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Chapter 1

Introduction

MULTIFAN-CL is a computer program that implements a statistical, size-based, age-
structured, and spatial-structured model for use in fisheries stock assessment. The model
is a convergence of two previous approaches. The original MULTIFAN model1 provided
a method of analysing time series of length-frequency data using statistical theory to
provide estimates of von Bertalanffy growth parameters and the proportions-at-age in the
length-frequency data. The model and associated software were developed as an analytical
tool for fisheries in which large-scale age sampling of catches was infeasible or not cost
effective, but where length-frequency sampling data were available. MULTIFAN provided
a statistically-based, robust method of length-frequency analysis that was an alternative
to several ad hoc methods being promoted in the 1980s. However, MULTIFAN fell short
of being a stock assessment method as the end point of the analysis was usually estimates
of catch-at-age (although later versions included the estimation of total mortality and
yield per recruit).

The second model (actually the first, in terms of chronology) was that introduced by
Fournier and Archibald2. The FA model was a statistical, age-structured model in which
estimates of recruitment, population-at-age, fishing mortality, natural mortality and other
estimates useful for stock assessment could be obtained from total catch and effort data
and catch-at-age samples. In principle, the estimates of catch-at-age obtained from the
MULTIFAN model could be used as input data to the FA model and a complete stock
assessment analysis conducted.

Such a sequential approach to length-based stock assessment modeling had several
serious limitations. First, it was extremely unweildy. Second, it was difficult to represent
and preserve the error structure of the actual observed data in such a sequential analysis.
This made estimation of confidence intervals for the parameters of interest and choice
of an appropriate model structure for the analysis problematic. It was clear that an
integrated approach was required, one that modeled the age-structured dynamics of the
stock, but which recognized explicitly that the information on catch-at-age originated
with length-frequency samples.

The early versions of MULTIFAN-CL, which were developed for an analysis of South

1Fournier, D.A., Sibert, J.R., Majkowski, J., and Hampton, J. 1990. MULTIFAN: a likelihood-based
method for estimating growth parameters and age composition from multiple length frequency data sets
illustrated using data for southern bluefin tuna (Thunnus maccoyii). Can. J. Fish. Aquat. Sci 47:301-317.

2Fournier, D., and Archibald, C.P. 1982. A general theory for analyzing catch at age data. Can. J.
Fish. Aquat. Sci 39:1195-1207.
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2 CHAPTER 1. INTRODUCTION

Pacific albacore3, provided the first attempt at developing a statistical, length-based,
age-structured model for use in stock assessment. Subsequent versions of the software
have added new features, the most important of which have been the inclusion of spatial
structure, fish movement and tagging data in the model4.

MULTIFAN-CL is now used routinely for tuna stock assessments by the Oceanic Fish-
eries Programme (OFP) of the Secretariat of the Pacific Community (SPC) in the western
and central Pacific Ocean (WCPO). Beginning in 2001, the software gained additional
users, with stock assessment applications to North Pacific blue shark, Pacific blue marlin,
Pacific bluefin tuna, North Pacific swordfish and Northwest Hawaiian lobster underway
or planned. The more widespread use of the software prompted the development of this
user’s guide and software availability via the world wide web. Further development of the
software, and of the user’s guide, will be an ongoing, collaborative effort.

3Fournier, D.A., Hampton, J., and Sibert, J.R. 1998. MULTIFAN-CL: a length-based, age-structured
model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Can.
J. Fish. Aquat. Sci 55:2105-2116.

4Hampton, J., and D.A. Fournier. 2001. A spatially disaggregated, length-based, age-structured
population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean. Marine
and Freshwater Research 52:937-963.



Chapter 2

Overview of MULTIFAN-CL

2.1 What is MULTIFAN-CL?

MULTIFAN-CL is a size-based, age-structured model that is used in fisheries stock assess-
ment. In its most basic form, the model is fit to time series of catch and size composition
data from either one or many fishing fleets. Size composition data may be in the form of
either length or weight-frequency data, or both. The model may also be fit simultaneously
to tagging data, if available. Other information is provided to the model in the form of
fishing effort data and “prior” information on estimates of various biological and fisheries
parameters and their variability. Potentially, other sources of information could also be
incorporated into the model fitting process, such as information on growth from tagging
data or otolith ring counts, information regarding the impact of environmental variability
on various processes, and so on. The ability of MULTIFAN-CL to “integrate” information
from a variety of sources is one of its great strengths.

MULTIFAN-CL has the ability to estimate a potentially large number of parameters.
Many of the parameters that are estimated describe the process variability in fishing
mortality and are of interest for diagnostic purposes (in a similar fashion to residuals)
rather than being germaine to understanding the status of the stock. Other parameters,
such as recruitment, population biomass, natural mortality, selectivity and catchability
are of direct stock assessment importance. Several methods of summarizing stock status in
terms of commonly used reference points, such as maximum sustainable yield (MSY) and
related quantities, are incorporated into the model. MULTIFAN-CL can also project fish
abundance and catch into the future beyond the end of the input data using parameters
estimated by the data and assumptions concerning future recruitment and fishing effort
in the various fleets.

Two features of MULTIFAN-CL that set it apart from most other stock asssessment
models are temporal variability in efficiency of fishing gear and spatial variability in the
density and size composition of the fish. MULTIFAN-CL does not make the usual assump-
tion that catchability for any particular fishing gear remains constant in time, but instead
estimates a time series of catchability for each fishery (or group of fisheries) identified in
the model. Thus the common phenomenon of increasing catchability due to developing
technology and know-how can be accomodated as well as the possibility of up or down
changes in catchability for any other reason.

Most stock assessment models treat the fish population as a homogeneous “unit stock”
with the whole population vulnerable to all of the fisheries operating in the model. How-

3
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ever MULTIFAN-CL divides the model universe into regions with fish in a particlular
region at a particular time vulnerable only to fishing gear operating in that region and
that time. The fish become vulnerable to other gear at other times only by moving to
other regions according to movement coefficients estimated from the data. A classical
preoccupation in stock assessment is determining whether a population should be treated
as a “unit stock” or as a collection of regional sub-stocks, each treated independently as a
separate unit stock. MULTIFAN-CL does not impose such a rigid choice of stock structure
taken from either of these two extremes, but instead allows some degree of intermediate
regional autonomy. Regions are connected or isolated by the degree of fish movement be-
tween them. Stocks in each region experience region-specific recruitment and time series
of abundance trends as well as region-specific fishery characteristics and levels of fishing
effort.

For assessments of highly migratory species such as tunas and billfish, the implication
of the above is that the analysis is best undertaken if possible on a basin scale, with
the extent of population mixing embodied in the spatial configuration and movement
parameterization of the model. However, for reasons of data availability, management
jurisdictions and the like, assessments are often undertaken on a sub-basin scale. For ex-
ample, assessments of skipjack and yellowfin tuna in the Pacific Ocean are undertaken for
the western and eastern components of the ocean (divided at 150◦W longitude) separately.
While the these species are distributed throughout the tropical and sub-tropical Pacific,
mixing between the western and eastern Pacific is believed to be limited enough (in part
because of their relatively short life spans) to have little impact on the dynamics of the
respective sub-populations. So we probably do not lose much information by conducting
assessments on a sub-basin scale, even though the distributions of the populations are
basin scale. Of course, we would not lose anything in a basin-scale analysis, even if the
sub-populations were completely separated, and we may infact gain information in subtle
ways (through “cross-fertilization” of information from one region to another).

But what about undertaking MULTIFAN-CL analyses over more restricted spatial
horizons? Would, for example, an analysis of skipjack tuna data pertaining to the region
approximated by the EEZ of Papua New Guinea provide useful information on local
population dynamics and fishery impacts? Given the magnitude of the catch in PNG
and the short life span of skipjack tuna, the answer is probably “yes”. However, a more
satisfactory approach in this case would be to define the PNG EEZ as a “region” (see
below) of the western Pacific and model the local dynamics in the context of the entire
western Pacific stock. MULTIFAN-CL would allow such an approach to be taken. We
would not, however, advocate the use of this software to conduct isolated analyses of small
stock components where the fisheries represent a relatively small proportion of the total
catch.

2.2 Some Concepts

• Region — The geographic area considered by the model is divided into a mosaic of
sub-areas here dubbed regions. The fish population is modeled at the region level,
and inter-region mixing is controled by movement coefficients. Fisheries (see below)
are region specific, but biological processes such as growth and natural mortality are
assumed to be common among regions. There are various considerations involved
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in choosing the regions. Ideally, regions should reflect some degree of spatial ho-
mogeneity in the population, so definition according to oceanographic or ecological
regimes might be appropriate (e.g. the Longhurst bio-ecological provinces in the
Pacific 1). The spatial and seasonal distribution of the various fishing fleets is also a
consideration – regions should, as far as possible, group similar types of fishing units.
The configuration of regions will also be influenced by the information available on
the dynamics of the stocks – there is little point in defining a region for which there is
little data to provide information on the dynamics of that sub-population. Finally,
socio-political factors might also be important in defining regions. For example,
some consideration of management jurisdictions, such as the regions of competence
of fisheries management organizations or EEZs in the case of national management,
may be important.

• Population — The fish population in the model is specified at any time step as a
matrix of fish abundance by age class and by region. Age classes span a range of ages
from age of recruitment to a final age class which includes fish of that age and older.
The abundances specified by the population matrix are the basic state variables in
the population dynamics of the model which simulates changes in the abundances
starting from an initial state over a specified number of time steps according to
processes of recruitment, growth, movement, and mortality.

• Fishery — Fishing activity in the model is grouped into a number of fisheries each
with a characteristic catchability and selectivity pattern. Fisheries specified in the
model operate only in one region. Different fisheries can be designated as sharing
common catchability and selectivity patterns, and such groupings can span more
than one region. Thus for example longline fleets operating in different regions
are considered separate fisheries, but they can be designated as having the same
catchability and/or selectivity characteristics. Basic input data for the model are
catch, effort, and size sample counts for each fishery and time period during which
that fishery operates.

• Fishing incident — A fishing incident is the occurrence of a particular fishery in a
fishing period. A historical fishery consists of a time series of fishing incidents which
correspond to entries in the input file known as the “.frq” file (see 4.1.1).

• Fishing period — A fishing period is a time (month and week of month for length
frequency purposes) during which at least one fishing incident occurs.

• Fleet — Synonymous with “fishery”. It leads to a less confusing mnemonic for data
file headings (“flt”) than does “fishery”.

• Time period — A time period is the time between recruitment events. It determines
the age difference between successive age cohorts and the time units ascribed to
parameters such as natural mortality and fishing mortality.

• Estimation — An estimation is a run of MULTIFAN-CL which, if successful, pro-
duces estimates of parameters that optimize the fit between predictions of the un-
derlying population dynamic model and the observed data.

1Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C. 1995. An estimate of global primary
production in the ocean from satellite radiometer data. J. Plankton Res. 17:1245–1271.
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• Simulation — A simulation is a run of the underlying population dynamic model
over a number of time periods with a given set of parameter values to predict a time
series of catch and abundance among other things. Many simulations may occur in
the course of an estimation.

2.3 What Information is Used?

• Total catches for each fishing incident may be specified in weight or numbers of
fish in the .frq file. Currently, a choice must be made for each fishery regarding
the use of numbers or weight – the two units cannot be mixed within a fishery.
The specification of numbers or weight for each fishery is done using the first row of
fishery data flags in the .frq file (see “Fishery data flags” - page 25). Some amount of
missing catch information is tolerated as long as the effort for such fishing incidents
is known. Of course, it is not possible to have an entire fishery where catch is
unknown.

• Effort data are specified in the .frq file in arbitrary units that are consistent within
each fishery. Internally, MULTIFAN-CL re-scales the effort for each fishery such
that its average is 1. The exception to this is where fisheries in different regions are
assumed to have the same catchability, in which case effort is re-scaled over all such
grouped fisheries so that their relative effort is preserved (see 3.4.1). Missing effort
data for individual fishing incidents may be specified as long as the catch is known.
It occasionally happens that there are no effort data at all for some fisheries. In
such cases, experience has shown that it is better to use a proxy for fishing effort
(such as the number of vessels, or even the catch) rather than simply declare all
of the effort data to be missing. The user then has the flexibility to account for
the credibility of the effort measure through the specification of the prior for the
probability distribution of the effort deviations (see 3.4.3).

• Length and/or weight frequency sample data are provided in the .frq file in a specified
structure (see “Structure of ...” - page 26). As with the catch and effort data, a
convenient method is available for specifying missing data. It is important to note
that the size frequency data should be, or be scaled to, the actual numbers of
fish measured or weighed for each fishing incident. This is because sample size
information is used in the computation of the likelihood contributions of the length
and weight frequency data (see “Size sample data” - page 90).

• Tagging data if available, may be incorporated into the analysis and are provided
in the .tag file (see 4.1.3). Tagging data must be stratified by region, time and
size at release, and by time and fishery of recapture. For tagging data to usefully
contribute to the analysis, it is necessary to make various assumptions about such
processes as the mixing of tagged fish in the untagged population and the reporting
of tag recaptures (see 3.7 for details). The tagging data provide information to the
model because we assume that the tagged and untagged populations share the same
parameters (mortality, growth, movement, etc).

• Specific information on the values of particular population parameters is provided to
the model by way of bounds or priors on the estimates. Bounds simply constrain the
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model to search the parameter space within defined ranges for specific parameters.
This is equivalent to setting a uniform prior over the specified range. Bounds may
be set by the user for some parameters, e.g. for growth parameters specified in the
.ini file. Other parameters are bounded internally (i.e. hard-wired), although such
bounds are generally wide enough to encompass reasonable parameter estimates2.
Priors are used to constrain other parameter estimates where there is specific infor-
mation on what the “best values” of the parameters might be. Priors are specified in
terms of a mean and a penalty on the likelihood for deviation from the mean3. The
penalty is effectively the inverse of twice the variance of the prior distribution, which
is assumed to be normal (although many parameters are specified in the model as
log transforms).

• Other information could potentially be included in the model. Data such as age
samples from otolith ring counts, length-increment data from tag returns, and in-
dices of relative abundance from research surveys could all be included in the model
with relatively minor modification of the source code. Likewise, it is easy to add
prior information on parameters of interest by specifying additional prior distribu-
tions. Users are encouraged to seek advice from the authors regarding such model
development.

2 Most of the hard-wired bounds are set in the source code files newmau5a.cpp and newmaux5.cpp
using the set value function.

3Most priors are specified in the source code files callpen.cpp and alldevpn.cpp. User control over
priors is available through setting various flags in the .par file.



Chapter 3

Description of Model Processes

This chapter associates the biological and fishery related structure of the model with
the formal parameters that can be either actively estimated or fixed during a phase of
a MULTIFAN-CL fit as well as other structural parameters that are always fixed. The
way various flags specify the model structure is discussed here. For more mathematical
treatment of the model, see the Technical Annex (Appendix A).

3.1 Initial Population

MULTIFAN-CL simulates population trends forward in time starting from an initial state
specified by the abundances of fish by region and age class. Initial abundance of age
class 1 is actually recruitment and is dealt with separately (see 3.2). This initial state is
determined in one of three ways depending on the setting of age flag 94 (see 4.5.10).

1. age flag 94 = 0 — initial abundances for age classes > 1 are estimated parameters.

This makes for an (A− 1)×R matrix of parameters, where A is the number of age
classes and R is the number of regions. The age class 1 abundances are also estimated
but these are recruitment parameters and are dealt with differently (see 3.2).

2. age flag 94 = 1 — initial abundances of age classes > 1 by region are exponentially
distributed from age class 1 abundances (recruitment by region) with age varying
rate parameter, −xMa, where Ma is the natural mortality by age and x is a multiplier
set by age flag 95 (see 4.5.10).

This eliminates estimation of initial abundance parameters because they are cal-
culated based on recruitment and natural mortality parameters. However, the as-
sumption is made that there is an equilibrium age distribution at the start under a
prior regime of no fishing.

3. age flag 94 = 2 — initial abundances of age classes > 1 by region are exponentially
distributed from age class 1 abundances (recruitment by region) with age varying
rate parameter, −Za,r = −(Ma + F a,r), the negative of average total mortality by
age and region, where the average is over a number of early time periods given by
age flag 95. The fishing mortality values going into the average are those from the
previous function iteration in the fitting procedure, and in the initial iteration these
values are assumed to be zero.

8
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This eliminates estimation of initial abundance parameters because they are calcu-
lated based on recruitment and total mortality parameters. However, the assump-
tion is made that there is an equilibrium age distribution at the start under a prior
regime of nearly constant fishing mortality.

3.2 Recruitment

An important structural setting is the number of recruitment events per year which is set
in the header of the .frq file. It is recorded in age flag 57, and is not normally re-set during
a fit. There are two options for estimation of recruitment.

3.2.1 Average recruitment and deviations

In this mode, recruitment is estimated firstly by a parameter for total recruitment over all
regions and times. Time-series variation in total (i.e. summed over regions) recruitment
is estimated when age flag 30 = 1. This is set automatically by MULTIFAN-CL during
the initial fit phase. In essence, deviations from the average recruitment (recruitment
devs) are estimated for each recruitment event. The variability of the recruitment devs
is controlled by setting parest flag 149. A common setting is parest flag 149 = 14, which
sets the SD for the lognormal prior distribution to about 0.6 (the mean is of course 0).

By setting region flag 1 = 1 for any region, or for all regions, the proportion of total
recruitment occurring in the region or regions can be estimated. If region flag 1 is left unset
for all regions, then the recruitment distribution as given in the .ini file is maintained.

Estimating the distribution of recruitment among regions as described above provides
the model with greater flexibility to fit the data. However, the time-series variation in
recruitment is still the same in all regions. The recruitment distribution by region can
be made to vary in time by setting age flags 70 and 71 to 1. This essentially allows
recruitment by time period in each region to be estimated somewhat independently. The
amount of variation in the recruitment distribution is controlled by a penalty which may
be set via age flag 110.

3.2.2 Recruitment by orthogonal polynomials

3.2.3 Recruitment by environmental driver

Recruitment can also be made sensitive to an environmental driving variable by setting
age flags 101 and 102, and setting age flag 72 to a value that regulates the degree of
correlation between recruitment and the driving variable. An .env file must be present to
supply the environmental data (see 4.1.6).

See section 4.5.10 for details on use of flags mentioned above.

3.3 Age and Growth

MULTIFAN-CL assumes a modified von Bertalanffy growth pattern set firstly by three
parameters: the average lengths of the youngest and oldest age classes plus the rate
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constant K. Estimation of these is activated by setting parest flags 12, 13, and 14 re-
spectively. Size at age up to some age class, a?, can be modified from von Bertalanffy by
activating independent parameters for the average lengths of these younger age classes.
The number of age classes so modified is set by parest flag 173, making for an additional
a? − 1 parameters. The values of these parameters are stored in the .par file in the 4th
row of age pars (see 4.1.4).

Some amount of variance in length at age is assumed. Estimation of the standard
deviation of length at age is activated by parest flag 15. This standard deviation can
be made to vary exponentially with length by setting parest flag 16. That’s two more
parameters.

3.4 Catch

Catch by age, time period, and fishery is determined by fishing mortality at age, time
period, and fishery applied to estimated abundance by age and region at the start of each
time period. Fishing mortality is in turn a product of 1) fishery and time specific effort,
2) a fishery specific catchability that can be allowed to vary with time, and 3) a fishery
and age specific selectivity that does not vary with time1.

3.4.1 Catchability

For each fishery, catchability is parameterized by an average over time which is enabled
by fish flag 1. The average catchability can be modified by two types of variation in time.

If estimation of long term trends in catchability is desired, fish flag 10 enables a series
of cummulative time deviations to be added (in log form) to the average catchability2.
The time between application of one deviation to the next is determined by fish flag 23,
in which the number of months between the addition of successive catchability deviations
is specified. This flag thereby determines the number of extra parameters that must be
estimated. The log- transformed catchability deviations have normally distributed priors
of mean 0 and SD’s determined by fish flag 15. The default setting for fish flag 15 is 50,
which implies a SD of 0.1.

Seasonal variation in catchability can also be accomodated either by sinusoidal or free
form variation within each year. Sinusoidal variation is enabled by fish flag 27 and adds
two parameters per fishery, which are stored in the 1st and 2nd rows of fishery parameters
in the .par file. Freeform variation adds up to 12 independent catchability deviations (i.e.
up to 12 more parameters) at even intervals within each year, and is enabled by fish
flag 47, which also indicates the number of such deviations per year. If enabled, these
parameters are stored in the seasonal catchability pars section of the .par file.

There are two additional ways in which variability in catchability can be introduced
into the model. In the first, catchability is allowed to be a function of the level of fishing

1In fact, there is structure in the model and in the .par file to allow for time variable selectivity.
However, preliminary simulations suggested that such selectivity deviations could not be estimated in
practice. This issue needs to be revisited in due course, but in the meantime it is not recommended that
estimation of selectivity deviations be attempted.

2An implementation of time variable catchability using a Kalman filter is also available and is invoked
using fish flag 39. This feature has not yet been fully tested, so users are advised to proceed with caution
and skepticism.
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effort (with an exponent term on the fishing effort as an additional parameter). This
might be appropriate in cases where it is believed that fishing vessel operators collaborate
and share information on the location of fish, thus enhancing the overall performance of
the fleet (parameter >1) or where crowding effects reduce fleet performance (parameter
<1). This effect is activated by setting age flag 156 = 1 (to use the effort-dependent
catchability hypothesis with parameter(s) stored in the 7th row of fishery parameters in
the .par file) and by setting fish flag 51 = 1 to activate the estimation of the parameter(s).

The second hypothesis is that catchability is related to the level of relative abundance
of the stock, parameterized by the addition of a multiplicative term to eqn. A.5: Bβ, where
B is the biomass index for the region in which the fishery occurs (normalized to average
1) and β is a parameter. Such an effect is suspected (though not demonstrated for tuna
as far as we know) to occur for schooling species, where the abundance of schools does
not decline in proportion to the population (β > 0). This effect is activated by setting
age flag 157 = 1 (to use the biomass-dependent catchability hypothesis with parameter(s)
stored in the 8th row of fishery parameters in the .par file) and by setting fish flag 53 =
1 to activate the estimation of the parameter(s).

It may be reasonable (and parsimonious of parameters) to assume that certain fisheries
share some aspects of catchability. For such cases grouping flags are provided to indicate
how the fisheries are to be grouped. Separate grouping flags are provided for overall
catchability (fish flag 29), seasonality (fish flag 28), effect of effort on catchability (fish
flag 52, and effect of abundance on catchability (fish flag 54). Refer to 4.5.5 for details.

A special case concerns the grouping of catchability for fisheries in different regions.
For example, a common assumption in tuna assessments is that catchability is the same
for longline fisheries operating in different regions. This allows the catch per unit effort for
these fisheries to provide information on the relative abundance among regions. Normally,
effort data are normalized (each effort observation is divided by the average effort for that
fishery) during the data pre-processing phase of the analysis. However, this process effec-
tively removes any information on relative CPUE of different fisheries. When catchability
is assumed to be common among fisheries, we want to preserve such relativities, so the
effort normalization is performed across all such fisheries.

3.4.2 Selectivity

Fishery-specific selectivity coefficients (ranging from 0 to 1) describe the age-specific com-
ponent of fishing mortality. Estimation is activated automatically during the initial fit
phase, but if desired, estimation can be deactivated by setting fish flag 48 = 0.

There are several methods that may be used to parameterize selectivity. In the first
method, one parameter is estimated per age class, although the values for some number
of terminal age classes may be constrained to be equal, or set to zero (see below). This is
the default method, which is used if fish flag 57 = 0.

The second method imposes a specific functional form on the relationship between
selectivity and age class. Two such functional forms are currently available: logistic
(fish flag 57 = 1) and double normal (fish flag 57 = 2). Logistic selectivity forces the
relationship between selectivity and age class to follow a logistic curve, with the two
parameters describing the shape of the curve stored in fish pars 9 and fish pars 10. This
type of selectivity form would be appropriate where selectivity is believed to increase
continuously with age class, e.g. as might be the case for longline fisheries. Double
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normal selectivity allows selectivity to first increase with age class up to a certain age and
then to decrease, i.e. a dome-shaped selectivity. The increasing and decreasing parts of
the curve are described by normal density functions that allow different shapes for each
part. Double normal selectivity is described by three parameters, fish pars 9, fish pars 10
and fish pars 11.

The third and final method uses a cubic spline to describe selectivity by age class. This
method is invoked by setting fish flags 57 = 3. The number of parameters used to generate
the cubic splines is specified by the user by setting fish flag 61 to the desired number of
parameters. This number should be greater than 1 but smaller than the number of age
classes for which selectivity is allowed to differ. It defines the number of equally-spaced
spline coefficients over the range 0 to 1. The estimated parameters of the cubic spline
are stored in the “fishery selectivity” section of the .par file. The number of cubic spline
parameters may be increased by setting fish flag 62 equal to the number of additional
parameters in the input .par file for a MULTIFAN-CL run. For example, if the current
number of parameters as defined by fish flag 61 is 5, setting fish flag 62 = 2 would increase
the number of parameters to 7 for that fishery. Note that these runs are not fully nested
because the positions of the original 5 cubic spline coefficients on the 0–1 scale will be
shifted slightly when the number of coefficients is increased to 7. This means that the new
fit with 7 coefficients will not have the same initial likelihood function value as the previous
fit with 5 coefficients. However, the difference will not be great and re-convergence will
be rapid if the number of coefficients being added is small relative to the number used in
the previous fit.

The above describes how purely age-based selectivity coefficients are estimated in
MULTIFAN-CL. However, these age-based selectivity coefficients may be modified in such
a way that recognises that selectivity is fundamentally a size-based process. In particular,
we would like to recognise that age classes that have large overlap in their size distributions
should have similar selectivity coefficients. A method implementing such an approach is
invoked by fish flag 26. Purely age-based selectivity coefficients are retained if fish flag
26 = 0. An initial parameterization of length-based selectivity, in which the selectivity
coefficients for age classes with similar mean lengths are made to be themselves similar,
is activated by fish flag 26 = 1. Subsequently, the standard deviations of length at age
were also used in the parameterization, and this option is activated by fish flag 26 = 2.
Generally, we would recommend the use of this latter parameterization.

The number of selectivity coefficients to be estimated may be up to the number of
fisheries times the number of age classes. However, there are several ways in which it may
be desirable to constrain either the number of selectivity parameters, or the way that they
vary with respect to age class:

• Use of function forms or cubic spline parameterizations — As described above.

• Grouping over fisheries — As for catchability, selectivity coefficients may be grouped
over fisheries if it is reasonable to assume that the grouped fisheries sample the age
structure of the population in the same way. The grouping flag is fish flag 24. Note
that fisheries so grouped should have identical specifications for fish flags 3, 16, 26,
57, 61 and 62.

• Grouping terminal age classes — It might normally be expected that a certain
number of terminal age classes would have the same selectivity, particularly if there
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is little difference in mean lengths and/or large overlap in the length distributions
of those age classes. A number of terminal age classes can be forced to be the
same by setting fish flag 3 to the last age class for which selectivity is allowed to
vary. Such grouping of terminal age classes is compatible with all other options for
parameterizing selectivity. Users must ensure that fisheries grouped for selectivity
have the same specifications for fish flag 3.

• Non-decreasing selectivity with age — This assumption constrains selectivity coef-
ficients to increase, or remain constant, with increasing age and is activated with
fish flag 16 = 1. This is an assumption commonly employed for longline fisheries.
This option should not be used if specific functional forms for selectivity are being
employed (i.e., fish flag 57 = 1 or 2).

• Dome-shaped selectivity — For fisheries targeting small fish, it may be reasonable
to assume that a certain number of terminal age classes have zero selectivity. This
constraint is activated by setting fish flag 16 = 2, with fish flag 3 determining the
number of non-zero age classes. This option is incompatible with logistic selectivity
(fish flag 57 = 1).

• Selectivity smoothing — Age-based selectivity coefficients attract a small smoothing
penalty based on the second and third differences of the selectivity coefficient vector.
The penalty weight may be controlled by setting fish flag 41 (for the second difference
penalty) and fish flag 42 (for the third difference penalty). Setting these flags to 0 or
1 results in the default penalties. Setting the flags to higher values results in higher
penalties and smoother selectivity coefficients. Smoothing penalties are disabled for
functional form and cubic spline selectivity.

3.4.3 Fishing effort

Effort “data” are not data in the sense of the catch and size data, which are predicted by
the model and fit to observations using likelihood functions. Effort data are used in the
model as independent, or forcing variables. However, the observed effort is not necessarily
assumed to be the true or effective effort — each effort observation is associated with an
estimated effort deviation parameter (or effort dev) which is the difference between the
observed effort and the model’s estimate of the effective effort3. Unlike the catchability
deviations, effort devs are transient (or non-cummulative) in nature and may be thought
of as noise in the relationship between fishing effort and fishing mortality (see eqn. A.5).

Effort devs are assumed to be normally distributed with mean zero and variance spec-
ified by the user in the form of a penalty on the objective function. The penalties are
specified for each fishery by way of fish flag 13. The default value of the penalty is 10,
which is equivalent to SD of approximately 0.22. Lower penalties allow the effort devs
to be estimated with more freedom and imply more noise in the fishing effort – fishing

3There is a version of the model, invoked by setting age flag 92 = 1, in which the effort devs are solved
directly in the catch equations using the Newton-Raphson technique and assuming that the observation
errors in the total catches are zero. This has the advantage of eliminating a large number of parameters
from the estimation. This formulation of the model has not yet been extensively tested, and users are
advised to prceed with appropriate caution and skepticism.
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mortality relationship. For example, setting fish flag 13 = 1 is equivalent to SD of approxi-
mately 0.7 and would imply that there is minimal information in the effort data concerning
fishing mortality. Conversely, setting higher penalties implies less noise and more infor-
mation in the effort data concerning fishing mortality. There are several considerations
that influence the choice of effort dev penalties, including:

• The nature of the fishing gear and the way in which it samples the population —
e.g., a gear that targets fish schools, such as purse seine, might be expected to have a
noisier relationship between effort and fishing mortality and should therefore attract
smaller effort dev penalties than a more widespread, diffuse gear such as longline;

• The geographical distribution of fishing effort in relation to the region in which
the fishery occurs — a widely distributed fishery would be expected to sample the
population in that region with less noise than a very geographically restricted fishery,
in which variation in the sub- regional distribution of the fish might create additional
noise in the effort - fishing mortality relationship.

A useful variation on the effort dev penalties is to scale the penalties according to
the square root of the observed effort. The idea behind this feature is that we want to
have relatively small penalties for very low observed effort and relatively high penalties
for high observed effort. This is achieved by setting fish flag 13 to the negative value of
the desired penalty. For example, setting fish flag 13 = -10 would invoke a penalty of 10
(SD = 0.22) at the average level of observed effort for that fishery, lower penalties (higher
SD) for below average effort and higher penalties (lower SD) for above average effort. See
4.5.7 for more options regarding effort dev estimation.

