	10	3		6	191	825
1982	1753	846	206	116	0	2	1	3	1	0	0	0	337	213	144	52	0	0		1	46	68
1983	891	694	623	504	0	0	1	0	0	0	0	0	151	173	235	10	0	0		0	50	1059
1984	629	624	572	212	0	0	0	0	0	0	0	0	45	188	71	9	1	2		0	56	969
1985	723	851	655	344	0	0	0	0	0	0	0	0	69	279	55	5	0	1		1	187	566
1986	688	641	551	53	0	0	0	0	0	0	0	0	19	129	85	5	36	11		0	23	326
1987	897	944	710	42	0	30	11	0	21	7	0	0	6	297	287	1	0	0		0	170	669
1988	891	869	651	364	0	1	0	0	0	10	0	0	27	458	507	41	11	0		0	311	786
1989	804	1051	521	247	0	0	1	126	333	51	0	0	3	170	338	6	0	0		0	126	412
1990	663	782	766	296	0	0	5	57	294	81	0	0	0	63	171	37	15	0		0	59	462
1991	516	479	502	154	0	0	0	17	33	118	4	0	0	9	18	40	5	0		0	103	348
1992	310	667	392	2	0	0	0	0	41	21	3	0	0	6	9	1	10	0		0	16	172
1993	664	622	343	53	0	0	0	0	0	0	0	0	0	4	5	2	0	0		0	13	352
1994	336	574	533	92	0	0	0	0	0	0	0	0	0	17	9	9	26	0		0	6	308
1995	235	217	112	1	0	0	0	0	0	0	0	0	0	0	25	3	0	1		0	0	220
1996	38	371	70	0	0	11	0	0	0	0	2	0	0	0	11	0	0	0		0	24	52
1997	73	613	133	0	0	0	0	0	6	34	28	0	0	0	3	0	0	3		0	7	58
1998	31	746	375	33	0	0	17	0	26	5	0	0	0	8	79	1	3	30		0	0	154
1999	316	585	244	127	0	0	3	90	91	40	74	0	0	0	1	4	2	3		0	0	14
2000	347	565	201	153	0	0	0	23	93	31	112	0	0	2	5	0	0	1		0	1	166
2001	190	672	221	134	0	0	1	67	209	117	140	0	0	0	0	1	2	0		0	0	1
2002	638	837	320	395	0	22	7	96	245	390	140	0	0	27	29	0	7	10		0	0	14
2003	163	442	57	106	0	82	10	5	125	37	86	0	0	0	0	0	3	13		0	0	2
2004	41	156	461	167	0	72	2	52	137	72	27	0	0	30	42	5	1	0		0	0	18
2005	10	214	790	761	5	195	0	107	135	108	28	0	0	543	124	5	1	5		0	20	42
2006	0	136	561	368	18	121	4	73	180	136	32	0	0	38	165	2	0	0		0	1	119
2007	6	83	132	149	42	76	0	0	0	0	0	0	0	69	21	7	1	0		0	0	6
2008	0	55	143	40	81	121	0	0	0	0	0	0	0	1	1	0	0	0		0	0	12
2009	6	18	18	0	4	12	0	0	0	0	0	0	0	2	1	0	0	0		0	0	4
2010	89	51	6	0	1	34	10	0	0	0	0	0	0	2	3	0	0	0		0	0	0
2011	99	100	84	2	11	26	0	0	0	0	0	0	0	0	0	0	0	0		0	0	1
2012	102	54	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
2013	121	108	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
Total	16759	20039	14453	6070	171	823	74	717	1970	1258	676	32	1670	5100	3268	520	155	97	4	44	1942	9973

