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RECRUITMENT RELATIONSHIPS FOR WESTERN ATLANTIC BLUEFIN TUNA 
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SUMMARY 

 
This paper computes Bayesian posterior probabilities for different stock-recruit models for 
western Atlantic bluefin tuna on (a) whether regime shifts have affected recruitment and (b) the 
mathematical form of the stock-recruit function. The analysis uses stock-recruit data obtained 
from ICCAT's 2010 stock assessment of western Atlantic bluefin tuna. I present Bayes factors 
for the alternative hypotheses which reflect the ratio of Bayes' probability of the data for two 
“competing” hypothesis and identified improved formulations of prior probabilities removed 
their influence Bayes factors. The sensitivity of Bayes factors to different assumptions was 
evaluated, including settings for autocorrelation in stock-recruit deviates, priors, variance in 
recruitment deviates and the data to analyze. When applied to stock-recruit data from 1970 to 
2006 and presuming a regime shift in 1977, Bayes factors were 4.8:1, favoring the Beverton-
Holt no regime-shift model (i.e., the probability of the data was 4.8 times higher for the 
Beverton-Holt model compared to the two-line regime shift model). When different input 
settings were applied, the values obtained for Bayes factors for the two hypotheses ranged 
widely. They ranged, from about 1:2 against to 67:1 in favour of the Beverton-Holt model.  

 
RÉSUMÉ 

 
Ce document calcule les probabilités bayésiennes a posteriori pour différents modèles stock-
recrutement pour les thons rouges de l’Atlantique Ouest sur la question de savoir si (a) des 
changements de régime ont affecté le recrutement et (b) la formule mathématique de la fonction 
stock-recrutement. L'analyse utilise les données de stock-recrutement obtenues de l'évaluation 
des stocks de thon rouge de l'Atlantique Ouest réalisée par l'ICCAT en 2010. Sont présentés des 
facteurs bayésiens pour les hypothèses alternatives qui reflètent le ratio de la probabilité 
bayésienne des données pour deux hypothèses "concurrentes" et sont identifiées des 
formulations améliorées de probabilités a priori qui ont rendu négligeable leur influence sur 
les facteurs bayésiens. La sensibilité des facteurs bayésiens à différents postulats a été évaluée, 
y compris les configurations pour l'auto-corrélation dans les déviations stock-recrutement, les 
priors, la variance dans les déviations du recrutement et les données à analyser. Lorsqu'ils sont 
appliqués aux données de stock-recrutement de 1970 à 2006 et postulant un changement de 
régime en 1977, les facteurs bayésiens s'élevaient à 4.8.1, favorisant le modèle sans 
changement de régime de Beverton-Holt (c.-à-d. la probabilité des données était 4,8 fois 
supérieure pour le modèle de Beverton-Holt que pour le modèle de changement de régime à 
deux lignes). Lorsque différentes configurations de données d'entrée étaient appliquées, les 
valeurs obtenues pour les facteurs bayésiens pour les deux hypothèses ont largement varié. 
Elles se sont situées à environ 1:2 par rapport à 67:1 en faveur du modèle de Beverton-Holt.  

 
RESUMEN 

 
En este documento se calculan las probabilidades bayesianas posteriores para diferentes 
modelos stock-reclutamiento para el atún rojo del Atlántico occidental (a) cuando los cambios 
de régimen afectan al reclutamiento y (b) en la forma matemática de la función stock-
reclutamiento. En los análisis se utilizaron los datos stock-reclutamiento obtenidos de la 
evaluación de stock de ICCAT de 2010 de atún rojo del Atlántico oeste. Se presentan factores 
bayesianos para hipótesis alternativas que reflejan la ratio de probabilidad de Bayes de los 
datos para dos hipótesis “candidatas” y se identificaron formulaciones mejoradas de 
probabilidades previas que hicieron que su influencia en los factores bayesianos fuera 
inapreciables. Se evaluó la sensibilidad de los factores bayesianos a diferentes supuestos, lo 
que incluye especificaciones para la autocorrelación en desviaciones stock-reclutamiento, 
distribuciones previas, variación en desviaciones del reclutamiento y los datos que se tienen 
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que analizar. Cuando se aplican a los datos stock-reclutamiento de 1970 a 2006, y se parte del 
supuesto de un cambio de régimen en 1977, los factores Bayes fueron 4,8:1, favoreciendo el 
modelo sin cambio de régimen de Beverton-Holt (a saber, la probabilidad de los datos era 4,8 
veces superior para el modelo Beverton-Holt que para el modelo de cambio de régimen de dos 
líneas). Cuando se aplicaron especificaciones diferentes para los valores de entrada, los 
valores obtenidos para los factores Bayes para las dos hipótesis oscilaron ampliamente. 
Oscilaron entre 1:2 y 67:1 a favor del modelo Beverton-Holt.  
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INTRODUCTION 
 
It is common in stock assessment for results to vary with input assumptions or hypotheses about the structural 
formulation of the stock assessment model considered. This may occur when different assumptions are made 
about recruitment to the exploited population, for example, about the form of the stock-recruit relationship, and 
there is uncertainty over which one is correct. This is often troublesome because different predictions about the 
consequences of alternative management actions can result from applying such different hypotheses in a stock 
assessment.  

 
Traditionally, assessment scientists choose the most believable set of assumptions as a base case scenario, and 
then run models with other assumptions as sensitivity analyses. Decision-makers, when presented with a base 
case, and sensitivity analyses, tend to consider only the base case in choosing management policies. In the case 
when two or more hypotheses are considered believable, assessment scientists may present decision-makers with 
results for different sets of assumptions without choosing a preferred model. Managers are then presented with a 
variety of results in which the best action depends upon which state of nature is assumed to be true. Without any 
formal scientific guidance about how to weight the different hypotheses or assumptions, scientific considerations 
about their plausibility are often ignored in the decision making process.  

 
This appears to have been the case in the stock assessment of western Atlantic bluefin tuna where some 
alternative stock recruitment relationships were hypothesized in the 1990s and two of these have since been 
applied in stock projections (ICCAT, 1999). ICCAT scientists have in their stock assessment reports indicated 
that the two alternative hypotheses on recruitment are equally plausible and that there’s been no scientific basis 
with which to evaluate the credibility of the two hypotheses (ICCAT 2002, 2008, 2010). Stock rebuilding 
measures that have been adopted for the western Atlantic bluefin tuna stock have been based primarily on 
projection results from only one of the two hypotheses, despite scientists’ assertion that both hypotheses have 
remained equally plausible. In contrast, McAllister et al. (2000a, b) suggested a Bayesian approach dealing with 
the uncertainty in these alternative recruitment hypotheses within the context of the provision of fisheries 
management advice. This paper takes up this issue by extending the approach and analysis of McAllister et al. 
(2000a, b). 

 
Butterworth et al. (1996) addressed this problem in stock assessment where different models suggested different 
optimal policies and emphasized the importance of developing a scientific basis to weight the different models. 
They suggested a number of systematic approaches to constructing weightings for alternative hypotheses on 
model structure. Raftery and Richardson (1996), McAllister et al. (1999) and McAllister and Kirchner (2002) 
have suggested some Bayesian statistical approaches to constructing these weightings. McAllister et al. (2000a) 
explored one of these and presented Bayesian decision analysis as a formal approach to provide empirically 
based weightings for conflicting stock assessment results and provide scientific guidance to decision makers 
when they are faced with such conflicting results. The weightings come in the form of posterior probabilities 
which reflect the probability of a given model or hypothesis given the available data. McAllister et al. (2000a) 
proposed a statistical methodology to compute such probabilities for alternative models: the application of the 
sampling importance resampling (SIR) algorithm to the available data. This approach is amenable to be used in 
conjunction with existing ICCAT stock assessment methods because it can be used in concert with ADAPT VPA 
methods, catch-age methods, and age-structured and non-age-structured surplus production modeling. While it is 
useful to communicate about the credibility of a hypothesis by referring to posterior probabilities, these are often 
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difficult to interpret since the probabilities by definition must sum to one and the probability values tend to get 
spread more thinly as the number of discrete alternative hypotheses increases.  

 
In this paper I make use of Bayesian posterior probabilities and also Bayes factors for structurally different 
models (Kass and Raftery 1995). Bayes factors for alternative hypotheses reflect the ratio of the probability of 
the data given one particular model to the probability of the same data for a second model. They do not require 
the formulation and application of prior probabilities for different models, are directly proportional to posterior 
probabilities when the prior probabilities for the different hypotheses are equal, and based on recent experience 
(e.g., King et al. 2011) are easier to interpret than probability values.  

