THE CURRENT STATUS OF THE ICCAT META-DATABASE WITH REGARDS TO ELASMOBRANCH SPECIES, WITH SUGGESTIONS FOR FUTURE DEVELOPMENT AND ACTIVATION

Paul de Bruyn^{1,} Laurie T. Kell, John Cotter²

SUMMARY

In order to improve and better coordinate the knowledge and information available for bycatch species, the ICCAT Meta-database was developed in 2010. The Meta-database was populated with information regarding bycatch species contained within the ICCAT collected volumes as well as the ASFA database. The information in the database can be extracted in a variety of ways of use in different analyses. The database contains a wide variety of information regarding elasmobranch species, particularly for Blue and Mako sharks and in the North West Atlantic region. Although the database is well designed and very useful, it has several limitations. These limitations could largely be overcome by migrating the Meta-database from its current format to an open source platform and made available online

RÉSUMÉ

Afin d'améliorer et de mieux coordonner les connaissances et l'information disponibles pour les espèces accessoires, la base de métadonnées de l'ICCAT a été mise au point en 2010. La base de métadonnées a été alimentée d'informations relatives aux espèces accessoires contenues dans les séries de documents scientifiques de l'ICCAT et la base de données de l'ASFA. L'information de la base de données peut être extraite sous diverses formes pour être utilisée dans différentes analyses. La base de données contient une vaste gamme d'informations sur les espèces élasmobranches, notamment le requin peau bleue et l'Isurus spp., dans la région de l'Atlantique Nord-Ouest. Même si la base de données est bien conçue et très utile, elle a plusieurs limitations. Ces limitations pourraient en grande partie être surmontées si l'on migrait la base de métadonnées de son format actuel vers une plateforme open source à laquelle on pourrait accéder en ligne.

RESUMEN

En 2010 se desarrolló la metabase de datos de ICCAT con el fin de mejorar y coordinar mejor los conocimientos y la información disponible sobre las especies de captura fortuita. La metabase de datos contiene la información sobre las especies de captura fortuita incluida en la colección de documentos científicos de ICCAT, así como en la base de datos de ASFA. La información de la base de datos puede extraerse de varios modos para utilizarla en diferentes análisis. La base datos integra una amplia variedad de información sobre las especies de elasmobranquios, sobre todo para la tintorera y los marrajos en la región del Atlántico noroccidental. Aunque la base de datos está bien diseñada y es muy útil, tiene varias limitaciones. Estas limitaciones podrían superarse migrando la metabase de datos desde su formato actual a una plataforma de código abierto a la que se pueda acceder on line.

KEYWORDS

Sharks, Meta-data, Atlantic Ocean, Elasmobranchs, Biology, Catch data

² FishWorld Science Ltd

¹ ICCAT Secretariat, C/Corazón de María, 8. 28002 Madrid, Spain; paul.debruyn@iccat.int

1. Introducción

The 1995 Code of Conduct for Responsible Fisheries (the Code) of the Food and Agriculture Organization of the United Nations (FAO) calls for the sustainable use of aquatic ecosystems and requires that fishing be conducted with due regard for the environment. The Code also promotes the maintenance, safeguarding and conservation of biodiversity of ecosystems by minimizing fisheries impacts on non-target species and the ecosystem in general. A great deal of concern has been expressed by fishery managers and conservation/environmental groups that bycatch and discards may be contributing to biological overfishing and altering the structure of marine ecosystems. Such claims are frequently based on observations of large numbers of discards and high discard ratios or rates, but infrequently on detailed population assessments of impacted stocks. This is perhaps because comprehensive and historical datasets involving discards have generally been unavailable to demonstrate such claims, although a growing body of literature does support the conclusion that for some species and regions of the world, biological and ecological impacts are discernible Alverson et al. [1994]. For this reason there has been increasing interest in addressing bycatch issues, and a joint meeting of the tuna Regional Fisheries Management Organizations (tRFMOs) in Brisbane 2010 as part of the KOBE process, specifically focused on this topic.