Table 1. (Continued.
------------	------------

Year	A18	A19	A20	A21	A22	A23	A	24	M1 I	M2	F1	F2	B5	B6	B7	B8 E	B9	B10	B11	B12	B13	Т	otal
1976	i 7	442	2 1	9	0	0	3	0	1143	0	1143	0	971	172	0	0	0	0	0		0	0	1143
1977	166	509	9 7	4	0	0	0	0	1787	0	1787	0	1474	313	0	0	0	0	0		0	0	1787
1978	54	677	7	8	0	0	1	0	1497	0	1497	0	1399	95	0	0	0	3	0		0	0	1497
1979	83	474	4 3	5	0	0	0	0	2363	0	2363	0	1938	378	28	0	0	19	0		0	0	2363
1980	563	397	7 1	6	0	0	0	0	2454	0	2454	0	1989	384	50	28	0	3	0		0	0	2454
1981	545	5 1250) 21	0	0	0	0	29	4268	0	4268	0	2650	998	278	94	107	141	0		0	0	4268
1982	201	1519	32	2	0	0	0	11	2921	0	2921	0	1223	811	180	116	135	317	99	2	40	0	2921
1983	186	5 778	3 4	7	0	0	0	22	2712	0	2712	0	906	1301	117	174	0	209	0		5	0	2712
1984	267	337	7 8	6	0	0	0	6	2037	0	2037	0	432	1345	144	20	6	65	19		6	0	2037
1985	183	1060) 16	4	0	0	1	2	2573	0	2573	0	43	1414	987	0	25	6	3	2	16	49	2573
1986	67	977	23	6	0	0	0	19	1933	0	1933	0	21	742	831	198	0	59	5		0	77	1933
1987	251	662	2 16	1	0	0	2	18	2593	0	2593	0	26	1083	1279	138	10	30	0	2	27	0	2593
1988	258	344	1	1	0	0	0	10	2775	0	2775	0	5	115	2326	275	0	14	0	1	10	30	2775
1989	413	504	11	3	0	0	1	26	2623	0	2623	0	0	383	1777	270	14	108	21	5	50	0	2623
1990	515	5 575	5 12	8	0	0	0	45	2507	0	2507	0	0	383	1961	132	0	17	0	1	14	0	2507
1991	152	600) 12	1	0	0	11	72	1651	0	1651	0	15	147	1165	277	0	1	1		0	45	1651
1992	215	583	3 15	0	0	1	1	142	1371	0	1371	0	0	219	830	279	26	14	0		0	3	1371
1993	378	8 849	96	7	0	0	0	12	1682	0	1682	0	36	295	1066	208	25	46	0		6	0	1682
1994	245	629	28	2	0	0	0	4	1524	11	1463	72	25	175	1048	197	76	0	0	1	14	0	1535
1995	92	145	5 7	5	0	0	0	4	510	55	378	187	33	2	191	207	76	28	28		0	0	565
1996	i 15	5 138	3 17	7	0	0	0	49	151	328	192	287	0	15	127	237	91	9	0		0	0	479
1997	29	250) 18	6	0	0	0	215	109	710	195	624	1	22	166	344	131	53	68		0	34	819
1998	38	3 224	35	4	0	0	0	246	156	1029	163	1022	0	0	322	645	85	101	32		0	0	1185
1999	23	357	7 38	8	0	0	0	182	76	1196	193	1079	0	59	129	855	47	108	0	5	53	21	1272
2000	48	493	3 23	5	0	0	0	56	39	1227	83	1183	0	3	120	639	256	116	51	3	33	48	1266
2001	3	270) 11	2	0	0	1	293	6	1211	19	1198	0	6	133	808	61	162	20	2	20	7	1217
2002	. 14	314	23	0	0	0	0	645	70	2120	168	2022	0	0	60	1398	369	205	2	12	27	29	2190
2003	5	5 108	3 20	9	0	0	0	83	0	768	0	768	0	0	26	333	259	85	1	6	64	0	768
2004	10	64	27	3	0	0	0	20	79	746	32	793	0	0	105	442	231	47	0		0	0	825
2005	91	172	2 19	4	0	0	0	0	66	1709	229	1546	0	2	12	704	923	73	0	3	32	29	1775
2006	i 17	73	3 7	2	0	0	0	14	18	1047	117	948	0	0	2	471	431	96	0	4	18	17	1065
2007	63	3 77	7	6	0	0	0	2	0	370	46	324	0	0	0	141	203	26	0		0	0	370
2008	3	1 1	1	7	0	0	0	1	43	195	53	185	0	0	0	22	216	0	0		0	0	238
2009) 1	11	I	1	0	0	0	6	4	38	4	38	0	0	0	28	12	2	0		0	0	42
2010	30	66	6	0	0	0	0	0	0	146	0	146	0	0	0	101	37	8	0		0	0	146
2011	3	177	6	7	0	0	0	0	0	285	0	285	0	0	0	78	207	0	0		0	0	285
2012	2	2 103	3 5	1	0	0	0	0	0	156	0	156	0	0	0	105	51	0	0		0	0	156
2013	6 0	108	3 11	9	0	0	0	6	0	233	0	233	0	0	0	126	107	0	0		0	0	233
Total	5236	16327	500	6	0	1	21	2240	43741	13580	44225	13096	13187	10862	15460	10090	4217	2171	350	59	95 ;	389	57321