 
McAllister et al. (2000a, b) examined two sets of hypotheses about western Atlantic bluefin tuna recruitment: 
whether the functional form of the stock-recruit relationship is Beverton-Holt or “2-line”, and whether there was 
or was not a regime shift (Hare and Francis 1995) that changed the stock-recruit relationship. This paper extends 
the data analysis to include western Atlantic bluefin tuna stock recruit data from ICCAT’s 2010 assessment of 
Atlantic bluefin tuna (ICCAT 2010) and the precise set of statistical assumptions applied in the 2010 assessment, 
for example, regarding autocorrelation in deviates from the stock-recruit functions considered. It also identifies 
prior probability distributions for stock-recruit model parameters that have negligible influence on Bayes factors 
for the different stock-recruit models and evaluates the sensitivity of Bayes factors to applying different years for 
the year of the regime shift, the final year of data to include and different assumptions about variance and 
autocorrelation in stock-recruit function deviates. 

 
 

Methods 
 

For descriptions of the general decision analytic approach and statistical protocols to dealing with structurally 
different stock assessment and stock-recruit models and computing marginal posterior probabilities for these 
using importance sampling see McAllister et al. (2000a). I outline below the statistical formulations of the stock-
recruit models applied in McAllister et al. (2000b). 

 
One quantity summarizing the weight of evidence in support of structurally different models is the marginal 
posterior probability for each model. This is given by:  
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where p(mj) is the prior probability for model j, the relative plausibility for model j prior to evaluating such data, 

and p(j) is the prior probability density function of parameter vector j under model j and )|data( jP   is the 

probability density of the data obtained given the set of parameter values j under model j (in Bayes theorem, 
often referred to as likelihood function of the data). The value p(j) represents the probability for a given set of 
values for the parameters in model j prior to obtaining a set of data that can further our ability to discriminate 
among alternative parameter values. In absence of a consensus on which prior probability distribution to apply, a 
non-informative prior probability distribution may be applied as the base case prior. Such priors should allow the 
data to speak for themselves. For example, for discrete alternative hypotheses I would give each hypotheses the 
same prior probability: p(mj) = 1/Nm where Nm is the number of alternative hypotheses or models considered. 
 
This paper considers the same stock-recruit data for western Atlantic bluefin tuna from ICCAT’s 2010 
assessment. I’ve used the 2010 stock-recruit data for 1970-2008 (source Laurie Kell, ICCAT Secretariat, 
Madrid). These data together with the data applied in McAllister et al. (2000b) are shown in Table 1. A third 
dataset (Porch et al. 1960) for 1960-1998 was also considered in a sensitivity analysis since it extends further 
back when SSB and recruitment were higher. For most of the analyses, I have not included recruitment data after 
2006 due to the decay in reliability of recruitment estimates in the latest recruits obtained from a VPA. However, 
since the 2010 assessment included the 2006 stock-recruit data to characterize stock-recruit functions, the 
reference case results in this paper include the 2006 data point. I’ve focused on the two alternative hypotheses on 
functional form of the stock-recruit function that have been considered in western Atlantic bluefin tuna stock 
assessments since 1997: (1) the Beverton-Holt model without a regime shift in the time series and (2) a 2-line 
model or hockey stock stock-recruit function where there has been a shift in the environmental regime affecting 
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recruitment in the 1970s. The same steps for computing probabilities for structurally different models as outlined 
in McAllister et al. (2000a, b) are outlined below for the extended application to western Atlantic bluefin tuna. 
 
Step 1: Identify alternative functional forms of the stock-recruit (SR) relationship 
 

In the 1998 and subsequent assessments of western Atlantic bluefin tuna, plots and analyses of stock-
recruit data and the fitted stock-recruit functions indicated that the empirical deviations from the stock-recruit 
function were autocorrelated (e.g., ICCAT 1999; ICCAT 2010). Thus, S-R deviates in projections have been 
modeled in these assessments to be autocorrelated with a 1-year time lag. As in McAllister et al. (2000b), I 
considered auto-correlation in S-R deviates and time-dependency in the magnitude of the variance for the 
deviates from the hypothesized stock-recruit relationship.  
 
Beverton-Holt (BH) Stock-Recruit Model (after Francis 1992): 
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where:  

1
ˆ
yR , is the predicted number of recruits of age 1 in year y + 1.  

Sy is the spawner biomass in year y.  
 
 =  (1-h) / (4 h) 
 =  (5 h – 1) / (4 h B0)  
 
 is spawner biomass per recruit (fixed at 0.528 tons based on life history parameters for the western stock in 
ICCAT (2010)), h is steepness, the proportion of recruitment at virgin stock size, B0, that results when S = 0.2 B0.  

2
1 1    yyy X         

 is the first order autocorrelation coefficient of y  where y  is normally distributed with mean 0 and a SD of 

R. In some of the analyses, was set at the value applied in the 2010 assessment, which applied 0.52 in both the 
Beverton-Holt and 2 line models. Xy is a normal random variable with mean 0 and SD = R. Further below I 
describe how the parameters for this stock-recruit model and the other models were estimated. 
 
2 Line (2L) Stock-Recruit Model (ICCAT 1999)  
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where  

R  is the median recruitment when Sy is greater than the inflection point in the 2 line stock-recruit function, Sinf, 

 inf/ SR   

y is as described for the Beverton-Holt Stock-recruit function (Equation 3). 
 
Sinf was determined according to the protocol in the 2010 assessment. This was to take the average of the six 
lowest values for Sy in the time series, the values from 1990-1995, i.e., 12,640 tons. 
 
Step 2: Formulate a plausible hypothesis for there to have been a regime shift (RS) that altered considerably the 
form of the stock recruit function.  
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I considered the year, 1977 as the year in which the regime shift occurred because 1977 was the first year in the 
time series in which the estimated value for recruitment dropped below the long-term average, i.e., between 1976 
and 1977 recruitment went from 1.17 to 0.97 of the long term average value between 1970 and 2010.  
 
Step 3: Identify the alternative stock-recruit models.  
 
As mentioned above, I focus mainly on the two alternative hypotheses on the structural form of the stock-recruit 
relationship for western bluefin tuna that have been considered in ICCAT’s assessment of western Atlantic 
bluefin tuna: (i) Beverton-Holt and no regime shift; (2) 2 line and no regime shift. In the absence of any 
scientific arguments about the relative credibility of each structural alternative, the prior probabilities for each of 
the two alternative models, p(mj) was set at 0.5.  
 
Step 4: Identify parameters to be estimated in the alternative stock-recruit models identified in steps 1-3.  
 
Hypothesis 1: Beverton-Holt, no regime shift: The estimated parameters were  
 

B0 over the period 1970 and onwards,  
h,  
R for y before and after the year of the regime shift (YS) and  
y the annual recruitment deviates.  
 

Hypothesis 2: 2 line, regime shift: The estimated parameters were  
 

R <YS,  

R YS,  
R,1 for y before YS,  
R,2 for y after and including YS, and  
y the annual recruitment deviates.  

 
For the year of the regime shift (YS) onwards, Sinf>YS is assumed to be the average observed spawner biomass in 
years 1989-1993 (ICCAT 2010). The same slope, , is assumed below the inflection point for both regimes. 

Thus, for years before YS, /inf YSYS RS    and YSYS SR  inf/ . 

 
Step 5: Define prior probability density (pdfs) functions for the parameters to be estimated in each of the 
alternative models.  
 
Relatively non-informative priors were identified for each estimated parameter. The priors were chosen such that 
they were expected to have the lowest possible effect on the Bayes factors for different models and to allow the 
data to speak for themselves as much as possible. These are somewhat different from the priors applied in 
McAllister et al. (2000b) and the sensitivity of results to the application of different priors is evaluated further 
below. 
 
The reference case priors for the two alternative models were as follows: 
 
B-H, no RS 
 
B0 ~ Uniform(log(10,000t), log(5,000,000t)) 
h~Uniform(0.21, 0.99) 
ln(R) ~ Uniform(ln(0.1), ln(1)) 
 
2-L RS 
 
ln(R,b) ~ Uniform(ln(0.1), ln(1)), b = 1, 2. 