3.5 Natural Mortality

The instantaneous rate of natural mortality (M) consists of an average over age classes
and age-specific deviations frrom the average. Estimation of average M is activated by
setting age flag 33 = 1. If average M is not estimated, the value specified in the .ini file
will be maintained in the model. Many data sets are not very informative regarding M ,
therefore it is often desirable to constrain the estimation of average M according to some
prior knowledge of its true value. This is accomplished by setting age flag 82 to the prior
mean (×100) and age flag 84 to the penalty weight for deviation from the mean. Age flag
84 determines 1/(2σ2) for the log-normally distributed prior on average M (see 5.4.1).
The minimum and maximum ages to be included in the average may be specified by
setting age flag 83 and age flag 84, respectively — if unspecified, the average is calculated
over all age classes.

Another way of constraining the estimation of average M takes advantage of a well-
known life history invariant, the ratio of natural mortality to growth rate. By theory this
ratio is 1.5, and for a wide variety of fishes has been shown empirically to be close to 1.6
with a standard error of .58 4. A log-normal prior can be set on M/K with age flag 130
giving the target ratio (×100) and the penalty given by age flag 133 determining 1/(2σ2)

4Jensen, A.L. 1996. Beverton and Holt life histiory invariants result from optimal trade-off of repro-
duction and survival. Can. J. Fish. Aquat. Sci 53:820–822.
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(see 5.4.1). The range of ages included in the average M defaults to the full range of age
classes, and a narrower age can be specified by age flags 131 and 132.

Estimation of the age-specific deviations from average M is activated by setting age
flag 73 = 1. It is not advisable to attempt to estimate the deviations in a completely un-
constrained fashion; therefore, a range of options for constraining the estimation through
various penalties is provided. See 4.5.15 for details. The deviations are estimated in log
form and are stored in the .par file in the 2nd row of age pars (see 4.1.4).

3.6 Movement

In any analysis in which the number of regions is more than 1, movement coefficients will
need to be specified and/or estimated. Initially, 2 coefficients for each non-zero element
of the movement matrix (see “Movement matrix” - page 25) must be specified in the
.ini file for each movement period (see ”Movement” - page 30). Estimation of movement
coefficients is activated by setting age flag 68 = 1. The number of periods for which the
coefficients are estimated is controlled via the movement map specified in the .ini file and
subsequently written into the .par file.

Movement parameters may be made age specific in a simple linear fashion by first
setting age flag 89 = 1, which creates the additional parameters (one per coefficient)
and a location in the .par file for their values to be stored. Setting age flag 88 = 1
then activates the estimation of these parameters. A logistic-type nonlinearity in the
relationship between movement and age class may be similarly added by setting age flag
91 = 1 (to create the parameters) and age flag 90 = 1 (to estimate them).

3.7 Tag-Specific Processes

In the following sections, issues specific to the modeling of tagging data are discussed.

3.7.1 Tag fishery grouping

Ideally, the fisheries that are defined in the model should be identifiable also as the fisheries
recapturing tags. However, in some instances the fisheries identified in the tag data may
consist of groups of the fisheries defined in the .frq file. This is the case for tagging data
used in tuna assessments in the western and central Pacific. Here, purse seine fisheries
are defined by setting method, typically log sets, fish aggregation device (FAD) sets and
unassociated school sets. However, the type of set was rarely reported for tag recaptures by
purse seine vessels. We therefore aggregate the model predictions of tag recaptures across
these fisheries so that predictions and observations are comparable in the tag likelihood
function. The grouping of fisheries for this purpose is defined by fish flag 32.

3.7.2 Tag pooling

MULTIFAN-CL models the tagging data by projecting the numbers of tagged fish in each
tag release group over time from the time of release to the end of the time period used
in the analysis. If the number of tag release groups is large, the computational load will
increase greatly and the speed of execution may become unacceptably slow. A reasonable
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compromise is to maintain the tagged population dynamics separately for each tag group
over some period of time, after which the tagged fish enter a “pooled” population and
therefore lose their tag group identity. By default, such pooling occurs as tagged fish
enter the last age class (plus group), but earlier pooling may be specified by setting
age flag 96 to the number of time periods after release that pooling is to occur. If you
attempt to pool tagged fish after their entry into the last age class, an admonishment
from MULTIFAN-CL will result.

3.7.3 Tag mixing

In general, the population dynamics of the tagged and untagged populations are governed
by the same model structures and parameters. An obvious exception to this is recruitment,
which for the tagged population is simply the release of tagged fish. Implicitly, we assume
that the probability of recapturing a given tagged fish is the same as the probability of
catching any given untagged fish in the same region. For this assumption to be valid, either
the distribution of fishing effort must be random with respect to tagged and untagged fish
and/or the tagged fish must be randomly mixed with the untagged fish. The former
condition is unlikely to be met because fishing effort is almost never randomly distributed
in space. The second condition is also unlikely to be met soon after release because of
insufficient time for mixing to take place. Depending on the disposition of fishing effort
in relation to tag release sites, the probability of capture of tagged fish soon after release
may be different to that for the untagged fish. It is therefore desirable to designate
one or more time periods after release as “pre-mixed” and compute fishing mortality for
the tagged fish based on the actual recaptures, corrected for tag reporting (see below),
rather than use fishing mortalities based on the general population parameters. This in
effect desensitizes the likelihood function to tag recaptures in the pre-mixed periods while
correctly discounting the tagged population for the recaptures that occurred. The number
of fishing periods designated as pre-mixed may be specified for each tag release group via
the first tag flag in the .par file.

3.7.4 Tag reporting

For most tagging programs, not all tag recaptures are observed because some are not
reported to the tagging authorities (the curse of all tagging programs). Therefore, MULTI-
FAN-CL estimates fishery-specific tag reporting rates. Estimation is activated by fish flag
33 = 1, with the parameters stored in the 3rd row of fishery parameters in the .par file.
The parameters may take values in the range 0–1; however a global upper bound less than
1 may be specified (multiplied by 100) as parest flag 33. Tag reporting parameters may
be grouped over fisheries using fish flag 34, which should provide coarser grouping than
that for the tag recapture data (fish flag 32) if that grouping is employed.

If there is independent information on tag reporting rates, for example from tag seed-
ing experiments, reporting rate priors may be specified. The prior mean is specified
(multiplied by 100) as fish flag 36, with the penalty weight being fish flag 35. The usual
relationship between the penalty weight and prior variance is in effect (var = 1/2p).

Random walk changes in tag reporting rates over time may be activated by fish flag 37
= 1, with the frequency of changes set by fish flag 45 (in a similar fashion to catchability
deviations). This feature is currently experimental and should be treated with caution.
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3.8 Biological Reference Points

Biological Reference Points (BRPs) are commonly used in fisheries stock assessments as
a means of comparing the current estimated condition of the stock with population states
or levels of exploitation that are considered to be either limits or targets. In MULTIFAN-
CL three different types of BRP analysis, described in the sections below, are available.
In each case, the analyses are integrated into the overall model, thus allowing confidence
intervals for the BRPs to be computed using the Delta method.

3.8.1 Impact analysis

A very simple BRP that we have found to be useful in the context of age structured
models is the impact of fishing on the population. Impact is defined as the difference
between an estimated population state at a point in time and the equivalent population
state that would have occurred in the absence of one or more fisheries. A key assumption
of this analysis is that the time series of recruitment that is estimated with fishing would
also have occurred without fishing; in other words, fishing is assumed not to have had a
significant effect on recruitmment. The analysis is implemented after a converged fit is
completed simply by executing an additonal population simulation with the catchability
coefficients of selected fisheries set to zero. This is invoked by setting fish flag 55 to
1 for the fleets one wishes to disable, and most likely setting age flag 193 to 1 as well
(see 4.5.14).

The ratio of the fished population biomass to the unfished biomass is the measure
of fishery impact. Impacts can be examined at the region level, for groups of regions,
or for the whole model domain, and may be compared to reference levels agreed to by
the management agency. For example, an impact ratio of 0.5 would be approximately
equivalent to MSY under the assumptions of the Schaefer production model. The results
of the impact analysis are output to a mirror of the plot.rep file called plotq0.rep.

Figure 3.1 shows examples of biomass estimates where either all fisheries are active, or
just longline fisheries, or both longline and surface fisheries inactive. The surface fisheries
appear to have a greater impact than the longline fisheries. The red line came from the
absolute biomass section of the plot.rep file, and the the other lines came from the absolute
biomass section in two instances of the plotN0.rep file formed by setting fish flag 55 = 1
for all fisheries or just for the surface fisheries.

Setting fish flag 55 = 1 for selected fisheries also provides a means of investigating
the interaction among fisheries — if fishery x is disabled, then the increase in catch of
fishery y is a measure of the impact of x on y. Figure 3.2 shows the ratio of predicted
longline catch with surface fisheries active to longline catch without the surface fisheries
as well as the corresponding ratio of surface catch with and without the longline fisheries.
The surface fisheries appear to be having a greater effect on longline fisheries than the
reciprocal effect of longline on surface fisheries.

3.8.2 Yield analysis

A classical Beverton-and-Holt-type equilibrium yield analysis is carried out if a stock-
recruitment relationship is estimated (age flag 145 > 0). Equilibrium yield is computed
in the following fashion:
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Figure 3.1: Estimated biomass without fishing and under two fishing regimes.

• A Beverton and Holt stock-recruitment relationship (SRR) is estimated by setting
age flag 145 = x, where x is the penalty weight used to penalize recruitment devia-
tions from the SRR. A value of x between 1 and 5 is normally sufficient to estimate
the SRR without overly reducing recruitment variability. Note that parest flag 149,
which specifies the penalty on deviations of recruitment from the average, should be
set to zero when the SRR is being estimated. The other flags that need to be set are:
age flag 146 = 1 (activate estimation of SRR parameters); age flag 147 = n, where
n is the number of recruitment periods between spawning and recruitment (default
= 1); age flag 149 = 0 or 1, where 0 results in “stock” and the subsequent yield
computation being in terms of fish weight while 1 signifies the use of fish numbers
for both SRR estimation and yield computation.

• Fisheries data are usually very uninformative regarding the SRR. For this reason
it is recommended that the SRR be constrained in a biologically meaningful way.
We do this by specifying a beta-distributed prior on the SRR “steepness”, which is
the ratio of recruitment at 20% of unfished equilibrium biomass to recruitment at
unfished equilibrium biomass. The prior is specified by the parameters A and B of
the beta distribution, which are controlled by age flags 153 and 154 (see 5.4.2).

• An age-specific vector of fishing mortality (F ) is computed for the whole model
domain using the method described in A.1.8. The period over which the average is
computed is defined by age flags 148 and 155. Age flag 148 specifies the number
of recruitment periods from the end of the analysis over which the average is to
be computed, e.g., if recruitment is quarterly and we want to compute the average
for the last 5 years, then set age flag 148 = 20. Age flag 155 specifies the number
of recruitment periods from the end of the analysis to omit from the average. For
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Figure 3.2: Catch in selected fisheries with other fisheries active relative to catch with
other fisheries inactive.

example, in the previous example of quarterly recruitment, if we wanted to compute
the average for the past 5 years but excluding the most recent year, we would set age
flag 155 = 4. Omitting the most recent periods from the average may be desirable
because estimates of fishing mortality at the end of the analysis are usually very
uncertain. By default the effort deviations are ignored in calculating the average
F vector, but they can be included by setting age flag 194 to non-zero. This can
make a difference if for some fisheries there is a trend away from zero in the effort
deviations.

• Equilibrium yield is computed (see A.1.11) for a range of F vectors that are obtained
by multiplying the average F vector by a series of multipliers (Fmult) ranging
from 0.1 to 50 (unless yield becomes negative at Fmult < 50 in which case the
computation is terminated.

• The maximum yield over the range of Fmult is determined and is designated as the
MSY . The equilibrium biomass (or population number) that results in the MSY
is designated BMSY. FMSY is defined as MSY /BMSY.

• Ratios of Bt/BMSY (example in Figure 3.3) and Ft/FMSY are computed for the entire
time series of the analysis, as a means of comparing historical exploitation and
population states with the current MSY conditions. This of course does not imply
anything about what the historical MSY conditions might have been, as the age-
specific pattern of fishing mortality may have varied substantially5.

5In which case one could argue that such ratios for the period prior to that over which the average
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Figure 3.3: Ratio of biomass to biomass at MSY for different fishing regimes.

A simplification of the above procedure is used to also compute yield per recruit
(YPR) for the same series of Fmult applied to the same spatially- aggregated F vector.
In this case, the yield resulting from one recruit is calculated and the SRR does not come
into play. A region-specific YPR analysis is also undertaken. Here, Fmult is applied
to a 2-dimensional (age and region) F matrix and the YPR computed for each region
individually.

The results of the SRR estimation, equilibrium yield analysis and spatially- aggregated
YPR analysis are written into the plot.rep file. The results of the region-specific YPR
analysis are written into a separate file called catchequ, but this should ultimately be put
in plot.rep too.

3.8.3 Pella-Tomlinson biomass dynamics

An alternative to estimating a SRR and undertaking a Beverton-Holt-type equilibrium
yield analysis is to introduce a likelihood component for deviations of the estimated
spatially-aggregated biomass from biomass predicted by the Pella-Tomlinson production
model. This allows estimation of the parameters of the model — the instantaneous rate
of population growth r and the population carrying capacity K. In principle, the shape
parameter m may also be estimated, but in practice most fisheries data sets are uninforma-
tive with respect to this parameter. The default value (2) forces a symetrical production
curve (Schaefer model).

The biomass dynamics penalty is invoked by setting age flag 150 > 0, with the value

F vector is computed are not very meaningful! A proper historical treatment should probably com-
pare biomass and fishing mortality with the MSY levels determined using the age-specific selectivity in
operation at those times.
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determining the degree to which the model is penalized for deviation from the Pella-
Tomlinson model. Estimation of r and K is activated by setting age flag 151 and age flag
152 = 1.

We do not have much experience in using this feature of the model and therefore
cannot comment on its utility. One problem that occurs with some tuna assessments
is that the biomass is mainly recruitment driven and often has long term decadal scale
changes that are thought to be driven by climatic regime shifts. In such cases, we would
not expect the Pella-Tomlinson biomass dynamics model to work very well.

3.8.4 Target refrence points

Target values can be set for certain primary or derived parameters by imposing priors with
strong penalty weights to force MULTIFAN-CL to converge to, or close to, a given value
perhaps away from the value MULTIFAN-CL would naturally converge to. A number
of BRP parameters are targetable in this way as well as other parameters and derived
quantities. Targeting is accomplished by the use of various flags, see 4.5.11, 4.5.12, 4.5.13
for examples.

Targeted convergence can be useful in a couple of ways. If several MULTIFAN-CL
runs are forced in this way to a series of targets for a particular parameter, then a plot of
the final likelihood values (with residual penalty for the target subtracted off) against the
target values is an approximation of the likeilhood profile for that parameter. Targets can
also help check the robustness of a convergence. A variety of targets can be set to pull
MULTIFAN-CL in various directions away from a convergence point. The targets can
then be relaxed to see if MULTIFAN-CL re-converges at, or near, the orginal convergence
point.

Likelihood profile for F to FMSY ratio

An indication that a population is being over fished is a finding that F is greater than
FMSY. Therefore it is of interest to estimate F/FMSY and to investigate the uncertainty in
the estimate. A likelihood profile can be generated as stated above by setting targets for
the fishing mortality multiplier at MSY, xMSY, which is the reciprocal of F/FMSY. Age flag
165 sets a target of the flag setting divided by 100. Age flag 166 sets the corresponding
penalty. As part of this process MULTIFAN-CL calculates a weighted average of a fixed
set of x values, and age flags 198 and 169 influence the accuracy of that computation.
Age flag 199 defaults to 105 and must be greater that the current estimate of MSY. It is a
divisor in calculating weighting factors for the weighted average (see A.1.12). Values less
than MSY can generate NaNs which can lead to a crash. Values more than 10×MSY lead
to some inaccuracy in determination of xMSY. The current estimate of MSY is printed to
standard output whenever this target process is active to allow appropriate adjustment
of age flag 169. Age flag 168 defaults to a value of 50, which should be adequate for most
occasions.



Chapter 4

Running MULTIFAN-CL

A MULTIFAN-CL analysis consists of three major components. The first sets the struc-
ture of the model in terms of the number and types of fisheries, some biological attributes
of the fish, and the spatial organization of regions within the model universe. The second
component performs a “fit” in which model parameters are estimated by adjusting them
to optimize the fit of model predictions to observed data. The third component examines
and interprets the results, which are essentially the estimated values of the parameters
as well as other values derived therefrom. This chapter is concerned with the first two
of these components. The third will be dealt with primarily in Chapter 6, Interpreting
Results.

To structure a MULTIFAN-CL model and fit it to data, it is necessary to construct 1)
an “.ini” file for entry of some structural information and starting values and bounds for
some parameters; 2) a “.frq”file for entry of more structural information plus the observed
catch, effort and sample data; and 3) a “.tag” file if tagging data are to be included. The
fitting procedure runs through a number of phases, usually with an increasing number of
parameters being estimated or with relaxation of constraints on parameters on proceeding
from phase to phase. MULTIFAN-CL constructs a number of output files. Among them
is a “.par” file, which provides continuity between phases of the analysis. The .par file
provides a complete record of all parameter estimates obtained from a particular model
run. The analyst orchestrates the fitting procedure by manipulating a variety of flags
either by directly editing their values in the .par file between phases, or by setting their
values by way of command line arguments to MULTIFAN-CL. This often leads to com-
plex and lengthy command lines which are most conveniently incorporated into batch
scripts, or “doitall files” which serve the dual purpose of running a complex analysis and
of documenting the details of how the analysis was conducted.

Many of the files pertinent to a given anaysis are linked together by virtue of a base file
name, usually indicative of the particular analysis, for example the species name. Thus
we could have input files bigeye.ini, bigeye.frq and bigeye.tag. Some of the output file
names also include the base file name, but some output files have fixed names and will
overwrite corresponding files from earlier analyses launched from the same file directory.
It is therefore good practice to conduct separate analyses in separate file directories.

22
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4.1 Constructing Input Files

MULTIFAN-CL reads input files record by record and reads data within each record from
left to right with data items separated by white space. When a hash (#) is encountered,
the remainder of the record is considered to be a comment and is skipped. Data items are
expected to be read in a strict order but without regard to how they might be grouped on
records. Therefore the files can be organized into records and sprinkled with comments
so as to facilitate reading and editing by humans. Listings of example files are shown in
the following sections.

4.1.1 The .frq file

The main body of the .frq file supplies catch, effort, and size sample data. In addition, it
has a header section that defines much of the structure of the data and the model. Below
are sections of an example .frq file for yellowfin tuna interspersed with explanatory text.
A copy of this or a similar example file can be obtained from <http://www.multifan-
cl.org/>.

Initial structural declarations

This is a listing through the first ten values read by MULTIFAN-CL.

# WCPO YELLOWFIN MULTIFAN-CL ANALYSIS 1962-2001
#
# Number of Number of Movement Number of Year 1 a b c d e
# Regions Fisheries flag tag groups

5 15 1 27 1962 0 0 4 0 4

The meanings of the data in the order in which they appear are:

• number of regions (NR)

• number of fisheries (NF)

• movement flag, which should always be set to 1 as it sets the generic movement
sub-model as documented in Appendix A.

• number of tag groups (NG), which is the number of tag “cohorts” (all tag releases
in a model region during a particular time interval) being modeled (see .tag file). If
tagging data are not being included in the analysis, this flag is set to 0.

• first year for which catch and effort data are included in the catch/effort section of
the file

• unused flag

• flag to indicate whether the frequency data are length (0) or age (1) data

• number of recruitments per year assumed in the model

• the month in which recruitment is assumed to occur. The default (0) is that recruit-
ment occurs in the first month of a recruitment period, i.e in January for a single
recrutment per year or January, April, July, and October for four recruitments per
year. Recruitment is always assumed to occur in the first week of any month.
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• .frq file version number – indicates for which version of MULTIFAN-CL the data
files were constructed (intended for backward compatibility, but in practice causes
MULTIFAN-CL to announce “Die yuppie scum” and quit when it encounters a .frq
file that is incompatible with the MULTIFAN-CL code version)

Region sizes

The .frq file continues with information on relative size of regions. NR numbers are read
by MULTIFAN-CL, one for each region. It is here that the order in which regions are
indexed is defined. The comment line is to help humans remember the indexing but is not
essential as far as MULTIFAN-CL is concerned. The numbers entered here may be any
index of relative region size, as they are normalized within the model. Relative region size
is important when the catchability of fisheries in different regions is grouped, i.e. assumed
to be the same. Taking region size into account allows the model to obtain information
on relative population size in the regions from the catch and effort data of fisheries so
grouped.

# 1-north 2-mid.west 3-mid.east 4-south.west 5-south.east
# Relative region size
1.35 1.00 1.20 0.25 1.20

Fishery locations

Next comes a NF long vector of region indices indicating in which region each fishery
operates. It is here that the order in which fisheries are indexed is defined. Again, the
comment lines are not essential but useful for humans in making sure that the indexing
is correct.

# Region in which each fishery is located:
# 1 -- LL 1
# | 2 -- LL 2
# | | 3 -- LL 3
# | | | 4 -- LL 4
# | | | | 5 -- LL 4A
# | | | | | 6 -- LL 5
# | | | | | | 7 -- PS/LOG 2
# | | | | | | | 8 -- PS/FAD 2
# | | | | | | | | 9 -- PS/LOG 2
# | | | | | | | | | 10 -- PS/SCH 3
# | | | | | | | | | | 11 -- PS/FAD 3
# | | | | | | | | | | | 12 -- PS/SCH 3
# | | | | | | | | | | | | 13 -- PH/R 3
# | | | | | | | | | | | | | 14 -- PH/H 3
# | | | | | | | | | | | | | | 15 -- ID 3
# | | | | | | | | | | | | | | |

1 2 3 4 5 2 2 2 3 3 3 2 2 2 4
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Movement matrix

Next comes the movement matrix, a NR×NR matrix of 1-s and 0-s giving information on
movement of fish between regions. 1-s indicate direct transfer of fish from one region to
another and 0-s indicate lack of direct transfer. The row labels indicate the origin of move-
ments and column labels indicate the destination. The movement matrix is symmetrical
to allow for movement in either direction, and the diagonal is all 0-s.

Normally, proximal exchange of fish is assumed to occur only across common borders.
This is a convention used to minimize the number of movement parameters to be estimated
rather than a requirement of the model. Note that exchange of fish is not limited to
adjacent regions in one time step. The implicit movement scheme used (see 3.6, A.1.3)
allows exchange among regions that are either directly linked or indirectly linked through
other regions.

A schematic map of the regions in this example is:

Region 1

Region 2 Region 3

Region 4 Region 5

-
�

-
�

6? 6?

6? 6?

which shows the common borders between regions from which the movement matrix in
the following .frq fragment is derived:1

# Movement matrix (1=contiguous regions, 0=non-contiguous)
# Matrix in the form
# R2 R3 R4 R5

1 1 0 0 #R1
1 1 0 #R2

0 1 #R3
1 #R4

Note that only the upper triangle (without the diagonal) of the movement matrix is
entered in the .frq file. MULTIFAN-CL automatically fills in the lower triangle.

Fishery data flags

A 5×NF matrix comes next givng values for fishery data flags.

# Data flags
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1Note that when there is only one region (NR = 1), no vestige of a movement matrix should appear
in the .frq file. However, see footnotes under “Periodic Movement” below (page 26) and in structuring
movement and recruitment in the .ini file (page 30.
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The first row indicates the type of catch data for each fishery: 0 for catch in number
and 1 for catch in weight. The second and third rows indicate the year and month
respectively for the start of the projection period for each fishery (N.B. at present the
start of the projection period should be set the same for all fisheries). Rows 4-5 are
currently unused.

Periodic movement

Aspects of movement behaviour are defined next starting with the number of movement
periods per year, that is, the number of times per year in which fish may move from one
region to another. This number is followed by a vector giving for each movement period
the week within the year at which the movement occurs.2

# num movement periods
4

# move weeks
5 17 29 41

MULTIFAN-CL makes the simplifying and approximate assumption that there are
exactly four weeks in every month (and therefore 48 weeks in a year). Thus week within
year is given by 4(m− 1) + w for month m and week within month w, i.e. the first weeks
of months 2, 5, 8, and 11 lead to the movement weeks in the example above. It is a
good idea for movement weeks to correspond to weeks in the catch/effort part (described
below) of the .frq file. Movement behaviour is further structured by entries in the .ini file
(see “movement map” – page 30).

Structure of catch/effort/sample data

The last part of the header section of the .frq file gives information on the structure of
the catch, effort, and sample data to follow.

# Number of fishing incidents
1854

# No. intervals 1st width grouping factor
100 10 2 1 # length frequency data
100 1.1561 1.1561 1 # weight frequency data

This part begins with the number of fishing incidents (NC), i.e. the number of sets of
catch/effort observations (with or without length or weight frequency data). This is
followed by eight numbers indicating the structure of sample data as follows:

• number of length frequency intervals (NL)

• lower length of the first interval

• width of length intervals

2Note that when there is only one region (NR = 1), the number of movement periods should be 1,
not zero even though there actually is no movement in this case. Also, there should be a single dummy
integer entered for the move weeks.
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• length frequency grouping factor – this allows the length intervals specified in the
.frq file to be grouped into any multiple of the original interval in the model. For
example, if the length interval width is 2 cm and a grouping factor of 2 is specified,
the length frequency data are grouped into 4 cm intervals for the analysis.

• number of weight frequency intervals (NW). If weight frequency data are not being
included in the analysis, this flag is set to 0.

• lower weight of first interval (if NW = 0, set this flag to 0)

• width of weight intervals (if NW = 0, set this flag to 0)

• weight frequency grouping factor – as for length frequency data (if NW = 0, set this
flag to 0)

Note that the specification of length and weight intervals (first interval and interval
width) do not need to be integers, although this will often be the case. One instance where
it is necessary to use floating point numbers is to define weight intervals in terms of live
weight where the actual observations are in terms of processed weight. If the conversion
of processed to live weight is a simple proportional increase, e.g. live weight is 10% higher
than processed weight, then this proportion may be applied as a scaling factor to the
first weight interval and the interval width. For example, consider a case where “gilled
and gutted” processed weights are collected and the data are aggregated into 1 kg weight
intervals with the lower weight of the first interval being 5 kg. If live weight is 10% higher
than processed weight, the lower weight of the first weight interval is set to 5.5 and the
interval width to 1.1.

If either length or weight samples are not used, dummy numbers (0 is a useful con-
vention) must still be included so that there are eight numbers in this section of the
file.

The catch/effort/sample data

The final section of the .frq file gives catch, effort and sample data with one item for each
of the NC fishing incidents:

#year month week fishery catch effort length_sample weight_sample
#
1962 2 1 1 67523 54317 0 0...0 # 100 length frequencies

-1 # no weight frequencies
1962 5 1 1 30360 19354 0 0...0 # 100 length frequencies

-1 # no weight frequencies
1962 8 1 1 6802 3755 0 0...0 # 100 length frequencies

-1 # no weight frequencies
1962 11 1 1 31622 26369 0 0...0 # 100 length frequencies

-1 # no weight frequencies
.
.
.

2001 2 1 15 589 22912 -1 # no length frequencies
0 1...1 # 100 weight frequencies

2001 5 1 15 456 26769 -1 # no length frequencies
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0 2...0 # 100 weight frequencies
2001 8 1 15 -1 23354 -1 # \

-1 # |
2001 11 1 15 -1 21554 -1 # |

-1 # |
2002 2 1 15 -1 22912 -1 # |

-1 # | projection period
2002 5 1 15 -1 26769 -1 # |

-1 # |
2002 8 1 15 -1 23354 -1 # |

-1 # |
2002 11 1 15 -1 21554 -1 # |

-1 # /

The data in each item appear in the following order:

• year

• month

• week

• fishery index

• catch (or -1 if catch is missing)

• effort (or -1 if effort is missing)

• NL numbers giving length sample count in each length interval (or -1 if length sample
is missing, but note that if length frequency data are not used in the analysis at all
(NL = 0), these numbers are omitted)

• NW numbers giving weight sample count in each weight interval (or -1 if weight
sample is missing, but note that if weight frequency data are not used in the analysis
at all (NW = 0), these numbers are omitted)

Fishing incident items do not need to correspond to file records in the .frq file, i.e.
data for fishing incidents can be split over several lines. The above example shows each
item split into two file records. However, there is a certain advantage to keeping fishing
incident items on single file records, even though it makes for lengthy records. It facilitates
use of record counters in file editors or unix utilities such as awk and wc to assure that the
number of fishing records (NC) is accurate (MULTIFAN-CL will not function as intended
if this is not the case). It also facilitates reading the .frq file into a spreadsheet if that is
desired.

Projection period

MULTIFAN-CL will project estimates of abundance and catch beyond the end of the
time series of known catch and effort. This is effected simply by adding more catch/effort
records to the .frq file denoting a future regime governed either by effort or catch. If
prescribed effort data are used, the “-1” should be entered for catch and vice versa. The
example data above show a projection period of 1.5 years for one of the fleets. Projections
can be included for any of the fleets and for as long a period as desired.
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4.1.2 The .ini file

The .ini file supplies information mainly on biological characteristics of the fish. This
file is used prior the first phase of an estimation procedure, and the information therein
is incorporated into the initial .par file (see 4.1.4). The following example of an .ini file
is interspersed with explanatory text. A copy of this example or a similar file can be
obtained from <http://www.multifan-cl.org/>.

Age classes

This fragment of the .ini file continues through comment lines to the first value read by
MULTIFAN-CL which is the number of age classes NA

# WCPO YELLOWFIN MULTIFAN-CL ANALYSIS 1962-2001
#
# number of age classes
20

starting with the age of recruitment up to the oldest class, which is a “plus” group. The
time resolution of age classes or recruitment frequency (e.g., annually or quarterly) is
defined in the .frq file.

Maturity

The maturity schedule comes next in the .ini file, contained in a NA vector of the propor-
tions mature by age class

# MATURITY AT AGE
0 0 0 0 0 0 0.25 0.50 0.75 1 1 1 1 1 1 1 1 1 1 1

This vector is used in the computation of spawning biomass. If only females are to be
included in the spawning biomass, age-specific sex ratios can also be included in the
maturity schedule. In this case, each element of the maturity schedule would be the
proportion of the female population in an age class that is mature multiplied by the
proportion of the total population in that age class that is female.

Natural mortality

Next in the file is the starting value for natural mortality rate averaged over age classes.

# natural mortality
0.25

A vector of natural mortality by age can be estimated by MULTIFAN-CL. The parameters
actually estimated are age-specific deviations from the log of the mean natural mortality.
The starting values of the deviations are normally zero, but if age-specific natural mor-
talities are to be fixed at specific values or the deviations are to be estimated starting
from non-zero values, then the deviations may be set in the 2nd row of the age parameter
matrix (see below).
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Movement

Movement information is then given starting with a “movement map” which groups the
movement periods into seasons.

# movement map
1 2 2 1

The number of entries in the movement map must correspond to the number of move-
ment periods entered in the .frq file (see page 26). Based on the movement weeks defined
in the example .frq file above, the movement map shown here would define two seasons
with one movement behaviour in weeks 41 and 5 of the year and another behaviour in
weeks 17 and 29. If it were desired to have different behaviour in each of the movement
periods, the movement map would be the sequence “1 2 3 4”.