Table 2. Number of longline sets by various strata for the Northeast Atlantic CPUE standardization. Observations were aggregated by month, area (prefixed by A), materials of main line (M1=others, M2=nylon) and branch line (F1=others, F2=nylon), number of hooks between floats (prefixed by B). Area definition is shown in **Figure 2**. Year is fishing year.

_										_																			
Year	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	A31	A	A32	A33	A34	435	M1	M2	F1	F	2 B4	B	5 I	36	B7	B8	B9	B10 B1	1 E	12	Fotal
199	0	0	0 2	1 13	36 2	245 15	5	56	6	613	0	6	0	C) 61	9	0	619	0	0	6	304	230	38	30	0 11	0	0	619
199	1	0 3	32 23	3 73	34 11	00 31	2	86	25 2	2519	0	3	0	C	252	2	0 2	2522	0	0	85	887	920	373	78	B 107	55	17	2522
199	2	0 9	58 72	4 173	38 12	289 47	7 1	03	11 4	288	97	15	0	C) 440	D	0 4	1400	0	79	170	2149	1409	443	34	4 91	0	25	4400
199	31	634	1 121	9 136	66 8	69 32	3	39	0 1	250	2592	77	254	C) 4173	3	0 4	173	0	29	93	3421	473	22	26	6 30	6	73	4173
199	4	0 2	24 45	i8 90	02 7	38 35	i0 1	16	8 1	438	1157	1	0	C	257	5 2	21 2	2486	110	0	16	2079	365	5	(0 C	0	131	2596
199	5	0 10	05 28	2 64	46 4	159 10	18	18	0	254	259	232	873	C) 127	0 34	8	827	791	0	68	740	419	278	113	30	0	0	1618
199	66	1 6	10 122	.7 9 [,]	10 2	233	0	0	0	245	454	3	2339	C) 93	2 210)9	980	2061	0	0	156	1625	1065	195	50	0	0	3041
199	7 12	2 204	14 166	0 155	55	3	0	0	0	800	1062	45	3477	C	88 (5 449	19 1	1141	4243	0	0	249	3004	1946	184	4 1	0	0	5384
199	8 65	1 14	69 229	6 184	46	6	0	0	0	248	928	8	5020	64	67	5 559	13	719	5549	0	59	5	4350	1683	166	62	2	1	6268
199	9 116	3 17	74 187	8 61	14	90	3	0	0	177	692	4	4330	319	38	3 513	19	961	4561	0	1	183	2452	2787	52	2 47	0	0	5522
200	0 87	7 15	10 183	6 159	94 11	49 1	0	0	0 1	802	939	79	3974	182	2 56	1 641	5	483	6493	0	1	76	2685	3955	254	4 4	0	1	6976
200	1 63	7 12	80 168	5 167	79 1	05 8	8	49	59	741	1282	15	3447	47	29	7 523	15	326	5206	0	0	49	2052	3128	196	6 31	5	71	5532
200	2 47	3 10	63 162	3 80	06	67 2	3	21	7	908	678	22	2357	118	3 18	8 389	15	415	3668	0	0	0	620	3307	143	33	10	0	4083
200	3 27	0 94	1 139	0 94	49	14	0	0	0	99	141	39	3255	30) 12	5 343	19	194	3370	0	1	1	333	2957	272	2 0	0	0	3564
200	4 59	1 123	33 161	1 15	13 11	60 1	6	0	0	331	310	866	4615	2	2 42	0 570	14	360	5764	0	0	1	706	4618	670	0 124	5	0	6124
200	5 26	2 11	13 172	3 194	47 14	27 11	7	0	2	713	135	2569	3174	C) 36	2 622	9	604	5987	0	7	2	392	5231	910	0 49	0	0	6591
200	6 25	6 8	26 150	12 15	14 11	00 5	2	3	0	851	375	979	3048	C) 22	6 502	27	592	4661	0	0	0	366	3954	837	7 89	4	3	5253
200	76	8 39	93 98	9 71	74 6	96 22	6	17	0	327	117	1396	1323	C) 12	3 304	10	291	2872	0	0	0	0	2943	220	0 0	0	0	3163
200	85	1 4	32 79	0 66	65 5	39 20	14	5	0	313	48	848	1527	C) 7	7 265	59	354	2382	0	0	0	73	2639	24	4 0	0	0	2736
200	9 18	6 73	81 86	4 84	46 3	84 3	3	0	0	444	534	229	1837	C) 19	8 284	6	198	2846	0	0	0	1	2712	325	56	0	0	3044
201	0	0 2	17 78	19 42	29	46	1	0	0	23	87	5	1367	C) 19	4 128	8	69	1413	0	0	0	0	1373	109	90	0	0	1482
201	1	0 .	16 48	8 17	73	0	0	0	0	1	95	0	581	C) 7	9 59	8	59	618	0	0	0	0	633	44	4 0	0	0	677
201	2	0	5 34	3	14	0	0	0	0	2	7	0	353	C) 3:	3 32	29	47	315	0	0	0	0	336	26	6 0	0	0	362
201	3	0	0 30	11 1	79	0	0	0	0	0	63	0	317	0) 1	1 36	69	11	369	0	0	0	0	332	48	B 0	0	0	380
Total	568	4 162	7 2593	2 2342	29 117	19 249	8 5	13	118 18	387	12052	7441	47468	762	2132	R 6478	2 22	2831	63279	108	507	10302	22475	46758	4956	6 595	87	322	86110