R  ~ Uniform(log(10,000), log(5,000,000)) 
 
where b signifies the regime. 
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Step 6: Define the probability model of the data. A 1-year lag auto-regressive stock-recruit function implies that 

each observed value for recruitment, Ry, is lognormally distributed about the value for recruitment, yjR ,'ˆ , 

predicted by the product of the recruitment given by the deterministic stock recruit model, j, in year y and the 
one-year-lag lognormal autoregressive term: 
 

  22
,, 1,'ˆ~ Ryjyj RLogNormalR      (5) 

 
where  
 

 2, expˆ'ˆ
,  y

d
yj yj

RR   

 
Note that the annual deviate, y-1, that is applied to age 1 recruits, Ry, is referenced to the spawner biomass that 
produced that recruitment in the previous year (Sy-1). Thus, for a one year lagged autoregressive process, the 
deviate y-1 is modeled to be correlated to the deviate, y-2. 
 
and  
 

d
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R
,

ˆ  is the deterministic value for recruitment of age 1 fish in year y, predicted by Sy-1 and the stock-recruit 

model parameters. For example, for the Beverton-Holt model (dropping the subscript j),  
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For the first year in the time series with an age 1 recruitment observation, e.g., 1971, the value for y-2 (i.e., 1969) 
was fixed at 0. y-2 for recruitment “observations” in years from 1972 onwards was given by: 
 

   d
yyy RR 112

ˆlnln         (7) 

 

The likelihood function of the set of recruitment observations, R , was formulated as follows: 

     

















































 


22
,

2

,

22 12

'ˆln

exp
12

1
|

,



bR

yj

y
y

yy y
j

R

R

R
RL

f

i
bR

  (8) 

where yi and yf are the initial and final years of the stock-recruit data time series. 
 
Step 7: Carry out importance sampling.  
 
See McAllister et al. (2000b) and McAllister and Ianelli (1997) for details. This is done to estimate marginal 
posterior probabilities for quantities of interest when the model of interest contains several estimated parameters. 
Draws are taken from a pre-specified density function called the importance function, which is constructed to be 
as similar as possible to the posterior density function of interest. The importance function applied for each 
estimation was the joint prior probability density function (pdf). Up to about 2,000,000 draws were taken from 
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the importance function to obtain highly precise results (less than 10 minutes of computing time using Visual 
Basic 6.0 programming language and a 2.2 gigahertz notebook PC). A useful diagnostic to test whether enough 
importance sampling has been done to compute Bayes factor for each model is to monitor the coefficient of 
variation in the average importance weight: 
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where jn  is the number of draws taken for model j and  
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where  kjh ,  is the value of the importance function (McAllister et al. 2000b) evaluated at the values for the 

parameters in parameter vector kj,  for model j. 

 
This provides an approximation of the expected coefficient of variation (CV) in the marginal posterior 
probabilities computed for each alternative model. I applied, as a rule of thumb, the following stopping rule for 
importance sampling: the CV in the average importance weight for a given model should be less than 0.05 before 
stopping the importance sampling. 
 
Step 8: Compute Bayes factor for each alternative model representing each joint hypothesis was given by 
(derived from McAllister et al. 2000a): 
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where mj is a fully specified stock-recruit model including the assumptions about variance, autocorrelation, the 
presence of a regime shift and the value for the lag 1 autocorrelation term, mref is a model to which mj is being 
compared, and nj and nref are the number of draws taken from the importance density function used in importance 
sampling for model j and the reference model, respectively.  
 
Step 9. Evaluate the sensitivity of results to different statistical assumptions. While it is common for a fixed pair 
of alternative models to be compared, it is common for there to be numerous somewhat arbitrary features to the 
model that could potentially influence the weightings obtained. I have made several comparisons between 
models with different assumptions to evaluate the robustness of results to the making of different statistical 
assumptions within the stock-recruit models compared. These are detailed in Table 2.  
 
Reference case model settings 
 
A chief aim of the analysis is to illustrate how to evaluate the credibility of the two alternative stock-recruit 
functions given the data used in ICCAT stock assessments (ICCAT 2010). The stock-recruit data included the 
number of age 1 recruits and spawner biomass from 1970-2006. The presumed year for the regime shift was set 
to the one considered in the latest stock assessment (i.e., the 1976 cohort) (ICCAT 2010). Autocorrelation in lag 
1 autoregressive deviates from both stock recruit functions was applied with  set at 0.52 for both models as in 
ICCAT (2010). For the regime shift model, the variance in stock-recruit function deviates was assumed to be 
different between the two regimes. The priors for the location parameters for average unfished recruitment, i.e., 
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Rbar in the 2 line model, and R0 in the Beverton-Holt model, were made uniform on the natural logarithm of 
values for these parameters. This was to make the priors as similar as possible between the two models. The 
prior for R was made uniform on the natural logarithm of R, with the range of plausible values between 0.1 and 
1, so that when a second R parameter was estimated for the 2nd regime, the effect of adding one additional 
parameter on Bayes factors for the two models was minimized, except in so far as it permitted a better fit to the 
data.  
 
Evaluation of the sensitivity of Bayes factors to different model settings 
 
The autocorrelation coefficient,  computed at lag 1 for the stock-recruit deviates from the fit of the B-H model 
to the 1970-2006 data was 0.17. This was not significantly different from zero. In contrast the value of 0.52 was 
applied in ICCAT (2010). I thus evaluated the credibility of the B-H with the autocorrelation coefficient set at 0 
and compared this model with the 2-L model with  also set to zero, and a few additional variants.  
 
It is of interest to compare results obtained in the previous analyses (McAllister et al. 2000a; McAllister et al. 
2000b) using S-R data for years included in those analyses. I’ve thus included two sets of comparisons. One uses 
the S–R up to 1993 from the 2010 stock assessment. The other uses the stock-recruit data up to 1993 that were 
used in McAllister et al. (2000b).  
 
It is of interest to evaluate the effects of how successive data points impact the computation of Bayes factors. 
The effects of excluding the very large cohort in 2003, excluding 2006, and including the 2007 and 2008 
datapoints were thus evaluated.  
 
Other stock-recruit datasets have been formulated for western Atlantic bluefin tuna using catch-age methods 
(Porch et al. 2001; Taylor et al. 2011). Since a stock recruit-function was not included in Porch et al. (2001) 
catch-age estimation, the estimates of recruitment and spawning stock biomass are not influenced by a pre-
existing stock-recruit function as they may be in Taylor et al. (2011). The alternative stock-recruit dataset for the 
years 1960-1998 in Porch et al. (2001) was thus analyzed.  
 
The two alternative stock-recruit models in ICCAT assessments of western Atlantic bluefin tuna are a small 
subset of potentially plausible stock-recruit models. To meet the requirements of a minimal two factorial 
evaluation, I evaluated two additional model variants. Marginal posteriors were thus computed also for the 
Beverton-Holt, regime shift and 2 Line no regime shift model variants. 
 
To minimize the effects of priors on Bayes factors, I’d applied in this paper uniform on log R0 and uniform on 
log Rbar priors and a maximum value for R of 1 in the uniform on log prior for R. To evaluate the potential 
effects on Bayes factors of different formulations of priors for model parameters, alternative priors for Rbar, and 
R0 in the 2 line and B-H models and a wider prior for the prior on R were evaluated. 
 
 
RESULTS 
 
For those not familiar with probability definitions, the following are provided. A joint probability is the 
probability that a set of two or more non-mutually exclusive hypotheses is correct (i.e., provides an accurate 
representation of nature or what has actually happened). An example is the probability that both the Beverton-
Holt stock-recruit function and no regime shift hypothesis are correct. A marginal probability is the probability 
that one particular hypothesis is correct, accounting for uncertainty across all of the other mutually exclusive 
hypotheses of interest, for example, the probability that the Beverton-Holt model is correct, integrated across the 
regime shift and non-regime shift hypotheses. A conditional probability is the probability that one hypothesis or 
set of hypotheses is correct given that some particular condition or other set of hypotheses is correct. An example 
is the probability that the Beverton-Holt model is correct given that there has been a regime shift. Posterior 
probabilities are shown below where there are two or more different models being compared. 
 