Sharks are particularly vulnerable to overexploitation because of their biological characteristics of maturing late, having few young and being long-lived. Action on sharks by the Food and Agriculture Organization of the United Nations (FAO), international treaties such as the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), regional fisheries management organizations (RFMOs) and shark catching countries and entities has been prompted by increasing international concern about shark stocks as a result of a growing body of evidence that many shark species are threatened and continuing to decline Lack and G. [2011]. A diversity of sharks are found within the convention areas of the five tuna RFMOs and are captured in artisanal, commercial, and recreational fisheries. As a result, all five tuna RFMOs experience shark bycatch in their respective tuna fisheries. In some cases, sharks are deliberately targeted, or at least considered to be economically valuable byproduct when captured in tuna fisheries. In most cases, a general lack of data on shark catch, abundance, distribution, life history (e.g., age, sex, growth, fecundity), and interactions within RFMO fisheries hinders an accurate estimation of shark bycatch levels and the associated population-level impacts Anon [2010].

In order to improve the knowledge on bycatch species the SCRS recommended that a short-term by- catch coordination study be conducted with the objectives of: (a) creating a meta-database of reports and publications providing information about by-catch species from tuna and related fisheries; (b) developing a database for unprocessed and aggregated by-catch data for priority species such as marine mammals, turtles, sea birds, and many sharks, rays and teleost fish that are not subjected to stock assessment by ICCAT; (c) establishing interaction with scientists leading national observer programmes to obtain previously unreported data and to make an inventory of past and current observer programmes; and (d) developing forms and protocols for the collection of more and higher quality by-catch data in the future.

FishWorld Science Ltd was the contractor for the short-term by-catch coordination study. The contract was signed on 3 November 2009, became effective 30 days later, and finished on 3 June 2010.

Briefly, the tasks included:

- 1. Development of a meta-database of reports and publications concerning by-catch (meaning unin- tended catch and sometimes including species targeted in other fisheries).
- 2. Development of a database of information on priority species (meaning those for which few or no data are currently submitted to ICCAT, e.g. seabirds, mammals, turtles, rays, some sharks and teleosts).
- 3. Obtaining relevant national observer data and developing rules for their use, for example, concern- ing confidentiality.
- 4. Developing by-catch data collection forms and protocols. e.g. adding species ID sheets for observer data collection forms.

A draft final report, prepared 21 May, was presented and discussed at ICCATs Sub-committee on Ecosystems (SCECO) held in Madrid from 31 May to 4 June 2010. Section 5 of the agreed minutes of the 2010 meeting summarises the discussion, available from http://www.iccat.int/en/meetingscurrent.htm. A comprehensive final report on the compilation of the ICCAT meta-database is presented by Cotter [2011] including many of the discussions and meetings that led up to its development as well as the technical specifications and instructions

for use of the database. The meta-database and the database of tasks 1 and 2 were developed jointly (and amalgamated as the contractor felt this facilitated better linking of data and metadata, easier learning of the system, and less maintenance in future through sharing of reference information and input and retrieval systems) as a single database system using Microsoft Access 2007.

3. Summarised review of the current contents of the Meta-database

The primary data tables hold data on publications, projects, grouped results (e.g. from multiple fishing trips reported together), and ungrouped results for individual species. The types of results that can be stored include CPUEs, biological measures, frequency distributions, counts and simple presence/absence, the latter used to keyword species for which no measures were made. The bibliographic data and selected results from more than 370 publications (ICCAT CVSP series back to 2003, plus journals indexed in ASFA) were loaded onto the By-catch database during the contract period and are available for retrieval. More than 100 new by-catch species were added to the list of by-catch species downloaded from the ICCAT site Cotter [2011]. **Table 1** presents an overview of the information included in the ICCAT metadata base. Subsequent to the completion of the contract, a limited number of additional publications have been added to the meta-database. A short term contract to assess the impact of ICCAT fisheries on sea turtle populations is currently underway, and this project is adding to the database, although as the current MS Access version of the meta-database is not easily synchronized, it is not clear how many new documents have been added to date.