Table 3. Number of longline sets by various strata for the East Atlantic CPUE. Observations were aggregated by month, area (prefixed by A), materials of main line (M1=others, M2=nylon) and branch line (F1=others, F2=nylon), number of hooks between floats (prefixed by B). Area definition is shown in **Figure 2**. Year is fishing year.

Year	Mar	Anr	May	.lun .l	lulv A	1	A2 A	3 4	4 /	A5 A	6	A7 A	8 4	9 1	M1	M2	F1	F2	R4	85 F	86	B7 B	8 B	9 F	10 B1	1 B	12 B1	3	Total
1975	263	681	1433	218	235	789	1221	14	14	196	259	243	89	5	2830	0	2830	0	1620	958	252	0	0	0	0	0	0	0	2830
1976	148	717	727	118	268	116	882	1	3	79	366	267	259	5	1978	0	1978	0	1278	557	91	0	52	0	0	0	0	0	1978
1977	137	218	455	397	207	147	657	0	10	174	259	157	10	0	1414	0	1414	0	909	265	229	6	0	0	5	0	0	0	1414
1978	317	307	205	129	12	340	216	4	33	308	21	44	4	0	970	0	970	0	500	31	77	179	5	46	132	0	0	0	970
1979	118	167	177	116	25	47	297	0	39	163	27	26	4	0	603	0	603	0	438	115	22	15	13	0	0	0	0	0	603
1980	209	382	309	18	4	268	436	0	7	39	61	94	17	0	922	0	922	0	389	226	265	37	5	0	0	0	0	0	922
1981	300	335	190	34	15	269	238	0	1	209	112	42	3	0	874	0	874	0	447	93	189	96	46	0	3	0	0	0	874
1982	78	323	585	481	327	27	172	16	43	944	327	261	4	0	1794	0	1794	0	1033	454	136	0	0	46	63	6	56	0	1794
1983	180	552	664	614	195	126	284	0	75	1287	195	225	13	0	2205	0	2205	0	1622	157	141	43	15	21	180	25	1	0	2205
1984	349	903	956	517	271	225	558	3	17	1294	306	486	83	24	2996	0	2996	0	2318	155	285	58	63	22	41	48	6	0	2996
1985	44	677	686	71	38	36	190	58	4	380	70	705	73	0	1516	0	1516	0	1189	112	96	0	0	46	23	37	13	0	1516
1986	140	700	716	122	16	64	514	0	41	519	157	336	63	0	1694	0	1694	0	1360	98	78	51	8	20	8	16	55	0	1694
1987	241	590	429	93	12	112	587	9	6	197	179	229	35	11	1365	0	1365	0	960	128	114	31	66	3	19	10	34	0	1365
1988	387	894	684	125	56	16	780	56	8	756	227	212	63	28	2146	0	2146	0	1912	45	7	21	102	42	0	15	2	0	2146
1989	229	616	405	80	16	18	704	60	22	354	43	93	51	1	1346	0	1346	0	1003	161	60	53	12	21	0	11	12	13	1346
1990	311	735	591	260	14	192	770	44	79	659	70	93	2	2	1911	0	1911	0	947	651	81	63	55	0	4	0	28	82	1911
1991	172	739	779	528	58	348	328	44	338	958	157	102	0	1	2276	0	2276	0	1266	520	296	122	20	0	45	0	2	5	2276