Bayes factor for a given model represents the ratio of the total probability of the data for that model to that for 
some reference model. This conveys the same information as the marginal posterior probability for a given 
model given the data, except that it does not include the prior probabilities for the different models. Bayes 
factors are shown in some instances below to make it easier to make comparisons between two or more 
alternative models with regard to their credibility based on the available data. 
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In the first set of results, I have kept the models compared the same as those compared in McAllister et al. 
(2001b) but used priors that have reduced effects on Bayes factors, a regime shift year of 1977 instead of 1981, 
and the data for 1970-2006 from the 2010 ICCAT assessment (rather than only 1970-1993). The joint posteriors 
and Bayes factors for the four recruitment hypotheses in Table 3a indicate that the 2-line recruitment model 
hypotheses are four or more times less credible than the B-H models. According to the marginal posteriors 
(Table 3b), the Beverton-Holt functional form is more probable than 2-line (0.9 vs. 0.1). The no regime shift 
hypothesis is equally probable as the regime shift hypothesis when the Beverton-Holt and 2 line models are both 
considered together (0.49 for the regime shift and 0.51 for no regime shift). According to the conditional 
posterior probabilities (Table 3c), no regime shift is slightly more probable than regime shift under the 
Beverton-Holt model but much less probable under the 2 line model (Figure 1). Given these results, the two-line 
regime shift hypothesis, though less likely, cannot be discarded since its Bayes factor when compared to the 
Beverton-Holt no regime shift model is not very small, e.g., i.e., not less than 0.01. However, the data tend to 
support the Beverton-Holt function over the 2-line functional form, even with autocorrelation included and 
residual variance estimated separately for years before and after 1977. The large recruitments in the early part of 
the time series are not fitted well by any of the four models (Figure 1).  
 
Table 3a shows that the normalized (priors * Likelihood) evaluated at the posterior mode for each of four 
alternative models are very similar. This number indicates how well the model with the best point estimate of the 
parameters fits the data, discounted by the log prior density at the posterior model. If a more complex model 
provides only a marginally better fit to the data, the statistic is not expected to change very much as shown. 
Normalizing the product of prior and likelihood at the mode shows relatively little difference between these 
naïve posterior probabilities. The statistic however ignores the variation in goodness of fit as a result of 
parameter uncertainty within each model. In contrast, the marginal posterior probability for each model (Table 
3a) integrates the posterior distribution across all parameter values. The marginal posterior probability and Bayes 
factor are more appropriate than model selection criteria that are based on the maximum likelihood estimate or 
mode (e.g., AIC or BIC) because they account for parameter uncertainty in each model (Kass and Raftery 1995) 
whereas AIC and BIC do not. They will also tend to favor the most parsimonious models (models with fewer 
parameters) which fit the data well.  
 
The final step in the provision of stock assessment results according to the Bayesian approach is to present tables 
from model projections for each alternative model/hypothesis and policy evaluated along with the probability 
values for each alternative model/hypothesis. To keep the illustration simple I have provided tables with 
indications of stock rebuilding potential based on results from the fitted stock-recruit models. Posterior modal 
values are provided for recruits per ton of spawner biomass (R/S) for each model at spawner biomass (S) equal 
to 0 and S equal to the inflection points of the two-line models (Sinf), i.e., the average observed spawner biomass 
for 1990-1995 for the second regime and the value given by the same slope and estimate of Rbar for the first 
regime (Table 4). Under the regime shift hypothesis, R/S at S=0 under 2 line model was about a third of that 
under the Beverton-Holt model. Under the no regime shift hypothesis, R/S at S=0 was 22% higher under the 2 
line model than that under the Beverton-Holt model. Under the no regime shift hypothesis, R/S at Sinf under the 2 
line model was 41% higher than that under the Beverton-Holt model. Under the regime shift model, R/S at Sinf 
was 0.5% lower under the 2 Line model than that under the Beverton-Holt model in the second regime. The 
value for steepness was considerably lower under the no regime shift model (0.47 (0.11)) compared to that under 
the regime shift model (0.72 (0.19)) and considerably more precise under the no regime shift hypothesis 
(posterior CVs shown in parenthesis after the posterior modal values).  
 
A key comparison is between the ratio of recruits per spawner (R/S) for the 2 line regime shift model and the 
Beverton-Holt no regime shift model since these are the two alternatives considered in the provision of 
management advice. The R/S at Sinf under the 2 line regime shift model is slightly higher (7%) than that under 
the Beverton-Holt no regime shift model (Table 4). These results indicate that the resilience to exploitation as 
indexed by R/S predicted under each alternative model depends strongly on whether a regime shift has been 
hypothesized and on the form of the stock-recruit function.  
 
A second key component of rebuilding potential is the apparent amount of rebuilding that is required given that 
stock biomass is considered to be low and in need of rebuilding as it is in recent assessments of western Atlantic 
bluefin tuna (ICCAT 2010). It is clear that with the mean maximum recruitment under the regime shift 2 line 
model (78,000) is far less than the average unfished recruitment expected under the Beverton-Holt model and no 
regime shift (399,000) (Table 4). The corresponding values for B0 reflect this large variation between the 
different models (Table 4). These recruitment and B0 reference points could be expected to offer a rough 
approximation of the relative levels of stock biomass at the maximum sustainable yield (Bmsy) under these two 
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alternative recruitment hypotheses, since Bmsy is commonly in the range of about 0.2 to 0.4 B0 for most exploited 
fish stocks. 
 
To check the assumption of autocorrelated residuals, the marginal posterior probabilities for the different models 
under no autocorrelation versus the reference case level of auto correlation were computed. The marginal 
posterior for autocorrelation integrated across the four joint hypotheses on recruitment was 0.34, compared to 
0.66 for no autocorrelation (Table 5). The favoring of autocorrelation was strong only for the 2 line no regime 
shift model which has much more strongly pronounced patterns in autocorrelation of stock-recruit deviates than 
the other models (Figure 1). Not surprisingly, if no autocorrelation was assumed, then the regime shift 
hypothesis obtained slightly higher marginal probability with 0.70, compared to 0.51 for no regime shift. The 
probability of the Beverton-Holt model over the 2 line model was not as high when no autocorrelation was 
applied, i.e., 0.62 compared to when an autocorrelation coefficient of 0.52 was assumed (Table 5). 
 
To check the assumption that the variance in residuals was different for years before 1977, the marginal posterior 
probabilities were computed for the models under different versus same variance. Under separate variances, the 
standard deviation in log recruitment deviates was about twice as high in the first regime compared to the second 
regime (Table 6a). The marginal posterior for no difference in variance integrated across the four joint 
hypotheses on recruitment however was 0.46, compared to 0.54 for different variances (Table 6). The small 
number of data points for the first regime (only 7) likely prevented stronger support for there being a difference 
in the variance. The Bayes posteriors for the Beverton Holt and 2 Line models under regime shift and no regime 
shift when the same variance was assumed were very similar to those obtained when the variance was assumed 
to be different between the regimes. The favoring of the same variance assumption occurs mainly because of 
there being relatively few data points for the two separate time periods. The same variance assumption thus did 
not affect the other marginal and conditional posteriors regarding the 2 line and Beverton-Holt models (Table 6).  
 
The stock-recruit data used in this analysis were different from those used in the initial analysis (McAllister et al. 
2001) since then only data up to 1993 were available and different growth curve and age-slicing inputs were 
applied to produce the catch-age data. It is thus of interest to see whether results obtained with the updated 
analysis compare with those obtained by the previous analysis. In one analysis I used the same stock-recruit data, 
1970-1993, as were applied in McAllister et al. (2000b). In a second analysis, I used the same years of stock-
recruit data but instead those provided in the 2010 assessment (ICCAT 2010). When the same data were used as 
in McAllister et al. (2000b), considerably smaller differences in Bayes factors were obtained than those in 
McAllister et al. (2000b). With the updated analysis applied to the same data as in McAllister et al. (2000b), the 
Beverton-Holt no regime shift model was only about twice as likely as the 2 line regime shift model rather than 
about 70 times more likely in McAllister et al. (2000b) (Table 7). The much lower Bayes factor for the 
Beverton-Holt no regime shift model resulted mainly from the different priors that were applied for model 
parameters, i.e., the uniform on log priors applied to R0 and Rbar in the Beverton-Holt and 2 line this time, rather 
than the uniform priors applied last time to B0 and Rbar (see results below and Discussion section for more on 
this). The previous analysis applied a regime shift year of 1981 after the practice in earlier assessments; whereas 
this analysis applied the more recently applied year of 1977. Computations showed that this change in year of 
regime shift had very little effect on the Bayes factors. When the models were fitted to the same time segment of 
stock-recruit data from the 2010 assessment, the Bayes factors switch around to favor the 2 line regime shift 
model by a factor of 48. This difference can be attributed to the difference in the configuration of the stock-
recruit data between those used in McAllister et al. (2001) and those obtained from ICCAT (2010). But when the 
full time series was used, i.e., 1970-2006, Bayes factor switched around in favor of the Beverton-Holt, no regime 
shift model by a factor of 4.8.  
 