# movement coefficients (12 for each move map entry)
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Starting values of movement coefficients come next, with a set of coefficients for each
entry in the movement map3. Within each set there is one coefficient for each possible
direct transfer between regions, i.e. one for each “1” in the full movement matrix, the
upper triangle of which is given in the .frq file (see “Movement matrix” - page 25). The
coefficients are entered in row by row order of 1’s in the full movement matrix. Thus
coefficients in each row of the example above would correspond to movements between
regions indicated as follows in the order given:

1→2, 1→3, 2→1, 2→3, 2→4, 3→1, 3→2, 3→5, 4→2, 4→5, 5→3, 5→4,

The time units of the coefficients are the inverse of the recruitment frequency, e.g., if
recruitment is quarterly, the units are quarter−1.

Age parameters

Next comes a matrix composed of 10 sets of age-specific parameters (termed “age pars”),
one for each age class.

# age_pars
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3Note that when there is only one region (NR = 1), there should be one zero entered in the movement
section and a single number one entered in the recruitment section of the .ini file.
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These parameters may be given initial values that are different from the otherwise arbi-
trary values (zero) assigned by MULTIFAN-CL. The correspondence of model parameters
to the various age pars is described in the .par file (see page 35).

Recruitment

The initial proportion of total recruitment ocurring in each region4 follows in a vector,
the order and length of which must be consistent with the region indexing defined in the
.frq file (see “Region sizes” - page 24).

# 1-north 2-mid.west 3-mid.east 4-south.west 5-south.east
# recruitment distribution among regions (5)

0.15 0.40 0.30 0.05 0.10

Growth

Information about growth, both in size and in weight, comes next.

# The von Bertalanffy parameters (mean length 1, mean length nage, K)
# Initial value Lower bound Upper bound

28.0 20.0 40.0
145.0 140.0 200.0
0.1 0.0 0.3

# Weight-length parameters
2.784e-05 2.8992

# Variance parameters (avg SD, SD dependency on length)
# Initial value Lower bound Upper bound

6.0 3.0 8.0
0.40 -0.69 0.69

The values are entered in the file in the following order:

• The starting value for the mean length of the youngest age class followed by lower
and upper bounds.

• The starting value for the mean length of the oldest age class followed by lower and
upper bounds.

• The starting value for von Bertalanffy growth rate parameter (k) followed by lower
and upper bounds. The units of k are the inverse of the recruitment frequency.

• The two parameters, a and b of the length-weight relationship: weight = a× lengthb.
Weight and length would normally be in kg and cm, respectively. These two pa-
rameters are fixed and are not currently estimated by MULTIFAN-CL.

• The starting value for the average standard deviation of length at age followed by
lower and upper bounds.

• The starting value for age dependency of standard deviation of size at age followed
by lower and upper bounds. This parameter has been log-transformed, so that a
value of 0 would infer no age-dependency, while a value of 0.69 would indicate that
the standard deviation of the oldest age class is approximately twice that of the
youngest age class (exp(0.69) = 2).

4In case of only one region: ibid.
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Mean size constraints

The option to specify mean size constraints is a feature of MULTIFAN-CL that allows the
analyst to provide some information on the structure of individual length-frequency sam-
ples. This may be useful, particularly in the initial phases, in situations where biologically
unreasonable growth estimates are being obtained. Mean length constraints specified for
samples where there are obvious modes that should lie on or close to the growth curve
give MULTIFAN-CL “a helping hand” in its interpretation of the length frequency data.
Such constraints may be removed during the later phases of the estimation if desired.

This final fragment of the .ini file begins with the number of constraints followed by
information on each.

# The number of mean constraints
3

# Fishery Incident Age Lower Upper Lower Upper
# class length length proportion proportion

1 94 1 23.0 30.0 0.1 0.9
2 94 1 23.0 30.0 0.1 0.9
2 94 2 39.0 50.0 0.1 0.9

Each mean size constraint consists of a specification of the fishery, the number of the
fishing incident for that fishery (in time sequence), the age class number for which the
constraint is being imposed, the lower and upper bound for the mean length constraint,
and the lower and upper bound for the proportion at age of that age class in the length
frequency sample.

4.1.3 The .tag file

Tag release and recovery information is organized into groups consisting of the tags re-
leased within a particular model region and a particular year and month. The releases are
further stratified by length intervals, which would normally be the same as those defined
for the fishery length frequency data. The history of tag recoveries for each group is then
summarized by release length interval, fishery, year and month of recapture. Care must
be taken to ensure that the year/month specification of tag recapture periods corresponds
to that used in the .frq file for each fishery.

The data in the .tag file begins with header information as in the following example
listing.

# WCPO YELLOWFIN MULTIFAN-CL ANALYSIS 1962-2001
#
# RELEASE GROUPS STARTING LENGTH NUMBER INTERVALS INTERVAL LENGTH

27 10 100 2
# TAG RECOVERIES
11 11 120 104 83 131 109 47 28 0 88 49 0 2 0 73 36 31 2
46 50 8 0 1 8 0 4

The header data read by MULTIFAN-CL are ordered as follows:

- number of tag groups (NG) – This must be consistent with NG in the header infor-
mation in the .frq file.
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- lower length of first length interval for size measurement of tagged fish

- number of intervals NL

- width of intervals

- a vector {N rg; g = 1 . . . NG} giving the number of recapture categories, or strata, in
each tag group

Following the header there must be NG data sections, one for each of the tag groups.
Here is a listing of the first group in the example .tag file.

#---------------------------------
# 1 - RELEASE REGION YEAR MONTH

2 1989 8
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 4 9 26 25 27 18 23 14 8 5 7 3 2 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#
#
# LENGTH RELEASE FISHERY RECAP YEAR RECAP MONTH NUMBER

48 6 1989 8 4
48 6 1989 11 1
50 9 1992 2 1
52 6 1989 11 3
56 6 1989 8 2
56 6 1989 11 2
56 6 1990 5 1
58 6 1989 8 1
58 6 1990 2 1
60 6 1989 8 2
62 6 1989 11 1

Each group is first identified by the region index, year, and month of release in that
order followed by a vector of NL size frequencies (100 of them in this case) for all the fish
released in the group. If this were group g, data must follow for N rg recapture categories
(11 of them in this case), identifying each category and enumerating the recoveries as
follows:

• fish length at release

• index of fishery in which fish was recaptured

• year of recapture

• month of recapture

• count of recovered fish in category defined by the four items above

The fishing index, year of recapture, and month of recapture must have a corresponding
record in the .frq file, i.e. a fishing incident must have occurred in order for one or more
tag recaptures to have occurred. In this example 26 other data groups must follow to
complete the .tag file. A copy of this or a similar example file can be obtained from
<http://www.multifan-cl.org/>.
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4.1.4 The .par File

The .par file is both an input and an output file. Normally the .par file which is output
from one phase of a fit is then input to the succeeding phase. This file plus the .frq file
contain all the information needed by MULTIFAN-CL to restart an analysis from where
it left off. The .par file contains the latest values of all parameters plus other structural
information about the current state of the analysis. Most of the structural information is
embodied in a multitude of flags located at the top of the file. Information on the various
types and meanings of the normally used (and some not so normally used) flags is given
below in Section 4.5.

All segments of the file are labelled with comment records (i.e.with “#” in the first
column). Here is a list of all segment labels.

# The parest_flags – 200 of them in one lengthy record – vector parest_flags(1,

200);

# The number of age classes – a single number – int nage;

# age flags – 200 of them in one lengthy record – vector age_flags(1, 200);

# fish flags – one record per fishery with 60 flags each – matrix fish_flags(1,

nfsh, 1, 60);

# tag flags (if tagging data included) – one record per tag group with 10 flags each –
imatrix tag_flag(1,num_tag_releases,1,10);

# region control flags – 10 for each region – matrix region_flags(1, 10, 1,

nregions)

# percent maturity – the maturity schedule as given in the .ini file. – vector

pmature(1, nage);

# total populations scaling parameter – tot population dvariable totpop;

# rec init pop level difference –

# recruitment times –12 numbers... for each month? 1 ⇒ recruiment 0 ⇒ no
recruitment ??

# relative recruitment – time variation in recruitment, one per fishing period

# Reporting rate dev coffs – (1,num fisheries,2,num fish times) a ragged array

# availability coffs – no. age classes

# relative initial population – matrix (1, nreg) × (2,nage)

# fishery selectivity – (1,nfsh,1,nage)

# natural mortality coefficient – est of natural mortality averaged over age classes

# average catchability coefficients – average catchability for each fishery

# initial trend in catchability coefficients – (1,nfsh)

# diffusion coefficients – no. move coeffs (2×no. 1-s in move matrix)

# age dependent diffusion coefficients – no. move coeffs (2×no. 1-s in move
matrix)

# nonlinear diffusion coefficients – no. move coeffs (2×no. 1-s in move matrix)
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# regional recruitment variation – matrix (nyrs × nregions). Specifies time-series
deviations from the average in regional recruitment distribution.

# effort deviation coefficients – (1,nfsh,1,nft) a ragged array... nft=vector of no.
incidents per fishery

# correlation in selectivity deviation – (1,nfsh)

# extra fishery parameters – (1,10,1,nfsh)

1. amplitude for sinusoidal seasonal catchability

2. phase for sinusoidal seasonal catchability

3. tag reporting rates

4. σ2 for negative binomial likelihood for tags (parest flag 111, see section 4.5.8)

5. parameter for added zeros in negative binomial (see section 4.5.8)

6. another parameter for added zeros

7. effort effect on catchability

8. Biomass effect on catchability

Rows 9–10 are unused.

# seasonal_catchability_pars – (1,nfsh,1,12) (see 3.4.1).

# age-class related parameters (age_pars) – a 10×nage matrix containing by row:

1.

2. age-specific deviations from log of average natural mortality

3. deviations from von Bertalanffy curve

4. growth curve deviations

5. log of natural mortalilty at age (if age flag 109 set).

Rows 6–10 are unused. These parameters can be pre-set in the .ini file (“Age
parameters” – page 30).

# region parameters – (region pars) – a 10×nregions matrix. The first row contains
the average over time of the regional recruitment distribution. All other rows are as
yet unused.

# catchability deviation coefficients – catch dev coffs(1,nfsh, 2,nft) a ragged
array..

# selectivity deviation coefficients – (1,fsh.num fisheries, 2,fsh.num fish times,
1,fsh.nage)

# sel_dev_coffs – sel dev coffs(1,nfsh,1,nft,1,ng)

# The von Bertalanffy parameters – as in .ini

# First Length bias parameters – vb bias(1,num fisheries)

# Common first Length bias flags – common vb bias(0,num fisheries)

# Common first Length bias coffs – common vb bias coffs(1,num fisheries)
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# Seasonal growth parameters – sv(1,30) nnewlan.cpp 47: int NUMSV=30; sv(27)
and sv(28) are a and b of length-weight relationship.

# Cohort specific growth deviations – growth dev.allocate(1,fsh.nyears);

# Variance parameters – as in .ini

# The number of mean constraints – 1 number (from .ini) if not zero, followed by
constraint data as in .ini file.

# The diffusion coefficients – newmult.cpp 55: D(1,nregions,1,nregions)

# The grouped_catch_dev_coffs flag – 11 ⇒group stuff to follow; 01 ⇒not

# The grouped_catch_dev_coffs – grpcatch.cpp 149: grouped catch dev coffs.allocate
(1, ngroups, 2, num grouped fish times)

# Objective function value – 1 number

# The number of parameters – 1 number

# Likelihood component for tags – 1 number (hidden behind #)

# Penalty for mean length constraints – 1 number ... 0 if age flag(52) set

# Maximum magnitude gradient value – 1 number ... 0 if age flag(52) set

# Average fish mort per fishing incident – 1 number (hidden behind #)

# Average fish mort per year – 1 number (hidden behind #)

# Average fish mort per year by age class – nage numbers (hidden behind #)

4.1.5 The mfcl.cfg file

This is an optional file which, if it exists in the directory from which MULTIFAN-CL is
run, will tune the memory alloction. It supplies three numbers:

1. GRADSTACK BUFFER SIZE (default, 1000000)

2. CMPDIF BUFFER SIZE (default, 56000000)

3. ad array mbl size (default, 25000000)

4.1.6 The .env file

This is an optional file which needs to be supplied only if spatially aggregated recruitment
is to be estimated in relation to some environmental driving variable (see 4.5.10 and 3.2).
This file supplies the environmental data as a sequence of numbers corresponding to
recruitment times in the model.

4.2 Temporal Structure of Model

To conduct a simulation, MULTIFAN-CL needs to have set up a schedule of calculation
events such as times of recruitment, times to calculate abundance and catch, and times
to move fish among regions. Each of these events determine a time “node”, and much of
the schedule of nodes is determined by the .frq file.
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A sequence of regularly spaced nodes is determined by the number of recruitments per
year and the month of first recruitment in a year given by the 8th and 9th numbers in the
.frq file (see page 23). For example, if annual recruitment is assumed, new recruits would
appear in the population in January (default) or in the month number (1-12) specified.
If quarterly recruitment is assumed, the default behaviour would be for recruitment to
occur at the first week of January, April, July and October.

The time of a fishing incident is indicated by the year, month and week in the .frq file
(see “catch/effort/sample” – page 27), and nodes are established at the given times. In
principle, it would be possible to have a data resolution of 48 fishing periods per year (12
months by 4 weeks per month). However, for most assessments data will be more coarsely
aggregated. If data were quarterly, for example, fishing incidents could be associated with
months 2, 5, 8 and 11 and week 1 in each case as in the example .frq file above.

Movement events also establish nodes at times indicated by the movement weeks
entered in the .frq file (see “Periodic movement” – page 26).

To optimize calculation speed, it is desirable to minimize the number of nodes. For
example with four recruitments per year, there must be at least four nodes per year. If the
catch/effort data are also quarterly, but entered at different weeks than the recruitments,
there will be eight nodes per year. And if movement events occur at still different weeks,
the number of nodes per year will be multplied further. However, if care is taken to keep
the various events in phase, the number of nodes will be minimized. Thus the movment
weeks in the example .frq file above are adjusted to coincide with the fishing incidents,
but the recruitment month in the example is 0 which defaults to first week of January
and is therefore out of phase. It would improve speed to set it to 2,5,8,or 11.

Another aspect of the node schedule is that for a particular catch/effort entry in the
.frq file, the effort given is applied only during the time period starting at the immediately
preceeding node, regardless of how that node was determined. Thus if catch/effort data
were entered annually at say month 6, week 2 (i.e. 26th week of the year), and recruitment
month was set at 6 (i.e. 25th week of the year), then the population dynamics would be
that of an intense fishery during one week of the year and zero effort at other times.
Another example would be two fisheries, one with catch/effort entered annually and the
other entered quarterly. Assuming the data were phased so that the annual fishery occurs
at one of the weeks of the quarterly fishery, the annual fishery would operate in the model
only during one quarter of the year.5 If the two fisheries were not in phase, the temporal
situation would be further complicated for the annual fishery and for the quarterly fishery
as well. Obviously it is desirable to minimize nodes so as to minimize confusion as well
as to optimize calculation speed.

4.3 Conducting a Fit

The executable program file for MULTIFAN-CL is mfcl. A general form of the command
line to run MULTIFAN-CL is as follows:

mfcl example.frq in.par out.par [-makepar|-switch args|-file fname]

5If the exploitation rate is not too severe, this approximation is probably not too bad. After all, some
classical fishery models assume fishing occurs in instantaneous spikes.
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with choice of one or none of the options within the square brackets. In the normal course
of events, a sequence of mfcl commands are issued, one for each phase of the fit:

mfcl example.frq 00.par 01.par ...

mfcl example.frq 01.par 02.par ...

mfcl example.frq 02.par 03.par ...

.

.

.

The .par file names could be anything, but it is common practice to add the extension
.par and to name them in a numerical (or alphabetical) sequence so that they can be
identified with the phase of the fit in which they are produced.

4.3.1 Creating an initial parameter file (-makepar)

MULTIFAN-CL normally needs an initial input .par file containing starting values for all
the information noted above. Such a file would be tedious and error prone to assemble by
hand. Therefore MULTIFAN-CL provides a way to use the .ini and .frq files to produce
an initial .par file with the -makepar option:

mfcl example.frq example.ini 00.par -makepar

Note that a .ini file has taken the place of the input .par file, and the output .par file in
this example will be named 00.par.

4.3.2 Command line manipulation of flags (-switch)

On progressing from one fitting phase to another, it is usual practice to instruct MULTI-
FAN-CL to change something about the fitting process, for example the status of a pa-
rameter from being held constant to being estimated or relaxing the constraints on one
or more parameters. This can be accomplished by editing the flag values in the .par file
which will be input in the next phase. Information is given below in Section 4.5 on the
various types and meanings of the flags that are manipulated in normal practice. Given
the multitude of flags, editing their values directly in .par files is difficult and error prone.
Therefore the -switch option is available to edit flag values. It indicates that a number
of switch statements are entered on the command line:

mfcl ex.frq 01.par 02.par -switch n switch1 · · · switchn

where n is the number of switch statements and where each switch statement is a vector
of three integers {I1, I2, I3}, and where new flag values are set according the following
rules:
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I1 Action

1 — parest flag I2 = I3

2 — age flag I2 = I3

−n; (n < 999) — fish flag I2 for fishery n = I3

−999 — fish flag I2 for all the fisheries = I3

−9999 — tag flag I2 for all tag release groups = I3

−n; (10000 ≤ n < 99999) — tag flag I2 for tag release group n − 1000 =
I3

−n; (100000 ≤ n < 100009) — region flag n− 99999 for region I2 = I3

Setting flags for fisheries, tag groups, or regions that have not been defined in the .frq
file will generate an error message. Note that there is a limit of 10 types of region flag.
However, the only region flag used so far is type 1. Therefore values of I1 other than
−100000 for region flags for now would be pointless. Unfortunately, as yet there is no
short cut for identifying all the regions.

Here are some example switch settings:

mfcl ex.frq 01.par 02.par -switch 2 1 14 1 2 95 5

would change the 14th parest flag to a value of 1 and the 95th age flag to a value of 5.

mfcl ex.frq 01.par 02.par -switch 3 -3 16 1 -4 16 1 -5 16 1

would change the 16th fish flag for fisheries 3, 4, and 5 to a value of 1.

mfcl ex.frq 01.par 02.par -switch 1 -999 36 50

would change the 36th fish flag for all fisheries to a value of 50 and the 95th age flag to a
value of 5. And

mfcl ex.frq 01.par 02.par -switch 1 -100000 3 1 -100000 4 1

would change the 1st region flag for regions 3 and 4 to a value of 1.

4.3.3 Flag switches in a file (-file)

It is evident that editing more than a few flags with the -switch option would lead to
a long command line which can be difficult to enter without error. Therefore there is a
provision for preparing switch statements in a text file which MULTIFAN-CL can access
like this:

mfcl ex.frq 01.par 02.par -file 02.switch

As with other input files, comments are indicated by“#”and can be sprinkled throughout
the file. This is an important feature for documenting the way a fit was run. The file
name, 02.switch in the example above, could be anything, but it would behoove the
analyst to associate the name with the phase to which it applies.

It is common practice that the command lines to MULTIFAN-CL are entered into
scripts, or batch files in which case a special form of the -file option can be used. This
is described in the next section.
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4.3.4 Batch execution (doitall file)

Early stages of any stock assessment can be exploratory in nature with MULTIFAN-CL
being run from the command line with -switch statements entered from the keyboard at
each phase. However, the fitting procedure is typically rerun many times in search of a
reliable and convincing convergence, and it quickly becomes advisable to enter a series of
command lines into a batch file which can automatically run all or a portion of the phases
of the fitting procedure. These MULTIFAN-CL batch files have commonly been named
“doitall” or some derivative thereof. There is an obvious advantage in having a doitall file
automatically orchestrate a lengthy fit that might take several days to run, but another
big advantage is that the sequence of flag settings and edits that structure or “program”
the fit is automatically documented in the doitall file and can be reproduced, whereas
such a sequence entered from the keyboard could be difficult to recall. Furthermore, the
doitall file can be copied and edited to test the effects of subtle, or major, differences in
the way a fit is conducted. Advantageous use of the -file option for lengthy flag editing
(see 4.3.3) can be incorporated into a doitall file so that the entire orchestration of a fit
is documented in one file. Finally, several doitall scripts can themselves be called from
a higher level script that might, for example, replicate fits with several different starting
values for one or more parameters.

The following partial listing of an example doitall file is interspersed with commentary.
A copy of this or a similar example file can be obtained from <http://www.multifan-
cl.org/>.

#!/bin/sh
# WCPO YELLOWFIN MULTIFAN-CL ANALYSIS 1962-2001
# ------------------------
# PHASE 0 - create initial par file
# ------------------------
#
if [ ! -f 00.par ]; then
mfcl yft.frq yft.ini 00.par -makepar

fi

The first thing to note is that this doitall file is a “script” file designed for execution in
a bash shell of a LINUX/UNIX type environment,6 and the purpose of the first line above
is to invoke a bash shell. A consequence is that aside from the first line, all text on a line
following a hatch (#) is comment material as it is in all text to be input to MULTIFAN-
CL. Furthermore, the doitall file contains bash shell programming syntax, such as the lines
immediately above and below the mfcl command line above. The construct shown here is
used throughout the doitall file. It tests for presence of a file in the local directory named
“00.par” in this case, and in the absence of such a file, it executes the mfcl command.
Otherwise it skips to material following the “fi” line. This construct is set up around all
phases in the doitall file, so that if a fit is interrupted in any way (e.g. computer crash,
power failure, or purposeful interrupt), then when the doitall file it re-invoked, it will start
at about the point where it left off, skiping calls to mfcl for all the .par files accumulated
to that point.

6For running MULTIFAN-CL in a MS-Windows evnironment it is strongly suggested to use the cygwin
command interface, available under GNU General Public License from http://cygwin.com. All example
scripts shown here have been found to work with cygwin.
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The creation of the initial .par file has traditionally be termed “phase 00” for the
purpose of naming the sequence of .par files, but the initial .par file could be named
anything, e.g. “aa.par” if an alphabetical sequence were desired.

# ------------------------
# PHASE 1 - initial par
# ------------------------
#
if [ ! -f 01.par ]; then
mfcl yft.frq 00.par 01.par -file - <<PHASE1

The above mfcl command illustrates the beginning of a “here file” construct used with
the -file option which points in this case to a file name of “-”. That is a code for the
standard input which normally would be the keyboard, but “ << PHASE1” usurps that
and declares that standard input shall henceforth come from material in following lines
of the doitall file itself until such time as an instance of “PHASE1” occurs by itself on
a single line (shown two file fragments below). Thus the text between << PHASE1 and
PHASE1 is not bash shell material but is material to be read by MULTIFAN-CL. It is a
mixture of switch statements (see 4.3.2) and comments. The text PHASE1 in this example
could be anything at all as long as it’s identical at top and bottom of the switch material.
The text can be re-used in subsequent “here” file constructs, but it might be helpful for
human readers of the doitall file to choose text that is identified with the phase number,
as in this example.

As is often the case in the first phase after the makepar phase, the flag editing material
in this example is quite long. Discussion here concentrates on the structure of the file,
but the commentary in the listing itself deals with the use of particular flags. For more
complete documentation on the use and manipulation of flags see 4.5.

2 113 1 # estimate initpop/totpop scaling parameter
-1 49 5 # divide LL LF sample sizes by 5 (default=10)
-2 49 5 # "
-3 49 5 # "
-4 49 5 # "
-5 49 5 # "
-2 50 5 # divide LL WF sample sizes by 5 (default=10)
-3 50 5 # "
-5 50 5 # "
-15 50 1 # divide LL WF sample sizes by 1 (sampling coverage is 100%)
1 32 3 # sets initial estimation with exploitation rate constraint
2 107 1000 # penalty for exploitation rate
2 108 10 # exploitation rate target is 0.1
1 111 4 # sets likelihood function for tags to negative binomial
1 141 3 # sets likelihood function for LF data to normal
2 57 4 # sets no. of recruitments per year to 4
2 69 1 # sets generic movement option (now default)

2 94 2 2 95 20 # initial age structure based on av. Z over 1st 20 periods
-999 26 2 # sets length-dependent selectivity option
-9999 1 1 # sets no. mixing periods for all tag release groups to 1
-999 14 10 # sets maximum incident fmort to 1.0

# sets non-decreasing selectivity for longline fisheries
-1 16 1 -2 16 1 -3 16 1 -4 16 1 -5 16 1 -15 16 1



42 CHAPTER 4. RUNNING MULTIFAN-CL

# grouping of fisheries
# selectivity. catchability tag return reporting rate

-1 24 1 -1 29 1 -1 32 1 -1 34 1
-2 24 1 -2 29 1 -2 32 2 -2 34 2
-3 24 1 -3 29 1 -3 32 3 -3 34 3
-4 24 1 -4 29 1 -4 32 4 -4 34 4
-5 24 1 -5 29 1 -5 32 5 -5 34 5
-6 24 2 -6 29 2 -6 32 6 -6 34 6
-7 24 3 -7 29 3 -7 32 6 -7 34 6
-8 24 4 -8 29 4 -8 32 6 -8 34 6
-9 24 5 -9 29 5 -9 32 7 -9 34 6
-10 24 6 -10 29 6 -10 32 7 -10 34 6
-11 24 7 -11 29 7 -11 32 7 -11 34 6
-12 24 8 -12 29 8 -12 32 8 -12 34 7
-13 24 9 -13 29 9 -13 32 8 -13 34 7
-14 24 10 -14 29 10 -14 32 9 -14 34 8
-15 24 11 -15 29 11 -15 32 10 -15 34 9

Note that one or more switch satements can be placed in a line. They can also appear
in any order and can be grouped in logical units as in the group of grouping flag settings
above.

#tag-rep. priors tag-rep means effort penalties
-1 35 1 -1 36 50 -1 13 -50
-2 35 1 -2 36 50 -2 13 -50
-3 35 1 -3 36 50 -3 13 -50
-4 35 1 -4 36 50 -4 13 -50
-5 35 1 -5 36 50 -5 13 -50
-6 35 234 -6 36 42 -6 13 -10
-7 35 234 -7 36 42 -7 13 -10
-8 35 234 -8 36 42 -8 13 -10
-9 35 234 -9 36 42 -9 13 -10
-10 35 234 -10 36 42 -10 13 -10
-11 35 234 -11 36 42 -11 13 -10
-12 35 200 -12 36 80 -12 13 1
-13 35 200 -13 36 80 -13 13 1
-14 35 200 -14 36 80 -14 13 1
-15 35 1 -15 36 80 -15 13 -10

# sets penalties for catchability deviations
-12 15 1 # No effort for Philippines and Indonesian fisheries so
-13 15 1 # small penalty gives additional ability for catch prediction
-14 15 1 # with minimal impact on population parameters
-15 15 20
-999 33 1 # estimate tag-reporting rates
1 33 90 # maximum tag reporting rate for all fisheries is 0.9

PHASE1
fi

PHASE1 marks the end of switch material for phase 1. Phase 2 illustrates a somewhat
different “here” file and switch material construct.

tempfile=‘mktemp mfclXXXXXX‘ # get temp file
trap "rm -f $tempfile" 0 # and clean it when done
# ---------
# PHASE 2
# ---------
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if [ ! -f 02.par ]; then
cat - <<PHASE2 >$tempfile
1 149 100 # set penalty on recruitment devs to 100/10
-999 3 17 # all selectivities equal for age class 17 and older
-999 4 4 # possibly not needed
-999 21 4 # possibly not needed

1 189 1 # write graph.frq (obs. and pred. LF data)
1 190 1 # write plot.rep
1 1 2500 # set max. number of function evaluations per phase to 2500
1 50 -1 # set convergence criterion to 1E+01

PHASE2
mfcl yft.frq 01.par 02.par -file $tempfile
if [ $? -ne 0 ]; then exit; fi

fi

The first line creates a temporary file name that is guaranteed to be unused. The next
two lines then to set up a statement that will remove the temporary file and that will be
executed whenever the doitall file stops, for whatever reason. Flag switch material is then
copied from a“here”file to the temporary file and fed to MULTIFAN-CL through the nor-
mal -file option. The reason for this alternate construct is that the operator interruption
of MULTIFAN-CL (see 6.1.2) does not function under LINUX when MULTIFAN-CL is
running with standard input directed away from the keyboard as in the construct above,
but works fine with this construct. The statement after the mfcl command line prevents
the doitall file from continuing to subsequent phases if an innerrupt has occurred.

A flag manipulation trick worth noting is in the last line of the flag switch material
above. The convergence criterion is set so that MULTIFAN-CL will not be too fussy
about getting very close to an optimum point of the likelihood surface in this phase of the
fit. Such will be the case in subsequent phases as well until the convergence criterion is
reset in the final phase (see below) to something small (10−4). This means that MULTI-
FAN-CL will proceed rapidly through intermediate phases getting approximate solutions
and then work hard in the final phase to get a more exact solution.

Most of the remaining phases in this doitall file will now be skipped with a few in-
structive examples retained.

# ---------
# PHASE 8
# ---------
if [ ! -f 08.par ]; then
mfcl yft.frq 07.par 08.par -file - <<PHASE8
-999 27 1 # estimate seasonal catchability for all fisheries
-12 27 0 # except those where
-13 27 0 # only annual catches
-14 27 0 # are available
1 14 0 # de-activate K for the time being

PHASE8
fi

Though flag switch statements can occur in any order, if a flag is set more than once
within the same “here” file, the last setting is the one that prevails. In the example above,
fish flag 27 is set to 1 for all fisheries, but is then set back to 0 for three of the fisheries.
Also note that a previously active parameter can be de-activated (von Bertalanffy K in
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this case). It will keep whatever value it had at the end of the previous phase and not
participate in the parameter fitting until such time as it is re-activated as in the next
fragment shown of the doitall file.

# ---------
# PHASE 13
# ---------
if [ ! -f 13.par ]; then
mfcl yft.frq 12.par 13.par -switch 1 1 14 1 # estimate von Bertalanffy K

fi

Note in the above example that simple -switch options can be used in the doitall file
when only one or a few flags are to be set.

# ---------
# PHASE 17
# ---------
if [ ! -f 17.par ]; then
mfcl yft.frq 16.par 17.par -file - <<PHASE17
1 50 4 # set convergence criterion to 1E-04
2 107 0 # remove overall exploitation rate penalty
1 1 1000

PHASE17
fi
mfcl yft.frq 16.par 16.par -switch 1 1 145 3 # calc. hessian matrix
mfcl yft.frq 16.par 16.par -switch 1 1 145 4 # produce SD report
mfcl yft.frq 16.par 16.par -switch 1 1 145 5 # produce correlation report

In this final example the convergence criterion is set small so as to achieve a more
precise convergence on the optimum of the likelihood surface. Three further mfcl command
lines serve to calculate hessian matrix and to use it to generate approximate standard error
estimates and a correlation matrix for the parameters.