1992	189	1029	1113	969	259	762	208	31	550	1555	256	161	22	14	3559	0	3559	0	1998	663	545	245	80	0	0	3	22	3	3559
1993	208	787	708	475	134	750	49	46	323	701	66	203	115	59	2312	0	2312	0	1248	413	457	54	102	0	6	15	14	3	2312
1994	182	1134	1093	29	4	666	107	50	352	510	155	280	136	186	1969	473	1637	805	1512	668	232	13	16	0	0	0	1	0	2442
1995	216	1273	1371	260	0	476	484	1	291	1062	360	68	184	194	1784	1336	1326	1794	551	782	1459	114	171	0	6	0	37	0	3120
1996	349	1232	1679	4	33	1112	398	21	252	461	71	552	148	282	771	2526	655	2642	78	512	1720	771	83	30	19	7	54	23	3297
1997	902	1468	1056	15	0	1241	1023	3	341	373	162	201	29	68	503	2938	482	2959	0	72	711	2053	373	88	13	49	23	59	3441
1998	882	1456	856	21	7	544	1424	33	148	470	183	20	100	300	396	2826	484	2738	0	0	257	2213	723	18	0	0	7	4	3222
1999	379	662	667	0	7	149	786	30	77	156	48	18	117	334	89	1626	166	1549	0	19	172	1317	197	10	0	0	0	0	1715
2000	400	520	405	0	0	139	440	22	92	253	12	123	121	117	11	1314	76	1249	0	21	182	887	213	8	,	0	1	0	1325
2001	248	5/8	431	0	0	65	287	454	131	214	8	107	131	208	144	1113	120	11/0	0	32	1/3	750	349	21	<i>'</i>	0	0	0	1237
2002	165	403	700	6	0	110	122	52	17	172	6	217	141	460	107	1907	100	1207	0	0	216	662	202	22	74	0	0	0	1207
2003	27	328	608	2	0	22	67	131	8	130	0	270	171	405	51	01/	72	803	0	0	128	440	210	70	00	0	0	0	065
2004	323	750	979	1	1	234	373	79	21	211	262	412	462	0	165	1889	200	1854	0	1	69	508	1260	204	12	0	0	0	2054
2006	464	384	331	18	0	234	344	194	6	49	29	313	28	0	77	1120	128	1069	0		0	241	641	227	44	0	44	0	1197
2007	111	535	560	.0	0	66	252	6	3	89	269	459	62	0	125	1081	193	1013	0	0	0	242	884	57	13	3	2	5	1206
2008	139	452	482	0	0	65	430	0	2	67	138	367	4	0	183	890	161	912	0	0	0	103	928	35	7	0	0	0	1073
2009	0	44	161	0	0	12	28	3	0	4	17	141	0	0	103	102	103	102	0	0	0	0	137	67	1	0	0	0	205
2010	38	69	0	0	0	103	4	0	0	0	0	0	0	0	12	95	4	103	0	0	0	0	4	28	8	47	20	0	107
2011	5	0	0	0	0	5	0	0	0	0	0	0	0	0	0	5	0	5	0	0	0	0	0	5	0	0	0	0	5
2012	11	3	0	0	0	14	0	0	0	0	0	0	0	0	0	14	0	14	0	0	0	0	0	6	8	0	0	0	14
2013	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	9240	23072	24061	5721	2214	10379	15693	1249	3407	15185	4879	7806	2841	2869	41301	23007	40709	23599	24578	7915	9176	12057	7552	1260	847	292	434	197	64308