Table 8 shows how Bayes factors for the two alternative recruitment model hypotheses (BH-NRS vs. 2L RS) 
vary with different assumptions about autocorrelation, whether variance is estimated separately for the two 
regimes, the number of years of data included in the analysis, a different stock-recruit data set and with different 
specifications for the priors for the estimated parameters. With the autocorrelation coefficient set to zero, the 2L 
RS model obtained slightly higher Bayes factors when compared to a BH NRS model with the autocorrelation 
coefficient set to zero and either variance the same or different between the two regimes. With the variance set to 
be equal between the two regimes, the 2L RS model is about five times less credible than the BH model, 
indicating that the presumption of positive autocorrelation in the 2 L model makes it less credible against the BH 
NRS model (Table 8). 
 
When the high 2003 recruitment point is removed from the analysis, the Bayes factor for the BH NRS model 
drops from 4.8 to 0.7, indicating that this high recruitment produced at low stock size contributes support for the 
BH NRS model. When applied to stock-recruit data from 1970 to 2005 and presuming a regime shift in 1977, the 
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Bayes factors were 1:1 and favored neither hypothesis. When the 2006, 2007 and 2008 recruitment data points 
were included, Bayes factors favoured the Beverton-Holt model by factors of 4.8, 4.1 and 6.1, respectively (e.g., 
the probability of the data was 4.1-6.1 times higher for the Beverton-Holt model compared to the two-line 
regime shift model). The posterior probabilities for the Beverton-Holt model computed using uninformative 
prior probabilities, for years 2000-2008 are shown in (Fig. 2). The posteriors switch from values close to zero up 
to 2003, to 30% in 2004, and to about 80% in 2006 and subsequently. The high sensitivity of the posterior to 
new data can potentially be dampened by square root or double square root transformations as shown in Fig. 2. 
When Bayes factors were computed for the 1960-1998 stock-recruit data set provided in SCRS 2001/52, Bayes 
factors supported the Beverton-Holt NRS model by a factor of 2.7.  
 
As indicated above, the formulation of the priors for model parameters strongly impacted Bayes factors. When a 
uniform prior was placed on R0 in the Beverton-Holt NRS model, Bayes factor increased from 4.8 to 55. When a 
uniform prior on log(B0) was applied instead of the uniform on Log(R0) prior, Bayes factor increased from 4.8 to 
5.8. When the uniform prior for R was extended from uniform on (0.1,1) to uniform on (0.1, 2) Bayes factor for 
the BH-NRS model increased from 4.8 to 5.6. When the uniform prior for R was extended from uniform on 
(0.1,1) to uniform on (0.1, 2) and uniform on Rbar and uniform on B0 priors were applied, Bayes factor for the 
BH-NRS model increased from 4.8 to 67. These results show that the most important formulation for priors on 
location parameters (e.g., R0, Rbar, B0) is to apply priors to the log transformed values of parameters, rather than 
to formulate prior density functions for the non-log transformed values. For parameters that are scale parameters 
such as R, or that range between close to zero and close to 1, the formulation of the prior has very little impact 
on Bayes factors.  
 
 
DISCUSSION 
 
This paper offers an update in the analysis of the empirical credibility of the western Atlantic bluefin tuna stock 
recruit model hypotheses. It uses stock-recruit data for this stock updated from the 2010 assessment to further 
illustrate a methodology that could be applied in the current and future assessments of bluefin tuna and other 
ICCAT fish stock assessments to help deal with structural uncertainties in the provision of management advice. 
Several recent works have recognized the importance of providing a systematic and scientifically grounded 
approach to providing empirically based weights for structurally different stock assessment models (Butterworth 
et al. 1996; Punt and Hilborn 1997; McAllister and Kirkwood 1998; McAllister et al. 1999; Parma 2000; Punt et 
al. 2000; McAllister and Kirchner 2002). Importance sampling has been one of the statistical methods developed 
for this purpose (Kass and Raftery 1995; McAllister and Kirkwood 1998; McAllister et al. 2000; McAllister and 
Kirchner 2002). As mentioned above, the approach is compatible with the main stock assessment methodologies 
applied in ICCAT ADAPT VPA methods and surplus production modeling (McAllister et al. 2000). For 
example, the Bayesian methods can be applied to the stock and recruit data points produced by VPA or catch-age 
methods to indicate the weight of evidence in support of the different stock-recruit model assumptions. These 
weights could potentially be helpful to present when presenting the results of policy projections which were 
based on the different stock-recruit model assumptions. 
 
This paper further demonstrates how importance sampling can be applied to compute empirical weightings for 
stock-recruit models with different assumptions about the recruitment of western Atlantic bluefin tuna. The 
paper extends the work in McAllister et al. (2000a, b) to further evaluate stock-recruit model assumptions. 
Autocorrelation in stock-recruit residuals was incorporated as in McAllister et al. (2000b). In contrast to 
McAllister et al. (2000b), Bayes factors were only mildly sensitive to autocorrelation in recruitment deviates 
except for the 2 line, no regime shift model. A difference in the variances of these deviates was also considered 
before and after 1977. Steepness in the Beverton Holt model was not estimated separately under the regime shift 
hypothesis for the two successive regimes mainly due to the paucity of data with which to estimate steepness for 
the 1st regime and the failure to find any support for the estimation of a second steepness parameter in McAllister 
et al. (2000b).  
 
The findings of McAllister et al. (2000a,b) in favour of the Beverton-Holt no regime shift model were found in 
the current analysis to be too strong, due to the use of naïve priors for the location parameters, B0 and Rbar. With 
adjustments to minimize the impact of the priors on Bayes factors, the stock-recruit data still tended to favour the 
Beverton-Holt formulations over the 2 line formulations (i.e., about 7 to 1). Bayes factor, i.e., 4.8, for the 
Beverton-Holt no regime shift model when the full time series, 1970-2006, was used was only mildly in favour 
of this model over the 2 line regime shift model. The 2 line formulations gave mostly fairly similar values this 
time for recruits per spawner compared the Beverton Holt ones over the current range of spawning stock sizes. 
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The lower empirical weights for the 2 line formulations would suggest that the 2 line formulations be treated 
with greater skepticism in future stock assessments. 
 
Using the 1970-2006 data from the 2010 assessment, lead to Bayes factors ranging 2:1 against to 67:1 in favor of 
the Beverton-Holt no regime shift model hypothesis over the 2 line regime shift hypothesis when different 
assumptions about autocorrelation, the variance in recruitment deviates, and priors for the estimated parameters 
were considered. Under their reference case settings for the two models, McAllister et al. (2000b) obtained 
markedly higher Bayes factors in favor of the Beverton-Holt no regime shift hypothesis when compared to the 2 
line no regime shift hypothesis. This is mainly a result of the different priors applied to Rbar and B0 between 
McAllister et al. (2000b) and in this paper and the different configuration of the stock-recruit data, for years 
since 1977. In one of the sensitivity runs in this paper, we applied priors very similar to those in McAllister et al. 
(2000b) and obtained Bayes factors similarly as large for the Beverton-Holt no regime shift model as obtained in 
McAllister et al. (2000b), i.e., the new analysis gave 67 compared to about 70 in the previous analysis. The 
uniform on log B0, uniform on log R0, and uniform on log Rbar priors have less between-model influence on 
Bayes factors because these priors have log(Rbar) and log(B0) values in the denominator of the prior density 
function rather than just B0 and Rbar values in the denominator of the uniform on B0 and Rbar priors. Also over the 
range of support from the data, the values of Rbar under the 2 line models tend to be a few times higher than the 
B0 values under the Beverton Holt models (Table 4). When a regime shift is considered, the straight uniform 
priors on B0 or Rbar will thus tend to heavily down-weight the regime shift variants and the two line models. With 
log B0, log R0 or log Rbar in the denominator of the prior, the differential effects on Bayes factors for the different 
models are very low and differences in model fits to the data dominate the values obtained for Bayes factors. It 
was also an improvement to reparameterize the Beverton-Holt model from B0 to R0. The key location parameters 
in the Beverton-Holt and 2 line models were thus directly comparable, in the same units and having similar 
ranges of values. The uniform on log priors for these parameters thus minimized their influence on the values 
obtained for Bayes factors.  
 