4.4 Projecting the Future

Projections usually involve conducting a simulation over a certain period of time in which
the initial population state and other population parameters are obtained from the stock
assessment model. The fishing regime for the projection is specified in terms of either
catch or effort. Uncertainty in the initial population state, future recruitment and other
model parameters may be incorporated into the projection by sampling the parameters
from a multi-variate probability distribution (e.g. the posterior distribution in a Bayesian
analysis or the variance-covariance matrix in a likelihood-based analysis), and conducting
a sufficient number of repeats to characterize the overall variability. The variables that
are usually monitored in the projection include population biomass, recruitment, fishery
catch (if effort is specified) and fishing mortality (if catch is specified).

We take a similar approach to that described above, but we integrate the projection
into the main stock assessment analysis by building the projection period into the .frq file.
This involves (1) specifying the year and month that define the befinning of the projection
period (via the fishery data flags 2 and 3 in the .frq file) and (2) specifying the catch or
effort for the projection period in the appropriate records for those time periods. If catch
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is specified in the projection period, then effort is defined as missing using -1. If effort
is specified, then catch is defined as missing, again using the -1 convention. Currently,
size composition data cannot be specified in the projection – for all fisheries, selectivity
is assumed constant over time. (If it were desired to change the selectivity of a fishery
in the projection, this might be possible by defining a new fishery.) While it is possible
to define different starting points for the projection for different fisheries, we recommend
that a common start point be defined for all fisheries. This makes it easier to “insulate”
the likelihood function from the projection period.

There are a number of reasons why we have preferred this integrated approach:

• The complete analysis (stock assessment plus projection) is fully specified by the
set of standard data and .par files and can be undertaken in a standard model run.

• The variance of variables of interest, such as population biomass, is computed for
the projection period automatically when the variance report for the analysis is
generated.

• Recruitment and effort deviations during the projection period are legitimate sources
of process variation that should be incorporated into estimates of confidence inter-
vals for projection variables. While the point estimates of these variables for the
projection period will tend to zero (the mean of their prior distributions), their vari-
ance will be recognised and will contribute to the variance of projected biomass and
other dependent variables.

The way in which the projections have been structured in the model code ensures
that the results of the projections do not affect the overall objective function. Thus,
once a converged fit has been obtained, a range of projection specifications can be tested
effectively with only one function evaluation for each specification.

4.5 Flag Settings

The lists below give information on the various types and meanings of flags that are
manipulated in normal practice. Many flags are not used and are therefore available
for future enhancements of MULTIFAN-CL. A complete list of all the flags is given in
Appendix B, including those that are unused, obsolete, or suspected to be obselete. Many
examples of their use are given in Section 4.3.4.

Some flags are used to indicate grouping of fisheries for the purpose of defining shared
parameters or for grouping observed and predicted data in the likelilhood functions.
Grouping flags work by assigning an integer to each item (fishery or tag group or ???).
The numbers are simply group labels. Thus items to be grouped together are assigned
the same number. The assigned numbers should form a continuous set of integers from
1 to a maximum with no gaps. That restriction might be unneccssary, but until this has
been investigated it would be better to adhere to it.

Question on fish flag 31 – print selectivity by fleet, length and enable calculation of
vector of “cut” selectivities and penalty on first diferences in that vector??
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4.5.1 Program Control Flags

Flag Value Use

parest flag(1) n quit after n number of function evaluations

parest flag(50) n quit when max. gradient is less than 10n (n can be negative)

age flag(92) 0 catch errors version (default)
1 meaningless
2 catch calculated by Baranov catch equation
3 catch calculated by linearized catch equation (as in Stock Syn-

thesis 2)

parest flag(41) 1 do total weight fit only

parest flag(32) Sets initial control
1 old standard
2 a slightly faster initial control sequence
3 constrain fit with overall exploitation rate target. Penalty and

target given by age flag107 and 108 respectively (page 55)

age flag(32) 0 totpop fixed
1 totpop estimated

(check if this is turned off in phase 1!)

parest flag(145) 0 normal estimation
1 compute hessian
2 compute derivatives for dependent variables
3 both hessian and derivatives for dependent variables
4 st. dev. report (.var)
5 correlation report (.cor)
6 write inverse hessian (.hesinv)

parest flag(146) 1 scales the gradient for totpop

parest flag(152) 1 re-scales the gradients to 1

parest flag(189) 1 write graph.frq for java graphics

parest flag(190) 1 write ests.rep and plot.rep

parest flag(192) n keep n terms in the truncated newton minimization scheme, de-
fault (0)= 7

parest flag(197) 1 create new input par file (obsolete)
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4.5.2 Catch Estimation

Flag Value Use

age flag(115) n SS2-type catch estimation

age flag(144) n common weight for catch likelihood - automatically set to 10000

fish flags(i,45) n fishery-specific weights instead of af(144). If used, need to set
for all fisheries to the desired value.

4.5.3 Length/weight frequency data

Flag Value Use

parest flag(141) LF likelihood function
0 modified minimum χ2 with factor of 2 in variance and proper

distribution
1 modified minimum χ2

2 modified minimum χ2 with factor of 2 in variance
3 full normal distribution including constants
4 Dirichlet multinomial fit
5 Dirichlet multinomial mixture fit

fish flags(i,49) 0 effective length frequency sample size = actual sample size/10
n effective length frequency sample size = actual sample size/n

fish flags(i,50) 0 effective weight frequency sample size = actual sample size/10
n effective weight frequency sample size = actual sample size/n

4.5.4 Growth Parameter Estimation

Flag Value Use

parest flag(12) 1 estimate mean length of first age class

parest flag(13) 1 estimate mean length of last age class

parest flag(14) 1 estimate K

parest flag(15) 1 estimate “generic” standard deviation of length-at-age

parest flag(16) 1 estimate length-dependent standard deviation
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parest flag(157) 1 estimate density-dependent growth parameter

parest flag(168) 1 re-scales age in the growth function

parest flag(169) 1 makes the re-scaling a function of length

parest flag(171) 1 puts a power term on age

parest flag(173) n estimates the first n mean lengths as independent parameters

parest flag(182) n penalty wt. for length estimation is n/10

parest flag(184) n activate estimation of independent lengths of age classes specified
by parest flag(173).

parest flag(21) n seasonal growth – under construction

fish flags(i,11) 1 estimate selectivity bias in first age class; never been tested

fish flags(i,22) grouping flag for common selectivity bias; never been tested

4.5.5 Catchability Estimation

Flag Value Use

age flag(57) n recruitments per year – also a month doubling kludge factor
needed for calculating correct penalties in random walk catcha-
bility changes (equivalent to age flag(93)?)

fish flags(i,1) 1 estimate average catchability

fish flags(i,10) 1 estimate time-series changes in catchability

fish flags(i,15) n penalty weight for catchability deviation prior is n (default =
50)

fish flags(i,23) n only have a catchability deviation if the number of months since
the last deviation is > n

fish flags(i,27) 1 estimate seasonal catchability (trig version)

fish flags(i,47) n n > 0 estimate seasonal catchability (explicit parameter version),
n = no. of parameters (max. of 12)

fish flags(i,28) grouping flags for common seasonal catchability
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fish flags(i,29) grouping flags for common catchability deviations throughout
time series

fish flags(i,60) grouping flags for common catchability at start of time series

fish flags(i,39) n n/100 is variance for Kalman filter catchability deviations (de-
fault = 1, sd = 0.1)

fish flags(i,51) 1 estimate fish pars(7), a parameter for the effect of effort level on
catchability

fish flags(i,52) grouping flags for common effect of effort on catchability

age flag(156) 1 use fish pars(7) in the model.

fish flags(i,66) 1 flags for variable q in implicit method

age flag(104) 1 enables catchability devs for implicit q

fish flags(i,53) 1 estimate fish pars(8), a parameter for the effect of abundance on
catchability

fish flags(i,54) grouping flags for common effect of abundance on catchability

age flag(157) 1 use fish pars(8) in the model.

4.5.6 Selectivity Estimation

Flag Value Use

fish flags(i,48) n n > 0 ? turns on selectivity estimation (on by default)

fish flags(i,3) n first age class for common terminal selectivity; default: one less
than no. age classes

fish flags(i,16) 1 selectivity is non-decreasing with age
2 selectivity is zero for ages given by fish flags(i,3) and older

fish flags(i,19) n if n > 0, sets num ages for sel dev coffs

fish flags(i,21) obsolete, kaput, unused, inactive, idle

fish flags(i,24) grouping fleets for common selectivity (N.B.: selectivity features
set by other fish flagslisted here must be identical within groups)

fish flags(i,26) 1 uses length-dependent selectivities
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2 uses length-dependent selectivities with sd of length-at-age ac-
counted for (preferable)

fish flags(i,41) penalty weight for second difference smoothing

fish flags(i,42) penalty weight for third difference smoothing

fish flags(i,56) penalty weight for making selectivity a non-decreasing function
of age

fish flags(i,57) 0 no functional form for selectivity (default)
1 logistic selectivity curve
2 double normal selectivity curve
3 cubic spline selectivity curve

fish flags(i,61) n n is number of nodes for cubic spline selectivity curve

fish flags(i,62) n add n nodes to cubic spline selectivity curve

4.5.7 Effort Deviation

Flag Value Use

age flag(34) 1 turns on effort dev. estimation

fish flags(i,4) n if n > 1, turns on effort dev. estimation

fish flags(i,13) n penalty weight for effort devs prior (default=10). If n is negative,
the weights are scaled by the square root of the effort.

fish flags(i,38) n n/100 is variance for Kalman filter effort deviations (default =
1, sd = 0.1)

age flag(160) n penalty weight for fitting to effort in catch conditioned model

4.5.8 Tagging Data

Flag Value Use

parest flag(111) 0 least squares likelihood function for tagging data
1 robust least squares likelihood function for tagging data
2 Poisson likelihood function for tagging data
3 negative binomial likelihood function for tagging data.

(fish pars(4,fi) are the variance-determining parameters
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4 negative binomial likelihood with added zeros for tagging data.
fish pars(5,fi) and fish pars(6,fi) are the parameters

age flag(96) n pool tags into general tag population starting n periods after
release

tag flags(i,1) n number of tag mixing periods is n

age flag(100) 1 use negative binomial with added zeros as tag likelihood function.
fish pars(5,fi) and fish pars(6,fi) are the parameters

parest flag(33) n global upper bound for tag-reporting rate (*100)

fish flags(i,32) grouping flag for tag recaptures

fish flags(i,33) 1 estimate tag-reporting rate

fish flags(i,34) grouping flag for common reporting rate

fish flags(i,35) n penalty weight for tag-reporting rate prior is n

fish flags(i,36) n reporting rate prior mean is n/100

fish flags(i,37) 1 estimate random walk changes in tag-reporting rate (with fre-
quency of devs defined by fish flags(i,45))

fish flags(i,43) 0 for parest flag(111)=3, variance (a) for neg. bin. =5
(fish pars(i,4)=0)

1 variance (a) for neg. bin. is estimated

fish flags(i,44) grouping flags for estimating neg. bin. variance parameter, and
additional zeros parameters if active

fish flags(i,45) n only have a tag-reporting rate deviation if the number of months
since the last deviation is > n

fish flags(i,46) 1 turns on estimation of mixture parameters for additional zeros
in tag likelihood

4.5.9 Movement Parameters

Flag Value Use

age flag(27) n |n|/10 is the penalty weight for movement coefficients either dif-
ferent from zero (n > 0) or different from coefficients specified
in the .ini file (n < 0), default = 50 (equivalent to penalty of 5).
For n < 0
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age flag(28) 1 as for age flag(27) but for age-specific movement coefficients

age flag(29) 1 as for age flag(27) but for non-linear, age-specific movement co-
efficients

age flag(68) 1 estimate movement parameters (diff coffs)

age flag(69) 1 use movement parameters (diff coffs)

age flag(88) 1 estimate age-dependent movement parameters

age flag(89) 1 use age-dependent movement parameters

age flag(90) 1 estimate nonlinear age-dependent movement parameters

age flag(91) 1 use nonlinear age-dependent movement parameters

age flag(53) 0 frequency of movement same as frequency of recruitment
n frequency of movement is one per n recruitment periods

age flag(158) n

4.5.10 Recruitment, Initial Population, and Scaling

Flag Value Use

age flag(30) 1 estimate total recruitment deviations (usually on)

age flag(31) 1 estimate totpop (usually on)

age flag(32) 1 estimate overall population scaling parameter (check if this is
turned off in phase 1!)

age flag(113) 1 estimate parameter for scaling relative init population size and
recruitment (usually on)

age flag(70) 1 in recruitment computation use parameters of time-series vari-
ability in regional recruitment distribution

age flag(71) 1 estimate parameters of time-series variability in regional recruit-
ment distribution

age flag(110) n if n > 0, n/10 is the penalty on region rec diffs, default penalty
= 0.1
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age flag(72) n if n > 0, does fit between relative recruitment and environmental
correlate using n/100 as the penalty weight

age flag(57) n the number of recruitments per year is n (see also sec 4.5.5)

age flag(94) 0 initial populations are free parameters
1 initial population is Na+1 = Na exp(−xMa), where x is

age flag(95)/10
2 initial population is Na+1 = Na exp(−Za,r) where Za,r is the

total mortality averaged over the first age flag(95) periods

age flag(95) n n determines either 10× the multiplier x where age flag(94)=1
or the number of initial periods for averaging where age flag(94)
= 2

age flag(101) 1 turns on recruitment covariate file .env must be present

age flag(102) 1 estimate recruitment/environment correlation parameter

region flags(1,r) 1 estimate average proportion of total recruitment coming from
region r

parest flag(149) n if n > 0, n/10 is the penalty weight for recruitment deviations
(recr(iy)), if n = 0, the penalty weight is 1.0e-06, if n < 0, a
self-scaling lognormal recruitment assumption is used

parest flag(148) n if n > 0, n/10 is the penalty weight for differences between the
last two recruitments

age flag(177) n ?????

parest flag(155) n if n > 0, enable scheme of orthogonal polynomials for esti-
mating recruitment where n is the default number of parame-
ters (polynomial degree + 1) for overall, regional, seasonal, and
regional×seasonal recruitment variation. The following table
summarizes the use of this and 15 other parest flags that can
be used to manipulate this scheme.

Source of Variation
Overall Regions Seasons Regions×Seasons

Main Period
Start pf-183 pf-204 pf-206 pf-208
End pf-202 pf-210 pf-212 pf-214
Degree+1 pf-155 pf-216 pf-217 pf-218

Initial Period
No. low order coefficients pf-201 pf-205 pf-207 pf-209

Terminal Period
No. low order coefficients pf-203 pf-211 pf-213 pf-215
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4.5.11 MSY Stuff

Flag Value Use

age flag(145) n if n > 0, turns on stock-recruitment parameters, and n is the
penalty weight.

age flag(146) 1 estimate stock-recruitment parameters

age flag(163) n n = 0 (default), steepness is active parameter of SRR; n = 1,
steepness a derived parameter

age flag(147) n number of time periods between spawning and recruitment (de-
fault = 1)

age flag(148) n number of years from last time period to compute average F

age flag(155) n number of years from last time period to omit from average F
computation

age flag(149) 0 yield computed in weight (t)
1 yield computed in numbers

age flag(194) n 1: include effort deviations in determining average F-at-age when
calculating the yield curve. Default is 0 (off).

age flag(150) n if n > 0, turns on biomass dynamics estimation and n is the
penalty weight

age flag(151) 1 1: activates estimation of r parameter in Pella-Tomlinson model

age flag(152) 1 1: activates estimation of K parameter in Pella-Tomlinson model

age flag(153) n n: if n > 0, activates prior for steepness parameter in SRR
relationship, and n/10 is the a parameter of the beta prior dis-
tribution

age flag(154) n n/10 is the b parameter of the beta prior distribution
a=10, b=2 ⇒ mode=0.9, sd=0.1; a=13, b=5 ⇒ mode=0.75,
sd=0.1

age flag(112) n if n > 0 use numbers of fish instead of biomass to calculate the
catch

age flag(158) n used to enable region-specific yield analysis

age flag(140) n n > 1 enables region-specific yield analysis with resolution per
Fmult step of n/100
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age flag(141) n n in the number of Fmult steps in region-specific yield analysis.
Default: 200.

age flag(163) 1 use steepness as active parameter in stock-recruitment curve

age flag(165) n n/100 (default) or: target for F msy/F or B/Bmsy. Stock-
recruitment parameters, age flag(145), must be enabled.

age flag(166) n n/100: penalty weight for F msy/F or B/Bmsy, default weight =
1000 (n = 105)

age flag(167) n n = 0 (default) target F msy/F , otherwise target B/Bmsy

age flag(168) n n = 0 (default) exponent in weighted average for F msy/F , default:
50

age flag(169) n divisor in weighted average for F msy/F , default (for n = 0) :
100000; n < 0 ⇒ use Dave’s approach.

4.5.12 Fishing Mortality Targets

Flag Value Use

age flag(37) n average F target is n/1000

age flag(39) n penalty weight for F target is 100 ∗ n (default penalty weight =
1000)

age flag(43) n last n years used for annual F target

age flag(44) n n/100: annual F target

fish flags(i,14) n restricts F for any individual fishing incident to n/10.

age flag(107) n n > 0 activates overall exploitation penalty with n the penalty
weight and age flag(108) sets the target

age flag(108) n n/100: overall exploitation rate target

4.5.13 Biomass Ratio Targets

Flag Value Use

age flag(97) n the target biomass ratio (last x years/first x years) is n/100
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age flag(98) n penalty weight for biomass ratio

age flag(99) n the number of initial and final years used to compute the biomass
ratio

4.5.14 Fishery Impact Analysis

Flag Value Use

fish flags(i,55) 1 disable fleet i (set its catchability to 0) for impact analysis
(see 3.8.1). If i = 999, disable all fleets.

age flag(193) 1 when set, the fishing effort at start is considered in calculating
initial conditions for fishery impact analysis

age flag(170) n enable a biomass depletion target: (Bwith fishing/Bwithout fishing)

age flag(171) n n = 0 (default) unfished (or diminished fishing) calculations
based on estimated recuitment trajectories, otherwise calcula-
tions are based on estimated stock/recruitment relationship

age flag(172) n n = 0 (default) total biomass depletion, otherwise adult biomass
depletion

age flag(173) n first time period for reckoning depletion – counting backwards
from end of time series

age flag(174) n last time period for reckoning depletion – counting backwards
from end of time series

age flag(175) n n/1000 is target depletion level

age flag(176) n penalty on depletion target

age flag(190) 0 get average recruitment from the SRR (default)
n calculate average recruitment for the time period defined by

af(190) and af(191)

age flag(191) n with af(190) defines time period for average recruitment

4.5.15 Natural Mortality Estimation

Many flags governing natural mortality put constraints on deviations of natural mortality
with age, M ′

a, rather than directly on natural mortality itself, Ma. The M ′
a are the logs
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of the ratios of natural mortalities at age to mean natural mortality (see page 94).

Flag Value Use

age flag(33) 1 estimate M

age flag(73) 1 estimate Ma; ∀ age class a

age flag(109) 1 estimate Ma directly instead of as deviations from mean
2 Ma is fixed as given by age_pars(5) in the .ini file (or .par file),

see page 30 or 35

age flag(77) n n is penalty weight on
∑

(Ma−1 − 2Ma + Ma+1)
2, default = 25

age flag(78) n n = penalty weight on
∑

(Ma+1 −Ma)
2, default = 5

age flag(79) n n is penalty weight on
∑

(Ma −M)2, default = 10

age flag(81) n n is number of terminal age classes with the same M

age flag(82) n target average M ≡ M
′
is n/100

age flag(80) n n is penalty weight on M
′2
, default = 10

age flag(83) n n is minimum age to include in M
′
, (default = 1)

age flag(85) n n is maximum age to include in M
′
, (default = nage)

age flag(84) n n is penalty weight for target M
′
, (default = 0)

age flag(130) n n > 0 activates M/K target (natural mortality to vonBertalanfy
K) with n/100 the target

age flag(131) n n: first age in average M-at-age for M/K target; defaults to age
1

age flag(132) n n: last age in average M-at-age for M/K target; defaults to oldest
age

age flag(133) n n: penalty on M/K target

4.5.16 Projections

Flag Value Use
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age flag(190) n n = 0 (default) stock-recruit curve gives recruitment during pro-
jection period, otherwise projection period recruitment given by
average estimated recruitment during period starting n time pe-
riods before end of data series, i.e. the beginning of the projec-
tion period defined by fishery data flags in the .frq file (page 25).

age flag(191) n For age flag(190)> 0, end of recruitment average is n time peri-
ods before end of data series.

parest flag(142) n n is last time step for which catch and size data deviations appear
in the likelihood function. Useful to set n to the beginning of the
projection period to avoid having events during the projection
affect parameter estimates.

4.6 Helpful Utilities

MULTIFAN-CL produces a bewildering array of output files in the directory from which
it was run. A typical directory listing might look like the following where most, but not
all, of the files were output by MULTIFAN-CL.

[lomu:try3]$ ls

00.par 01.par 03.par 04.par 05.par 06a.par 06.par

07.par 08.par 09.par 10.par 11.par 12.par 13.par

14.par 15.par 16.par 17.par aa catchequ catch.rep

check.tmp contribs deplabel.tmp derch.rpt doitall.yft do_sd eigv.rpt

error.log ests.rep gradient.rpt junk length.fit LL-4A.png mfcl.cfg

MULTIFAN-CL.ini nr_tags plot.rep tag.rep tags.err testequ tester

tmp.out tt variance weight.fit xinit.rpt yft.dep yft.frq

yft.hes yft.ini yft.tag yft.var

The aim here is to introduce a few utilities that have been found helpful in sorting out
useful information from the output files while a MULTIFAN-CL fit is proceeding or shortly
thereafter. Deeper analysis of MULTIFAN-CL output is presented in Chapter 6 where
some of these files are discussed in detail.

4.6.1 Dealing with Flags

It is often useful to know how the flags have been set in a .par file. Because the flags are
not labeled in the .par file, it is difficult to find particular flags in a listing of the file.

flags

The utility flags helps by listing the flag number, a short flag description, and the value
for all flags that are set to other than the default value. Here is a sample:

[ComputerName:try3]$ flags 08.par

INPUT FILE:08.par

Parest Flags

-------------
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12 ’growth: avg size of 1st age class’ :1

13 ’growth: avg size of last age class’ :1

14 ’growth: est K’ :1

15 ’growth: SD, size at age’ :1

16 ’growth: SD, size dependent’ :1

32 ’control: initial control regime’ :2

1 ’control: iterationion limit’ :1000

50 ’control: max gradient limit’ :4

146 ’control: scale gradient for tot pop.’ :25

189 ’control: write plot files’ :1

190 ’control: write ests.rep’ :1

141 ’sample: likelihood fn selection’ :3

Age Flags

-----------

68 ’move: enable’, :1

69 ’move: est’, :1

33 ’M: est. avg M’, :1

82 ’M: target avg M’, :20

84 ’M: penalty, avg M’, :3

57 ’recruit: num rec/yr’, :1

30 ’recruit: est Rtot’, :1

113 ’recruit: scale N0 and R’, :1

70 ’recruit: Rrt enable’, :1

71 ’recruit: Rrt est’ :1

110 ’recruit: Rrt penalty’, :5

94 ’N0: strategy’, :2

95 ’N0: af-94 modifier’, :5

146 ’MSY: activate SRR’, :1

145 ’MSY: penalty on SRR pars’, :5

147 ’MSY: lag betw. spawning and recruitment’, :2

148 ’MSY: num final yrs for avg F’, :5

155 ’MSY: yrs to omit for avg F’, :1

34 ’est effort devs’, :1

31 ’est totpop’, :1

32 ’pop scaling param’, :1

144 ’common wt for catch L to 10000’, :10000

Fish Flags : 1 2 3 4 5 6 7 8 9 10 11 12

-------------------------------------------------------------------------------------

24 ’selec: grouping’, : 1 1 2 2 3 3 4 4 5 5 5 5

16 ’selec: shape’, : 1 1 1 1 1 1 1 1 1 1 1 1

3 ’selec: 1st age, common sel’, : 17 17 17 17 17 17 17 17 17 17 17 17

26 ’selec: length-dependent’, : 2 2 2 2 2 2 2 2 2 2 2 2

48 ’selec: est (obsolete??)’, : 1 1 1 1 1 1 1 1 1 1 1 1

1 ’q: est avg. q’, : 1 1 1 1 1 1 1 1 1 1 1 1

10 ’q: time series in q’, : 0 0 0 0 1 1 1 1 1 1 1 1

15 ’q: penalty for q-devs’, : 50 50 50 50 50 50 50 50 50 50 50 50

23 ’q: time step for q-devs’, : 11 11 11 11 11 11 11 11 11 11 11 11

29 ’q: grouping for overall q’, : 1 1 1 1 2 2 2 2 3 3 3 3

47 ’q: arbitrary seasonal q’, : 4 4 4 4 4 4 4 4 4 4 4 4

4 ’E: est Edevs’, : 2 2 2 2 2 2 2 2 2 2 2 2

55 ’fishery impact analysis:’, : 1 1 1 1 1 1 1 1 1 1 1 1

pflag, aflag, fflag

These utilities are useful for examining the setting of a particular flag when the flag
number is known. Here is an example of each:

[ComputerName:try3]$ pflag 50 08.par

08.par: 4

[ComputerName:try3]$ aflag 145 08.par

08.par: 5

[ComputerName:try3]$ fflag 24 08.par

08.par: 1 1 2 2 3 3 4 4 5 5 5 5
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ch.pflag, ch.aflag, ch.fflag

These utilities facilitate changing a particular flag in a .par file. They are used as follows:

[ComputerName:try3]$ ch.pflag flag-no. value name.par

[ComputerName:try3]$ ch.aflag flag-no. value name.par

[ComputerName:try3]$ ch.fflag flag-no. value name.par

At this point ch.fflag changes the indicated flag for all fleets, but should be re-
designed in the future to allow changing for only a designated sub-set of the fleets.

flagdiff

This utility facilitates examining how two .par files differ in their flag settings, for example:

[ComputerName:try3]$ flagdiff 08.par 09.par

1c1

< INPUT FILE:08.par

---

> INPUT FILE:09.par

12c12

< 50 ’control: max gradient limit’ :4

---

> 50 ’control: max gradient limit’ :-6

41a42

> 171 ’impact based on SRR’ :1

4.6.2 Quick Access to .par Files

checkafit

While a fit is proceeding through its phases under the direction of a doitall file, it is of
interest to check on how things are going from time to time. checkafit is a small UNIX-
type script that parses portions of one or more .par files and lists the final objective
function values, the final maximum gradients, and the numbers of active parameters.
With an argument of *.par in the directory above, the following is obtained:

[ComputerName:try3]$ checkafit *.par

ID obj grad npar

00.par

01.par 397979.090657947527 18.592977524637 2321

02.par 397367.876420154760 8.392482241683 2299

03.par 400223.872837031668 9.595400425097 3099

04.par 405270.936261841794 8.545998866894 3111

from which we can see that the fit has progressed through phase 4, that there has been
some progress in minimizing the objective function, though not much in the last couple
of phases. The last gradient value would not be very impressive for a final phase of the
fit wherein we would look for a small gradient value (< 10−4). Howvever if this were an
intermediate phase with convergence criterion set large, then it would be OK.

mfcl.summary

This utility is similar to checkafit in that it parses .par files, but in addition to conver-
gence information, it also returns a few parameter estimates as in this example:
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[ComputerName:try3]$ mfcl.summary 04.par

04.par

# natural mortality coefficient 0.250000000000

# The von Bertalanffy parameters

24.122546431390 20.000000000000 40.000000000000

160.349331770499 140.000000000000 200.000000000000

0.100000000000 0 0.300000000000

# Variance parameters

6.664684263036 3.000000000000 8.000000000000

0.400000000000 -0.690000000000 0.690000000000

Objective Max. Grad. No. pars

405270.936261841794 8.545998866894 3111

targcheck

This utility is designed to return information on MULTIFAN-CL runs with target ratios
of F to FMSY, B to BMSY, or B to Bno fishing (see age flags 165 to 167, page 55, and
age flags 170 to 176, page 56). This utility is particularly helpful when makeing a series
of runs to determine a likelihood profile for the target ratio (see page 21). Here is example
output:

[ComputerName:BBmsy]$ targcheck BB*.par

obj grad target realized penalty resid.pen net.LL

BB0.70.par 789880.701288 0.049723469936 0.7 0.701991 3000000 0.2419670 789880.943255

BB0.80.par 789917.509387 0.098139215007 0.8 0.802923 2000000 0.2660870 789917.775474

BB0.90.par 789918.466756 0.091428687996 0.9 0.905382 1000000 0.3555110 789918.822267

BB1.00.par 789944.358042 0.064002285366 1.0 1.008600 500000 0.3664890 789944.724531

BB1.10.par 789936.656236 0.069560409992 1.1 1.106470 500000 0.1720060 789936.828242

BB1.20.par 789955.429664 0.065321237183 1.2 1.207790 200000 0.0836848 789955.513349

BB1.30.par 789946.063038 0.076404383699 1.3 1.276840 200000 0.6463090 789946.709347

BB1.40.par 789938.575630 0.271294687717 1.4 1.386460 1000000 0.9444360 789939.520066

BB1.50.par 789923.538875 0.825184407769 1.5 1.489150 2000000 1.0538300 789924.592705

BB1.60.par 789909.216574 0.338046332232 1.6 1.590760 3000000 1.0054100 789910.221984

BB1.70.par 789876.286301 1.683403949769 1.7 1.692150 5000000 1.0714200 789877.357721

4.6.3 Running in background

For longwinded runs it is useful to have MULTIFAN-CL run in the background so that
other work can be done while the run proceeds. This is especially so if the MULTIFAN-CL
is running on a mainframe machine and the user wishes to log off for the night or weekend
leaving MULTIFAN-CL going. The following assumes that MULTIFAN-CL is being run
on a LINUX or UNIX-like mainframe, and instructions are issued to it either from a local
console or remotely from another computer.

nohup ... &

The nohup command is a standard UNIX utility that allows a process to be started and
run independently of the shell that starts it. All output from the process is sent to a file
“nohup.out”. The following will start a background MULTIFAN-CL analysis contained
in a doitall file.

[ComputerName:try3]$ nohup ./doitall &
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The “&” at the end of the run string is necessary for restoring contol to the shell while
the background process continues, and nohup.out allows the shell to exit and the user to
log off whithout disrupting the ./doitall process.

tail

Because the MULTIFAN-CL output is going to a file, that output can be viewed from
any shell that has read access to that file. A convenient way to view it is with another
standard UNIX utility, “tail”, which lists the last few lines of a file. The -f option causes
tail to track the tail end of the file as it evolves:

[ComputerName:try3]$ tail -f nohup.out

condensed.list

Because the output tends to be quite voluminous, it can be difficult to read the salient
pieces of it, particularly if the output is produced quickly. The “condensed.list” was
designed to filter the output so that only summarized results are listed for each iteration of
the function minimizer. Section 6.1.1 gives example filtered output. Sometimes additional
information is desired in addition to the bare bones summary. In that case arguments
can be given to condensed.list telling it to report more of the output at each major
iteration of the minimizer, for example:

[ComputerName:try3]$ tail -f nohup.out | condensed.list alpha beta

.....