Table 4. Statistical results from GLMM analysis for positive catch ratio (1st step) and CPUE of positive catch (2nd step) in the final model for the updated standardized CPUEs to 2012FY.

West Atlantic

Type 3 tes	st of fixed ef	ffect for pr	oportion of p	ositive ca	tch	
Effect	Num. DF	Den. DF	Chi-square	F Value	Pr > ChiSq	Pr > F
year	36	503	136.23	3.78	<.0001	<.0001
month	3	503	137.19	45.73	<.0001	<.0001
area	4	503	129.83	32.46	<.0001	<.0001
nhbf	8	944	190.79	23.85	<.0001	<.0001

Tuna	3 test	of fived	affact f	or Log(DI)	E with	nositiva
rype	5 lest	or fixed	enectr	UI LUGCE U	L with	positive

Effect	Num. DF	Den. DF	F Value	Pr > F
year	36	419	2.92	<.0001
month	3	419	86.26	<.0001
area	4	419	8.03	<.0001
nhbf	8	30000	15.91	<.0001

Northeast Atlantic

Type 3 tes	t of fixed ef	fect for pr	oportion of p	ositive ca	tch	
Effect	Num. DF	Den. DF	Chi-square	F Value	$\Pr > ChiSq$	Pr > F
year	22	219	220.33	10.01	<.0001	<.0001
month	3	219	153.82	51.27	<.0001	<.0001
area	3	219	30.52	10.17	<.0001	<.0001
nhbf	1	136	10.12	10.12	0.0015	0.0018

Type 3 te	st of fixed e	ffect for Lo	ogCPUE w	ith positive
Effect	Num. DF	Den. DF	F Value	Pr > F
year	22	210	10.34	<.0001
month	3	210	35.03	<.0001
area	3	210	1.63	0.1844
nhbf	1	65000	18.01	<.0001

Table 5. Statistical results from GLMM analysis for positive catch ratio (1st step) and CPUE of positive catch (2nd step) in the final model for the standardized CPUE in the West Atlantic to 2013FY.

Type 3 tes	st of fixed et	ffect for pr	oportion of p	positive ca	itch		Type 3 te	st of fixed e	ffect for Lo	ogCPUE w	with positive
Effect	Num. DF	Den. DF	Chi-square	F Value	Pr > ChiSq	Pr > F	Effect	Num. DF	Den. DF	F Value	Pr > F
year	37	509	143.41	3.88	<.0001	<.0001	year	37	422	3	<.0001
month	3	509	138.66	46.22	<.0001	<.0001	month	3	422	87.62	<.0001
area	4	509	130.8	32.7	<.0001	<.0001	area	4	422	8.26	<.0001
nhbf	8	947	191.88	23.99	<.0001	<.0001	nhbf	8	30000	15.91	<.0001

Table 6. Nominal CPUE, number of sets, and abundance index statistics for the updated standardized CPUE to 2012FY in the West and Northeast Atlantic.