3.1 Shark information

A list of the publications related to elasmobranch species currently referenced by the meta-database is included in Appendix 1. There are 103 unique references for the larger elasmobranch group. During the creation of the meta database, reports in the ICCAT Collective Volumes of Scientific Papers (CVSP) published from 2009 backwards were examined and those of potential interest to studies of by-catch or biology archived. The many papers on stock assessment, management, and related issues concerning the principal target species were mostly excluded since they are not included in the term 'by-catch' and, for the most part, can be retrieved with the existing ICCAT Bibliographic database using the 'species' filter Cotter [2011]. Abstracts and summary information about relevant papers presented in the Aquatic Sciences and Fisheries Abstracts (ASFA) were also examined and many of direct relevance to oceanic fishery by-catches included in the By-catch database even if they were not exclusively related to the Atlantic Ocean.

An example of a retrieved publication for mako sharks is shown in **Figure 1**. The most recent publications are shown first. Output includes bibliographic information in bold, the title underlined, the abstract, a web or email address for obtaining the publication, details from the RESULT GROUPS record including region, gear group, the years spanned by results, the project, the flag of the fleet, all assigned values of keywords, and all species reported on. The database can also be queried by species group (e.g. Elasmobranchs). Information can also be obtained in a spreadsheet format. An example of retrieved results for the sandbar shark is shown split into 3 panels in **Figure 2**. It retrieves all information that complies with the criteria queried. In this way, two different outputs can easily be obtained from the database and the information exported into a variety of programs for further analysis. Again, all the information that can be obtained from this meta-database comes from the 103 unique references listed in Appendix 1.

Table 2 shows the number of strata available for each species within each category of information. For example for *Carcharhinus falciformis*, in column 3 (which is Total length information) the table shows a value of 24. In this case this corresponds to 12 length bins for which data have been input, across two sexes giving a combined total of 24. This is a crude method for demonstrating availability of information, but clearly shows that the species for which the most information is available are *Prionace glauca* and *Isurus oxyrinchus* and that most of the information for these two species is related to standardized CPUEs. It is also clear to see that column 17 (Catch presence or absence) has entries for almost all species. As this is the most basic form of data collection, this indicates the generally poor data availability for most species. **Table 3** shows the number of strata available for each species as is demonstrated in table 2. From this it is clear that the most information is available for column 11 which corresponds to the Atlantic North-West.

4. Suggestions for improvement and the way forward

The utility and design of the ICCAT By-catch metadata base has been demonstrated above. It is clear that it is a very useful tool and has been well designed to accommodate the variety of data sources available to the secretariat and CPC scientists. It does however have a few limitations that have delayed its widespread use and activation. One of these limitations has been the difficulty in distributing the database due to the security signature requirements for MS Access applications. The By-catch database uses simple macros or Visual Basic programs to help users perform routine tasks. Microsoft has installed security features in Access 2007 which prevent all macros and Visual Basic code by default. This requires that a series of steps need to be taken to ensure that this problem is resolved. Although these steps are not exceptionally complicated they do deter first time users, especially those who may not have administrator privileges for the computer they are using (such is the case with many company/work machines). Another fairly obvious problem is the amount of work required to keep the database up- to-date. Related to this problem is a lack of availability to the latest updates in the database. As the database is currently a self contained file, any updates would need to be constantly redistributed amongst interested parties either. As the data base is already a fairly large file, this could be problematic, particularly for scientists with slow or limited internet connectivity.

