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SUMMARY 

 
In this paper we conduct a Bayesian hierarchical analysis of CPUE series. We do this in order 
to conduct an exploratory data analysis, i.e. to identify indices with similar trends. 
 

RÉSUMÉ 
 
Dans ce document, nous réalisons une analyse hiérarchique bayésienne des séries de CPUE. 
Ceci est effectué afin de réaliser une analyse exploratoire de données, c.-à-d. en vue d'identifier 
les indices présentant des tendances similaires. 

 
RESUMEN 

 
En este documento se realiza un análisis jerárquico bayesiano de las series de CPUE: Esto se 
realiza con miras a realizar un análisis exploratorio de datos, es decir, para identificar índices 
con tendencias similares. 
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1. Introduction 
 
The Stock Assessment Methods Working Group (WGSAM) recommended that work be conducted on 
diagnostics and ways to combine multiple indices. Therefore, in this paper we conduct a Bayesian hierarchical 
analysis of CPUE series using the method of Hilborn and Conn (2009) to identify population trends from 
multiple, noisy indices. 
 
The approach also allows differences between indices to be evaluated. These may be due to a variety of causes, 
e.g. random error (in either measurements or processes), changes in abundance or bias due to changes in 
population and fleet dynamics. 
 
 
2.  Material and Methods 
 
The data used were the standardised indices of catch per unit effort (CPUE) used in the ASPIC assessment 
Prager (1994) for white marlin. An implicit assumption is that each index is measuring the same quantity (i.e., 
relative abundance) but is also subject to process error (attributable to variation in catchability, spatial 
distribution, etc.) an estimable level of within-survey variance (i.e., sampling or measurement error). 
 
A lognormal error structure is often assumed for indices of abundance, adopting this convention and assuming 
that indices are subject to independent and multiplicative process and sampling errors, equation (1). Where (σp)2 
and (σs )2 ) give the standard deviation associated with process and sampling errors, respectively. qit is the 
catchability of index i in year t, Nt is vulnerable biomass or abundance in year t. 
 
Assuming a lognormal error structure, the precision attributable to sampling error may be written as a function of 
the estimated coefficient of variation on the absolute scale using equation (2). Making the substitutions in 
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equations (3) and (4) gives equations (5). If catchability is assumed to be stationary (e.g., no trends in 
catchability), the model may be further simplified to equation (6). 
 
All analyses were conducted using R; i.e. the R2jags was used for fitting using Monte Carlo Markov Chain 
(MCMC) for simulation and coda for goodness of fit diagnostics. 
 

 
2.1 Diagnostics 
 
One of the main difficulties with MCMC methods is ensuring that the simulations have converged to a stationary 
distribution. The equilibrium distribution of the chain is the required posterior distribution but how do we know 
that the chain has reached equilibrium? A burn-in period where initial values are discarded helps. However, in 
complicated cases, i.e., where there is more than one local maximum or the posterior distribution is in the form 
of a ridge a chain, it can take a long time to move around the parameter space and a long burn-in period may be 
required. While a much larger sample may have to be taken to ensure that the chain has not just become 
temporarily stuck in one part of the parameter space. 
 

For these reasons we use a variety of diagnostics to check convergence, see Best et al. (1995), e.g. 
 
 Trace Plots are time series plot of a parameter as the Markov chain proceeds.  

 Autocorrelation Plots measure the correlation between µt and µt+1 variable in a chain  

 Correlation Plots can show if parameters are confounded 

 Gelman-Rubin Diagnostic tests that the burn-in is adequate and requires that multiple starting points be 
used. 

 Geweke Diagnostic, if burn-in is adequate, then the mean of the posterior distribution of µ from the first half 
of the chain should equal the mean from the second half of the chain. 

 
2.2 Autocorrelation 
 
Autocorrelation plots of the parameters of interested can help in deciding the level of thinning to apply to a 
chain in order to reduce correlation between successive values to an acceptable level (e.g., 0.2). The JAGS 
script can then be rerun using an appropriate thinning value. 
 