Northeast Atlantic

Nominal

Lower

Upper

West	Atlantic

Year	Sets	Nominal CPUE	Lower 95% Cl	Upper 95% Cl	Std. CPUE	CV
1976	1143	3.162	0.058	0.306	0.576	0.434
1977	1787	6.412	0.337	0.791	2.233	0.216
1978	1497	4.091	0.141	0.440	1.078	0.290
1979	2363	1.311	0.103	0.282	0.739	0.255
1980	2454	2.335	0.215	0.492	1.405	0.209
1981	4268	2.996	0.310	0.575	1.826	0.155
1982	2921	0.694	0.095	0.252	0.668	0.249
1983	2712	1.036	0.051	0.176	0.411	0.316
1984	2037	1.722	0.145	0.341	0.962	0.216
1985	2573	2.924	0.172	0.392	1.122	0.209
1986	1933	0.399	0.006	0.059	0.084	0.604
1987	2593	1.835	0.102	0.289	0.741	0.265
1988	2775	2.109	0.172	0.388	1.118	0.205
1989	2623	1.145	0.142	0.332	0.939	0.214
1990	2507	1.072	0.111	0.290	0.776	0.243
1991	1651	0.988	0.108	0.299	0.775	0.260
1992	1371	1.854	0.180	0.418	1.185	0.213
1993	1682	1.241	0.172	0.422	1.165	0.227
1994	1535	2.114	0.161	0.385	1.078	0.220
1995	565	1.046	0.105	0.327	0.803	0.289
1996	479	4.150	0.371	0.825	2.390	0.202
1997	819	2.325	0.214	0.571	1.509	0.250
1998	1185	1.413	0.094	0.287	0.711	0.285
1999	1272	1.178	0.100	0.327	0.782	0.302
2000	1266	1.495	0.133	0.381	0.974	0.267
2001	1217	0.704	0.068	0.309	0.627	0.392
2002	2190	0.560	0.094	0.303	0.727	0.300
2003	768	0.869	0.078	0.350	0.715	0.388
2004	825	2.051	0.071	0.305	0.634	0.377
2005	1775	1.209	0.113	0.273	0.759	0.223
2006	1065	1.596	0.195	0.475	1.315	0.225
2007	370	5.224	0.300	0.729	2.020	0.225
2008	238	1.479	0.100	0.383	0.847	0.344
2009	54	2.200	0.234	0.854	1.933	0.332
2010	146	0.343	0.084	0.337	0.726	0.359
2011	285	5.211	0.446	1.139	3.080	0.238
2012	156	2.751	0.563	1.777	4.322	0.294

Year	Sets	Nominal CPUE	Lower 95% Cl	Upper 95% Cl	Std. CPUE	CV
1990	619	0.840	0.021	0.074	0.365	0.328
1991	2522	0.901	0.029	0.085	0.459	0.278
1992	4400	1.055	0.060	0.116	0.776	0.167
1993	4173	0.951	0.063	0.108	0.765	0.138
1994	2596	1.496	0.071	0.136	0.914	0.161
1995	1618	1.724	0.079	0.136	0.963	0.136
1996	3041	2.520	0.212	0.357	2.559	0.130
1997	5384	1.332	0.136	0.226	1.628	0.129
1998	6268	0.960	0.067	0.126	0.853	0.161
1999	5522	1.031	0.097	0.174	1.208	0.148
2000	6976	1.025	0.105	0.167	1.229	0.116
2001	5532	1.359	0.123	0.200	1.459	0.122
2002	4083	0.859	0.094	0.155	1.117	0.126
2003	3564	1.141	0.093	0.164	1.147	0.143
2004	6124	0.976	0.088	0.141	1.035	0.118
2005	6591	0.763	0.064	0.101	0.746	0.116
2006	5253	0.951	0.076	0.120	0.883	0.115
2007	3163	0.976	0.077	0.122	0.902	0.116
2008	2736	1.320	0.090	0.143	1.055	0.116
2009	3044	2.025	0.133	0.210	1.554	0.115
2010	1482	3.516	0.210	0.352	2.527	0.130
2011	677	4.628	0.327	0.638	4.243	0.168
2012	362	7.378	0.654	1.528	9.290	0.215

Std.