In order to resolve these problems, there are a number of actions that can be taken. Firstly, the database could be migrated to an open source database, such as MySQL. This would more than likely be effective in overcoming the security issues described for MS Access applications. The migration of the database to this platform would also facilitate the option of making it available online. Another option would be to set up an account on Zotero (www.zotero.org). This would allow the active management of the documents and meta-data for the compiled bycatch information. Zotero can be installed on a computer as a standalone program, or as a plugin to a web browser. These two methods allow the information to be easily updated and the updates would be available in real time for any interested parties. This would also allow CPC scientists to actively contribute to the database. The increase in actively collaborating and contributing scientists would improve the amount of information included in the database ensuring that more relevant literature and data is referenced. The secretariat would then be able to moderate the contributions to ensure the data is relevant and correctly submitted ensuring the contents remain of a suitably high quality. The migration of the database from MS Access to an open source platform would require additional coding and development, however, the long term benefits of making the database easily accessible and customizable should be seriously taken into consideration. Alternatively, the use of Zotero would require no additional programming, but would require setting up a a correct system for user control and migrating the documents to the new file structure. Although the later system is not strictly a meta-database, it is an effective document and meta-data management tool.

References

- D. Alverson, M. Freeberg, S. Murawski, and J. Pope. A global assessment of fisheries bycatch and discards. *FAO Fisheries Technical Paper*, 339:233, 1994.
- Anon. Kobe II bycatch workshop back ground paper. Unpublished Kobe II background document, 2010. J. Cotter. ICCAT by-catch coordination study. *Collect. Vol. Sci. Pap. ICCAT*, 66(1):98, 2011.
- M. Lack and S. G. The Future of Sharks: A Review of Action and Inaction. TRAFFIC International and the Pew Environment Group, 2011.

Table 1: Summary of types of information found and stored in the By-catch database during the by-catch project. The totals are approximate; e.g. the animal groupings may include unidentified treated as a species.

Item	Number of records	Of which:
Countries	159	
Journal titles	61	
Species codes with results	269	Birds: 39
		Elasmobranchs: 77
		Invertebrates: 1
		Mammals: 38
		Teleosts (not tunas): 70
		Tunas: 36
		Turtles: 6
Authors	444	
Projects	39	
Publications	372	1991: 1
		1996: 2
		1997: 11
		1999: 2
		2000: 1
		2001: 3
		2002:4
		2003: 32
		2004: 12
		2005: 44
		2006: 27
		2007: 53
		2008: 104
		2009: 45
		2010: 31
ResultGroups	394	
Results	4505	Age results: 26
		Catches and CPUEs: 3129
		Geographic results: 111
		Lengths: 956
		Population results: 179
		Reproductive measures: 33
		Trophic results: 15
		Weights: 51
		Birds: 427
		Elasmobranchs: 1546
		Invertebrates: 1
		Mammals: 111
		Teleosts (not tunas): 319
		Tunas: 1692
		Turtles: 401

Table 2. Summary of information available per data type for each elasmobranch species