Function value -7.8995964e+05; maximum gradient component mag -2.9669e+00

alpha = 3134776.98

beta = 4070.32

.....

Function value -7.8995969e+05; maximum gradient component mag 2.4067e+00

alpha = 3134812.82

beta = 4070.14

.....

Function value -7.8995973e+05; maximum gradient component mag 2.4258e+00

alpha = 3134883.27

beta = 4070.80

.....

In this case condensed.list has displayed output records containing “alpha” and
“beta” in addition to its normal filtered output.

4.6.4 screen: A utility for detaching and reattaching a running
MULTIFAN-CL Process

One disadvantage of starting a MULTIFAN-CL run with nohup is that it is not then
possible for the user to intervene for example with “Ctrl-c q” (see page 71). The screen
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utility solves that problem by allowing a process to be detached from the shell that started
it and subsequently re-attached to that or a different shell – even a new shell after the
user has logged off and then on again. Once re-attached, the user can interact with the
process through the shell in the normal way. The screen utility has many other features
as well. Its only drawback is that its great power makes it difficult to learn. The purpose
here is ease the “learning curve” by introducing just those features that have been found
particularly useful in running MULTIFAN-CL analyses.

The main thing to understand about the screen utility is that it creates one or more
“sockets” for the user which are normally accessable only by that user. Each socket can
administer an environment of one or more “screens’ with a shell running in each. Within
each screen, the user interacts with the shell as usual. All the normal programs and utilities
can be run, and in particular a MULTIFAN-CL analysis can be run either directly or via
a doitall file with standard output displayed to the screen.

This can perhaps be better explained by running through the following example where
the commands to the screen utility are listed prominently and other commands to the
shell or to MULTIFAN-CL are mixed with the text: Assume that a user is working on a
mainframe computer in a shell with current directory “try3” containing a .frq and other
files necessary for a MULTIFAN-CL run. The user then enters at the shell prompt:

[ComputerName:try3]$ screen -S mfclrun

A socket with the title “mfclrun” is created. Any name could be chosen, but it’s best
that names don’t start with numerals. The user is now in the screen environment, and
her physical screen is attached to a “virtual” screen named “screen 0” displaying a shell
prompt.

The user then launches a MULTIFAN-CL analysis by calling mfcl with some appro-
priate run string, and the normal screen output from MULTIFAN-CL scrolls past on the
screen. The user then types

Ctrl-a Ctrl-d

and is detached from the screen environment and confronted with a new prompt in the
original shell from which screen was invoked, i.e.

[ComputerName:try3]$ screen -S mfclrun

[ComputerName:try3]$

At that point the user logs off and goes home. The MULTIFAN-CL run continues, still
dumping its output to its virtual screen. Later the user logs on remotely from home and
enters the following (the directory doesn’t matter):

[ComputerName:homedir]$ screen -r mfclrun

which attaches her home computer screen to screen 0 of her mfclrun socket, and MULTI-
FAN-CL output scrolls past. She then types

Ctrl-a H
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which produces a message on the top of her screen indicating that logfile “screenlog.0”
has been created. She then types

Ctrl-a Ctrl-c

which opens a shell prompt in another virtual screen (screen 1) which is now attached
to her physical screen. The current directory is try3, same as that of screen 0, and a
directory listing would reveal an entry for file “screenlog.0”. She enters

[ComputerName:]$ tail -f screenlog.0 | condensed.list

and begins to see summarized output from MULTIFAN-CL (see 6.1.1). She then types

Ctrl-a Ctrl-d

which detaches her computer from the mfclrun socket. The next morning our intrepid
user logs on to the mainframe, again enters

[ComputerName:]$ screen -r mfclrun

and finds herself looking at more summarized output from MULTIFAN-CL in screen 1.
She decides that she needs to interrupt the run in order to rescale (see page 72) and types

Ctrl-a Ctrl-a

which switches her to screen 0 where she stops MULTIFAN-CL with Ctrl-c q (see
page 71) and issues a new call to mfcl. Typing

Ctrl-a Ctrl-a

toggles her back to screen 1 where screenlog 0 is still being filtered through condensed.list.
This switching between virtual screens and detaching and re-attaching goes through sev-
eral cycles till the analysis is complete. In the process more virtual screens are created
with Ctrl-a Ctrl-c which complicates switching screens somewhat (see table below).
Screens are discarded by typing

Ctrl-a K

and finally, with only a single virtual screen left, another Ctrl-a K discards the mfclrun

socket.
The following table summarizes the screen commands shown above plus a few more

helpful commands. Further information on the screen utility can be found in LINUX/UNIX
documentation.
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Outside screen environment:
screen -ls list known screen sockets
screen -S name creates and attaches screen socket name
screen -r [name] attach existing screen socket. Need type only enough of name

to identify among socket names
screen -dr [name] force attach to existing screen socket which system thinks is

already attached (can happen for example with inadvertent dis-
connect)

Within screen environment:
Ctrl-a [Ctrl-]d detach socket
Ctrl-a [Ctrl-]c create new screen and switch to it
Ctrl-a Ctrl-a switch to last screen
Ctrl-a [Ctrl-]n switch to next screen
Ctrl-a [Ctrl-]p switch to previous screen
Ctrl-a n switch to screen n
Ctrl-a Esc enter scroll mode to allow scrolling in current buffer
q exit scroll mode, and move to end of current buffer
Ctrl-a H toggle logging of current screen output to file screenlog.n, where

n is the current screen number
Ctrl-a K discard current screen. If only one screen on current socket, exit

and discard socket

4.6.5 Miscellaneous Other Utilities

newtry

It is not unusual to conduct a number of fits in the course of a MULTIFAN-CL analysis.
To keep a record of all the fitting trials, it is advisable to start each one in a new directory
to keep files from being overwritten. newtry facilitates setting up a new directory from
an existing one with only the files necessary to begin afresh. Running newtry from within
the directory in this example gives the following:

[ComputerName:try3]$ newtry ../try4

[ComputerName:junk]$ cd ../junkk

[ComputerName:try4]$ ls

doitall.yft mfcl.cfg MULTIFAN-CL.ini yft.frq yft.ini yft.tag

The new directory contains only the basic input files plus a copy of the previous doitall
file. Presumably one or more of these files will be edited in some way so as to conduct
the new fit under different conditions of some kind.

It is often the case that the analyst would like to start a new fit from an intermidiate
phase rather than from the beginning. A useful modification of newtry would be an
optional argument to indicate a starting phase so that the new directory would be set up
with the appropriate .par file(s) in place.
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Likelihood Functions

MULTIFAN-CL fits itself to data by minimizing an objective function consisting of the
sum of negative log-likelihood functions of observed data and Bayesean priors on various
parameters. This section discusses how to specify and manipulate these various compo-
nents of the objective function. Mathematical details of the objective function are given
in the Technical Annex (see A.2).

5.1 Total Catch Data

A fundamental assumption of MULTIFAN-CL is that the total catch data are observed
with relatively little error. The default assumption is that the coefficient of variation
(CV) of log-catch residuals is about 0.07 (see below 5.4). This is controlled by age flag
144, which is set automatically to 10000 during the initial phase (the value of the flag is
multiplied by 0.01 in the code, thus obtaining the CV of 0.07). The value of the flag may
be changed by the user after the initial phase, although this is not recommended.

The facility is available to set the penalty weight for the total catch likelihood on a
fishery-by-fishery basis. This is useful if it is suspected that the estimates of total catch
for one or more fisheries may be less precise than for the others. Fishery-specific penalties
are set using fish flag 56. This flag has the same behavior as age flag 144, i.e. a setting of
10000 assumes a residual CV of 0.07. Note that if fish flag 56 is used, it must be set for
all fisheries.

5.2 Length and Weight Frequency Data

Several options are available for the length and/or weight frequency likelihood function
(see 4.5.3) through setting parest flag 141. We suggest setting this flag to 3, which invokes
the full normal probability density, with the observed frequencies used in the variance
term. The use of observed rather than predicted frequencies was suggested by Mark
Maunder (IATTC) .... [get Mark to explain rationale]. Settings 1 and 2 are minimum chi-
squared formulations of the likelihood function. Setting 2 scales the constant part of the
variance by the inverse of the number of length intervals; setting 1 sets the constant part
of the variance to 0.01. The default setting (0) uses the original MULTIFAN formulation
of the likelihood (equivalent to setting 1 but with the predicted frequencies used in the

66
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variance computation) as given in Fournier et al. (1990). Note that currently setting 3
only is available for weight frequency data.

5.3 Tagging Data

There are several options available for the tag likelihood function, specified by parest flag
111 4.5.8. If the flag is set to 0 or 1, a simple least- squares type function is employed.
These functions were employed when the inclusion of tagging data into MULTIFAN-CL
was being first developed, and they are not recommended for routine use.

A Poisson likelihood function is employed when parest flag 111 = 2. The Poisson
is probably the simplest likelihood funtion to use for tagging data, and is a useful base
model in cases where the identity of tag recaptures with respect to their release group is
not maintained over all time periods. One limitation of the Poisson is that the variance of
tag recaptures for a particular area-time stratum is determined by the expected value of
the recaptures. This results from the various assumptions of a Poisson process, including
that tag recapture observations are independent. For most tagging experiments, we expect
some degree of clumping or contagion in the pattern of tag recaptures and therefore the
assumption of independence is not likely to be satisfied. In such cases, the Poisson variance
will underestimate the variance of the data, resulting in over-weighting of the tagging data
in the objective function. To deal with this problem, a negative binomial likelihood may
be used and is invoked by parest flag 111 = 3. Fishery-specific parameters that scale
the variance are now estimated from the data. These parameters are stored in the 4th
row of fishery parameters in the .par file. The parameterization is such that large values
of these scaling parameters make the negative binomial approach the Poisson, whereas
small values of the parameters result in higher variance and overdispersion. Estimation
of the parameters is activated by setting fish flag 43 = 1 and they may be grouped across
fisheries using fish flag 44 as grouping flags.

Another statistical problem that sometimes occurs in tagging experiments is an over-
representatioon of zero tag recaptures in the data compared to the predictions of statistical
models such as the Poisson and negative binomial. One could imagine several ways that
this could occur, including a tendancy of fishing operators to not report small numbers
of isolated recaptures that might be expected to occur at long times after release when
perhaps publicity for the program has wound down. One way to deal with this problem is
to allow for added zeros in the probability distribution of the tag recaptures. Essentially,
we attempt to estimate the probability of additional zero recaptures by way of fishery-
specific parameters that are stored in the 5th row of fishery parameters in the .par file.
Estimation is activated by fish flag 46 = 1 and fish flag 44 is the grouping flag.

The full technical details of the use of the negative binomial are given in the Technical
Annex (page 91).

5.4 Penalties and Priors

The addition of penalties to the likelihood function is a means of adding non-data infor-
mation to the model. In a Bayesian context, this is equivalent to putting a “prior” on a
parameter, or a quantity that is a function of the parameters. The prior describes the
level of certainty we have about a particular variable, and is in effect a prior (i.e. before
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entering the analysis and being subjected to the data) probability distribution for the
parameter. Typically, we use age flags or fish flags to specify the mean of the prior (which
might be thought of as the “target” value for the parameter) and a penalty weight that
determines the extent to which the objective function is penalized for having a value dif-
ferent to the target. Of course, if the information in the data are consistent with the prior,
then the parameter estimate will be close to the target and the penalty will be very small.
On the other hand, if there is very little information in the data concerning a particular
parameter, then the model estimate will be dominated by the prior and will likely end up
at a value very close to the target. It is in this latter case that the application of penal-
ties is very useful – it tends to stabilize the model and avoids the parameter estimates
becoming biologically unreasonable. This is not the same as fixing the parameter at the
target value, because the probability distribution of the prior is taken into account in
the estimation of the covariance matrix of the parameters – if the parameter were simply
fixed, its uncertainty would not be recognised in the model. Another possibility is that
the data will turn out to be highly informative regarding a particular parameter and that
the estimate will differ considerably from the prior. It is here that the analyst needs to
look further at the structure of the model to see why an unreasonable estimate has been
obtained.

5.4.1 Normal priors

A typical penalty function is of the form p = w(x−xtarget)
2, or often p = w(log(x/xtarget))

2

where p is the penalty to be added to the objective function, x is the parameter estimate,
xtarget is the prior mean (or target value) and w is the penalty weighting factor. With this
form of penalty function, it is clear that x, or log(x), is a normally distributed random
variable of mean xtarget and standard deviation σ = 1/

√
2w.

In MULTIFAN-CL the penalty weights w are typically set using age flags or fish flags.
The coefficient of variation, CV (σ divided by the mean), is a useful quantity to guide
the specification of w. A CV of 0.1 or less would indicate that a variable is fairly well
determined, whereas a CV of 0.5 or more would suggest a fairly high degree of uncer-
tainty or variability. Note that many variables, such as effort deviations and catchability
deviations, are assumed to deviate logarithmically, i.e. they have multiplicative rather
than additive deviations and a mean of 1. In these cases, the CV is approximated by
the σ of the logarithmic form of the variable (see A.2.3). To aid in choosing values for
penalty weights, a selection of weighting factors and corresponding CV values is given in
Table 5.1.

Table 5.1: Weighting factors and CV values for normal priors.

w — CV w — CV w — CV w — CV
1 — 0.71 7 — 0.27 14 — 0.19 50 — 0.10
2 — 0.50 8 — 0.25 16 — 0.18 100 — 0.07
3 — 0.41 9 — 0.24 20 — 0.16 150 — 0.06
4 — 0.35 10 — 0.22 25 — 0.14 200 — 0.05
5 — 0.32 11 — 0.21 30 — 0.13 500 — 0.03
6 — 0.29 12 — 0.20 40 — 0.11 1000 — 0.02
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5.4.2 Beta priors

In one case (the steepness of the stock-recruitment relationship) MULTIFAN-CL imposes
a non-standard beta distribution prior on the interval 0.2 – 1.0 instead of a normal dis-
tribution prior. The shape of the beta prior is set by age flags 153 and 154 (10 times the
values of the beta parameters A and B respectively). Table 5.2 shows settings of these
age flags to achieve a selection of modes, means, and standard deviations.

Table 5.2: Age flag settings and shape of the beta distribution with range 0.2 to 1.

age flag 153 age flag 154 mode mean sigma age flag 153 age flag 154 mode mean sigma
126 357 0.41 0.41 0.05 368 225 0.70 0.70 0.05
36 86 0.40 0.44 0.10 87 56 0.70 0.69 0.10
12 16 0.40 0.54 0.20 17 14 0.71 0.64 0.20
225 368 0.50 0.50 0.05 357 126 0.80 0.79 0.05
56 87 0.50 0.51 0.10 88 36 0.80 0.77 0.10
14 17 0.49 0.56 0.20 16 12 0.80 0.66 0.20
315 315 0.60 0.60 0.05 269 47 0.90 0.88 0.05
75 75 0.60 0.60 0.10 75 19 0.90 0.84 0.10
15 15 0.60 0.50 0.20 17 11 0.90 0.69 0.20

Setting age flags 153 and 145 both to 10 produces a flat distribution, and setting both
less than 10 produces a U-shaped distribution. The derivation of steepness and formulae
for calculating the mode, standard deviation, and mean of the beta distribution are given
in the Technical Annex (page 93).
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Interpreting Results

6.1 Output on Screen

For persons experienced in using AD-MODELBUILDER or AUTODIF, the output on the
screen from MULTIFAN-CL will be familiar. After a stream of introductory stuff, here is
the typical output to the screen (or standard output) from each function evaluation, that
is to say, each time the population and fisheries simulation routine runs and the objective
function is subsequently calculated:

selectivity pen = 0.00
Av. F = 0.067044
The fish mort penalty is 1194.576491
after call_penalties pen = 3089.753210
Length frequency data -353667.97
Total catch 1040.98
Total func -349537.23
==============================================
f eval 21

Various components of the objective function and its total (“Total func”) are shown
plus the tally of function evaluations (“f eval”). The above output is shown for every step
the minimizer takes along a gradient line. Having determined a minimum value along
that line, the minimizer starts a new iteration by establishing a new direction of search
at which point additional output is sent to the screen showing the number of parameters
being estimated (variables), the maximum gradient magnitude among all the parameters,
plus a selection of current parameter values and the gradient of the objective function
with respect to each:

230 variables; iteration 15; function evaluation 22
Function value -3.4954e+05; maximum gradient component mag 5.1220e+02
Var Value Gradient |Var Value Gradient |Var Value Gradient
1 26.38651 -9.75809e+00 | 2 51.00638 2.45185e+02 | 3 51.18979 -1.93987e+02
4 -8.56903 -1.32590e-01 | 5 27.65943 -1.20217e+00 | 6 29.12218 3.58509e+00
7 204.1072 7.10379e+00 | 8 179.5699 8.61246e+00 | 9 222.3152 4.95624e+00
10 208.1248 1.25374e+01 | 11 214.0105 1.09369e+01 | 12 236.8858 4.22897e+00
13 239.7104 5.18857e+00 | 14 256.3488 7.79906e+00 | 15 263.4407 1.01123e+01
16 257.7195 4.87023e+00 | 17 256.5459 3.10248e+00 | 18 255.2254 2.12410e+00
19 252.7260 5.79138e-01 | 20 250.1414 -8.97963e+00 | 21 246.9461 -1.36999e+01
22 244.0973 -2.29345e+01 | 23 239.4727 -3.58491e+01 | 24 233.3302 1.34997e+00
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25 230.4667 2.32083e+00 | 26 235.1057 1.04368e+00 | 27 231.5328 4.82628e+00
28 232.5260 4.01869e+00 | 29 233.4910 3.80338e+00 | 30 232.5695 4.94573e+00
31 236.8059 2.32086e+00 | 32 237.8531 2.12982e+00 | 33 239.3150 8.10424e-01
34 239.9328 -3.62231e-02 | 35 240.5892 -9.83419e-01 | 36 240.8852 -1.27347e+00
37 240.5787 -1.95925e+00 | 38 240.0229 -4.55094e+00 | 39 239.1912 -3.77607e+00
40 243.5904 -1.48434e+01 | 41 240.8171 2.30370e+00 | 42 243.7131 4.33531e+00
43 239.3933 2.56218e+00 | 44 246.4590 1.78294e+01 | 45 244.7752 1.40266e+01
46 242.5358 8.27873e+00 | 47 244.2200 1.11540e+01 | 48 240.9609 9.32867e+00
49 240.8908 9.95465e+00 | 50 238.3860 2.82602e+00 | 51 236.8014 5.14381e+00
52 234.6456 1.45444e+00 | 53 232.0680 -1.15390e+01 | 54 229.8253 -1.54616e+01

Note that the parameter values are scaled internally by the fitting procedure. Therefore
the values shown are not equivalent to the parameter values as a human user would know
them. In any case, the parameters (“variables” in the output) are simply numbered and
not given labels that would be familiar to the user.

6.1.1 What to look for

Evidence that the minimizer is making progress in improving the fit of the model is given
by the “Function value” and the “maximum gradient component mag”. Because there is
large amount of other output, these can be difficult to see, particularly when the output is
scrolling quickly. To cope with that a utlity, “condensed.list”was created to summarize
results (see page 62). Here is some typical output:

Function value -6.0376651e+05; maximum gradient component mag -5.9330e+00
.....
Function value -6.0376815e+05; maximum gradient component mag -2.0133e+00
.....
Function value -6.0377007e+05; maximum gradient component mag -2.7934e+00
........
Function value -6.0377163e+05; maximum gradient component mag 1.9783e+00
......

A single, salient output record is printed for each iteration of the minimizer, and a
dot is printed for each linear step inbetween. Note that the function value is decreasing
slightly with each iteration. The maximum gradient magnitude is also decreasing but not
uniformly. It is typical that the maximum gradient magnitude decreases in fits and starts.
Sometimes it can increase markedly if the minimizer encounters steeper topography in the
objective function, in which case the function value should decrease more quickly for a
while.

6.1.2 How to intervene

It is likely that during the course of a model fit, you will want to interupt the program for
one reason or another. The procedure for interrupting differs between Linux and Windoze
implementations of MULTIFAN-CL. In Linux, interuption is initiated by pressing Ctrl-c,
in Windoze by pressing q. MULTIFAN-CL will then output the following prompt:

press q to quit or c to invoke derivative checker:
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To terminate the program without saving the current values of the active parameters,
simply press Ctrl-c (in fact in Windoze this sort of termination can be achieved simply by
typing a single Ctrl-c during program execution). To terminate the program saving the
current values of active parameters (and any flag settings that may have been changed
using the -switch command line sequence), press q <Enter> in response to the above
prompt. Current values of active parameters and flag settings are saved in the output
.par file specified on the command line. The program may then be restarted from this
point by re- running mfcl and specifying the previous output .par file as the new input
.par file.

The option to invoke the derivative checker is a feature used in debugging. It allows
the derivatives of all or specified active parameters with respect to the objective function
to be computed using the automatic differentiation code and by finite differences and the
derivative values compared.

6.1.3 When to intervene

There are some specific instances in which intervention and other actions are required
for troubleshooting purposes. The following is the most common problem that occurs
requiring human intervention and remedial action.

Problem: The function minimizer is not making progress, i.e. the function value is not
changing even though convergence has not been reached (gradients of active parameters
are still large). This condition may occur when the function minimizer is in a “bad” part
of the parameter space and cannot escape.

Solution 1: This problem can often be solved by re-scaling the gradients, as extreme
variation in gradients among active parameters can cause problems for function mini-
mizers. Terminate the program, saving the current results using the Ctrl-C q <Enter>
sequence as described above. Then re-run the program using the saved output .par file
as the new input .par file and set parest flag 152 to 1 using the command line argument
-switch 1 1 152 1.

Solution 2: Occasionally, re-scaling the gradients is not sufficient for the function
minimizer to be able to escape the black hole that it has fallen into. If the catch likelihood
component has become very large, examine the catch fit (in the plot.rep file) and determine
which fishery’s catch is not being fitted. Then inspect the .par file and find the section
labeled

# average catchability coefficients.

If the average catchability for the problem fishery is conspicuously low or high, change
it to a more reasonable value, save the file (to a new file name), and re-run the program
specifying the modified input .par file.

6.2 Output Files

6.2.1 The .par File

The .par file is mentioned here because it is an output file as well as an input file. It
contains all the basic parameter estimates from the fitting phase in which it was produced.
Details of the content and format are give above (Section 4.1.4).
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6.2.2 The plot.rep file

The plot.rep file contains some structural information about the fit and a lot of information
derived from the estimated parameter values. The main purpose of this file is to facilitate
graphical presentation of the MULTIFAN-CL results.

Here is an annotated listing of an example plot.rep file:

# MULTIFAN-CL Viewer
# 1.9
# Number of time periods
160

# Year 1
1962

# Number of regions
5

# Number of age classes
20

# Number of recruitments per year
4

# Number of fisheries
15

# Number of realizations per fishery
160 ... 62

# Time of each realization by fishery (down)
1962.125 ... 2001.875

. .

. .
1970.125 ... 2001.875

The first two lines are comments indicating the version number of the file, which is
important because the format and content of this file has been evolving. The remain-
ing entries provide structural information as indicated by the comments. Note that the
“Number of realizations per fishery” is a vector with one element for each fishery giving
the number of fishing records for that fishery in the .frq file. The next entry is a ragged
array with a row for each fishery and variable lengths of the rows as given by the elements
of the preceeding vector.

From here on the plot.rep file gives mostly information based on parameter estimates,
starting with basic population dynamic information tied up with predicting details of
abundance and catch over time. To facilitate graphical juxtaposition of predicted and
observed values, some observed catch data are reiterated here from the .frq file, and
CPUEs are calculated therefrom and inserted here as well.

# Mean lengths at age
vector[nage]

# SD of length at age
vector[nage]

# Mean weights at age
vector[nage]

# Natural mortality at age
vector[nage]
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# Selectivity by age class (across) and fishery (down)
matrix[nage,nfish]

# Catchability by realization (across) by fishery (down)
ragged array[nfish, nreal[nfish]]

# Catchability+effort dev. by realization (across) by fishery (down)
ragged array[nfish, nreal[nfish]]

# Fishing mortality by age class (across) and year (down)
matrix[nyear, nage]

# Population number by age (across), year (down) and region
# Region 1

matrix[nyear, nage]

# Region 2
matrix[nyear, nage]

·
·

# Fishing mortality by age class (across), year (down) and region (block)
# Region 1

matrix[nyear, nage]

# Region 2
matrix[nyear, nage]

·
·

# Exploitable population by fishery (across) and year (down)
matrix[nyear, nfish]

# Absolute biomass by region (across) and year (down)
# Total biomass

matrix[nyear, nregion]

# Adult biomass
matrix[nyear, nregion]

# Relative biomass by region (across) and year (down)
matrix[nyear, nregion]

# Total biomass in absence of fishing
matrix[nyear, nregion]

# Observed catch by fishery (down) and time (across)
ragged array[nfish, nreal[nfish]]

# Predicted catch by fishery (down) and time (across)
ragged array[nfish, nreal[nfish]]

# Observed CPUE by fishery (down) and time (across)
ragged array[nfish, nreal[nfish]]

# Predicted CPUE by fishery (down) and time (across)
ragged array[nfish, nreal[nfish]]

Depending on various flag settings the plot.rep file may also present material related to
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various biological reference point analyses:

# Yield analysis option: 0=none, 1=Bev&Holt, 2=Pella Tomlinson
(0, 1, or 2)

# Beverton-Holt stock-recruitment relationship report
# alpha = 5.967e+07 beta = 8.570e+04 steepness = 8.885e-01

The above is not really a comment line. The three numbers are estimates of
the respective parameters.

# Observed spawning Biomass
vector[nage-lag] – (lag from age flag 147)

# Observed recruitment
vector[nage-lag] – (lag from age flag 147)

# Spawning Biomass
vector[100]

# Predicted recruitment
vector[100]

# Beverton-Holt yield analysis report
# MSY

real number

# F at MSY
real number

# Total biomass at MSY
real number

# Adult biomass at MSY
real number

# Effort multiplier
vector[66]

# Equilibrium yield
vector[66]

# Equilibrium adult biomass
vector[66]

# Equilibrium total biomass
vector[66]

# Adult biomass over adult biomass at MSY
vector[nperiods]

# Total biomass over total biomass at MSY
vector[nperiods]

# Aggregate F over F at MSY
vector[nperiods]

# Aggregate F
vector[nperiods]

# Yield per recruit report
# Effort multiplier
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vector[501]

# Yield per recruit
vector[501]

# Tag reporting rates
# Grouping indicator (0 = no grouping, >0 = grouping)

vector[ntaggrps]

# Time series variation in reporting rates (0 = no, >0 = yes)
an integer

# Reporting rates by fishery (no time series variation)
vector[nfish]

# No. of time periods associated with tag returns
an integer = ntt

# Time periods associated with grouped tag returns
vector[ntt]

# Observed tag returns by time period (across) by fishery groupings (down)
matrix[ntaggrps,ntt]

# Predicted tag returns by time period (across) by fishery groupings (down)
matrix[ntaggrps,ntt]

# Maximum time at liberty
an integer = ntl

# Observed vs predicted tag returns by time at liberty
matrix[ntl,2]

. # Movement analysis
# Region 1

matrix[2*nage+1,nregion]

# Region 2
matrix[2*nage+1,nregion]

·
·

6.2.3 The length.fit file

Predicted size distributions are output to a file called “length.fit” along with the observed size
data to which the predicted distributions should be compared. The first five records give header
information as follows. Material outside of parentheses appear in the file as shown. Material
within parentheses describes value of a number to appear in the file.

0 0 20 0 0 0 0 0 0 0
(no. length bins, ‘‘nbins’’) (lower length of 1st bin) (width of bins)
(no. fisheries + 1)
(no. samples in fishery 1) ... (no. samples in last fishery) (no. fisheries)
(no. age classes, ‘‘nages’’)

The first record is as shown for all length.fit files. Its significance is known only unto MULTI-
FAN-CL itself (and possibly D. Fournier). The record following it contains three numbers
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defining the structure of the sample data. The third record gives one number, which is one plus
the number of fisheries defined in the model. The following record gives the number of observed
samples for each of the fisheries followed, redundantly enough, by the number of fisheries. The
last header record gives the number of age classes.

The header information is followed by the set of observed and predicted sample data for
fishery 1, identified by the first record of the set as shown:

# fishery 1

This is followed by a sample sets organized as follows:

(year from start) (month) (week)
(scaled mean length at age 1) . . . . (scaled mean length at age nages)
(sum of observed frequencies in next record)
(obs. frequency of bin 1) . . . (obs. frequency of bin nbins)
(pred. frequency of bin 1) . . . (pred. frequency of bin nbins)
[blank record]
(pred. frequency, age 1, bin 1) . . . (pred. frequency, age 1, bin nbins)

. .

. .

. .
(pred. frequency, age nages, bin 1) . . . (pred. frequency, age nages, bin nbins)
[blank record]

Mean lengths are scaled and shifted for the convenience of a graphics program. More sample
sets follow, the number for fishery 1 being given by the first value in the fourth header record
above.

6.2.4 The tag.rep file

6.2.5 The .var file

6.2.6 The .dep file

6.2.7 The .hes file

6.2.8 The catch.rep file

6.2.9 The ests.rep file

6.3 Obtaining Graphical Results

6.3.1 Java

A graphical viewer of MULTIFAN-CL output written in Java is available on the MULTIFAN-CL
web site. It comes with its own documentation – “MULTIFAN-CL Viewer User Manual”. It
requires a Java interpreter compatible with at least the Jave 2 version 1.3 Standard Edition spec-
ifications. This viewer is excellent for getting quick visual access to the multitude of information
output by MULTIFAN-CL.

6.3.2 R (or S)

For those wishing to use of R, the public domain statistics and graphics program, R functions are
available for graphical presentation of MULTIFAN-CL output. They can be easily adapted to S,
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the commercail counterpart of R. The R functions give a more flexibility than the MULTIFAN-
CL viewer in designing graphical presentations for incorporating into computer presentation
software or for publication.

R is available for both LINUX/UNIX and MS-Windows operating systems and can be ob-
tained free of charge from http://cran.r-project.org. The functions make extensive use of
the LINUX/UNIX utility, awk, which for MS-Windows is contained in cygwin, available free of
charge from http://cygwin.com.

The R functions are organized into two libraries, one with functions designed to access
the various parts of the MULTIFAN-CL output files, and the other with functions designed to
produce a variety of graphics, and making use of the functions in the first set. Both sets are
continuously expanding. Therefore this description is necessarily incomplete. Users are advised
to get the latest version of the libraries.

Set 1 – MULTIFAN-CL data access functions

The access functions are supplied in library getplotstuff, and are useful for those wishing to
create their own graphics. Most of the functions are designed to return R objects from from
the plot.rep and there are functions corresponding to most elements in the file (see 6.2.2. Other
access functions retrieve data from the .var, giving information on confidence intervals, and
other output, and some input, files as well.