Figure 1. Monthly distributions of accumulative bluefin catch in number by Japanese longliners by 5x5 degree area in the main season (September-February: top to bottom) in the period between 2009 and 2012 FYs (left to right).

Figure 2. Areas considered in the CPUE standardization. Upper panel indicates area stratification used for the West Atlantic. Lower panel shows the same information for the Northeast and East Atlantic for the east stock. Numbers from 31 through 35 and from 1 through 9 denote for these area, respectively. Numbers indicate original area stratification used in **Tables 1-3**.

Figure 3. Combined areas used in the CPUE standardization for the West and the Northeast Atlantic. Numbers from 1 through 5 and from 31 through 34 denote for the West and the Northeast Atlantic, respectively.

Updated standardized CPUE to 2012FY

West Atlantic

Figure 4. Model diagnostics for the CPUE series up to 2012FY: residual distributions in the 2nd steps of CPUE standardization with positive catch (left), observed and predicted proportion of positive catch observation (middle), and observed and predicted CPUE of positive catch set (right) using delta-lognormal model. Red and blue lines show the observed and the predicted values, respectively. Upper panel, West Atlantic; lower panel, Northeast Atlantic.

Updated standardized CPUE to 2012FY

West Atlantic

Delta lognormal CPUE index Japanese longline Longline Obs Observed and Standardized CPUE (95% Ct)

Northeast Atlantic

Delta lognormal CPUE index Japanese longline Longline Obs Observed and Standardized CPUE (95% C)

Figure 6. Converted fork length frequencies using the length-weight conversion factors (Anon, 2011) from 2009 to 2013FY measured by on board size measurement program in the west Atlantic (left panel) and the Northeast Atlantic (right panel).

Figure 7. Catch at age was estimated for 2009 through 2013FYs from the converted size data in the West (right panel) and Northeast Atlantic (left panel), applying slicing procedures to the size frequencies of bluefin caught by the Japanese longliners.

Figure 8. Standardized CPUE and nominal CPUE in logarithmic scale with 95% confidence intervals and nominal CPUE for the CPUE series up to 2012FY. Left panel, West Atlantic; right panel, Northeast Atlantic.

Figure 9. The percentage of operations in between November to February among those in between August to February in each fishing year.

Figure 10. The weight composition (kg) in the main fishing area and season in the West (40-45°N, 45-55°W, in November and December, dotted line) and Northeast Atlantic (50-60°N and 15-35°W, in October and November, solid line) in 2011 (a), 2012 (b), and 2013 (c) FYs.

Figure 11. The number of operations (a), the nominal CPUE in weight (ton/1000hooks, b), and the average weight in kg (c) in the period between 2009 and 2013 FYs in the Northeast Atlantic.

Other examined CPUE series

Updated standardized CPUE to 2013FY: West Atlantic

Standardized and Nominal CPUEs

Diagnostics

Figure 12. Standardized CPUE in the West Atlantic with 95% confidence intervals, nominal CPUE, and its diagnostics: residual distributions in the 2nd steps of CPUE standardization with positive catch (left), observed and predicted proportion of positive catch observation (middle), and observed and predicted CPUE of positive catch set (right) using delta-lognormal model.

Figure 13. Nominal CPUE to 2013FY in the Northeast Atlantic.

Figure 14. The nominal CPUE of 2003 year class (a), and the older (b) and the younger (c) year class in the West (dotted line) and Northeast (solid line) Atlantic in the period between 2009 and 2013 FYs.