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Alopias pelagicus		1	-								-										
Alopias sp.	1	2	5			28		1		2	3		1	19			1				
Alopias vulpinus	-	5	3					-		1	4	7	1	5	1		1			1	3
Carcharhinidae		1	3							1	3		1	-	_		2				
Carcharhiniformes											1						1				
Carcharhinus acronotus					1																
Carcharhinus altimus			2								1				-						
Carcharhinus brevipinna			2								1			1	9		60				
Carcharhinus raiciturmis	1	2	3					-	-	-	3		-	-			32				
Carcharhinus leucas		-									1				1						
Carcharhinus limbatus		2	2		1			1			1										
Carcharhinus longimanus	1	5	5							1	9		1	7	3		8				
Carcharhinus melanopterus											1										
Carcharhinus obscurus		2	2					1	1		1			1							
Carcharhinus plumbeus		1	2					1			1			1	-	12					1
Carcharias tauns		2	2					-	-		1			1	-		2				
Carcharodon carcharias			1								1			-						1	1
Centrophorus uyato											1										
Cetorhinus maximus											1										
Galeocerdo cuvier		2	7					1		1	7		1		1		3				
Galeorhinus galeus		2												1						1	1
Ginglymostoma cirratum					1						1										
Isurus opyrindus	1	5	73					1	12	5	54	11	2	30	14		10			1	3
Isurus paucus	1	4	1					1		1	5		1				6			-	
Isurus spp			38					1	26		21	26									
Lamna nasus	1	5	7			28			2	3	7		1	1	1		2				1
Lamnidae																	1				1
Mustelus canis			2																		
Mustelus mustelus															1						1
Neganrion brevirostris					1						1										
Odontaspis ferox					-						-				1						
Odontaspis noronhai																	4				
Paragaleus pectoralis															1						
Pelagic Sharks nei											1										
Prionace glauca	1	6	78	1		1		1	62	6	101	36	35	48		15	15			1	5
Pseudocarchanas kamoharai Rhinoodioo tumur	1	2	5							1	4		1		1						
Rhizoorionodon acutus															1		-				
Rhizoprionodon porosus					1										-						
Rhizoprionodon terraenovae			2								1										
Sharks (unidentified)	1		1		1		1		1		1		1		2			3	2		
Somniosus microcephalus											1										
Sphyrna couardi									1				-		1						
Solvma mokarao	- 1	3	2							-	1		- 2	-	1		•				
Sphyma sp.		1	1		1			1			2				-						1
Sphyrna tiburo			2																		
Sphyrna zygaena	1	5	3							1	4		1	1	11		9				
Sphyrnidae	1	1	2							1	3		1				1				
Squalidae																		2			
Squalliormes			1																		
Zameus squamulosus	1		3							1	4		1				6				
1	Arctic	Ocean																			
2	Atlant	ic+Me	diterra	nean																	
3	Atlant	ic Ocea	in mc 1/1	*1 on	RI at																
5	Atlant	ic: Cari	bbean	Sea	, caller																
6	Atlant	ic: Celt	ic Sea																		
7	Atlant	ic: Gulf	f of Gui	nea																	
8	Atlant	ic: Gulf	f of Me	xico																	
9	Atlant	ic: N, >	0"Lat	10004																	
10	Atlant	IC: NE,	>-301	ong, >	orLat																
12	Atlant	ies ci	<-30 U	ong, >	U Lat																
12	Atlant	ic: SE. 3	>-30%	ng. <1	"Lat																
14	Atlant	ic: SW,	<-30%	ong, <	0°Lat																
15	Atlant	ic: trop	E, <-3	O'Long	+-23	Lat															
16	Atlant	ic: trop	W<-3	0°Long	1, +/-23	Lat															
17	Atlant	ic: trop	ics +/-2	23°Lat																	
18	Medit	errane	an Sea		-																
19	Mode	errane	an: Aeg an: F >	15° C	ea No																
21	Medit	erranes	an W	<15%	-D																

Table 3. Summary of information available per region for each elasmobranch species