Documentation of the functions is available with the R documentation system. On most
systems, issuing help.start() within an R session will open a web browser with a link to the
getplotstuff library. Alternatively, issuing ?function name within an R session for any of the
functions in the following list will list documentation for that particular function. The list below
gives only a short description of the type of R object returned along with dimension information
for objects consisting of more than a single number. Note that “lists” serve as ragged arrays for
which nested dimension information is given, e.g. “[fishery[time]]” indicates a time series vector
for each fishery perhaps with a different number of elements in each vector.

The following functions access the plot.rep file:

Function Object
returned

Content

getnpd number() Number of time periods
getnyr number() Number of years
getyear1 number() Starting year
getyrs vector() Vector of years [year] – for plotting annual data
getimes vector() Vector of times [time] – for plotting data at each fishing incident
getnreg number() Number of regions
getnages number() Number of age classes
getnrec number() Number of recruitments per year
getnfish number() Number of fisheries
getnreal vector() Number of realizations [fishery]
getrtimes list() Time of each realization [fishery[time]]
getlen.age vector() Mean lengths [age]
getlen.age.sd vector() SD of length at [age]
getwt.age vector() Mean weights [age]
getM.age vector() Natural mortality [age]
getselect matrix() Selectivity [fishery, age]
getqlist list() Catchability [fishery[time]]
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getq data.frame() Catchabilities [time,c(fisheries,time)]
getqedlist list() Catchability+effort dev. [fishery[time]]
getqed data.frame() Catchability+effort dev. [time,c(fisheries,time)]
getFya matrix() Fishing mortality [year, age class]
getFyar array() Fishing mortality [year, age class, region]
getNyar array() Population number [year, age class, region]
getNya matrix() Population number [year, age class]
getNyr matrix() Population number [year, region]
getNexp matrix() Exploitable population [time, fishery]
getBabs matrix() Absolute biomass [time, region]
getBadult matrix() Adult biomass [time, region]
getBrel matrix() Relative biomass [time, region]
getBnof matrix() Total biomass in absence of fishing [time, region]
getColist list() Observed catch [fishery[time]]
getCo data.frame() Observed catch [time,c(fisheries,time)]
getCplist list() Predicted catch [fishery[time]]
getCp data.frame() Predicted catch in each [time,c(fisheries,time)]
getCPUEolist list() Observed CPUE [fishery[time]]
getCPUEo data.frame() Observed CPUE [time,c(fisheries,time)]
getCPUEplist list() Predicted CPUE [fishery[time]]
getCPUEp data.frame() Predicted CPUE [time,c(fisheries,time)]
getFmsy number() F at MSY
getBmsy number() Biomass at MSY
getSBmsy number() Adult biomass at MSY
getFtoFmsy vector() Ratio of F to F at MSY [time]
getBtoBmsy vector() Ratio of biomass to biomass at MSY [time]
getSBtoSBmsy vector() Ratio of spawning biomass to spawning biomass at MSY [time]
getMSY number() MSY
getYieldAnal list() Yield analysis report [Fmult[n], Yeq[n], SBeq[n], Beq[n],

MSY, Fmsy, Bmsy, SBmsy, SBtoSBmsy[time], BtoBmsy[time],
FtoFmsy[time], F[time]] – Vectors Fmult, Yeq, SBeq, and Beq give
projections of yield, spawning and total biomass with increasing
F multiplier. Length of vectors, n, depends on how many Fmult
steps it takes to bring yield to zero. Fmsy, Bmsy, SBmsy, SBtoS-
Bmsy, BtoBmsy, FtoFmsy contain same data as correspondingly
named functions above.

getYPR list() Yield per recruit report Fmult[n],YPR[n]
getBHSR list() Beverton-Holt stock-recruitment report [alpha, beta, slope,

spawnB[n], recrut[n]]
gettagretbydate data.frame() Observed and predicted tag returns by calendar time
gettagretbylibertydata.frame() Observed and predicted tag returns by time at liberty

The following functions access the .var file:

Function Object
returned

Content

getF2Fmsy.sd data.frame() Ratio of F to Fmsy by time period with upper and lower confidence
bounds
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getB2Bmsy.sd data.frame() Ratio of biomass to biomass at MSY by time period with upper
and lower confidence bounds

getSB2SBmsy.sd data.frame() Ratio of spawning biomass to spaawning biomass at MSY by time
period with upper and lower confidence bounds

getRecrel.sd data.frame() Relative recruitment with confidence bounds
getRec.sd data.frame() Absolute recruitment with confidence bounds
getBrelt.sd data.frame() Relative biomass with confidence bounds
getBabst.sd data.frame() Absolute biomass with confidence bounds
getyield.sd data.frame() Yield curve with confidence bounds
getM.sd data.frame() Natural mortality at age with confidence bounds

Set 2 – MULTIFAN-CL graphics plotting functions

The plotting functions are supplied in a library doplotstuff. These functions are evolving at
an even greater pace than the data access functions. Therefore the documentation is not as
complete. However, the documentation is available by issuing help.start() within an R session.

Two functions of note are plotmedley() and quickplot(). These functions make a composit
plots using other plotting functions. They are a quick way to get a visual impression of interme-
diate, or final, results of a MULTIFAN-CL analysis. They are not as thorough in this regard as
the MULTIFAN-CL Viewer, but they have been incorprated into unix/linux scripts, medley()
and quickplot(), giving very quick access to some of the more cogent MULTIFAN-CL output
material.



Appendix A

Technical Annex

A.1 Population dynamics model

A.1.1 Age-structured dynamics

The dynamics of untagged fish within a region are governed by the following equations:

N ′
atr =



Reϕtαrγtr ; a = 1 ; 1 ≤ t ≤ T

N ′
a,1,r ; 1 < a < A ; t = 1

Na−1,t−1,re
−Za−1,t−1,r ; 1 < a < A ; 1 < t ≤ T

Na−1,t−1,re
−Za−1,t−1,r + Na,t−1,re

−Za,t−1,r ; a = A ; 1 < t ≤ T

(A.1)

Zatr =
∑
f∈fr

Fatf + Ma

where

N ′
atr is the number of age-class a fish at the beginning of time period t in region r before

movement has taken place,

Natr is the number of age-class a fish at the beginning of time period t in region r after
movement has taken place,

R is temporal average of spatially aggregated recruitment,
ϕt determines a multiplicative deviation, eϕt , at time t of spatially aggregated recruitment

from average recruitment, R, with constraint that
∑

t ϕt = 0,

αr is average recruitment to region r as proportion of R,
∑

r αr = 1,

γtr is additional recruitment deviation at time t and region r,
∏

t γtr = 1 and
∑

r αrγtr = 1,

A is total number of age classes,
T is total number of time periods,
Zatr is instantaneous rate of total mortality of age-class a in time period t in region r,
Fatf is instantaneous rate of fishing mortality of age-class a in time period t by fishery f ,
fr is the set of fishery indices of fisheries occurring in region r, and
Ma is instantaneous rate of natural mortality of age-class a.
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Depending on setting of age flag 94 (see section 4.5.10), the initial abundances N ′
a,1,r by

region are either estimated parameters or they are functions of regional recruitments (N ′
1,t,r)

and either natural or total mortalities (Ma or Zatr) averaged over time periods 2 to k:

N ′
a,1,r =


N ′

1r exp

[
−
∑
a′<a

Z̃a′r

]
; 1 < a < A

N ′
1r

1− exp(−Z̃ar)
exp

[
−
∑
a′<a

Z̃a′r

]
; a = A

N ′
1r =

1
(k − 1)

k∑
t=2

N ′
1,t,r

Z̃ar =


Ma ; age flags(94) = 1

1
(k − 1)

k∑
t=2

Zatr ; age flags(94) = 2

A.1.2 Natural Mortality

Natural mortality at age, Ma, is actually parameterized as an average natural mortality modified
by age-specific deviations as follows:

Ma = Meεa

where the mean of εa is constrained to zero. The deviations can either be fixed (default = 0) or
estimated depending on flag settings (see section 3.5).

A.1.3 Movement

Movement is assumed to occur instantaneously at the beginning of each time period. Let N′
at

and Nat be pre- and post-movement abundance vectors with elements N ′
atr and Natr for each

region r = 1, . . . , R. Defining νrs
a as the coefficient of movement from region r to region s at age

a, abundance after movement is given by:

Natr = N ′
atr −

∑
s 6=r

νrs
a

Natr +
∑
s 6=r

νsr
a Nats (A.2)

or in matrix form:

BaNat = N′
at

where

Ba =



1 +
∑
j 6=1

νj1
a . . . −νR1

a

. . . . .

−ν1i
a . 1 +

∑
j 6=i

νji
a . −νRi

a

. . . . .

−ν1R
a . . . 1 +

∑
j 6=R

νjR
a


The movement transition is thus
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Nat = B−1
a N′

at

Note that this is a fully implicit transition which guarantees numerical stability even with large
rates of movement (Press et al., 1988). Also, even though νrs

a and νsr
a are normally set to zero

if region r and s do not share a border, the implicit transiton still allows some movement from
one to the other within a time step.

Age dependency of the movement coefficients is specified by

νrs
a = φrs

0 exp(φrs
1 (κa)φrs

2 )

where κa is age scaled from −1 to +1, i.e. κa = (2a−A− 1)/(A− 1). Movement will either
increase, stay constant, or decrease with age depending on whether φrs

1 is greater than, equal
to, or less than zero, and φrs

2 adds non-linearity to the age dependency.
Movement parameters estimated by model fit are φrs

0 , φrs
1 , and φrs

2 .

A.1.4 Growth

The mean lengths at age µa are independent parameters below a specified age a? and are
constrained by von Bertalanffy growth from age a? and older. Thus

µa =


La ; a < a?

L1 + (LA − L1)
[

1−e−K(a−1)

1−e−K(A−1)

]
; a ≥ a?

where

L1 is the mean length of the first age class,
LA is the mean length of the oldest age class, and
K is the von Bertalanffy growth coefficient.

Following Fournier et al. (1990,1998) the standard deviation of length-at-age is assumed to
be a function of length

σa = λ1e
−λ2

“
1−2

µa−L1
LA−L1

”
(A.3)

where λ1 is the standard deviation at an intermediate age and λ2 the length-dependent trend.
λ2 = 0 implies length independence.

A.1.5 Calculating length and weight frequencies

It is assumed that the length measurements input to MULTIFAN-CL for fishery f are a random
sample of the catch of that fishery in period t. It is further assumed that the lengths of age-class
a fish are normally distributed about a mean length µa with standard deviation σa. Then the
probability that the length of an age-class a fish selected at random lies in length interval i is
approximated by

P (i|µa, σa) ≈
ω√
2πσa

exp
[
−(xi − µa)2

2σ2
a

]
where

ω is the size of the length intervals, and
xi is the midpoint of the ith length interval.
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This is an adequate approximation to integrating over the range (xi−ω/2, xi +ω/2) as long
as σa > ω (Fournier, 1990). The expected proportion of length i fish in the sample is

Qpred

itf =
A∑

a=1

patf

where patf is the proportion of age-class a fish in the sample and is related to predicted catch
by

patf =
Catf

A∑
a=1

Catf

A.1.6 Fishing Mortality

Catch in numbers of age-class a fish in time period t by fishery f is given by

Catf =
Fatf

Zatrf

[
1− e−Zatrf

]
Natrf

(A.4)

where rf is the region in which fishery f occurs, where fishing mortality is parameterized as

Fatf = safqtfBβ
rf

Eζ
tfeεtf (A.5)

and where

saf is the selectivity coefficient of fishery f for age-class a fish,
qtf is the catchability coefficient for fishery f in time period t,
B is a biomass index for region r and time period t,
βtr is the parameter for effect of biomass on catchability (default= 0),
Etf is the fishing effort of fishery f in time period t, and
ζ is the parameter for effect of effort on catchability (default= 1),
εtf represents transient deviations in effort.

Selectivity

The fishery-specific, age-specific selectivities, saf , can be constrained to be non-decreasing with
age and they can also be constrained to be constant with age from a given age class. Furthermore,
the saf can either be estimated directly or they can be parameterized as a function of a vector
of NL length-specific selectivities s′f as follows: Define a function

x(l) =
l − (µ1 − σ1)

(µA + σA)− (µ1 − σ1)

where µa is the mean length and σa is the standard deviation of length for age class a. Then
x(l) is the proportional distance of length l along the interval from the average length of the
youngest age class minus its standard deviation, µ1−σ1, to the average length of the oldest age
class plus its standard deviation, µA + σA. The inverse function is

l(x) = x(µA + σA) + (1− x)(µ1 − σ1)

Age-specific selectivities are then given by

saf =
∫ 1

0
N (µa, σa, l(x))S(s′f , x)dx
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where N (µ, σ, l) is the normal density function of l with mean µ and standard deviation σ, and
S(s′f , x) is selectivity as a function of x on the interval [0—1]. S is defined by the parameters s′f ,
and is realized by a modified interpolation between those parameters which represent selectivity
on NL−1 equal intervals along the interval [(µ1−σ1) — (µA+σA)]. The interpolation is modified
to assure differentiability of the objective function with respect to the s′f and the integration is
carried out numerically on ten discrete intervals centered on x(µa) from x(−2σa) to x(+2σa).
Choice of selectivity parameterization is governed by the setting of various fish flags detailed in
section 4.5.6.

Catchability

Time series structure in catchability is allowed by:

qt+δt,f = qtfeηtf (A.6)

where the eηtf represent cumulative changes in catchability assumed to occur at regular intervals
δt, set by fish flag 10. Within year catchability is also allowed to vary seasonally with either
a sinusoidal pattern with two parameters or an arbitrary pattern with up to 12 multiplicative
deviates:

qtf =

{
q′tf exp(c1

f sin[2π(υt
4 − c2

f )]) ; fish flag 27 > 0

q′tfci
f ; fish flag 47 > 0

(A.7)

where

q′tf is the catchability before seasonal adjustment,
υt is an integer denoting the quarter of the year pertaining to time period t,
c1
f is a fishery-specific amplitude parameter, and

c2
f is a fishery-specific phase parameter, and

ci
f is one of up to 12 seasonal pattern deviates at evenly spaced intervals within a year.

A.1.7 Tagged fish dynamics

The dynamics of tagged fish are similar to those of untagged fish, and the parameterization is
shared for the most part between the two. The major modifications for tags are that recruitment
is replaced by tag releases and that tags are grouped into release cohorts of tagged fish, indexed
by c and released at age arel

c , in time interval trelc , and region rrel
c . The cohorts maintain their

separate identity through the age class before apool after which the tagged fish enter a pooled
group signified by cohort index c?. The number of tagged fish by cohort, time, and region prior
to movement is given by

NT′
ctr =



0 ; t < min(trelc )

N rel
c ; t = trelc ; r = rrel

c ; c 6= c?

NT
c,t−1,re

−ZT
c,t−1,r ; trelc < t < trelc + apool − arel

c ; c 6= c?

NT
c?,t−1,re

−ZT
c?,t−1,r +

∑
b∈gt

NT
b,t−1,re

−ZT
b,t−1,r ; t < min(trelc ) ; c = c?

ZT
ctr =

∑
f∈fr

FT
ctf + Ma(c,t) ; c 6= c?

ZT
c?tr = fn1(Fatf | f ∈ fr ; a ≥ apool) + fn2(Ma | a ≥ apool)
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where

a(c, t) = arel
c + t− trelc

relates historical time to the age of a particular cohort, and where

gt = {c | arel
c + t− trelc = apool}

is the set of indices of cohorts that have just graduated to tag pools at time t. In general, fishing
mortality is assumed to be the same for tagged and untagged fish. However, for some time after
release, this may not be the case until the tagged fish have effectively mixed with the untagged
fish that they represent. Thus fishing mortality of tagged fish by release cohort, age, time and
fishery is given by

FT
ctf =

 fn3(RTobs
ctf , Xtf ) ; trelc ≤ t < trelc + nmix

Fa(c,t),t,f ; t ≥ trelc + nmix

where nmix is a number of time periods to allow for mixing. During the mixing period the fishing
mortality of tags is set so that the catch of tags is effectively determined from the observed tag
returns RTobs

catf with a correction for the tag return rate Xtf for fishery f at time t.
Movement of tagged fish is entirely analogous to untagged fish as in Eqn. A.2. Thus

NT
ctr = NT′

ctr −
(∑

s 6=r νrs
a

)
NT′

ctr +
∑

s 6=r νsr
a NT′

cts

NP
tr = NP′

tr −
(∑

s 6=r νrs
a

)
NP′

tr +
∑

s 6=r νsr
a NP′

ts

A.1.8 Aggregate Fishing Mortality

For calculating yield curves and reference points applied to the stock as a whole, it is necessary
to calculate fishing mortality aggregated over fisheries (and therefore over regions). This is
computed as a weighted average over regions of fishing mortalities by time by age.

Fat =

∑
r

[
Natr

∑
f∈fr

Fatf

]
∑

r Natr
(A.8)

It is useful to define a baseline fishing mortality against which to compare projected re-
sults with alternate fishing regimes. We define the baseline fishing mortality as the average of
aggregate fishing mortality over a given time interval τ1 to τ2 as follows:

F a =
1

τ2 − τ1 + 1

τ2∑
t=τ1

Fat

where Fat is given by equation A.8

A.1.9 Calculating total and spawning biomass

The time series of regional total and spawning biomass is given by

Bt
tr =

A∑
a=1

Natrwa ; Bs
tr =

A∑
a=1

Natrwap
mat
a
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where wa is the average weight and pmat
a the proportion mature for age class a fish. The propor-

tion mature at age is given as a fixed input vector. Average weight is given by

wa =
∫ ∞

0
N (µa, σa, l)lbdl

where µa is the mean length and σa is the standard deviation of length for age class a fish, and
where N (µ, σ, l) is the normal density function of l with mean µ and standard deviation σ. The
integration is carried out numerically on disrete 0.5 cm length intervals from 3.5 below to 3.5
above the mean length µa.

A.1.10 Stock Recruitment Relationship

We assume a Beverton-Holt stock-recruitment relationship (SRR) between spawning biomass at
time t aggregated over regions Bs

t =
∑

r Bs
tr and recruitment in all regions Rt+tlag after a time

lag tlag. Thus

Rt+tlag =
αBs

t

β + Bs
t

(A.9)

where α is the maximum recruitment at large spawning stock and β is the spawning stock
at which recruitment is reduced to half of α. The recruitment lag is fixed, but α and β are
estimated by penalizing deviations (see page 92) between recruitment predicted by the SRR and
recruitment as used in Eqn. A.1.

A.1.11 Yield Curve

The yield curve is the projected catch in numbers or weight as a function of a fishing mortality
multiplier, x. It depends on projected total biomass at equilibrium, B̃t(x), which can be calcu-
lated from equilibrium recruitment, R̃, and an equilibrium biomass per recruit function derived
as follows.

Combining some multiple of baseline fishing mortality and natural mortality at age, Ma into
a total mortality schedule we define an abundance-at-age per recruit function φa(x)

φa(x) =



1 ; a = 1

exp

− a−1∑
j=1

(Mj + xF j)

 ; a ∈ {2 . . . A− 1}

exp

−A−1∑
j=1

(Mj + xF j)

[ 1
1− exp

(
−(MA + xFA)

)] ; a = A

(A.10)
where x is a fishing mortality multiplier. Further define age-aggregate functions Φt and Φs for
total and spawning biomass per recruit

Φt(x) =
∑A

a=1 φa(x)wa

Φs(x) =
∑A

a=1 φa(x)wama

(A.11)

where wa is mean weight at age a, and ma is the proportion spawning at age a. By aggregating
across age cohorts, the functions, Φt(x) and Φs(x), implicitly assume that the mortality-at-age
schedule is unchanging and therefore that equilibrium conditions hold. Thus they account for
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equilibrium age distribution as determined by the mortality-at-age schedule to give total and
spawning biomass per recruit at equilibrium.

Assuming the the SSR given in Eqn. A.9 holds at equilibrium we can say

R̃(x) =
αB̃s(x)

β + B̃s
(A.12)

where the time indexing is dropped because equilibrium is assumed. A second relationship
between B̃s(x) and B̃s is available from the spawning biomass per recruit, Φs(x) (Eqn. A.11),

B̃s(x) = R̃(x)Φs(x) (A.13)

Solving the above two equations and two unknowns for R̃(x) gives

R̃(x) = α− β

Φs(x)
(A.14)

Equilibrium abundance-at-age can now be calculated from the abundance per recruit function
φa(x) (Eqn. A.10).

Ña(x) = R̃(x)φa(x)

from which we get catch-at-age in numbers

C̃N
a(x) = F a

Ma+F a
(Ña(x)− Ña+1(x)) ; a ∈ {1 . . . A− 1}

C̃N
A(x) = F A

MA+F A
ÑA(x)

Yield in numbers and weight is then given by

Ỹ N(x) =
A∑

a=1

C̃N
a(x) ; Ỹ W(x) =

A∑
a=1

C̃N
a(x)wa

The yield curve is a plot of a series of yields, yi, in weight or numbers against a corresponding
series of fishing mortality multipliers xi ∈ {0, 0.1, 0.2, 0.3, . . . 50.0}. Note that the yield curve
can go into negative territory at high levels of x even though it is biologically unreasonable.

A.1.12 Reference Points

If x? is the value of x that maximizes the yield curve, then the maximum sustainable yield, MSY,
in biomass or numbers is given by Ỹ W(x?) or Ỹ N(x?) respectively. x? is a reference point in itself
being a measure of the ratio of equilibrium fishing mortality at MSY to “base” fishing mortality,
the average fishing mortality over a number of (usually recent) time periods. The value of x?

can be chosen simply as the element of the series {0, 0.1, 0.2, 0.3, . . . 50.0} corresponding to the
maximum element, max(yi), of the series of yields in the yield curve. However a continuous
version of x? can be estimated as a weighted average of the xi:

x? =
∑

i xi exp(yi/Y)X∑
i exp(yi/Y)X

where the constant, (Y), defaults to 105 but can be set by age flag 169. It should be larger than
max(yi), and for best accuracy should not be more than 10 × max(yi). The exponent, X , in
the weighting factors is large (defaults to 50 and is settable by age flag 168) to assure that the
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xi near the summit of the curve are heavily weighted over those further away, and particularly
over those in regions where the yield curve is negative.

Given equilibrium recruitment as determined above and Eqn. A.13 for equilibrium spawning
biomass plus the analogous equation for total biomass at equilibrium,

B̃t(x) = R̃(x)Φt(x) (A.15)

MULTIFAN-CL calculates the following additional stock assessment reference points:

• Bt
MSY = B̃t(x?) – equilibrium total biomass at MSY

• Bs
MSY = B̃s(x?) – equilibrium spawning biomass at MSY

• FMSY = Ỹ W(x?)/B̃t(x?) – fishing mortality at MSY.

Finally, time series of total biomass, spawning biomass, and fishing mortality are calculated
with respect to their respective values at MSY:

Bt
t

Bt
MSY

;
Bs

t

Bs
MSY

;
Ft

FMSY

A.2 Parameter Estimation – The Objective Function

Parameters are estimated by searching for the set of parameter values that minimizes an objective
function consisting of the sum of several parts. Some of the parts are formulated as the negative
log-likelihood of the observed data given a specific set of parameter values. Other parts consist
of prior distributions on parameters or penalties that serve to constrain the parameter estimates.

A.2.1 Likelihood

Three sets of observed data contribute to the likelihood portion of the objective function: catch
data, length frequency data, and tagging data.

Catch data

The contribution to negative log-likelihood from the discrepancy between observed and predicted
catch is

ΘC = pC
∑

t

∑
f

[
log(1 + Cobs

tf )− log(1 + Cpred

tf )
]2

; t, f ∈ {u, g | Cobs
ug 6= −1}

where

Cpred

tf =

{ ∑A
a=1 Catf ; f ∈ {fisheries with catch in numbers}∑A
a=1 Catfwa ; f ∈ {fisheries with catch in weight}

and pC is a weighting factor determined by prior assumption about the accuracy of the observed
total catch data. Note that in the input data, observed catch is set to −1 for fishing incidents
with unknown catch, and such incidents are excluded from the likelihood function.
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Size sample data

The contribution to the negative log-likelihood function from the discrepancy between observed
and predicted proportions at size (Qobs

itf and Qpred

itf ) in the sample data is given by the following
robustified formulation:

ΘL = 0.5
∑

i

∑
t

∑
f

log [2π(ξitf + 1/I)] + I
∑

t

∑
f

log(τtf )

−
∑

i

∑
t

∑
f

log

[
exp

(
−

(Qobs
itf −Q

pred

itf )2

2(ξitf + 1/I)τ2
tf

)
+ 0.001

]

where
ξitf = Qobs

itf (1−Qobs
itf )

τtf = P L/ min(1000, Stf )

and

Stf is the size of the size-frequency sample taken from fishery f in time periodt,
I is the number of size intervals in the samples, and
PL is a multiplier set by fish flags 49 (default = 10).

The term min(1000, Stf ) reduces the influence of very large sample sizes by assuming that sample
sizes >1000 are no more accurate than sample sizes of 1000. The multiplier PL recognizies the
the variance of real size-frequency samples is almost certainly much greater than truly random
samples of a given size. The constant 1/I ensures that the variance term is not zero when
Qobs = 0, rendering the model less sensitive to occasional observations of low probablilty. The
constant 0.001 provides additional robustness to the estimation.

Tagging data

Predicted tag returns are calculated for times following the mixing period. The calculation is
analogous to that for catch in Eqn. A.4 with a modification for tag return rate Xtf . Predicted
returns by tag chohort, age, time and fishery are given by

RTpred

ctf =
FT

ctfXtf

ZT
ctr

[
1− e−ZT

ctr

]
NT

ctr ; t ≥ trelc + nmix

with FT, and ZT defined in section A.1.7. For entry of tagging data into the objective function,
observed and predicted tag returns by various fisheries can be grouped as follows:

RTpred

ctg =
∑
f∈fg

RTpred

ctf ; RTobs
ctg =

∑
f∈fg

RTobs
ctf

where fg is the set of fishery indices for fisheies in group g.
There are five alternate formulations for the contribution of tagging data to the negative

log-likelihood function. The choice is governed by parest flag 111 (section 4.5.8).

Least squares

ΘT =
∑
ctg

(RTobs
ctg −RTpred

ctg )2

RTpred

ctg + 0.01
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Robust least squares

ΘT =
∑
ctg

log

[
exp

(
−

(RTobs
ctg −RTpred

ctg )2

RTpred

ctg + 0.01

)
+ 0.01

]

Poisson

For the poisson distribution the probability of a vector of observations x with corresponding
expected values λi is

P (x) =
∏

i

λxi
i e−λi

xi!

Taking the negative of the log and substituting the predicted tag returns for the λi and ob-
served returns for the xi gives the objective function contribution to according to the poisson
assumption:

ΘT =
∑
ctg

RTpred

ctg −
∑
ctg

RTobs
ctg log(RTpred

ctg + 10−10) +
∑
ctg

log(Γ(RTobs
ctg + 1)

with 10−10 in the middle term in case of predicted returns of zero.

Negative bionomial

Because tag returns are not wholly independent events it it likely that the variance in tag
return data is probably larger than would be the case with the poisson distribution wherein the
variance is equal to the expected value. An alternative is provided in which the variance can
be larger than the expected value. This is the negative bionomial distribution under which the
probability for a vector of observations x is

P (x) =
∏

i

[
Γ(λiβi + xi)

Γ(λiβi)Γ(xi + 1)

(
βi

βi + 1

)λiβi
(

1
βi + 1

)xi
]

(A.16)

where λ is the expected value for each observation, and the variance for each observation is

σ2(xi) = λi

(
1 +

1
βi

)
Thus 1 + 1/β is the degree to which the variance exceeds the expected value, and as β get large
the negative binomial approaches the poisson distribution.

Taking the negative of the log and substituting the predicted tag returns for the λi and
observed returns for the xi in equation A.16 gives the objective function contribution according
to the negative bionomial assumption:

ΘT =
∑
ctg

[
log Γ(βctgR

Tpred

ctg + RTobs
ctg )− log Γ(βctgR

Tpred

ctg )− log Γ(RTobs
ctg + 1)

+βctgR
Tpred

ctg log(βctg)− (βctgR
Tpred

ctg + RTobs
ctg ) log(βctg + 1)

]
Negative bionomial with added zeroes

[– under construction –]

A.2.2 Priors and penalties

Many of the multitude of estimated parameters are constrained to some degree by prior distri-
butions or penalties.
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Effort deviations

The contribution of effort deviations, εtf in Eqn. A.5, to the objective function is formulated by
the following prior:

ΘE = −
∑

t

∑
f

log
[
exp(−pE

f

√
Etfε2

tf ) + 0.05 exp(−1
5
pE

f

√
Etfε2

tf )
]

where pE
f is a weighting factor for fishery f , and the left hand term in the log expression is a

robustified normal distribution with zero mean and fishery specific variance. The εtf are also
weighted by the square root of the effort which ensures that observations at very low effort have
relatively little impact on the objective function through the effort deviations. The penalties
are set by fish flags 13 (see section 4.5.7) and the expected standard deviation σE

f in the effort
deviations is approximated at average effort level by Eqn. A.22. A relatively high value of pE

f

results in small deviation from the observed effort whereas a relatively small value of pE
f allows

the model greater flexibility to deviate from the observed effort values if this results in a better
fit to the data.

Catchability deviations

Catchability deviations (ηtf in Eqn. A.6) are assumed to have normal prior distributions, their
contribution to the objective function being

ΘQD =
∑

f

pQD

f

∑
(µQD

f − ηtf )2

Seasonal catchability

ΘQS =
∑

f

pQSc2
1f

Kalman filter deviations

[– under construction –]

Recruitment deviations

The contribution to the objective function from the spatially aggregated recruitment deviations
ϕt is given by

ΘR1 = pR1
∑

t

ϕ2
t + 0.1

T−4∑
t=1

(ϕt+4 − ϕt)2

where the weight pR1 governs the variance of normally distributed prior, modified by the second
term above which introduces a small amount of auto correlation in the recruitment deviations.