In addition, the range for the priors for the standard deviation in recruitment deviates (R) was 1.9 in McAllister 
et al. (2000b) but on only 0.9 in this analysis. This prior with the wider interval will more strongly influence 
Bayes factors and down-weight the regime shift model with the estimation of the extra R parameter in the 
regime shift model. The effect of wider priors on R increased the Bayes factor in favor of the Beverton-Holt no 
regime shift model from 4.8 with the uniform priors on log Rbar and log R0 and maximum on R of 1 to a Bayes 
factor of 5.6. When both the wider priors on R and uniform on Rbar and B0 priors were applied, the Bayes 
factors in favour of the Beverton-Holt function became highly exaggerated at 67. This shows that inappropriate 
choice of priors for two or more model parameters can very strongly influence Bayes factors and priors should 
thus be chosen very judiciously to avoid having them influence Bayes factors. In this analysis, the use of uniform 
on log priors, reparameterization to make the location parameters more comparable in their range of plausible 
values, and use of priors that have narrower ranges thus tend to allow the data to speak for themselves more 
about the credibility of the different models. 

 
The data used in the computation of Bayes factors in this analysis also strongly impacted the Bayes factor values 
obtained for the alternative stock-recruit models. When the initial set of years of data available for analysis were 
evaluated using the data from ICCAT (2010), i.e., 1970-1993, Bayes factors favoured the 2 line no regime shift 
model by a factor of 48. In contrast, the same set of years of data available from the 1998 stock assessment 
(ICCAT 1999), gave a Bayes factor of 2.1 in favour of the Beverton-Holt no regime shift model. When 
subsequent years of data were included in the analysis of the ICCAT (2010) assessment data, Bayes factor 
switched over in favour of the Beverton-Holt no regime shift model by a factor of about 5. The very high 
abundance of the 2002 cohort which was about two thirds of the average value for the large cohorts in the 1970s, 
strongly reduced the values of Bayes factors in favour of the two line, no regime shift model. The very low 
cohort in 2005, further shifted Bayes factors in favour of the Beverton-Holt model.  

 
The swings in the values obtained for Bayes factors when the stock-recruit models were fitted to a growing time 
series of stock-recruit data suggest that when data sets are relatively short, e.g., less than 25 years, as was the 
case for data up to the mid-1990s, and the variation in spawning stock size has remained low for many years, as 
in the present analysis, Bayes factors obtained should be interpreted with caution. One-way trip data sets such as 
the ones analyzed in this paper in which abundance data start out high and progressively decrease have long been 
pointed out as problematic for parameter estimation in fisheries models (Hilborn and Walters 1992). One-way 
trip data can be expected to be relatively uninformative for the evaluation of the credibility of structurally 
different models (McAllister and Kirchner 2002), though in this case, it appears that Bayes factors quite strongly 
favoured the 2 line model with the models fitted to stock-recruit data 1970-mid-1990s to the early 2000s but then 
switched over to favour slightly the Beverton-Holt model with subsequent data. Strong swings in Bayes factors 
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from one hypothesis to another suggest that used by itself Bayes factor may be overly sensitive to changes in the 
configurations of apparently informative data that is actually limited due to poor contrasts in the range of data 
obtained. Two alternative approaches to reduce the sensitivity of Bayes factors to slight changes in the 
configurations of datasets and to prevent Bayes factors from giving excessively high weights to one model when 
data are actually limited, are as follows. Double square root transform Bayes factors will reduce the potential for 
extremes in the values obtained and reduce the chance of false positives, i.e., placing too much weight on a given 
model prematurely when the data may be not have sufficient contrast to make strong conclusions. The precision 
in the likelihood function for the most recently obtained stock-recruit estimates could be reduced, since estimates 
of abundance for the most recent years are typically the most poorly determined. This would further reduce the 
sensitivity of Bayes factors to the most recently added data points and further reduce the potential for large 
changes in Bayes factors from the addition of the most recent years of stock-recruit data which tend to be the 
most imprecisely estimated points in the series and most prone to updating with updates in the stock assessment. 
Further research is needed to explore and develop this latter approach for practical application. 
 
Posterior probabilities this time did not favor the autocorrelation structures, except for the 2 Line, no regime shift 
model. If no autocorrelation was assumed, the regime shift formulations became favored slightly over no regime 
shift ones (about 60:40). This also indicates that the regime shift and no regime shift hypotheses should not be 
ignored in the decision analyses of alternative stock rebuilding policies, despite the considerably more optimistic 
interpretations about the level of rebuilding effort required under the regime shift formulations.  
 
Although the results did not strongly favor keeping the variances (and steepness in the Beverton-Holt model) 
separate for the earlier and later part of the time series, these assumptions were not strongly refuted by the data. 
Keeping the variances separate, especially to allow a larger variance for the earlier part of the time series is 
sensible, since these earlier data points may be less reliable than those for the latter part of the time series and a 
larger variance down-weights these earlier data in the estimation. While keeping the steepness values separate 
for the early and latter parts of the time series may seem sensible, as it is plausible that steepness can change 
depending on oceanographic regime, there are too few data in the early years to enable estimation of steepness. 
Model parsimony rationale would thus support assuming that either steepness or alpha remains the same for the 
first and second regime, should a regime shift hypothesis be considered for western Atlantic bluefin tuna.  
 
Fitting the models to a stock-recruit data set derived from a catch-age methodology that did not apply within it a 
stock-recruit function and that went back further in time when recruitment was higher than in the recent past 
(Porch et al. 2001), provided Bayes factors that also favoured the Beverton-Holt no regime shift hypothesis. 
However, the support was only mildly pronounced. This may be due to the shortness and lack of contrast in the 
latter part of this time series.  
 
It is noted that the stock-recruit data obtained from ICCAT's assessments remain possibly biased due to 
migrations of the much larger eastern Atlantic population into the western Atlantic. ICCAT stock assessments 
have assumed that all Atlantic bluefin tuna captured to the west of 45 degrees west, are of western origin. Recent 
modeling efforts to account for stock mixing in a spatially structured stock assessment model for eastern and 
western Atlantic bluefin tuna suggest that the fraction of eastern origin fish in the western Atlantic has varied 
substantially since the 1950s (Taylor et al. 2011). Some of the apparent variation in estimates of western Atlantic 
bluefin tuna spawning stock size and recruitment since 1970 seen in ICCAT assessments could thus be artifacts 
of variation in the migrations of the much larger eastern Atlantic bluefin tuna spawning population. It is thus 
recommended that further efforts be devoted to improving understanding of western Atlantic bluefin tuna 
recruitment using estimates of recruits and SSB that are not contaminated by eastern stock migrations. 
 
These results demonstrate that, with suitable statistical methodology, stock-recruit data can themselves provide 
an empirical basis to weight structurally different stock recruit models. This can provide valuable scientific 
guidance for policy evaluation that has been previously left out of ICCAT stock assessments. Scientists can now 
provide the guidance that was previously lacking regarding empirical weightings for structurally different stock-
recruit models. The particular data analysis could not readily distinguish whether a regime shift had occurred. 
The updated data analysis again cast doubt on the 2 line model which since the 1998 stock assessment has been 
given considerable attention by fishery scientists and managers. The data analyses instead tended to support the 
Beverton-Holt model no regime shift hypothesis which has all along been considerably less optimistic about 
stock rebuilding requirements than the two line regime shift hypothesis and has been consistently down-
weighted by fishery managers, as they then lacked scientific guidance to suggest otherwise. 
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Table 1. Stock –Recruit data for Western Atlantic Bluefin tuna from the 1998 assessment (digitized from Figure 
38 of ICCAT (1999)) and from the 2010 assessment (source: Laurie Kell, ICCAT, Madrid).  
 