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Alopias pelagicus		1																			
Alopías sp.	1	2	3			28		1		1	5		1				1				
Alopias superciliosus	1	5	6					1		3	7	8	1	19	4		8				
Alopias vulpinus		5	3							1	4	7	1	5	1		1			1	3
Carcharhinidae		1	3							1	3		1				2				
Carcharhiniformes											1						1				
Carcharhinus acronotus			_		1																
Carcharhinus altimus			2								1										
Carchaminus brevpinna			2								1			1			63				
Carchaminus raictormis	1	3	э					-	-	- 1	э		1	-	ш		52				
Carcharbinus Jourse		2									- 1										
Carcharbinus limbatus		2	2		1			1			1				-						
Carcharbinus longimanus	1	5	5		-			-		1	9		1	7	3		8				
Carcharhinus melanopterus	-	-	-							-	1		-		-		-				
Carcharhinus obscurus		2	2					1	1		1			1							
Carcharhinus plumbeus		1	2					1			1			1		12					1
Carcharhinus signatus		2	2					1	1		1			1	1		2				
Carcharías taurus											1			1							
Carcharodon carcharias			1								1									1	1
Centrophorus uyalo											1										
Cetorhinus maximus											1				-						
Galeocerdo cuvier		2	7					1		1	7		1	-	1		3				-
Galeorhinus galeus		2												1						1	1
Ginglymostoma ciratum					1						1										
Heptranchias perio			32						12		54		2	20	14		10				
	1		1					1	12	1	5		1	30	14		6			-	3
		-	38					1	26	-	21	26									
Lamna nasus	1	5	7			28		-	20	3	7	20	1	1	1		2				1
Lamnidae	-	-	-										-	-			1				1
Mustelus canis			2																		-
Mustelus mustelus															1						1
Mustelus spp											1										
Negaprion brevirostris					1						1										
Odontaspis ferox															1						
Odontaspis noronhai																	4				
Paragaleus pectoralis															1						
Pelagic Sharks nei											1										
Prionace glauca	1	6	78	1		1		1	62	6	101	36	35	48		15	15			1	5
Pseudocarcharias kamoharai	1	2	5							1	4		1		1		7				
Rhincodion typus			1												2		1				
Rhizoprionodon acutus															1						
Rhizoprionodon perosus			-		1																
Rhizoprionodon terraenovae Shorks / midontified)			2								1								2		
Somologue microsobalue			-		-		-		-		1				2			3	2		
Solvma couardi									1		-				1						
Sohyma lewini	1	5	4						-	1	4		2	1	9		4				
Sphyrna mokarran			2								1				1						
Sphyrna sp.		1	1		1			1			2										1
Sphyma tiburo			2																		
Sphyma zygaena	1	5	3							1	4		1	1	11		9				
Sphyrnidae	1	1	2							1	3		1				1				
Squalidae																		2			
Squaliformes			1																		
Squalus spp										-	1										
Zameus squamulosus	1		3							1	4		1				6				
	Amtio	0																			
1	Atlant	ic + Mo	diterra	nean																	
3	Atlant	tic Ocea	n	rea i																	
4	Atlant	tic: Azor	res +/-5	*Lone	& at																
5	Atlant	tic: Cari	bbean !	Sea																	
6	Atlant	tic: Celt	ic Sea																		
7	Atlant	tic: Gulf	of Gui	nea																	
8	Atlant	tic: Gulf	of Me	tico																	
9	Atlant	tic: N, >	0°Lat																		
10	Atlant	tic: NE,	>-30°L	ng, >(rlat																
11	Atlant	tic: NW	<-30°L	ong, >	0°Lat																
12	Atlant	tic: S, <	0°Lat																		
13	Atlant	tic: SE, >	>-30°Lo	ng, <0	Lat																
14	Atlant	tic: SW,	<-30°L	ong, <	o'Lat																
15	Atlant	tic: trop	E, <-31	TLong.	4-23	Lat															
16	Atlant	ic: trop	W<-3	Long	, +/-23	Lat															
17	Atlant	ic: trop	ncs +/-2	3 Lat																	
18	Medit	errane	an Sea																		
19	Medit	errane	an: Aeg	ean Se	sal																
20	Medit	enanes	an:E,>	15 100	8																
Д	medit	enanes	call. WV, *	· m .m	6																

Retrieved record# 1

Diaz G A (2010) , Vol. 2010/058 (Pub#316)

A simulation study of the results of using different levels of observer coverage to estimate dead discards for the U.S. pelagic longline fleet in the Gulf of Mexico

A simulation study was conducted to estimate the coefficient of variation of the estimated number of dead discards at different levels of observer coverage. The study used data collected by the U.S. Pelagic Observer Program in the Gulf of Mexico during the 2007-2009 bluefin tuna spawning seasons. Results were obtained for twenty seven different species and indicated that the CV of estimated dead discards depends on the frequency of occurrence of each species and the variability in the number of discards observed in each trip.