The time-series deviations from the average spatial distribution of recruitment, γtr, are
assigned weak prior distributions of men zero. The contribution of this prior to the objective
funciton is

ΘR2 = pR2
∑

t

∑
r

[log(γtr)2].
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Stock-recruitment relationship

If estimation of stock-recruitment parameters is activated, then a spatially aggregated estimate
of recuitment is given by Equ. A.9. A penalty for deviations of this recruitment estimate from
spatially aggregated recruitment in Eqn. A.1, namely R log(ϕt) gives the following contribution
to the objective function:

ΘR3 = pR3

T∑
t=l+1

[log(Rϕt)− log(R′
t)]

2)

Steepness

The SRR parameters are further constrained by a prior placed on steepness S defined as
the ratio of recruitment at 20% of unfished equilibrium biomass to recruitment at unfished
equilibrium biomass. Unfished equilibrium recruitment from Eqn. A.14 (setting x to zero) is

R̃(0) = α− β

Φs(0)
(A.17)

and the corresponding unfished equibrium biomass is then

B̃s(0) = αΦs(0)− β (A.18)

From Eqn. A.12, recruitment at 20% of unfished equilibrium spawning biomass, would be

R20% =
α1

5B̃s(0)

β + 1
5B̃s(0)

(A.19)

which with Eqn. A.18 gives

R20% =
α(αΦs(0)− β)
4β + αΦs(0)

(A.20)

The required ratio for steepness as defined above, R20%/R̃(0), comes out to

S =
αΦs(0)

4β + αΦs(0)
(A.21)

The prior distribution on S is a non-standard beta on the range [0.2 – 1.0]. The contribution
to the objective function is therefore

ΘR4 = − log

(
(S − 0.2)A−1(1.0− S)B−1

(1.0− 0.2)A+B−1
∫ 1
0 xA−1(1− x)B−1dx

)

where A and B are shape parameters of the beta distribution and are controlled by age flag 153
and 154 (see 4.5.11 and 5.4.2). The mode, mean, and standard deviation of the beta prior are
given by

Mobeta = 0.2 + 0.8 A−1
A+B−2

µbeta = 0.2 + 0.8 A
A+B

σbeta = 0.8 1
(A+B)

√
AB

A+B+1
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Movement coefficients

The movement parameters, φx,y
0 and φx,y

1 , have a normally distributed prior with mean zero.
Their contribution to the objective function is

ΘD = pD

[∑
x,y

(φx,y
0 )2 + (φx,y

1 )2
]

.

with the effect that in the absence of information in the data concerning movement into or
out of a region, the movement coefficients will tend towards zero. The weighting factor, pD, is
controlled by

Tag reporting rates

Tag-reporting rates are given normally distributed priors with fishery specific means and penalty
weights. Their contribution to the objective function is thus

ΘX =
∑

f

pX
f (Xf − µf )2

with fishery specific weighting factors, pX
f , controlled by fish flags 35 and means, µf , controlled

by fish flags 36 (see 4.5.8).

Selectivity curvature

Smoothness in the selectivity curves is regulated by penalties on the second and third differences
of the selectivity-at-age coefficients. The contribution to the objective function is

ΘS =
∑

f

[
pS1

f

A−2∑
a=1

(saf − 2sa+1,f + sa+2,f )2 + pS2
f

A−3∑
a=1

(saf − 3sa+1,f + 3sa+2,f − sa+3,f )2
]

where the fishery specific weighting factors, pS1
f and pS2

f are controlled by fish flags 41 and 42
(see 4.5.6).

Natural mortality rates

The natural mortality rates, Ma, are constrained by smoothing penalties and a penalty to avoid
extreme deviations from the mean. The contribution to the objective function is

ΘM = pM1

A−2∑
a=1

(M ′
a − 2M ′

a+1 + M ′
a+2)

2 + pM2

A−1∑
a=1

(M ′
a −M ′

a+1)
2 + pM3

A∑
a=1

(M ′
a −M ′)2 + pM4(M ′)2

where the M ′
a are the log of the natural mortalities at age divided by the mean thereof, i.e.

M ′
a = log

[
Ma

1
A

∑A
a=1 Ma

]
and where

M ′ =
1
A

A∑
a=1

M ′
a

The weighting factors, pM1, pM2, pM3, and pM4, are controlled by age flags 77, 78, 79, and 80
respectively (see 4.5.15).
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Fishing mortality at MSY

The fishing mortality multiplier at MSY, x?, is the ratio of fishing mortality at MSY to a nominal
aggregate fishing mortality. x? can be given a target value, xtarg with associated penalty weight,
pF, according to age flags 165 and 166. The resulting contribution to the objective function is

ΘF = pF log(x?/xtarg)2

see 4.5.11.

A.2.3 Weighting factors, variance, and coefficient of variation

Many parts of the objective function include a weighting (or penalty) factor. These factors should
each be set by the user to reflect the variability in the variable involved in the particular part of
the objective function. Assuming approximately log-normal deviations for these variables, for
variable x with mean µ and variance σ2 the likelihood of a set of x values is

Lx =
∏

i

1
2πσ2

e−
1

2σ2 ( log(xi)−log(x̂i))
2

where x̂i is some predictor of xi. Ignoring the constant term 1
2πσ2 the negative log-likelihood

becomes
−logLx =

1
2σ2

∑
i

( log(xi)− log(x̂i))
2

Most parts of the objective function have a similar form, that is, a factor p times a sum of
squared deviations of some sort. Therefore putting p in for 1/(2σ2) the standard deviation σ is
at least approximated by

σ ≈ 1√
2p

(A.22)

To see that the coefficient of variation, CV, of the unlogged variable is approximately the
standard deviation σ of the log form of the variable, note that an instance of xi one standard
deviation above its mean would be

xi = e(log(µ)+σ)

and the CV would be

e(log(µ)+σ) − µ

µ
=

elog(µ)eσ − µ

µ
=

µeσ − µ

µ
= eσ − 1

which by Taylor expansion is

[1 + σ +
σ2

2!
+ . . . ]− 1 ≈ σ

Similarly, an instance of xi one standard deviation below its mean leads to

µ− e(log(µ)−σ)

µ
= 1− e−σ = 1− [1− σ +

σ2

2!
− . . . ] ≈ σ

So, ignoring second order and higher terms, the CV of x is approximately σ. Thus a weight
for a term of the objective function can be set according to prior assumption about the variance
or the CV of x by

p ≈ 1
2σ2

≈ 1
2CV2

e.g. for p = 100, CV ≈ 0.07.
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A.3 Computational Details

Although we will attempt to keep the documentation in this User’s Guide as up-to-date as we can,
it is inevitable that the documentation will lag behind continuing developments in MULTIFAN-
CL. Thus the only completely authoritative documentation is the source code itself. However,
finding one’s way around in the source code is daunting even for those well versed in the C++
language. Therefore we provide this section not only for those curious about computational
approaches in MULTIFAN-CL but also as an entrée into the code for those wishing to delve into
details not (yet) covered by the User’s Guide.

A.3.1 Navigating the Source Code

The flow of events in a MULTIFAN-CL run is summarized in Figure A.1. A complete flow
diagram of MULTIFAN-CL would be much more intricate.

In describing the computational flow, we will begin with the innermost part, the “fcomp”
routine and work outward. The fcomp routine is where simulation of the fish population and
fishing is conducted. Here parameters are used which are meaningful to the biological or fishery
aspects of the model, such as natural mortality and catchability. Not all of these “functional”
parameters are operative in a MULTIFAN-CL run. Which ones are operative depends on the
settings of control flags that enable, or disable, various features of the model. Among the
operative parameters will be a subset consisting of those which are being estimated. The values
of these “active” parameters can be different each time the flow of computation runs through the
fcomp routine. So fcomp’s first job is to determine those values. They are passed to fcomp from
its calling routine in the “X-vector”. Which element of the X-vector goes with which functional
parameter is determined by settings of yet more control flags. Values of non-active parameters
are determined elsewhere and are available to fcomp by way of....

Having determined the values of its operative parameters, fcomp conducts a simulation, and
then calculates the ojective function suitably modified by various priors and penalties. It then
returns to the calling routine, the minimizer,1 passing back the value of the objective function
to the calling routine along with the gradient, which is a vector of partial derivatives of the
objective function with respect to the X-vector.

The job of the minimizer is to find the values of elements in the X-vector such that the
objective function, is minimized. The minimizer knows nothing about the functional parameters.
It also knows nothing about details of the objective function except that when it passes values
of the X-vector to the fcomp routine, it gets back a value of the objective function as well as the
gradient, which is a vector of partial derivatives of the objective funcction with respect to the
active parameters. On the basis of that information, it either adjusts the values of the X-vector
and calls fcomp again or it quits depending on whether the maximum gradient value is less than
some threshold or the number of calls to fcomp, the iteration count, has reached some limit.

mean-lengths-bound check.... Setting gradient structure....
Quit flag and parest flag 30.... Setting control structure...
Finally we get to the first box in the diagram which deals with setting up the spatial,

temporal, and biological structure of the population dynamic model, determining which processes
will be enabled in the model and hence which of the many parameters will be operative, and
determining which of the operative parameters will be active.

1In certain circumstances not shown in the flow diagram, fcomp is called by other parts of the code
than the minimizer.
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A.3.2 Using a debugger

Perhaps the best way to follow the flow of MULTIFAN-CL is to run it with a debugger. A
debugger is also useful when trying to find what is wrong with the input files when MULTIFAN-
CL quits with a cryptic error message. In using a debugger, there are two, somewhat unfortunate,
choices. For working in the µsoft Windoze environment, Borland in the past supplied a good,
user friendly, debugger. But that version of Borland’s debugger is no longer available, and its
updates are not as satisfactory. In the Linux world, on the other hand, we have gdb, the GNU
debugger, which is very powerful, but lacks user friendliness.

Regardless of which debugger you are using, note that there are a variety of consistency
checks sprinkeled throughout the code, and that in case of error, they all finish up by calling
an exit routine, ad boundf(). It is useful to set a break point at that routine. Then when the
program stops at that point, you can follow back in the stack to find where the check error
occurred.

Borland debugger

[– under construction –]

GNU debugger

As we mentioned, the GNU debugger lacks user friendliness. However, for those willing to run
it within the emacs (or xemacs) editor, the facility of use is considerably improved. Therefore
we offer here some hints on running a gdb session in the emacs environment. Some familiarity
with emacs is assumed.

First some notation conventions for keyboard entries:

Cr — Enter (carriage return)
A-x — Alt-x
C-x — Ctrl-x
C-xat — Ctrl-x and then a and t while still pressing Ctrl
C-xo — Ctrl-x and then o after releasing Ctrl

— space
PgDn, PgUp — Page Down, Page Up

It is useful to run gdb with a vertically split emacs window. This is accomplished by keying
C-x3 and then A-xgdbCr. This will produce the message: Run gdb (like this): gdb in the
“Minibuf” at the bottom of the emacs window. Key in mfclCr, and you will be placed in a gdb
session in the left hand window with a (gdb) prompt. Before starting a run of mfcl, it is most
useful to set a break point. To break at the beginning of mfcl execution, enter break mainCr at
the prompt. See Table A.1 for other ways to set break points.

To start a run enter run followed by the desired command string, for example:
run yft.frq yft.ini 00.par -makeparCr

This will put the source file nnewlan.cpp in an emacs buffer in the right hand window positioned
with a triangular pointer at the first breakpoint. As gdb moves through execution of mfcl this
pointer will follow the source code (more or less2), bringing up other source files as execution
steps into code in those files.

2MULTIFAN-CL is usually compiled with a high optimization level to maximize speed and efficiency.
This means that the object code no longer corresponds exactly to the source code. If this is annoying, a
debug version of MULTIFAN-CL can be compiled with optimization turned off.



98 APPENDIX A. TECHNICAL ANNEX

Table A.1: gdb and emacs commands.

gdb source
window window action

n C-xan advance execution to next source code statement
s C-xas like n but if current statement calls a subroutine, step into the

subroutine
c C-xar continue execution to next breakpoint

C-ct C-xat set a temporary breakpoint at emacs position in source buffer
C-x set a breakpoint at emacs position in source buffer

break xxx set a breakpoint, where xxx can be the name of a subroutine or
the name and line number of a source file, e.g. nnewlan.cpp:84

delete erase all breakpoints
F6 F6 toggle window focus

A-PgUp A-PgUp scroll other window up

A-PgDn A-PgDn scroll other window down

↑ ↑ move cursor up
↓ ↓ move cursor down
C-↑ step through command history
p x print value of variable x

ptype y print structure of variable y

There are numerous commands available to control gdb. Unfortunately, commands for the
same action can differ depending on which window has current focus, and some are available only
in one or the other of the windows. Table A.1 gives a selection of commonly used commands
some of which are useful in setting breakpoints and stepping through the code. Moving the
cursor, scrolling windows, and toggling the window focus can be accomplished by key entries or
by the mouse, which can be also be used to manipulate the relative window sizes by clicking and
dragging in the horizontal grey bar immediately below the vertical bar separating the windows.

Stepping through the code with n and s is a good way to follow the flow of the program,
but when halted at a breakpoint it is also useful to examine the contents of program vari-
ables. Table A.2 is a schematic view of a gdb session in which a breakpoint is set, and the
program run, whereupon it halts at that breakpoint shown by the pointer in the source code
window. The program may be about to write to a file whose name is stored in string variable
full_output_parfile_path. The next user command reveals that the file name is 00.par
as is should be (from the run command). The next user command examines the structure of
fsh.bd_coff which is a component of class variable fsh. Much of the resulting output in the
gdb window has been deleted in the example, but what is there shows that fsh.bd_coff has a
component *va as well as a minimum and maximum index; so it evidently is something related
to a vector of pointers to doubles. The deciferable part of the stuff printed by the next user
command shows the index to range from 1 to 3. The next user command prints the first element
of fsh.bd_coff cast to (double &) giving a value of 30. The final user command shows a trick
for printing all three elements of the vector. The gdb debugger is full of such tricks waiting to
be discovered, much like goodies in an Easter egg hunt. Try a google search with “gdb debugger
guide help tricks”.
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Table A.2: Portion of a gdb debugging session within the emacs editor. Blue colored text
is entered by user.

gdb window source code window
(gdb) break newl5.cpp:88 double fcomp(const dvar_len_fish_stock_history& _f

Breakpoint 1 at 0x8088775: file newl5.cpp, line 88. const dvar_vector& _x, int nvar,int print_switch

(gdb) run simdat.frq simdat.ini 00.par -makepar int gradient_switch,ivector * pq_flag)

Starting program: /home/pkleiber/mfcl-feb25-03/gmult {

dvar_vector& x=(dvar_vector&) _x;

Breakpoint 1, fcomp(dvar_len_fish_stock_history cons dvector& gbest=(dvector&) _gbest;

dvar_vector const&, int, int, dvector const&, int, i dvar_len_fish_stock_history& fsh=(dvar_len_fish_

print_switch=1, _gbest=@0xbfffe2c0, //cout << "Entered fcomp" << endl;

gradient_switch=0, pq_flag=0x0) at newl5.cpp:88 char tmp_file_names[19][13]={"tmpout.1","tmpout.

(gdb) p &full_output_parfile_path[1] "tmpout.5","tmpout.6","tmpout.7","tmpout.8","t

$1 = (const unsigned char *) 0x81e1fb0 "00.par" "tmpout.11","tmpout.12","tmpout.13","tmpout.14

(gdb) ptype fsh.vb_coff "tmpout.16","tmpout.17","tmpout.18","tmpout.19

type = class dvar_vector { HERE

private: dvariable f=0.0;

double_and_int *va; //cout << "entered fcomp" << endl;

int index_min; greport("beginning fcomp do_every");

int index_max; dvariable mean_length_constraints=0.0;

arr_link *link_ptr; fsh.generate_report=print_switch;

vector_shapex *shape; . f+=fsh.reset(x);

. if (fsh.parest_flags(197))

< text deleted > {

. par_ofstream ofs(full_output_parfile_path);

} ofs << fsh;

(gdb) p fsh.vb_coff exit(0);

$2 = {va = 0x4946b4a8, index_min = 1, index_max = 3, }

link_ptr = 0x825ac28, shape = 0x825ac48} //cout << "constraint penalty = " << f << endl;

(gdb) p (double &)fsh.vb_coff[1] HERE

$3 = (double &) @0x4946b4b0: 30 dvariable ffpen=0.0;

(gdb) p (double[3] &)fsh.vb_coff[1] // cout << " before do_every" << endl;

$4 = (double (&)[3]) @0x4946b4b0: {30, 100, ffpen=0.0;

0.29999999999999999} fsh.do_everything_calc(ffpen,pq_flag);

(gdb) if (pvm_switch ==0 || pvm_switch ==1)

Error Exit

MULTIFAN-CL can be compiled in optimized mode or in safe mode. The safe mode checks array
indices against array boundaries and exits if an overrun occurs, producing an error message such
as “matrix bound exceeded.” In redoing the offending MULTIFAN-CL run in the debugger, it is
useful to place a breakpoint at ad_boundf(int i) in source code file nnewlan.cpp. That way
the program will suspend before running to completion thereby allowing the debugger to trace
back through the sequence of function calls leading to ad_boundf. This should give a clue as to
what caused the array overrun.

A.3.3 Source Code Files

There are approximately 100 source code files. Familiarity with the content of these files is useful
in navigating the code. Here are a few which we have gotten around to annotating. We hope to
expand the list at we find time, perhaps orgainizing them in functional groupings. One problem
is that the source files tend to proliferate with updated versions of MULTIFAN-CL; so the list
will probably never be complete.

nnewlan.ccc – Contains main() plus routines for dealing with the command line and setting
things up.



100 APPENDIX A. TECHNICAL ANNEX

optmatch.ccc – Routines to recognize command line options.

lbselclc.ccc – Contains routines to manipulate selectivities, including calculation of selec-
tivity at length and for smoothing selectivity at age based on variance in length at age.

mfexp.ccc – upper bounded exp function

A.3.4 Important functions

ADMB functions

[– under construction –] Functions in the ADMB library called by MULTIFAN-CL code to be
documented here.

MULTIFAN-CL functions

set_value – (x, y, v, ii, fmin, fmax, fpen, s)
set_value_inv – (x, y, v, ii, fmin, fmax, fpen, s)
boundp – (xx, fmin, fmax, fpen, s)
boundpin –
fcomp –
reset –
-- etc. --

A.3.5 Class descriptions

// The class fish_stock_history contains all the relevant data and parameters which
// determine the exploitation of the stock the data are ordered by fishing period.

class dvar_fish_stock_history
{
public:
double likecomponent[10];
int generate_report;
int month_1; // the month in which recruitment occurs
int frq_file_version;
ivector parest_flags; // the old control flags from the standard multifan

// model so they can be accessed from the class
// members The standard flags from the old multifan
// model

ivector age_flags; // The new flags for the age structured part of the
// model

imatrix fish_flags; // Fishery specific control flags
imatrix data_fish_flags; // Fishery specific control flags
imatrix old_fish_flags; // Fishery specific control flags
imatrix tag_flags; //
// fish_flags(i,1) : the number of age classes with selecitvity in
// fishery i
int nage; // The number of age classes
dvar4_array nrsurv;
dvar_vector biomass;
dvar_matrix biomass_by_region;
dvar_matrix rel_biomass_by_region;
dvar_vector catch_biomass;
dvar_vector catch_numbers; // JH 27/03/02
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dvar3_array F_by_age_by_year_by_region;
dvar_matrix F_by_age_by_year;
dvar5_array nrfm;
dvar4_array nrtm;
// fisheries grouping stuff used in catchability calculations
imatrix gfish_ptr;
ivector num_grouped_fish_times;
int ngroups;
imatrix global_fishing_periods; // need for grouping effort

// for cobbs-douglas
// production function

ivector effective_len_size;
ivector effective_weight_size;
dmatrix grouped_effort;
dmatrix grouped_fish_time;
dmatrix grouped_between_times;
dvar_matrix grouped_catchability;
imatrix gfish_index;
dvar_matrix grouped_catch_dev_coffs;
int nyears; // The number of years over which fishing occurred
int num_tag_releases; // the number of sets of releases of tagged fish
int min_tag_year;
ivector tag_region; // the region in which each tag set was released
ivector tag_year; // the year in which each tag set was released
ivector true_tag_year; // the year in which each tag set was released
ivector tag_month; // the month in which each tag set was released
ivector true_tag_month; // the month in which each tag set was released
ivector itr; // the number of differenct periods in which tags were

// returned from that tag group
ivector itind; // the first realization with tags present
ivector initial_tag_year; // the each tag set was

// released[---????---]
ivector terminal_tag_year; // the each tag set was

// released[---????---]
imatrix initial_tag_period; // the each tag set was

// released[---????---]
imatrix terminal_tag_period; // the each tag set was

// released[---????---]
imatrix initial_tag_recruitment_period; // the each tag set

// was released [---????---]
imatrix initial_tag_release_by_length; // the tag release data

// by length intervals
dvar_matrix initial_tag_release_by_age; // the tag release data by

// length intervals
i3_array tag_recaptures_by_length;
int tag_shlen; // The number of fisheries
double tag_filen; // The number of fisheries
int tag_nlint; // The number of fisheries

int first_time; // used as date offset for renumbering data dates
int month_factor; // used as date offset for renumbering data dates
int num_fisheries; // The number of fisheries
ivector minttp;
ivector min_init_tag_period;
ivector maxttp;
ivector minimum_initial_tag_period;
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dvector pmature;
int num_recruitment_periods;
int initial_recruitment_count;
ivector num_fish_periods; // The number of fishing periods
int num_fish_data_recs; // The total number of fishery

// data records
int num_regions; // The number of fishery data records
imatrix num_fish_incidents; // The number of fishing incidents which

// occurred during each fishing period in each
// region

imatrix recruitment_period; //
i3_array num_tagfish_incidents; // The number of fishing incidents which

// occurred during each fishing period in
// each region for each tag group

i3_array num_alltagfish_incidents; // The number of fishing incidents which
// occurred during each fishing period in
// each region for each tag group

imatrix num_pooledtagfish_incidents; // The number of fishing incidents
// which occurred during each fishing
// period in each region

ivector num_fish_times; // the number of times a particular fishery occurred
ivector fishing_period; // the fishing period during which an instance of a

// fishery occurs
dvar_matrix effort_by_fishery;
ivector fishing_region; // the fishing period during which an instance of a

// fishery occurs
ivector fishing_incident; // the fishing_incident corresponding to an

// instance of a fishery
i3_array parent; // Point to the fishery containing a fishing incident
imatrix year; // The year during which the fishing incident occurred
imatrix movement_period; // The year during which the fishing incident

// occurred [---????---]
int year1; // The first year a fishing incident occurred
imatrix realization_period; // The fishing period in

// which each realization of a fishery
// occurred

imatrix realization_incident; // The fishing incident to which each
// realization of a fishery corresponded

imatrix realization_region;// The fishing incident to which each realization
// of a fishery corresponded

i3_array header_record_index; // The index of the (sorted) header record
// which corresponds to a particular fishing
// period and fishing incident

dvar_matrix region_pars;
imatrix region_flags;
dvar_vector gml;
dvar_vector predicted_yield_bh;
dvar_vector predicted_eqbio_bh; // JH 21/03/02 - equil. adult biomass
dvar_vector predicted_eqtotbio_bh; // JH 21/03/02 - equil. total biomass
dvar_vector tb_ratio; // JH 27/03/02 - tot biomass over TB at MSY
dvar_vector ab_ratio; // JH 27/03/02 - spn biomass over AB at MSY
dvar_vector F_ratio; // JH 27/03/02 - aggregate F over F at MSY
dvector predicted_yield_bh_x;
dvar_vector predicted_yield_pt;
dvector predicted_yield_pt_x;
dvar_vector predicted_recruitment_bh;
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dvector predicted_recruitment_bh_x;
dvector region_area;
dvar_matrix region_rec_diffs;
dvar_matrix region_rec_diff_coffs;
dvar_vector region_rec_diff_sums;
dvar_matrix fraction; // The fraction of the total natural mortality occurring

// during this fishing period
ivector regmin;
ivector regmax;
dvariable totpop; // population size scaling parameter
dvariable recmean;
dvariable initmean;
dvariable rec_init_diff; // diff level between rec and init pop
dvar_matrix D; // moves the fish around
dvar3_array Dad; // moves the fish around
imatrix Dflags; // moves the fish around
dvar_vector diff_coffs; // parameters in the diffusion matrix
dvar_vector diff_coffs2; // parameters in the diffusion matrix
dvar_vector diff_coffs3; // parameters in the diffusion matrix
dvar_vector xdiff_coffs; // parameters in the diffusion matrix
dvar_vector xdiff_coffs2; // parameters in the diffusion matrix
dvar_vector xdiff_coffs3; // parameters in the diffusion matrix
dvar_vector recr; // the relative recruitment levels
ivector rec_times; // the relative recruitment levels
dvector rec_covars; // environmenital factors affecting recruitment
dvar_vector tmprecr; // the relative recruitment levels
dvar_vector avail_coff; // orthogonal polys which determine [---???---]
dvar_vector orth_recr; // orthogonal polys which determine the relative

// recruitment levels
dmatrix recr_polys;
dvar_matrix initpop;// the relative inital population at age levels
dvar_vector tmpinitpop; // the relative inital population at age levels
dvar_vector actual_recruit; // The total number of fish recruiting to the

// population each year
dvar_vector actual_init; // The initial number of fish in the population in

// year 1
dvar3_array num_fish; // The number of fish in each age class in the population

// at the beginning of each fishing period
dvar3_array num_fish0; // The number of fish in each age class in the

// population at the beginning of each fishing period in
// the absence of fishing

dvar3_array total_num_fish; // The number of fish in in the population at the
// beginning of each fishing period

dvar4_array tagnum_fish; // The number of fish in each tag group in age class
// in the population at the beginning of each fishing
// period

dvar3_array pooled_tagnum_fish; // The number of fish in each tag group in age
// class in the population at the beginning of
// each fishing period

dvar3_array epooled_tagnum_fish_recr; // The number of fish in each tag group
// in age class in the population at the
// beginning of each fishing period

dmatrix tag_release_by_length;
dvar_matrix lbsel;
dvar3_array pooledtagN; // The number of fish in each age class in the

// population at the beginning of each Year
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dvar4_array tagN; // The number of fish in each age class in the population at
// the beginning of each ‘Year

dvar3_array tagrelease; // The number of fish in each age class in the
// population at the beginning of each Year

dvar3_array N; // The number of fish in each age class in the population at the
// beginning of each year N(region, year, age)

dvar3_array N0; // The number of fish in each age class in the population at
// the beginning of each Year in the absence of fishing
// N0(region, year, age)

dvar3_array exp_N; // The number of fish in each age class in the population at
// the beginning of each Year

dvar4_array catch; // The number of fish in the catch from each age class,
// fishing period, and each fishery

dvar4_array mean_weights_at_age; // The number of fish in the catch from each
// age class, fishing period, and each fishery

dvar4_array exp_catch; // The number of fish in the catch from each age class,
// fishing period, and each fishery

dvar5_array tagcatch; // The number of tagged fish in the catch from each age
// class, fishing period, and each fishery

dvar4_array pooled_tagcatch; // The number of tagged fish in the catch from
// each age class, fishing period, and each
// fishery

dvar5_array obstagcatch; // The number of tagged fish in the catch from each
// age class, fishing period, and each fishery

dvar4_array pooledobstagcatch; // The number of tagged fish in the catch from
// each age class, fishing period, and each
// fishery

dvar5_array obstagcatch1;
d4_array tot_tag_catch; // The number of tagged fish in the catch from each

// age class, fishing period, and each fishery
d3_array region_tot_tag_catch; // The number of tagged fish in the catch

// from each age class, fishing period, and
// each fishery

d3_array pooledtot_tag_catch; // The number of tagged fish in the catch from
// each age class, fishing period, and each
// fishery

d5_array obstagcatch_by_length; // The number of tagged fish in the catch
// from each age class, fishing period, and
// each fishery

d4_array pooledobstagcatch_by_length; // The number of tagged fish in the
// catch from each age class, fishing
// period, and each fishery

dvar3_array tot_catch; // The total number of fish in the catch fishing period,
// and each fishery

dvar4_array prop; // The number of proportion in the catch from each age class,
// fishing period, and each fishery

dvar4_array incident_sel; // The selectivity parameters for each fishing
// incident

dvar3_array mean_incident_sel; // The selectivity parameters for each fishing
// incident

dvar3_array delta2; // The random variations in selectivity
dmatrix between_times; // The times between realizations of a fishery
imatrix imp_back; // How far back to go in implicit robust mean calculations

// for catchability
imatrix imp_forward; // How far forward to go in implicit robust mean

// calculations for catchability
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dvar_matrix fishery_sel; // The selectivity parameters for each fishery
dvar_matrix selcoff; // The selectivity parameters for each fishery
dvar3_array survival; // The survival rate for each fishing period
dvar4_array fish_mort; // The fishing mortality rate for each fishing

// period, fishing incident and age class
dvar4_array fish_mort_calcs; // The fishing mortality rate for each fishing

// period, fishing incident and age class
dvar3_array tot_mort; // The total mortality rate for each fishing period
dvar3_array tot_mort0; // The total mortality rate for each fishing period
dvar_matrix nat_mort; // The annual mortality rate for each year and age class
dvar3_array catchability; // The catchability by fishing period by fishing

// incident
dvar3_array FF; // The catchability by fishing period by fishing incident
d3_array effort; // the fishing effort by fishing period by fishing incident
imatrix month; // the month of the year during which each fishery occurs
imatrix true_month; // the month of the year during which each fishery

// occurs
imatrix true_week; // the month of the year during which

// each fishery occurs
imatrix true_year; // the month of the year during which

// each fishery occurs
imatrix week; // The week of the month during which each fishery occurs
dvariable nat_mort_coff; // determines the natural mortality
double catch_init; // Initial value for the catchability
dvar_vector q0; // overall catchability coefficient
dvar_vector q1; // time dependent trend in catchability coefficient
dvar_matrix effort_dev_coffs;
imatrix zero_catch_flag;
dvar_matrix catch_dev_coffs; // determine random walk deviations in catchability

// time trend
dvar_matrix rep_dev_coffs; // determine random walk deviations in reporting rate

// time trend
dvar3_array rep_rate; // Tag reporting rate by region, fishing period, fishing

// incident
dvar_matrix implicit_catchability; //
dvar_matrix fish_pars; // extra fisheries related parameters
dvar_matrix seasonal_catchability_pars; // explicit seasonal catchability as

// opposed to trig function
imatrix seasonal_catchability_pars_index;
dmatrix seasonal_catchability_pars_mix;
dvar_matrix age_pars; // extra age-class related parameters
dmatrix biomass_index; // extra fisheries related parameters
dvar3_array effort_devs; // deviations in effort fishing mortality relationship
dvar3_array sel_dev_coffs; //determine deviations in selectivity
dvar4_array sel_devs; //determine deviations in selectivity
dvar_vector corr_wy; // determines within year correlation in sel deviations
dvar_vector corr_by; // determines between year correlation in sel deviations
dvar_vector corr_wc; // determines within cohort correlation in sel deviations
dvar_vector corr_eff; // determines // The data
d3_array obs_tot_catch;
dmatrix obs_region_tot_catch;
d4_array obs_catch; // The number of fish in the catch from each age class,

// fishing period, and each fishery
d4_array obs_prop; // The estimated proportion in the catch from each age