Year SSB from 
1998 

assessment 

Age 1 
recruits from 

1998 
assessment  

SSB from 
2010 

assessment 

Age 1 
recruits from 

2010 
assessment  

1970 49051 277190 51038 363536 
1971 44356 244160 50782 321829 
1972 44148 171620 51189 278125 
1973 42590 499180 51460 150433 
1974 44006 146140 46167 465130 
1975 38152 138680 40953 163672 
1976 37363 89715 36091 134434 
1977 32162 56721 30952 111394 
1978 29845 84324 27648 94041 
1979 23919 69025 24448 98822 
1980 23703 65117 22152 80273 
1981 21390 63308 19019 79471 
1982 20807 100600 17874 80865 
1983 20016 71241 17109 102330 
1984 16834 79292 16232 91014 
1985 13724 89299 14612 96051 
1986 12932 67782 14942 99517 
1987 11483 89446 14310 86058 
1988 10404 48340 14168 130704 
1989 9244.6 69984 13714 112941 
1990 8880.1 95498 13115 107223 
1991 7728.9 50475 12784 85225 
1992 6929.7 83861 12362 71585 
1993 6935.8 32880 12468 66086 
1994 NA NA 12306 73885 
1995 NA NA 12756 97900 
1996 NA NA 13717 82474 
1997 NA NA 14535 69102 
1998 NA NA 14646 77109 
1999 NA NA 13949 72349 
2000 NA NA 13753 67294 
2001 NA NA 13131 75986 
2002 NA NA 12508 56892 
2003 NA NA 12016 60150 
2004 NA NA 12435 207191 
2005 NA NA 12871 76543 
2006 NA NA 12864 28708 
2007 NA NA 13751 42416 
2008 NA NA 14034 25297 
2009 NA NA 14072 25825 
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Table 2. List of comparisons between alternative stock-recruit (S-R) models with rationale provided for each 
comparison.  
 
Descriptor Variant Run information 
Ref. Reference 
case runs 

Ref.B-H.NRS  Beverton-Holt, no regime shift, 1970-2006 data, auto-correlation coefficient () for 
stock-recruit function deviates set at 0.52 

Ref.2-L.RS Two-line, 1977 regime shift, 1970-2006 data,  set at 0.52, variance in stock-recruit 
deviates also changed in 1977 (ICCAT 2010) 

A. Auto-
correlation and S-
R variance 
assumptions 

A.B-H.NRS.1 Beverton-Holt, 1970-2006, no regime shift, lag-1 auto correlation set at zero 
A.2-L.1 Two line, regime shift, auto-correlation set at zero, variance in S-R deviates changes 

in 1977, 1970-2006 
A.2-L.RS.2 Two line, regime shift,  set at zero, no change in variance in S-R deviates, 1970-

2006 
A.2-L.RS.3 Two line, regime shift,  set at 0.52, variance in S-R deviates does not change in 

1977, 1970-2006 
B. Comparisons 
using SCRS 
2000/103 inputs. 

B.B-H.NRS.1 Beverton-Holt, no regime shift, S-R data (ICCAT 2010) for 1970-1993 only,  = 
0.52 

B.2-L.RS.1 Two line, regime shift, S-R data (ICCAT 2010) for 1970-1993 only,  = 0.52, 
variance in S-R deviates changes in 1977 

B.B-H.NRS.2 Beverton-Holt, no regime shift, 1970-1993 data (ICCAT 1998),  = 0.52 
B.2-L.RS.2 Two line, regime shift, 1970-1993 data (ICCAT 1998),  = 0.52, variance in S-R 

deviates changes in 1977 
B.2-L.RS.3 Beverton-Holt, no regime shift, 1970-1993 data (ICCAT 1998),  = 0.52, uniform on 

B0 and max R at 2 
B.2-L.RS.3 Two line, regime shift, 1970-1993 data (ICCAT 1998),  = 0.52, variance changes 

1977, uniform on B0 and max R at 2 
C. The effects of 
adding or 
subtracting data 
points 

C. B-H.NRS.1 Beverton-Holt NRS 1970-2006 but exclude 2003 cohort, 

C.2-L RS.1 2-Line Regime shift cohort, 1970-2006 but exclude 2003 

C. B-H.NRS.2 Beverton-Holt NRS, fitted to 1970-2005 series. 

C.2-L.RS.2 2-Line with regime shift in 1977 fitted to 1970-2005 series. 

C. B-H.NRS.3 Beverton-Holt NRS fitted to 1970-2007 series 

C.2-L RS.3 2-Line Regime shift fitted to 1970- 2007 series 

C. B-H.NRS.4 Beverton-Holt NRS fitted to 1970-2008 series 

C.2-L.RS.4 2-Line Regime shift in1977 fitted to 1970- 2008 series 

D. Alternative 
stock-recruit data 

D. B-H.NRS.1 Beverton-Holt NRS fitted to 1960-1998 series 

D.2-L.RS.1 2-Line Regime shift in1977 fitted to 1960- 1998 series 

E. B-H regime 
shift and 2-L no 
regime shift 
variants 

E.2-L.NRS.1 Two-line, no regime shift, 1970-2006 data,  set at 0.52 (ICCAT 2010) 

E.B-H.RS.1 Beverton-Holt, regime shift 1970-2006 data, variance in deviates changed in 1977;  
set at 0.52 (ICCAT 2010) 

F. Alternative 
priors for Rbar, B0 
and R in the 2-L 
and B-H models 

F.B-H.NRS.1  Beverton-Holt as reference case except for the prior for R0 is uniform on R0. 
F.2-L.RS.1 2 Line as reference case except for the prior on Rbar being uniform on Rbar 
F.B-H.NRS.2  Beverton-Holt as reference case except that model is reparameterized with a uniform 

on log(B0) prior. 
Ref.2-L.RS.1 2 Line as reference case with the prior on Rbar being uniform on log(Rbar) 
F.B-H.NRS.3 Beverton-Holt as reference case except for the maximum R is 2 rather than 1 
F.2-L.RS.3 2 Line as reference case except for the maximum R is 2 rather than 1 
F.B-H.NRS.4 Beverton-Holt as reference case except for the prior for R0 is uniform on R0 and the 

maximum R is 2 rather than 1 
F.2-L.RS.4 2 Line as reference case except for the the prior on Rbar being uniform on Rbar and the 

maximum R is 2 rather than 1 
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Table 3. Bayesian posteriors and other statistics for alternative hypotheses on the form of the stock-recruit 
function and on whether a regime shift has occurred, for western Atlantic bluefin tuna.  
 
a. Joint posteriors, Bayes factors, and log prior * likelihood for the four alternative hypotheses. A statistic (the 
coefficient of variation in the average of weights from importance sampling) showing numerical stability in the 
Bayes factors, i.e., CV< 0.05. 
 
 H1: Beverton-Holt, 

no regime shift 
H2: Beverton-

Holt, regime shift
H3: 2-line, no 
regime shift 

H4: 2-line, 
regime shift 

Number of estimated parameters 3 5 2 4 

Joint Posterior Probability 0.48 0.41 0.0005 0.10 

Bayes factors (ref. to H1) 1 0.86 0.001 0.21 

ln(prior*LH) at posterior mode 166.175 165.447 166.556 166.216 

Normalized(prior*LH) 0.25 0.12 0.37 0.26 

CV(average of weights) 0.022 0.022 0.011 0.025 

 
b. Marginal posteriors 
 

P(Regime Shift) P(no Regime Shift)

0.51 0.49 

 

P(Beverton Holt) P(2 Line) 

0.90 0.10 

 
c. Conditional posteriors 
 

P(Regime shift | BH) P(no Regime shift | BH) 

0.46 0.54 

 

P(Regime shift | 2L) P(no Regime shift | 2L) 

0.995 0.005 
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Table 4. Median stock rebuilding potential as indexed by recruits per spawner under each of the four hypotheses 
on recruitment and occurring at S = 0 and S=Sinf (12,640t). Proxies for reference case stock levels are indicated 
by the posterior modal values for average unfished recruitment (R0). The values for steepness are the posterior 
modal values. The number in parentheses shows the posterior coefficient of variation for steepness. Recruits per 
spawner is in recruits per ton of spawners. 
 