Guillermo.Diaz@noaa.gov

Region of study:	Atlantic: Gulf of Mexico
Gear group:	Longline
1st year of results:	2007
Last year of results:	2009
Project:	
Estimated observer effort:	0 person yr
Fleet flag code:	

Pub#	Topic	
316	Fishing: By-catch: modelling	
316	Stats: observer surveys	
816	Stats: simulation method	

RGpub#	RG#	Group	Code	Scientific name	English name
316	388	Elasmobranchs	THR	Alopias sp.	Thresher shark sp.
316	388	Elasmobranchs	BTH	Alopias superciliosus	Bigeye thresher
316	388	Elasmobranchs	FAL	Carcharhinus falciformis	Silky shark
316	388	Elasmobranchs	CCL	Carcharhinus limbatus	Blacktip shark
316	388	Elasmobranchs	DUS	Carcharhinus obscurus	Dusky shark
316	388	Elasmobranchs	CCP	Carcharhinus plumbeus	Sandbar shark
316	388	Elasmobranchs	CCS	Carcharhinus signatus	Night shark
316	388	Elasmobranchs	TIG	Galeocerdo cuvier	Tiger shark
316	388	Elasmobranchs	SMA	Isurus oxyrinchus	Shortfin mako
316	388	Elasmobranchs	LMA	Isurus paucus	Longfin mako
316	388	Elasmobranchs	MAK	Isurus spp	Mako sharks

Figure 1: By-catch database; example of a report on PUBLICATIONS with results for Mako sharks