// class, fishing period, and each fishery
dvar_matrix qmu;
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dvar_matrix qvar;
dmatrix qstudent;
void do_grouped_between_time_calculations(void);
void allocate_optional_stuff(void);
void do_the_diffusion_yf(int year,dvar_matrix& DINV);
void fishing_mortality_calc(void);
void fishing_mortality_calc(d3_array&);
dvar_fish_stock_history(int ng,int nfp, ivector& nfi,

int nfsh, int nyrs);
dvar_fish_stock_history(int ng,int nfp, ivector& nfi,

int nfsh, int nyrs, ivector& flags);
void catch_equations_calc_implicit(dvar_vector& sv,

dvariable& ffpen);
void catch_equations_calc_implicit_mc(dvar_vector& sv,

dvariable& ffpen);
void seasonal_catchability_calc(void);
void fishery_selectivity_calc(void);
void incident_selectivity_calc(void);
void get_initial_population(dvar_vector& sv);
void get_initial_tag_population(dvar_vector& sv, int it);
void do_the_diffusion(int year,dvar_vector& sv,

dvar3_array& N, ofstream * pofs=NULL);
void do_the_diffusion(int it,int year,dvar_vector& sv,

dvar3_array& N, ofstream * pofs=NULL);
void get_exp_N(void);
void incident_selectivity_calc(d3_array&);
void incident_selectivity_calc(d3_array&,dvar_vector&,

dvar_vector&);
void proportion_at_age_calc(void);
void total_fish_mort_and_survival(int it,int ip,int yr,

const dvar_vector & tmp);
void fishery_selcoff_init();
void rep_rate_devs_calc(void);
void do_everything_calc();
void do_everything_calc(d3_array&);
void do_everything_calc(d3_array& len_sample_size,
dvar_vector& vb_coff,dvar_vector& var_coff,dvar_vector& sv,

dvariable&);
void get_initial_parameter_values();
void do_newton_raphson(int ir,int ip,dvariable& ffpen);
void transform_in();
void transform_out();
//have_data_this_year(void);
dvariable have_data_this_year(int it,int ir,int& ip,int cy);
void print_tag_accounting_info(void);
void calculate_tag_catches(int it);
void have_no_data_this_year(int it,int ir,int cy);
void initial_population_profile_calc();
void natural_mortality_calc(void);
void natural_mortality_calc2(void);
//void catchability_init();
void natural_mortality_init();
void catchability_calc(void);
void catchability_devs_calc(void);
void set_zero_catch_flag(void);
void get_observed_total_catch();
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void catch_equations_calc(dvar_vector& sv);
void xcatch_equations_calc(dvar_vector& sv);
void catch_equations_calc_movement(dvar_vector& sv);
dvariable tag_catch_equations_calc(dvar_vector& sv);
void tag_catch_equations_calc_mc(dvar_vector& sv);
void catch_equations_calc_avail();
dvariable reset(dvar_vector& x,int& ii);
dvariable reset(dvar_vector& x,int& ii,

d3_array& len_sample_size);
void sel_dev_all_comp();
void fmcomp(void);
void effort_devs_calc();
void do_fish_mort_intermediate_calcs(void);
void do_fish_mort_intermediate_calcs(int ir,int ip);
void albacore_control_switches(void);
void set_control_switches(void);
void xinit(dvector& x);
void xinit(dvector& x,int& ii);
void xinit(dvector& x,int& ii,d3_array& len_sample_size);
void xinit(dvector& x,int& ii,d3_array& len_sample_size,

ofstream& xof);
void do_recruitment_period_calculations(void);
void get_initial_tag_recruitment_period(void);
int nvcal(d3_array& len_sample_size);
void get_initial_age_structure(void);
void dvar_fish_stock_history::get_initial_age_structure(
const dvariable& totpop,dvar_vector& sv);
dvar_fish_stock_history(int ntg,int nregions, int ng,ivector& nfp,

imatrix& nfi,int nfsh,int nyrs,ivector& fl,
ivector& par_fl, ivector& nft, ivector& _regmin,
ivector& _regmax, ivector& _dataswitch,imatrix& _Dflags);

void dvar_fish_stock_history::
get_initial_age_structure_equilibrium(void);

dvar_matrix dvar_fish_stock_history::
get_equilibrium_survival_rate(void);

void print_tagging_fit_info(ofstream& of);
void print_movement_report(ofstream& of);
dvariable tag_catch_equations_calc_pooled(dvar_vector& sv);
void get_initial_tag_fishery_realization_index(void);
void do_newton_raphson_for_tags(int it,int ir,int ip,

dvariable& ffpen);
void allocate_some_tag_stuff(void);
void pooled_tag_catch_equations_calc(dvar_vector& sv);
void grouped_catchability_calc(void);
void do_grouped_tags_between_time_calculations(void);
dvariable robust_kalman_filter_for_catchability(void);

void effort_multiplier_for_cobb_douglas_production_function(void);
void read_recruitment_env_data(adstring& root);
void print_tag_return_by_time_at_liberty(ofstream& of);
void explicit_seasonal_catchability_calc(void);
dvariable normalize_seasonal_catchability(void);

}; // end class dvar_fish_stock_history

class dvar_len_fish_stock_history: public dvar_fish_stock_history
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{
public:
ivector nlintv;
//dmatrix freq;
dvector fmid;
dvector wmid;
dvar4_array mean_length; (reg,pd,flt,age)
dvar3_array mean_length_yr;
dvar3_array mean_weight_yr;
double len_wt_coff;
dvar_matrix length_sel;
dvar3_array relative_bio;
dvar3_array len_dist;
dvar3_array RB;
d3_array ORB;
dvar4_array vars;
dvar4_array sdevs;
int nlint; // no. of length bins
double shlen; // bottom of 1st length bin
double filen; // width of length bins
int nwint; // no. of weight bins
double wshlen; // bottom of 1st weight bin
double wfilen; // width of weight bins
dvar_vector vb_coff;
dvar_vector vb_bias;
ivector common_vb_bias;
dvar_vector common_vb_bias_coffs;
dvar_vector sv;
dvar_vector growth_dev;
dvar_vector var_coff;
dvar4_array tprob;
dvar4_array wtprob;
dvar_matrix lengthbsel;
d4_array len_freq;
d4_array wght_freq;
d3_array len_sample_size;
d3_array wght_sample_size;
double fmin1;
double fmax1;
double fminl;
double fmaxl;
double vmin1;
double vmax1;
double vminl;
double vmaxl;
double rhomin;
double rhomax;
int nfmbound;
ivector ifper;
ivector ifinc;
ivector iffish;
ivector iageclass;
dvector fmmin;
dvector fmmax;
dvector pdown;
dvector pup;
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friend dvariable
objective_function(dvar_len_fish_stock_history& fsh);

public:
void big_fish_catch(void);
void do_everything_calc(dvariable&);
void mean_length_calc(void);
void mean_length_calcx(void);
void variance_calc(void);
void predicted_frequency_calc(void);
void fast_pred_frequency_calc(void);
void fast_weight_pred_frequency_calc(void);
void fast_pred_frequency_calc_len_based(void);
dvariable reset(dvar_vector& x);
int nvcal(dvector&x);
friend par_uostream& operator << (par_uostream& pof,
dvar_len_fish_stock_history& fsh);
friend par_ofstream& operator << (par_ofstream& pof,
dvar_len_fish_stock_history& fsh);
dvariable robust_fit(void);
dvariable fmeanpen(void);
void obs_length_moments_calc(
dvar_matrix& obs_catch_moment1,dvar_matrix& obs_catch_moment2);
void pred_length_moments_calc(dvar_matrix& pred_catch_moment1,
dvar_matrix& pred_catch_moment2);
void main_length_calcs(dvar_vector& tprobb,dvar_vector& propp,
dvar_vector& mean_len,dvar_vector& sigg);
void main_length_calcs2(dvar_vector& tprobb,
dvar_vector& propp,dvar_vector& mean_len,dvar_vector& sigg,
dvar_vector& relative_num_at_length,dvar_vector& length_sel,
dvar_vector& nnum_fish,dvar_vector& llen_dist,int fi);
void main_length_calcs_len_based(dvar_vector& tprobb,

dvar_vector& propp, dvar_vector& mean_len,
dvar_vector& sigg, dvar_vector& nnum_fish,
dvar_vector& llendist, int fi);

void calculate_the_biomass_by_region(int ir,int i);

dvariable fit_tag_returns_parallel(void);
void main_length_calcs_print(uostream& ofs,
dvar_vector& propp,dvar_vector& mean_len,
dvar_vector& sigg);

dvector get_mean_length(int k)
{
return value(mean_length( fishing_region(k),fishing_period(k),
fishing_incident(k)) );

}

dvector get_props(int k)
{
return value(prop( fishing_region(k),fishing_period(k),
fishing_incident(k) ));

}

dvector get_vars(int k)
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{
return value(vars(fishing_region(k),fishing_period(k),
fishing_incident(k) ));

}
d4_array vb_length_calc(void);
dvector vb_length_calc(int,int,int);

void print_pred_frequencies(ofstream& ofs);
void print_pred_frequencies(uostream& ofs);

dvector main_length_calcs_print(ofstream& ofs,dvar_vector& propp,
dvar_vector& mean_len,dvar_vector& sigg);

int nvcal(void);

dvariable dvar_len_fish_stock_history::fit_tag_returns(void);
dvariable dvar_len_fish_stock_history::

fit_tag_returns_sqrt(void);
void read_tagging_data(adstring& root,int);
void set_control_switches(void);
void set_shark_control_switches(void);
void set_Yukio_control_switches(void);
void set_gridsearch_control_switches(void);
void albacore_control_switches(void);
void xinit(dvector& x);
dvar_len_fish_stock_history(dvar_fish_stock_history& fsh,

int _nlint, double& _shlen,double& _filen );
dvar_len_fish_stock_history(dvar_fish_stock_history& fsh,

int _nlint, double& _shlen,double& _filen,i3_array& x,
i3_array& u,int _nwint);

void cons_convert_tag_lengths_to_age(void);
void var_convert_tag_lengths_to_age(void);
void cfast_pred_frequency_calc(dvar_len_fish_stock_history& cfsh);
void set_some_flags(ivector& dataswitch);
void cons_observed_tag_catch_calc(void);
void observed_tag_catch_calc(int direction_flag);
void observed_tag_catch_by_length_calc(void);
void observed_tags_by_age_from_length(void);
void observed_tags_by_age_from_length_pooled(void);
void tot_tags_catch(void);
void print_tag_data(int ir,int ip,ofstream &ofs);
dvariable fit_pooled_tag_returns(void);
dvariable grouped_tag_reporting_rate_penalty(void);
dvariable biomass_dynamics_pt(void);
void yield_analysis_pt(ofstream * pof);
void calculate_the_biomass(void);
void calculate_the_biomass_by_region(void);
void calculate_the_catch_biomass(void);
void calculate_the_catch_numbers(void); // JH 27/03/02
void get_fishing_mortality_by_age_by_year_by_region(void);
void get_fishing_mortality_by_age_by_year(void);
void calculate_the_mean_weights_at_age(void);
void mean_lengths_by_year_calc(void);
void mean_weights_by_year_calc(void);
void get_equilibrium_structure_for_yield(void);
dvariable fit_tag_returns_mix(void);
dvariable fit_pooled_tag_returns_mix(void);
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void tag_returns_report(const ofstream &);
void main_weight_calcs(dvar_vector& tprobb,dvar_vector& propp,
dvar_vector& mean_len,dvar_vector& sigg);
void setup_some_stuff(double tmp_len_wt_coff, double_wshlen,

double _wfilen,int nwint, int _num_fisheries,
imatrix _dff,par_cifstream * _pinfile,
int _month_1,int _first_time,int _mfactor);

void print_pred_wght_frequencies(ofstream& ofs);
dvector main_wght_calcs_print(ofstream& ofs,
dvar_vector& propp,dvar_vector& mean_len,dvar_vector& sigg);
void set_effective_length_and_weight_sizes(void);

}; // end class dvar_len_fish_stock_history

class fishery_catch_at_age_record_array
{
// this class is intended to hold an array of FISHERY catch at age
// records in such a form that they can be read in sequentially from
// a user’s FRQ file. Then they will probably be sorted to be used in
// a fish_stock_history structure.

int nage;
int index_min;
int index_max;
fishery_catch_at_age_record * ptr;
void allocate(int nage)
{
for (int i=indexmin();i<=indexmax();i++)
{

(*this)(i).allocate(nage);
}

}

void allocate(fishery_header_record_array& fhra,int ng);
public:
int indexmin(){return index_min;}
int indexmax(){return index_max;}
int size(){return index_max-index_min+1;}
int numage(){return nage;}
fishery_catch_at_age_record& operator [] (int i)
{
#ifdef SAFE_ARRAYS

check_index(index_min,index_max,i,
" fishery_catch_at_age_record& operator [] (int i)");

#endif
return ptr[i];

}

fishery_catch_at_age_record& elem(int i)
{
#ifdef SAFE_ARRAYS
check_index(index_min,index_max,i,

" fishery_catch_at_age_record& elem(int i)");
#endif
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return ptr[i];
}

fishery_catch_at_age_record& operator () (int i)
{
#ifdef SAFE_ARRAYS
check_index(index_min,index_max,i,

" freq_record& operator [] (int i)");
#endif
return ptr[i];

}

fishery_catch_at_age_record_array(int min,int max,int ng)
{
nage=ng;
index_min=min;
index_max=max;
int sz=size();
ptr=new fishery_catch_at_age_record [sz];
if (ptr==NULL)
{
cerr << "Error allocating memory in fishery_freq_record_array"<<endl;
exit(21);

}
ptr-=indexmin();
allocate(nage);

}

friend ostream& operator <<
(ostream& ofs, fishery_catch_at_age_record_array& fcara);

fishery_catch_at_age_record_array(fishery_header_record_array& fhra,
int ng);

~fishery_catch_at_age_record_array()
{
ptr+=indexmin();
delete [] ptr;
ptr=NULL;

}

void sort(void);
}; // end class fishery_catch_at_age_record_array
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Figure A.1: Summarized flow diagram of a MULTIFAN-CL estimation run.



Appendix B

Complete Flag List

Where a flag appears in the flag lists in section 4.5, a shortened
description is given here along with a reference back to that section.
Flags flagged with a “∃” are also used in the MULTIFAN-CL code but
are not (yet) listed in section 4.5. Those flagged with a “!”, are found
only in code that is presently commented out. Those not flagged at
all are not found anywhere in the code.

B.1 parest flags
Flag Action/Meaning/Status

parest 1 function evaluation limit [4.5.1]
parest 2
parest 7
parest 8
parest 9
parest 10
parest 11
parest 12 avg size of 1st age class [4.5.4]
parest 13 avg size of last age class [4.5.4]
parest 14 estimate K [4.5.4]
parest 15 generic σ of size at age [4.5.4]
parest 16 size dependent σ [4.5.4]
parest 17
parest 18
parest 19
parest 20 ∃(sub-phase number during intial phase of fit)
parest 21 ∃
parest 22
parest 23 ∃
parest 24
parest 25
parest 26
parest 27
parest 28
parest 29
parest 30 ∃
parest 31 !
parest 32 initial control regime [4.5.1]
parest 33 upper bound for tag rep. rate [4.5.8]
parest 34 ∃
parest 35
parest 36
parest 37
parest 38
parest 39
parest 40
parest 41 tot weight fit only [4.5.1]
parest 42
parest 43
parest 44
parest 45
parest 46
parest 47
parest 48
parest 49
parest 50 maximum gradient target [4.5.1]
parest 51
parest 52
parest 53
parest 54
parest 55
parest 56
parest 57
parest 58
parest 59
parest 60
parest 61
parest 62
parest 63
parest 64

parest 65
parest 66
parest 67
parest 68
parest 69
parest 70
parest 71
parest 72
parest 73
parest 74
parest 75 ∃
parest 76
parest 77
parest 78
parest 79
parest 80
parest 81
parest 82
parest 83
parest 84
parest 85
parest 86
parest 87
parest 88
parest 89
parest 90
parest 91
parest 92
parest 93
parest 94
parest 95
parest 96
parest 97
parest 98
parest 99
parest 100 ∃
parest 101 ∃
parest 102
parest 103
parest 104
parest 105
parest 106
parest 107
parest 108
parest 109
parest 110 ∃
parest 111 likelihood type for tags [4.5.8]
parest 112
parest 113
parest 114
parest 115
parest 116
parest 117
parest 118
parest 119
parest 120 ∃
parest 121
parest 122
parest 123
parest 124
parest 125
parest 126
parest 127
parest 128
parest 129
parest 130
parest 131
parest 132
parest 133
parest 134
parest 135
parest 136
parest 137

114
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parest 138
parest 139
parest 140 ∃
parest 141 likelihood function selection [4.5.3]
parest 142 ∃
parest 143 ∃
parest 144 ∃
parest 145 hessian and standard dev. report [4.5.1]
parest 146 scale gradient for tot pop. [4.5.1]
parest 147
parest 148 penalty for diff. betw. last 2 recruitments [4.5.10]
parest 149 penalty for recruitment devs [4.5.10]
parest 150 ∃
parest 151 ∃
parest 152 rescale gradients to 1 [4.5.1]
parest 153 ∃
parest 154
parest 155 enable orthogonal polynomial for recruitment [4.5.10]
parest 156 ∃
parest 157 density dep. growth [4.5.4]
parest 158 ∃
parest 159 ∃
parest 160 ∃
parest 161 ∃
parest 162 ∃
parest 163 ∃
parest 164 ∃
parest 165 ∃
parest 166 ∃
parest 167 ∃
parest 168 rescale age in growth function [4.5.4]
parest 169 rescalling a fn of length [4.5.4]
parest 170 ∃
parest 171 power term on age [4.5.4]
parest 172 ∃
parest 173 1st n lengths are indep. parameters [4.5.4]
parest 174 alt. VB growth parameterization – gmlxx
parest 175 rel. to age pars(4) (growth devs) – gml
parest 176 smooths gml & presumably age pars(4)
parest 177
parest 178
parest 179
parest 180 ∃
parest 181 ∃
parest 182 penalty wt. for length estimation [4.5.4]
parest 183 orthog. poly.: years at start [4.5.10]
parest 184
parest 185
parest 186
parest 187
parest 188
parest 189 write plot files [4.5.1]
parest 190 write ests.rep [4.5.1]
parest 191 ∃
parest 192 no. terms in newton minimization [4.5.1]
parest 193
parest 194
parest 195
parest 196
parest 197 new input par file (obsolete) [4.5.1]
parest 198 ∃
parest 199 ∃
parest 200 .par file version number
parest 201 orthog. poly.: degree at start [4.5.10]
parest 202 orthog. poly.: years at end [4.5.10]
parest 203 orthog. poly.: degree at end [4.5.10]
parest 204 orthog. poly.: years at start, regions [4.5.10]
parest 205 orthog. poly.: degree at start, regions [4.5.10]
parest 206 orthog. poly.: years at start, seasons [4.5.10]
parest 207 orthog. poly.: degreeat start, seasons [4.5.10]
parest 208 orthog. poly.: years at start, regXsea [4.5.10]
parest 209 orthog. poly.: degree at start, regXsea [4.5.10]
parest 210 orthog. poly.: years at end, regions [4.5.10]
parest 211 orthog. poly.: degree at end, regions [4.5.10]
parest 212 orthog. poly.: years at end, seasons [4.5.10]
parest 213 orthog. poly.: degree at end, seasons [4.5.10]
parest 214 orthog. poly.: years at end, regXsea [4.5.10]
parest 215 orthog. poly.: degree at end, regXsea [4.5.10]
parest 216 orthog. poly.: degree, regions [4.5.10]
parest 217 orthog. poly.: degree, seasons [4.5.10]
parest 218 orthog. poly.: degree, regionsXseasons [4.5.10]
parest 219
parest 220
parest 221
parest 222
parest 223
parest 224
parest 225
parest 226
parest 227
parest 228
parest 229
parest 230
parest 231
parest 232
parest 233

parest 234
parest 235
parest 236
parest 237
parest 238
parest 239
parest 240
parest 241
parest 242
parest 243
parest 244
parest 245
parest 246
parest 247
parest 248
parest 249
parest 250
parest 251
parest 252
parest 253
parest 254
parest 255
parest 256
parest 257
parest 258
parest 259
parest 260
parest 261
parest 262
parest 263
parest 264
parest 265
parest 266
parest 267
parest 268
parest 269
parest 260
parest 271
parest 272
parest 273
parest 274
parest 275
parest 276
parest 277
parest 278
parest 279
parest 270
parest 281
parest 282
parest 283
parest 284
parest 285
parest 286
parest 287
parest 288
parest 289
parest 280
parest 291
parest 292
parest 293
parest 294
parest 295
parest 296
parest 297
parest 298
parest 299
parest 290
parest 291
parest 292
parest 293
parest 294
parest 295
parest 296
parest 297
parest 298
parest 299
parest 300

B.2 age flags
Flag Action/Meaning/Status

age 1
age 2
age 3
age 4
age 5
age 6
age 7
age 8
age 9
age 10
age 11
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age 12
age 13
age 14
age 15
age 16
age 17
age 18
age 19
age 20
age 21
age 22
age 23
age 24
age 25
age 26
age 27 ∃
age 28
age 29
age 30 est tot recruit [4.5.10]
age 31 est totpop [4.5.10]
age 32 totpop fixed or not [4.5.1, 4.5.10]
age 33 est. M [4.5.15]
age 34 est. effort devs [4.5.7]
age 35 ∃
age 36 ∃
age 37 avg. F target [4.5.12]
age 38 ∃
age 39 penalty on F target [4.5.12]
age 40 ∃
age 41 ∃
age 42 ∃
age 43 no. terminal years for F target [4.5.12]
age 44 annual F target [4.5.12]
age 45 ∃
age 46 ∃
age 47 ∃
age 48 ∃
age 49 ∃
age 50 ∃
age 51 ∃
age 52 ∃
age 53 movement frequency [4.5.9]
age 54 ∃
age 55 ∃
age 56 ∃
age 57 month doubling [4.5.5 4.5.10]
age 58 ∃
age 59 ∃
age 60 ∃
age 61 ∃
age 62 ∃
age 63 ∃
age 64 ∃
age 65 ∃
age 66 ∃
age 67 ∃
age 68 estimate movement pars [4.5.9]
age 69 activate movement pars [4.5.9]
age 70 activate time series of reg recruitment [4.5.10]
age 71 est time series of reg recruitment [4.5.10]
age 72 recruitment and environment [4.5.10]
age 73 est age-dep M [4.5.15]
age 74 ∃
age 75 ∃
age 76 ∃
age 77 penalty on 2nd derivative of Ma [4.5.15]
age 78 penalty on 1st derivative of Ma [4.5.15]

age 79 penalty on
P

(Ma − M)2 [4.5.15]

age 80 penalty on M
′2

[4.5.15]
age 81 terminal ages with the same M [4.5.15]

age 82 target M
′

[4.5.15]

age 83 min age in M
′

[4.5.15]

age 84 penalty on target M
′

[4.5.15]

age 85 max age in M
′

[4.5.15]
age 86 ∃
age 87 ∃
age 88 activate age-dep movement pars [4.5.9]
age 89 est. age-dep movement pars [4.5.9]
age 90 activate non-linear age-dep movement pars [4.5.9]
age 91 est. non-linear age-dep movement pars [4.5.9]
age 92 catch errors [4.5.1]
age 93 ∃
age 94 starting pop strategy [4.5.10]
age 95 modifier for age flags(94) [4.5.10]
age 96 tag pooling [4.5.8]
age 97 target biomass ratio [4.5.13]
age 98 penalty on biomass ratio [4.5.13]
age 99 no. inital and final yeas for calc biomass ratio [4.5.13]
age 100 neg. binomial for tag likelihood [4.5.8]
age 101 activate .env file [4.5.10]
age 102 est environmental correlation par [4.5.10]
age 103 in code but commented out
age 104 enable implicit q devs [4.5.5]
age 105 ∃
age 106 ∃

age 107 penalty on overall exploitation [4.5.12]
age 108 overall exploitation target [4.5.12]
age 109 whether log(M) at age by deviations from mean or

direct [4.5.15]
age 110 penalty on region rec diffs [4.5.10]
age 111 ∃
age 112 numbers or biomass for MSY calcs [4.5.11]
age 113 scaling init. pop and rectuitment [4.5.10]
age 114
age 115 SS2-type catch estimation
age 116
age 117
age 118
age 119
age 120 ?????????
age 121 ?????????
age 122 ?????????
age 123 ?????????
age 124 ?????????
age 125
age 126
age 127
age 128
age 129
age 130 M/K target [4.5.15]
age 131 age1 for M/K target [4.5.15]
age 132 age2 for M/K target [4.5.15]
age 133 penalty on M/K target [4.5.15]
age 134
age 135
age 136
age 137
age 138
age 139
age 140 enable region-specific yield anal. and set Fmult reso-

lution [4.5.11]
age 141 default no. Fmult steps in region-specific yiel anal.
age 142
age 143 ∃
age 144 common wt for catch L to 10000 [4.5.2]
age 145 penalty on stock-recruit pars [4.5.11]
age 146 activate stock-recruit [4.5.11]
age 147 lag betw. spawning and recruitment [4.5.11]
age 148 years from last year for avg. F [4.5.11]
age 149 yield in wt or numbers [4.5.11]
age 150 penalty for biomass dynamics est [4.5.11]
age 151 activate r in Pella-Tomlilnson [4.5.11]
age 152 activate K in Pella-Tomlilnson [4.5.11]
age 153 a of beta prior in SRR [4.5.11]
age 154 b of beta prior in SRR [4.5.11]
age 155 years from last year to omit from avg F [4.5.11]
age 156 use fish pars 7 in model [4.5.5]
age 157 use fish pars 8 in model [4.5.5]
age 158 was region-specific yield anal. now available for other

use
age 159 ∃
age 160 penalty for fitting to effort in catch conditioned model

[4.5.7]
age 161
age 162
age 163 select alternate parameters for SRR
age 164
age 165 target for Fmsy/F or B/Bmsy [4.5.11]
age 166 penalty weight for Fmsy/F or B/Bmsy [4.5.11]
age 167 target Fmsy/F or B/Bmsy [4.5.11]
age 168 exponent in weighted average for Fmsy/F [4.5.11]
age 169 divisor in weighted average for Fmsy/F [4.5.11]
age 170 enable a biomass depletion target [4.5.14]
age 171 unfished calculations by estimated recruitment or

SRR [4.5.14]
age 172 total or adult biomass depletion [4.5.14]
age 173 first time period for reckoning depletion [4.5.14]
age 174 last time period for reckoning depletion [4.5.14]
age 175 100X target depletion level [4.5.14]
age 176 penalty on depletion target [4.5.14]
age 177 ??????
age 178
age 179
age 180
age 181
age 182
age 183
age 184
age 185 ∃
age 186
age 187
age 188
age 189
age 190
age 191
age 192 ∃
age 193 fishery impact analysis [4.5.14]
age 194 include effort devs in yield analysis [4.5.11]
age 195
age 196
age 197
age 198
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age 199
age 200

B.3 fish flags
Flag Action/Meaning/Status

fish 1 est. avg. q [4.5.5]
fish 2 ∃
fish 3 1st age of common selectivity [4.5.6]
fish 4 est. effort devs [4.5.7]
fish 5 ∃
fish 6 ∃
fish 7 ∃
fish 8 ∃
fish 9 ∃
fish 10 time series in q [4.5.5]
fish 11 selectivity bias, 1st age [4.5.4]
fish 12 ∃
fish 13 penalty for effort devs [4.5.7]
fish 14 limit on F per fishing incident [4.5.12]
fish 15 penalty for q-devs [4.5.5]
fish 16 selectivity shape [4.5.6]
fish 17 ∃
fish 18 ∃
fish 19 no. ages for sel dev coffs [4.5.6]
fish 20 !
fish 21 seasonal growth – under construction [4.5.4]
fish 22 grouping for sel. bias [4.5.4]
fish 23 time step for q-devs [4.5.5]
fish 24 grouping for selectivity [4.5.6]
fish 25 ∃
fish 26 length-dependent selectivities [4.5.6]
fish 27 sinusoidal seasonal q [4.5.5]
fish 28 grouping for seasonal q [4.5.5]
fish 29 grouping for common catchability deviations[4.5.5]
fish 30 ∃
fish 31 ∃
fish 32 grouping for tag recaptures [4.5.8]
fish 33 est. tag reporting rate [4.5.8]
fish 34 grouping for tag reporting rate [4.5.8]
fish 35 penalty for tag reporting rate prior [4.5.8]
fish 36 tag reporting rate prior [4.5.8]
fish 37 est. time series of tag reporting rate [4.5.8]
fish 38 σ2 for Kalman filt. effort devs [4.5.7]
fish 39 σ2 for Kalman filt. q devs [4.5.5]
fish 40 ∃
fish 41 penalty weight for second difference selectivity

smoothing [4.5.6]
fish 42 penalty weight for third difference selectivity smooth-

ing [4.5.6]
fish 43 σ2 for neg. bin., see parest flags(111) [4.5.8]
fish 44 grouping for neg. bin. [4.5.8]
fish 45 fishery specific catch wts [4.5.2]
fish 46 est. of mixture pars in tag likelihood [4.5.8]
fish 47 arbitrary seasonal q [4.5.5]
fish 48 selectivity est. (obsolete??) [4.5.6]
fish 49 length sample size [4.5.3]
fish 50 weight sample size [4.5.3]
fish 51 effect of effort on q [4.5.5]
fish 52 grouping for fish flag 51 [4.5.5]
fish 53 effect of abund. on q [4.5.5]
fish 54 grouping for fish flag 53 [4.5.5]
fish 55 turn off fisheries for impact analysis [4.5.14]
fish 56 penalty to make selectivity a non decreasing function

of age [4.5.6]
fish 57 functional form for selectivity [4.5.6]
fish 58
fish 59
fish 60 grouping for common initial catchability[4.5.5]
fish 61 number of nodes for cubic spline selectivity [4.5.6]
fish 62 number of nodes for cubic spline selectivity [4.5.6]
fish 63
fish 64
fish 65 ∃
fish 66 variable q, implicit method
fish 67
fish 68
fish 69
fish 70
fish 71
fish 72
fish 73
fish 74
fish 75
fish 76
fish 77
fish 78
fish 79
fish 80
fish 81
fish 82
fish 83

fish 84
fish 85
fish 86
fish 87
fish 88
fish 89
fish 90
fish 91
fish 92
fish 93
fish 94
fish 95
fish 96
fish 97
fish 98
fish 99
fish 100

B.4 region flags
Flag Action/Meaning/Status

reg 1 recruitment distribution by reg [4.5.10]
reg 2
reg 3
reg 4
reg 5
reg 6
reg 7
reg 8
reg 9
reg 10

B.5 tag flags
Flag Action/Meaning/Status

tag 1 set number of tag mixing periods [4.5.8]
tag 2
tag 3
tag 4
tag 5
tag 6
tag 7
tag 8
tag 9
tag 10
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abundance per recruit, 87
attach/detach, 62

biological reference points, 17
biomass, 86
biomass per recruit, 87

coefficient of variation, 95

debugging, 97

equilibrium recruitment, 88

fishery impact, 17
flow diagram, 113
Fmsy, 95

graphical output, 77

interrupting a run, 71

likelihood function, 66, 89
catch data, 89
sample data, 90
tag data, 67, 90

negative bionomial, 91
poisson, 91

likelihood profile, 21

MSY, 88

natural mortality, 82
negative bionomial, 91
nodes, 37

objective function, 89
output

files, 72
screen, 70

poisson, 91
population dynamics, 81
prior distributions

beta, 18, 69, 93
normal, 68

projection period, 3, 26, 28

reference points, 88

screen utility, 62
command summary, 65

selectivity, 84
standard output, 70
steepness, 18, 93
stock-recruitment relationship, 18, 87, 93

tag data, 32, 90
tag dynamics, 15, 85
targets, 21

weighting factors, 95

yield curve, 87
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