 Regime shift No regime shift 

Stock-Recruit Function Beverton-Holt 2 Line Beverton-Holt 2 Line 

Bayes factors 0.86 0.21 1 0.001 

R/S at S=0  19.1 6.2 6.8 8.3 

R/S at S=Sinf, 1st regime 5.1 6.2 5.8 8.3 

R/S at S=Sinf, 2nd regime 6.3 6.2 NA NA 

B-H mean steepness  0.72 (0.19) NA 0.47 (0.11) NA 

Mean unfished 
recruitment (R0, Rbar) 1st 
regime 

292,000 288,000 399,000 104,000 

Mean unfished 
recruitment (R0, Rbar) 2nd 
regime 

106,000 79,000 NA NA 

Sinf 1st regime NA 46,150 t NA 12,640 t 

Sinf 2
nd regime NA 12,640 t NA NA 

B0 first regime 154,000 t 152,000 t 211,000 t 55,000 t 

B0 second regime 56,000 t 42,000 t NA NA 

r first regime 0.59 0.54 0.43 0.52 

r second regime 0.37 0.39 NA NA 
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Table 5. Bayesian marginal posterior probabilities for alternative hypotheses on a. model versions with and 
without lag one autoregressive autocorrelation in recruitment deviates with the coefficient () set at the value in 
the 2010 assessment (0.52), b. whether autocorrelation is present in the stock recruit deviates integrating across 
the different models, c. the different recruitment hypotheses when no autocorrelation is assumed, d. regime shift 
versus no regime shift and Beverton-Holt versus 2 line assuming no autocorrelation, and e. the regime shift 
conditional on the recruitment model. 
 
a. Marginal posteriors 

 

 Autocorrelation No autocorrelation 

BH NRS 
0.45 0.55 

2L RS 
0.12 0.88 

BH RS 
0.40 0.60 

2L NRS 
0.9995 0.0005 

 
b. Marginal posteriors 
 

P(autocorrelation) P(no autocorrelation) 

0.34 0.66 

 
c. Joint posteriors for the four alternative hypotheses assuming no autocorrelation (but separate variances for 
before and after 1977) 
 
 H1: Beverton-

Holt, no regime 
shift 

H2: Beverton-Holt, 
regime shift 

H3: 2-line, no 
regime shift 

H4: 2-line, regime 
shift 

Joint Posteriors 0.30 0.31 0 0.39 

Bayes factors 1 1.04 0 1.3 

 
d. Marginal posteriors assuming no autocorrelation (but separate variances for before and after 1977) 
 

P(Regime Shift) P(no Regime Shift) P(Beverton Holt) P(2 Line) 

0.70 0.30 0.62 0.38 

 
e. Conditional posteriors assuming no autocorrelation (but separate variances for before and after 1977) 
 

P(Regime shift | BH) P(no Regime shift | BH) P(Regime shift | 2L) P(no Regime shift | 2L) 

0.51 0.49 0.9999997 0.0000003 
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Table 6. Bayesian posteriors for alternative hypotheses on the form of the stock-recruit function and on whether 
a regime shift has occurred, for western Atlantic bluefin tuna assuming the same residual variance over the 
entire time series.  
 
a. Marginal posteriors and posterior modal values for the SD in model residuals. 
 

 P(different variance) P(same variance)

 0.54 0.46 

 
76 >76 

BH, RS 0.59 0.37 0.43 

2 L, RS 0.54 0.39 0.52 

 
b. Joint posteriors for the four alternative hypotheses assuming the same variances for before and after 1977 
(including autocorrelation) 
 
 H1: Beverton-

Holt, no regime 
shift 

H2: Beverton-Holt, 
regime shift 

H3: 2-line, no 
regime shift 

H4: 2-line, regime 
shift 

Joint Posteriors 0.53 0.36 <0.00001 0.11 

 
c. Marginal posteriors assuming the same variances for before and after 1977 (including autocorrelation) 
 

P(Regime Shift) P(no Regime Shift)

0.47 0.53 

 

P(Beverton Holt) P(2 Line) 

0.88 0.12 

 
d. Conditional posteriors assuming the same variances for before and after 1977 (including autocorrelation) 
 

P(Regime shift | BH) P(no Regime shift | BH) 

0.40 0.60 

 

P(Regime shift | 2L) P(no Regime shift | 2L) 

0.995 0.005 
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Table 7. Bayes factors for the two main alternative recruitment hypotheses in assessments of western Atlantic 
bluefin tuna since 1998 considering data available for McAllister et al. (2000b). The first data set is that used in 
their analysis. The second dataset is that applied in this updated analysis but using data only up to 1993 as in the 
previous analysis.  
 

Source Years Beverton-
Holt, no 
regime shift  

Two-line 
regime shift 

ICCAT 2010 1970-2006 1 0.21 

ICCAT 2010 1970-1993 1 48 

ICCAT 1999 1970-1993 1 0.47 
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Table 8. Bayes factors for the Beverton Holt no regime shift and 2 line 1977 regime shift models under different 
assumptions about variance and autocorrelation in the recruitment deviates. 
 
Descriptor Model 

Variant 
Run information Bayes 

factor 
1/ Bayes 
factor 

Ref. 
Reference 
case 

Ref.B-H.NRS  Beverton-Holt, no regime shift with S-R data 1970-2006, 
auto-correlation coefficient () for stock-recruit function 
deviates set at 0.52 (ICCAT 2010) 

1 1 

Ref.2-L.RS Two-line, regime shift with S-R data 1970-2006,  set at 0.52, 
variance in S-R deviates also changed in 1977 (ICCAT 2010) 

0.21 4.8 

A. Auto-
correlation 
and S-R 
variance 
assumptions 

A.B-H.NRS.1 B-H, no regime shift, lag-1 auto correlation set at zero 1 1 
A.2-L.1 Two line, regime shift auto-correlation set at zero, variance in 

S-R deviates changes in 1977 
1.27 0.8 

A.2-L.RS.2 Two line, regime shift,  set at zero, no change in variance in 
S-R deviates 

2.05 0.5 

A.2-L.RS.3 Two line, regime shift,  set at 0.52, variance in S-R deviates 
does not change in 1977 

0.18 5.7 

C. The 
effects of 
adding or 
subtracting 
data points 

C. B-
H.NRS.1 

B-H NRS 1970-2006 but exclude 2003 cohort 0.72 1.4 

C.2-L RS.1 2-L Regime shift, 1970-2006 but exclude 2003 1 1 

C. B-
H.NRS.2 

B-H NRS, fitted to 1970-2005 series. 1 1 

C.2-L.RS.2 2-Line with regime shift fitted to 1970-2005 series. 0.98 1.02 

C. B-
H.NRS.3 

B-H NRS fitted to 1970-2007 series 1 1 

C.2-L RS.3 2-L Regime shift fitted to 1970- 2007 series 0.23 4.4 

C. B-
H.NRS.4 

B-H NRS fitted to 1970-2008 series 1 1 

C.2-L.RS.4 2-L Regime shift in 1977 fitted to 1970- 2008 series 0.16 6.1 

D. 
Alternative 
stock-recruit 
data 

D. B-
H.NRS.1 

B-H NRS fitted to 1960-1998 series 1 1 

D.2-L.RS.1 2-L Regime shift fitted to 1960- 1998 series 0.37 2.7 

F. 
Alternative 
priors for 
Rbar, B0 and 
R in the 2-
L and B-H 
models 

F.B-H.NRS.1  Beverton-Holt as reference case except for the prior for R0 is 
uniform on R0. 

1 1 

F.2-L.RS.1 2 Line as reference case except for the prior on Rbar being 
uniform on Rbar 

0.018 55 

F.B-H.NRS.2  Beverton-Holt as reference case except that model is 
reparameterized with a uniform on log(B0) prior. 

1 1 

Ref.2-L.RS.1 2 Line as reference case with the prior on Rbar being uniform 
on log(Rbar) 

0.17 5.8 

F.B-H.NRS.3 Beverton-Holt as reference case except for the maximum R is 
2 rather than 1 

1 1 

F.2-L.RS.3 2 Line as reference case except for the maximum R is 2 
rather than 1 

0.18 5.6 

F.B-H.NRS.4 Beverton-Holt as reference case except for the prior for R0 is 
uniform on R0 and the maximum R is 2 rather than 1 

1 1 

F.2-L.RS.4 2 Line as reference case except for the the prior on Rbar being 
uniform on Rbar and the maximum R is 2 rather than 1 

0.015 67 
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Figure 1. Posterior modal stock-recruit relationships for each of four alternative hypotheses on recruitment for 
western Atlantic bluefin tuna. a. Beverton-Holt function, no regime shift. b. Beverton-Holt function, regime 
shift in 1977. c. 2 Line, no regime shift. d. 2 Line regime shift in 1977.  
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Figure 2. Bayesian posterior probabilities for the Beverton-Holt stock-recruit function when compared to the 2 
Line regime shift model when compared to the 2010 estimates of age 1 recruits, and to square root and double 
square root transformations of the Bayes factors used to compute them. The latter was done to dampen the large 
interannual changes in the posterior probabilities with new data.  
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