2.3  Confounding 
 
Model parameter might not be identifiable, either because a parameter is confounded with one or more other 
parameters or because the data are inadequate. Plotting the correlations between parameters is a way of seeing if 
there is confounding between parameters 
 

2.4  Gelman-Rubin 
 
If the chain has reached convergence, the Gelman-Rubin Gelman and Rubin [1992] test statistic R 1, then it can 
be concluded that the burn-in is adequate. While values above 1.05 indicate lack of convergence, since the 
distribution of R under the null hypothesis is essentially an F distribution. However the F-test for comparing two 
variances is not robust to violations of normality. Therefore using Gelman-Rubin diagnostic alone is not 
sufficient to ensure convergence 
 

2.5  Geweke Diagnostic 
 
For a parameter of interest, if the burn-in is adequate, the mean of the posterior distribution from the first half of 
the chain should equal the mean from the second half of the chain Geweke (1991). The Geweke statistic 
asymptotically has a standard normal distribution, so if the values from R are outside -2.5 or 2.5, this indicates 
non stationary of the chain and that burn-in is not sufficient. 
 
 
3. Results 
 
The indices of abundance are shown in Figure 1, points are the observed index values and the blue a lowess fit 
to the points by index. The red line is general additive model (GAM) fitted with a smooth term for year and a 
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categorical value by fleet. This allows a common year effective to be estimated and all indices to be plotted on a 
common scale. 
 

Pairwise scatter plots of the indices of abundance are shown in Figure 2, blue lines are linear regressions fitted 
to the points, the shade area is the standard error of predicted means and the red line is the mean of the points on 
the y-axis. This shows that not all indices are correlated and that problems may be expected when fitting. 
 
The presence of autocorrelation in the parameters was evaluated by plotting the autocorrelation function (ACF) 
by lag in Figure 3 for each parameter. After a lag of 30 the ACF is 0.2 and so for thinning every 40th value in a 
chain was saved. The correlation between parameters is plotted in Figure 4; blue indicates a positive correlation 
and red negative. It can be seen that there is a positive correlation between the first 6 parameters, i.e, 
catchability and a negative correlation between catchability and the estimate of the expected values by year. 
 

The Gewanke statistic is plotted by parameter in Figure 5, in only one case is a parameter greater than 2.5. The 
Gelman-Rubin statistic was 1 for all parameters, showing that approximate convergence had been achieved. 
 
Figure 6 compares the combined time series (black line), where shaded areas represent the 95th and 50th 
probability regions, to the index fitted using the GAM. While Figure 7 compares the individual indices (red 
lines) to the combined index 
 
 
4. Discussion and Conclusions 
 
A variety of diagnostics were used to check for convergence and confounding of parameters. These showed that 
there were problems with convergence, probably due to the fact that the indices were not all positively 
correlated. 
 

Although a combined index was fitted using the hierarchical framework, the fact that the original indices were 
not all correlated implied that they may have be proxies of different stock components or ages and that some 
indices might be biased due to changes in targeting of the fleets or in management regulations, particularly since 
all indices are fishery dependent.. 
 

Schnute and Hilborn (1993) pointed out that fisheries stock assessments some- times prove, in retrospect, to be 
wrong, particularly acute when more than one data source is available and different data sets provide 
contradictory parameter estimates. Especially as traditional methods of stock assessment involve weighted 
averages of the contradictory data, and these generally produce parameter estimates intermediate to those 
obtained from the data sets individually.  They also demonstrate that, when model or data errors are considered, 
the most likely parameter values are not intermediary to conflicting values; instead, they occur at one of the 
apparent extremes. 
 

The Working Group on Stock Assessment Methods recommended that the method be evaluated before being 
used to generate a combined index in stock assessment. This will be best done through simulation, for example 
using cross-validation. 
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