showByCatch	hRESULTS	SysRE	SULTSget				_				_	_	_		×
ResultGroup	Resu	lt# •	ProjAbbrev	Publicat	ion • GearGr	p •	Region		WestLong •	EastLong •	SouthLat	- 1	NorthLat •	StartDate	•
	73	287		Hazin F H	IV OI LL	Atlantic: trop	W < - 30"	"Long, +/-23"Lat	-35	-34		-10	-7	1	994
	99	468	PNOFA	Mora O	Domir LL	Atlantic: SW,	<-30°Lo	ng, < 0°Lat	-60	-30		66	132	1	998
1	LOB	664	CSFOP	Cortés E	Neer VS	Atlantic Ocea	an		-95	15		-66	66	1	994
1	146	899	US POP	Beerkird	her L F LL	Atlantic: NW	<-30°Lor	ng, > 0°Lat	-95	-30		0	66	1	992
	20	1631	Spanish OP	Mejuto J	Garcí LL	Atlantic + Me	diterran	ean	-60	15		-66	66	1	997
	73	2252		Hazin F H	IV OF LL	Atlantic: trop	W < -30"	"Long, +/-23"Lat	-35	-34		-10	-7	1	994
	73	2253		Hazin F H	IV OI LL	Atlantic: trop	W < -30	"Long, +/-23"Lat	-35	-34		-10	-7	1	994
	73	2254		Hazin F H	IV OI LL	Atlantic: trop	W < -30	"Long, +/-23"Lat	-35	-34		-10	-7	1	994
	73	2255		Hazin F H	IV OI LL	Atlantic: trop	W <-30	°Long, +/-23°Lat	-35	-34		-10	-7	1	994
	73	2256		Hazin F H	IV OI LL	Atlantic: trop	W < -30	*Long, +/-23*Lat	-35	-34		-10	-7	1	994
	73	2257		Hazin F H	IV OI LL	Atlantic: trop	W < -30'	"Long, +/-23"Lat	-35	-34		-10	-7	1	994
	73	2258		Hazin F H	IV OI LL	Atlantic: trop	W < -30	"Long, +/-23"Lat	-35	-34		-10	-7	1	994
	73	2259		Hazin F H	IV OI LL	Atlantic: trop	W <-30	"Long, +/-23"Lat	-35	-34		-10	-7	1	994
	73	2260		Hazin F H	IV OI LL	Atlantic: trop	W <-30	"Long, +/-23"Lat	-35	-34		-10	-7	1	994
	73	2261		Hazin F H	IV OI LL	Atlantic: trop	W < -30	*Long, +/-23*Lat	-35	-34		-10	-7	1	994
	73	2262		Hazin F H		Atlantic: trop	W < -30'	"Long, +/-23"Lat	-35	-34		-10	-7	1	994
1	LOB	3381	CSFOP	Cortés E	Neer VS	Atlantic Ocea	n		-95	15		-66	66	1	994
(Ne	w)	(New)													
EndDate	· ICCAT	speci -	SciNa	ame -	SpGroup	Gender	-	Meas	sure	 MeasureG 	irt . Opsi	dValu	e - Units	e + 3	
1	9%6 CCP		Carcharhinus	plumbeus	Elasmobranchs	м	Len	igth: total		Length			155 cm		
2	0(4 CCP		Carcharhinus	plumbeus	Elasmobranchs		Cat	ch: Presence-abs	ence	Catching			1 no unit		
2	002 CCP		Carcharhinus	plumbeus	Elasmobranchs		We	ight: ratio dresse	d to total fin we	ight Weight		5	5.34 %		
2	002 CCP		Carcharhinus	plumbeus	Elasmobranchs		Cat	ch: Presence-abs	ence	Catching			1 no unit		
2	006 CCP		Carcharhinus	plumbeus	Elasmobranchs		Cat	ch: weight, total		Catching			kg		
1	996 CCP		Carcharhinus	plumbeus	Elasmobranchs	M	Len	igth: total		Length			165 cm		
1	996 CCP		Carcharhinus	plumbeus	Elasmobranchs	M	Len	igth: total		Length			175 cm		
1	996 CCP		Carcharhinus	plumbeus	Elasmobranchs	M	Len	igth: total		Length			185 cm		
1	996 CCP		Carcharhinus	plumbeus	Elasmobranchs	M	Len	igth: total		Length			195 cm		
1	996 CCP		Carcharhinus	plumbeus	Elasmobranchs	M	Len	igth: total		Length			205 cm		
1	996 CCP		Carcharhinus	plumbeus	Elasmobranchs	F	Len	igth: total		Length			155 cm		
1	996 CCP		Carcharhinus	plumbeus	Elasmobranchs	F	Len	igth: total		Length			165 cm		
1	996 CCP		Carcharhinus	plumbeus	Elasmobranchs	F	Len	igth: total		Length			175 cm		
1	996 CCP		Carcharhinus	plumbeus	Elasmobranchs	F	Len	igth: total		Length			185 cm		
1	996 CCP		Carcharhinus	plumbeus	Elasmobranchs	F	Len	igth: total		Length			195 cm		
1	996 CCP		Carcharhinus	plumbeus	Elasmobranchs	F	Len	igth: total		Length			205 cm		
2	002 CCP		Carcharhinus	plumbeus	Elasmobranchs		We	ight: ratio round	to total fin weig	ht Weight			2.55 %		
fish •	Disc'd ali	ve? •	Animal •	TripsObsvd -	SetsObsvd •	D@Sobsvd · Obs	vrsUsed	 LogBksUsed - 	InterviewsU •	LandingsUse - P	ortSampl	is • Fi	sheryInde •	Flag	•
0														BRA	003
				43	918	1175							v	URY	04;
39													V	UNCL	999
							2							USA	02
							~							EC.ESP	021
0														BRA	003
2														BRA	003
3														BRA	00
5														BRA	003
0														BRA	003
0														BRA	00
0														BRA	00
0														BRA	003
0														BRA	003
6														BRA	003
10														BRA	003
67							1			V			4	UNCL	999

Figure 2: By-catch database; example of an output datasheet with results of all types for the sandbar shark caught anywhere. The long output records were subdivided into 3 panels to fit this page.